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Abstract. We developed a numerical model to solve the linearized gravity-wave equations by a multilayer approach. Specifi-

cally, the model handles the linearized equations including viscosity, thermal conduction, and ion drag. The solution methods

are based on the matrix exponential formalism and encompass two main approaches: (i) global matrix methods and (ii) scatter-

ing matrix methods. Both methods are focused on determining either (i) the amplitudes of the characteristic solutions or (ii) the

discrete values of the solution vector. Ascending and descending wave modes are distinguished based on the criterion that the5

real parts of the eigenvalues of the characteristic equation for ascending modes are smaller than those for descending modes.

In global matrix methods, ascending and descending modes can be defined (i) at the upper and lower boundaries or (ii) in each

layer. In contrast, scattering matrix methods necessitate explicitly determining the mode type within each layer. The model ac-

commodates two types of lower boundary conditions and can handle both single-frequency waves and time wavepackets. Our

simulations demonstrate that the solution methods are numerically stable and achieve comparable accuracies. Among them,10

the global matrix method for computing the amplitudes of the characteristic solutions is the most efficient.

1 Introduction

Time-step methods (Liu et al., 2013; Heale et al., 2014; Fritts et al., 2015) are used to solve fully nonlinear sets of governing

equations, allowing for the modeling of wave breaking, secondary wave generation, and weakly nonlinear effects. However, as

compared to linear methods for gravity waves (Midgley and Liemohn, 1966; Volland, 1969a, b; Francis, 1973; Yeh and Liu,15

1974; Klostermeyer, 1972, 1980) they are computationally expensive. In (Pütz et al., 2019) it was found that a time-step model

took several hours to run, while a linear method only took several seconds. In this regard, linear methods are more suitable for

analyzing measured data.

The linearized equations can be transformed into a linear system of ordinary differential equations with variable coefficients

that depend on the background atmospheric parameters and their height derivatives (the atmospheric parameters are assumed to20

be horizontally uniform but vertically varying). A common technique for integrating the linearized equations is the multilayer

method first applied by Pfeffer and Zarichny (1962). In this method, the atmosphere is divided into a sequence of thin layers,

and in each layer, a linear system of ordinary differential equations with constant coefficients is solved. The analytic wave
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solutions in neighboring layers are matched by the continuity condition of the variables across the interface. There are two

methods for deriving a linear system of ordinary differential equations with constant coefficients.25

1. In the standard multilayer method, the atmospheric parameters, and in particular, the temperature and wind velocity, are

assumed to be constant within each layer (Midgley and Liemohn, 1966; Volland, 1969a, b; Francis, 1973; Yeh and Liu,

1974). As a result of the piecewise constant approximation, the height derivatives of the atmospheric parameters are zero

within each layer.

2. In the nonstandard multilayer method, the coefficients as a whole are approximated by their values in the middle of the30

layer (Klostermeyer, 1972). As a result, the height derivatives of the atmospheric parameters (approximated by their

values in the middle of the layers) are also included in the resulting system of equations.

The criticism of standard multilayer methods by Hines (Hines, 1973) concerns whether the equations describing the state

variables in a layer are physically realistic. He concluded that it is impossible to find the appropriate variables when either

(i) the viscosity and the wind velocity are nonzero or (ii) the thermal conductivity and the temperature height derivative are35

nonzero. However, as mentioned by Knight et al. (2022), Hines’ concern about the physical meaning of the state variables is

not relevant for a nonstandard multilayer method. The reason is that in a purely mathematical context, it is sufficient to prove

that the method converges to a correct solution in the infinitesimally thin layer limit. A justification of this result, based on a

matrix–exponential representation for the solution, can be found in (Klostermeyer, 1980).

According to Volland (1969a), a layer is said to be isothermal if the background temperature is constant, and homogeneous40

if the kinematic viscosity, and so, the thermal diffusivity, is constant. In the case of an isothermal, homogeneous, and windless

atmosphere, as in (Midgley and Liemohn, 1966; Volland, 1969a, b; Francis, 1973; Yeh and Liu, 1974), the dispersion relation,

associated to the system of ordinary differential equations, separates into three pairs of ascending and descending gravity-

wave, viscosity-wave, and thermal conduction-wave modes. The viscosity-wave and thermal conduction-wave modes are also

referred to as dissipative modes. The main distinction between the two pairs of dissipative modes and the pair of gravity-wave45

modes is that the latter have smaller vertical wavenumber imaginary parts. This means that ascending gravity-wave modes do

not decrease in amplitude as rapidly with increasing altitude as dissipative modes. On the other hand, if it is assumed that in

each layer, the dynamic viscosity is constant, it is not possible to differentiate between ascending and descending modes for

some wavenumbers, frequencies, and background parameters (Knight et al., 2022, 2019, 2021). In this context, Knight et al.

(2022) explained that the problem of distinguishing ascending from descending modes is related to the problematic branch50

points of the root functions giving the vertical wavenumber as a function of complex frequency. Along this line, the authors

proposed a technique called imaginary frequency shift to assist in achieving this separation.

The inclusion of dissipative modes in a linearized model produces a numerical swamping for floating-point arithmetic

(Maeda, 1985) in which certain descending modes grow so rapidly in the upward direction that numerical overflow occurs when

the system of differential equation is subject to lower and upper boundary conditions. Several methods have been proposed to55

reduce numerical swamping.
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1. Midgley and Liemohn (1966) used an iterative method that can be regarded as a Gauss–Seidel group iteration. For

the Gauss–Seidel iteration to converge, it is essential that the gravity solutions are only minimally coupled with the

dissipative solutions. However, this condition is violated at critical layers where the eigenvalues of the gravity solutions

can be nearly identical to those of one or more dissipative solutions. The condition’s failure, resulting in significant60

coupling, manifests at altitudes of around 200 km or higher (Volland, 1969a, b). Klostermeyer (1980) avoids this problem

by introducing the so called transfer matrix, which relates the amplitudes of the waves at different altitude levels. The

atmosphere is divided into rough layers, such that the critical level is approximately in the middle of a rough layer. The

transfer matrix equations for the rough layers are solved by the Gauss–Seidel iteration, while the fine structure inside a

rough layer is determined by a direct solution of the transfer matrix equations specific to that layer.65

2. Volland (1969b) applied the scattering matrix formalism to a three-layer atmosphere assuming (i) abrupt changes in

variables at the interfaces between the different layers and (ii) that certain background parameters remain constant in the

lower and upper layers. Knight et al. (2019) also formulated the problem in terms of scattering matrices which are closely

related to the reflection and transmission matrices appearing in seismology (Pérez-Álvarez and García-Moliner, 2004).

However, in contrast to Volland, the authors used a more rigorous approach, i.e., a sequence of composed scattering70

matrices instead of just a single stand-alone scattering matrix.

3. Maeda (1985) defined numerical swamping as the annihilation of linear independence among supposedly independent

solutions. To address this challenge and to obtain a comprehensive set of special solutions that are linearly independent,

he utilized a technique developed by Inoue and Horowitz (1966).

In radiative transfer, it is also necessary to solve a linear system of ordinary differential equations with constant coefficients.75

This arises by transforming the continuous dependence of radiance on direction into a dependence on a discrete set of direction.

The standard methods for solving the linear system of ordinary differential equations are the discrete ordinate method (Stamnes,

1986; Wick, 1943; Chandrasekhar, 1950; Stamnes and Swanson, 1981) and the matrix operator method (Plass et al., 1973;

Kattawar et al., 1973; van de Hulst, 1963; Nakajima and Tanaka, 1986). In the classical discrete ordinate method, the solution

to these equations is expressed as a linear combination of characteristic solutions of the discretized problem. Conversely, the80

matrix operator method focuses on numerical computations of reflection and transmission matrices. Both methods can be

formulated using the matrix exponential formalism. In the framework of the so called discrete ordinate method with matrix

exponential, Doicu and Trautmann (2009a, b) designed stable numerical algorithms for computing the radiance field in a multi-

layered atmosphere, while in the framework of the matrix operator method with matrix exponential, Budak et al. (2011, 2012)

provided explicit and stable representations for the reflection and transmission matrices. A consistent overview of the matrix85

exponential description of radiative transfer can be found in (Efremenko et al., 2017; Efremenko and Kokhanovsky, 2021).

The main purpose of this article is to apply radiative transfer techniques to solve the linearized gravity-wave equations. As

a prototype, we will consider the equations that describe gravity waves in the ionosphere, and that include viscosity, thermal

conduction, and ion drag. In principle, a full wave model for the ionosphere comprises the hydrodynamic equations for the

neutral atmosphere and the ionospheric equations. These two sets of equations are coupled through the ion drag, and should90
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be solved together. However, in order to simplify the analysis, we will decouple the two sets of equations by employing an

approximation which is due to Klostermeyer (1972). This approximation, which states that the ion velocity can be estimated

by the air-dragged ion velocity, allows us to solve the neutral-atmosphere equations separately.

Our paper is organized as follows. In Section 2 we review the linearized neutral-atmosphere and ionospheric equations

and describe the method of Klostermeyer for decoupling these two sets of equations. In Section 3 we present the derivation95

of the matrix exponential solution of the linearized equations, while in Section 4 we describe stable numerical methods for

computing this solution. Section 5, which is completely inspired by the works of Knight et al. (2022, 2019, 2021), addresses

time-dependent boundary conditions (source functions) when the linearized equations are solved in the frequency domain. The

concept of causality, rigorously addressed in (Knight et al., 2022, 2019, 2021), will also be briefly discussed.

2 Linearized equations100

To design a full wave model for the ionosphere, we use the hydrodynamic equations for the neutral atmosphere and the

ionospheric equations. In a linearized (perturbation) method, a quantity f is expressed as

f = f0 + f ′, (1)

where f0 and f ′ are the unperturbed (background) and the perturbed quantity, respectively. The perturbations are assumed to

be small so that it is justified to neglect all terms of higher than the first order. Concretely, we need to solve105

1. the linearized hydrodynamic equations for the neutral atmosphere (e.g., (Midgley and Liemohn, 1966; Volland, 1969a))

∂ρ′

∂t
=−u′ · ∇ρ0− ρ0∇ ·u′−u0 · ∇ρ′− ρ′∇ ·u0, (2)

ρ0
∂u′

∂t
=−∇p′+ ρ′g + [∇ ·σ]′

− ρ′(u0 · ∇)u0− ρ0(u0 · ∇)u′− ρ0(u′ · ∇)u0− f ′ID, (3)

ρ0cv
∂T ′

∂t
=−p0∇ ·u′− p′∇ ·u0 + [σ :∇u]′+ [∇· (λ∇T )]′110

− ρ′cv(u0 · ∇)T0− ρ0cv(u0 · ∇)T ′− ρ0cv(u′ · ∇)T0−P ′ID, (4)

p′

p0
=

T ′

T0
+

ρ′

ρ0
, (5)

2. the linearized ion continuity and momentum equations (Huba et al., 2000)

∂n′i
∂t

+∇· (n′iu0i) +∇ · (n0iu′i) = P ′i −n′iL0i−n0iL′i, (6)
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and115

∂u′i
∂t

+ (u′i · ∇)u0i + (u0i · ∇)u′i =− 1
mi

[
K

ni
∇(niTi) +

K

ne
∇(neTe)

]′

+
e

mic
[(ui−ue)×B]′

− ν0in(u′i−u)− ν′inu0i

−
∑

j

ν0ij(u′i−u′j)−
∑

j

ν′ij(u0i−u0j), (7)

respectively, and120

3. the linearized electrically neutral equation

n′e =
∑

i

n′i. (8)

In the neutral-atmosphere equations, ρ is the density, p the pressure, T the temperature, u the velocity, g the gravitational

acceleration, cv the specific heat at constant volume, λ the coefficient of thermal conductivity, σ the viscous stress tensor,

fID = ρνni(u−ui) (9)125

the ion-drag force per unit volume,

PID = fID · (u−ui) = ρνni|u−ui|2 (10)

the rate of work done by the ion drag force per unit volume, and νni the neutral–ion collision frequency (the collision frequency

between a neutral particle and all kind of ions). In the hydrodynamic equations, we neglected the Coriolis force, because we

are interested in gravity waves with an angular frequency ω > 2Ω, where Ω = 7.3× 10−5 s−1 is the Earth’s angular velocity.130

In the ionospheric equations, ni, ui, pi = niKTi, Ti, and mi are the number density, velocity, partial pressure, temperature

and mass of ion i, respectively, ne, ue, pe = neKTe, Te, and me are the number density, velocity, partial pressure, temperature

and mass of electrons, respectively, B is the magnetic induction, e the electron charge, c the speed of light, K the Boltzmann

constant, Pi and Li the ionization production rate and the loss rate due to chemical processes of ion i, respectively, νin the

collision frequency between the ion i and the neutral n, νij the collision frequency between the ions i and j, and νin =
∑

n νi,n.135

Note that in the ionosphere, the neutral-ion collision frequency νni is computed under the assumption that atomic oxygen O

and O+-ions are the main neutral and ionic constituents, that is, for n = O and i = O+. Also note that Eq. (7) is in fact a linear

combination of the ion and electron momentum equations (Huba et al., 2000).

The linearized neutral-atmosphere and ionospheric equations are coupled through the ion-drag perturbations f ′ID and P ′ID,

given respectively, by140

f ′ID = ρ0ν0ni(u′−u′i) + (ρ0ν
′
ni + ρ′ν0ni)(u0−u0i), (11)

P ′ID = 2ρ0ν0ni(u0−u0i) · (u′−u′i) + (ρ0ν
′
ni + ρ′ν0ni)|u0−u0i|2, (12)
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where the neutral-ion collision frequency νni depends on the ion number density ni according to the relation νni = (ni/nn)νin.

Klostermeyer (1972) proposed a simple method for solving the coupled systems of equations under the assumption that the

ion velocity can be approximated by the air-dragged ion velocity, i.e.,145

ui ≈ uw = (u · b̂)b̂, (13)

where b̂ is a unit vector in the direction of the magnetic induction. Assumption (13), which was employed, for example, before

by Volland (1969a) and later by Francis (1973), implies u0i = (u0 · b̂)b̂ and u′i = (u′ · b̂)b̂ (a perturbation of b̂ in the direction

of the magnetic field is not considered), and eliminates the need of using the ion momentum equation (7). With ui as in Eq.

(13), Eqs. (9) and (10) become150

fID = ρνni[u− (u · b̂)b̂], (14)

PID = ρνni[|u|2− (u · b̂)2], (15)

and their perturbed versions are,

f ′ID = ρ0ν0ni[u′− (u′ · b̂)b̂] + (ρ0ν
′
ni + ρ′ν0ni)[u0− (u0 · b̂)b̂], (16)

P ′ID = 2ρ0ν0ni[u0 ·u′− (u0 · b̂)(u′ · b̂)] + (ρ0ν
′
ni + ρ′ν0ni)[|u0|2− (u0 · b̂)2]. (17)155

In fact, Klostermeyer solved the linearized neutral-atmosphere equations (2)–(5) together with the following ion continuity

equation:

∂n′i
∂t

+ n0i∇ ·u′i +u′i · ∇n0i = 0, i = O+. (18)

where, as already mentioned, u′i = (u′ · b̂)b̂. The ion continuity equation (18) is a simplified version of Eq. (6), in which

the term ∇ · (n′iu0i), as well as, the perturbed production and loss terms are neglected. Neglecting the term ∇ · (n′iu0i),160

where u0i = (u0 · b̂)b̂, means that in the continuity equation, the wind (background) velocity u0 is omitted. However, in

Klostermeyer’s formalism, this assumption is then relaxed, i.e., the ion-drag perturbations f ′ID and P ′ID are computed by means

of Eqs. (16)–(17), which still include the wind velocity. Adopting this solution method, we (i) use Eq. (18) to express n′i in

terms of u′, (ii) assume that in the ionosphere, the atomic oxygen O and O+-ions are the main neutral and ionic constituents,

and compute ν0ni and ν′ni by means of the relations (Stubbe, 1968; Shibata, 1983)165

ν0ni = 7.22× 10−17T 0.37
0 n0i, n = O, i = O+, (in MKS units) (19)

and

ν′ni

ν0ni
= 0.37

T ′

T0
+

n′i
n0i

, n = O, i = O+, (20)

respectively, (iii) substitute these results into Eqs. (16) and (17), and (iv) solve the neutral-atmosphere equations (2)–(5) to-

gether with Eqs. (16)–(17) for u′, ρȷ, p′ and T ′.170

Some comments can be made here.
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1. Shibata (1983) used a more precise representation for the ion velocity, that is, ui = uw +udi = (u · b̂)b̂+udi, where

udi =−Da

(
1
ni

∂ni

∂b
+

1
Ti

∂Ti

∂b

)
b̂+

1
νin

(g · b̂)b̂, i = O+, n = O, (21)

is the plasma diffusion velocity, Da = 2KT/(miνin) the ambipolar diffusion coefficient, and b a coordinate along the

magnetic induction. Under the assumption Ti ≈ T , a perturbed version of Eq. (21) is solved together with (i) the ion175

continuity equation (6), in which the production and loss terms are neglected, and (ii) the linearized neutral-atmosphere

equations (2)–(5).

2. In the model that we designed, we use the assumption ui = (u · b̂)b̂ and solve the neutral-atmosphere equations (2)–(5)

as in Klostermeyer’s model. A next step could be the one in which we revise the assumption on the ion velocity and

use the wave-induced perturbations (obtained by solving Eqs. (2)–(5)) to compute the perturbed ion density n′i and the180

perturbed ion velocity along the magnetic field line u′B = u′i · b̂ from the ionospheric equations (6)–(8). This topic will

be discussed in more detail in the Conclusions.

3 General solution

The linearized neutral-atmosphere equations (2)–(5) are solved under the following assumptions:

A1. The geographic and geomagnetic coordinates are identical.185

A2. The wave propagates in the meridional direction (the x-coordinate is positive southwards while the z-coordinate is positive

upwards), i.e.,

f = f(x,z, t). (22)

A3. All background (unperturbed) quantities vary only in the z-direction, i.e.,

f0 = f0(z), (23)190

while all perturbations vary harmonically in time and the x-direction, i.e.,

f ′ = f ′(x,z, t) = f(z)ej(ωt−kxx), (24)

where ω is the angular frequency and kx the horizontal wavenumber.

A4. The atmosphere consists of a number of layers. In each layer, the dynamic (molecular) viscosity µ and the thermal

conductivity λ are computed as (Dalgarno and Smith, 1962)195

µ = 3.34× 10−7T 0.71, λ =
cpµ

Pr
= 6.71× 10−4T 0.71 (all in MKS units) (25)
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and their perturbed values as

µ′

µ0
= 0.71

T ′

T0
,

λ′

λ0
= 0.71

T ′

T0
, (26)

where cp is the specific heat at constant pressure and Pr the Prandtl number. From Eq. (25) it is apparent that a constant

background dynamic viscosity µ0 implies a constant background thermal conductivity λ0 (Pr is constant for a given200

atmospheric composition), and obviously, a constant background kinematic viscosity µk = µ0/ρ0 implies a constant

“kinematic” thermal conductivity λk = λ0/ρ0 = α0cp, or a constant thermal diffusivity α0. In each layer, we assume

non-zero height derivatives of the background temperature and wind velocity, as well as, a constant background dynamic

viscosity, i.e.,

dT0

dz
̸= 0,

du0

dz
̸= 0, µ0 = constant, and λ0 = constant, (27)205

where u0 = (u0,0,0) is the wind velocity. Along this line it should be pointed out that (i) in an isothermal atmosphere

with constant wind velocity, T0 and u0 are supposed to be constant in each layer, i.e., dT0/dz = 0 and du0/dz = 0, while

(ii) in an homogeneous atmosphere, the background kinematic viscosity µk is supposed to be constant in each layer.

In Appendix A it is shown that under the above assumptions, the linearized equations lead to a linear system of ordinary

differential equations, written in matrix form as210

1
kx

de
dz

= Ae, (28)

where

e = [û, ŵ, p̂, T̂ , Û , T̂ ]T (29)

is the unknown solution vector, and A is the propagation matrix with altitude independent elements (whose expressions follow

from Eqs. (A28)–(A33) of A). In general, the unknowns (the hat quantities in Eq. (29)) are defined through the relation215

f(z) = C(z)f̂(z), (30)

where f is defined by Eq. (24), and C is a known quantity that ensures that f̂ is dimensionless and that may or may not depend

on altitude (here, we indicate that C depends on z). Specifically, for u0 = (u0,0,0) and u′ = (u′,0,w′), we have (cf. Eqs.

(A22)–(A26) of A)

u(z) =
ω0

kx
û(z), (31)220

w(z) =
ω0

kx
ŵ(z), (32)

p(z) = p0(z)p̂(z), (33)

T (z) = T0(z)T̂ (z), (34)
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and

Û = 3η
1
kx

dû

dz
, T̂ = ν

1
kx

dT̂

dz
, (35)225

where ω0 is a reference frequency, and the dimensionless parameters η and ν are given by Eq. (A27) of A.

If (λn,vn) is an eigenpair of the matrix A, i.e., Avn = λnvn for n = 1, . . . ,N , where N = dim(e), the general solution of

Eq. (28) is a linear combination of the characteristic solutions exp(kxλnz)vn, that is,

e(z) =
N∑

n=1

anekxλnzvn

= [v1, . . .vN ]




ekxλ1z · · · 0
...

. . .
...

0 · · · ekxλN z







a1

...

aN


230

= Vdiag[ekxλnz]a, (36)

where

V = [v1, . . . ,vN ], diag[ekxλnz] =




ekxλ1z · · · 0
...

. . .
...

0 · · · ekxλN z


 , (37)

and a = [a1, . . . ,aN ]T . At z = 0, we have e(0) = Va; thus,

a = V−1e(0), (38)235

implying (cf. Eq. (36)),

e(z) = Vdiag[ekxλnz]V−1e(0) = ekxAze(0), (39)

and conversely,

e(0) = Vdiag[e−kxλnz]V−1e(z) = e−kxAze(z). (40)

From the theory of gravity waves within an isothermal, nondissipative atmosphere, it is generally known that the amplitude240

of an ascending mode increases like exp[z/(2Ha)], where Ha is the atmospheric scale height (Hines, 1960). This is necessary

to keep the wave energy constant in an atmosphere where the pressure decreases exponentially with height. In this regard, we

define the vertical wavenumber kzn through the relation

diag[ekxλnz] = diag[ez/(2Ha)e−jkznz], (41)

yielding245

λn =− j
kx

kzn +
1
2
α, (42)
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and conversely,

kzn = jkx

(
λn−

1
2
α

)
, (43)

where α = 1/(kxHa). The characteristic equation det(A−λIN ) = 0 has N = 6 solutions. As shown in A, in the case of

an isothermal, homogeneous, and windless atmosphere, these solutions appear in pairs and correspond to (i) ascending and250

descending gravity-wave modes, (ii) ascending and descending viscosity-wave modes, and (iii) ascending and descending

thermal conduction-wave modes. This classification is made according to the imaginary part of the vertical wavenumber kzn.

In the more realistic case of a constant background dynamic viscosity, it is generally not possible to define ascending and

descending modes as corresponding pairs. However, in our model we will use the same rule as in the case of an isothermal and

homogeneous atmosphere, even though the traditional concept of classifying waves in pairs is no longer applicable. Specifically,255

we compute kzn for n = 1, . . . ,N by means of Eq. (25), and order the set {kzn}N
n=1, and accordingly, {λn}N

n=1, such that

Im(kz3) < Im(kz2) < Im(kz1) < Im(kz4) < Im(kz5) < Im(kz6). (44)

By convention, (i) the pairs (kz1 = k+
z1,λ1 = λ+

1 ) and (kz4 = k−z1,λ4 = λ−1 ) will correspond to ascending and descending

gravity-wave modes, respectively, (ii) the pairs (kz2 = k+
z2,λ2 = λ+

2 ) and (kz5 = k−z2,λ5 = λ−2 ) to ascending and descending

viscosity-wave modes, respectively, and (iii) the pairs (kz3 = k+
z3,λ3 = λ+

3 ) and (kz6 = k−z3,λ6 = λ−3 ) to ascending and de-260

scending thermal conduction-wave modes, respectively. Thus, the vertical wavenumber is an auxiliary quantity that is used

only to identify the different modes. According to the notation introduced above, {λ+
m}M

m=1, where M = N/2 is the number of

modes, is the set of eigenvalues defining ascending modes, and {λ−m}M
m=1 is the set of eigenvalues defining descending modes.

Because Re(λn) = Im(kzn)/kx + α/2, it is obvious that we can renounce on the vertical wavenumber when identifying the

different wave modes. We can simply order the set {λn}N
n=1, such that265

Re(λ3) < Re(λ2) < Re(λ1) < Re(λ4) < Re(λ5) < Re(λ6), (45)

and use the same classification rule as above. Knight et al. (2019) employed this approach, providing a more intuitive ex-

planation compared to the analogy with an isothermal and homogeneous atmosphere: For increasing z, the exponential term

exp(kxλnz) will tend to be damped more for ascending modes than for descending modes; conversely, for decreasing z, the

roles of ascending and descending modes are reversed.270

To highlight the different wave modes, we organize the solution vector e(z) as

e(z) = e+(z) + e−(z)

=

(
M∑

m=1

a+
mekxλ+

mzv+
m

)
+

(
M∑

m=1

a−mekxλ−mzv−m

)

= [V+,V−]


 diag[ekxλ+

mz] OM

OM diag[ekxλ−mz]




 a+

a−


 , (46)
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where the eigenvector v±m corresponds to the eigenvalue λ±m,275

V = [V+,V−], V± = [v±1 , . . . ,v±M ], (47)

a =


 a+

a−


 , a± =




a±1
...

a±M


 , (48)

and OM is the zero matrix of dimension M ×M . Some useful relations are listed below

1. From Eq. (38), we find

a+ = [IM ,OM ]a = [IM ,OM ]V−1e(0), (49)280

a− = [OM , IM ]a = [OM , IM ]V−1e(0), (50)

where IM is the identity matrix of dimension M ×M .

2. From Eq. (46), that is,

e±(z) =
M∑

m=1

a±mekxλ±mzv±m = V±diag[ekxλ±mz]a±, (51)

we deduce that285

e±(0) = V±a±. (52)

3. From Eq. (39), we obtain

e+(z) = T+e(0), (53)

where

T+ = V


 diag[ekxλ+

mz] OM

OM OM


V−1, (54)290

while from Eq. (40), we find

e−(0) = T−e(z), (55)

where

T− = V


 OM OM

OM diag[e−kxλ−mz]


V−1. (56)
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4 Solution for a stratified atmosphere295

Consider an equidistant discretization of the atmosphere, i.e., ẑi = zmin + (i− 1)∆ẑ for i = 1, ...,2L+ 1. A layer l, where

l = 1, . . . ,L and L is the number of layers, is bounded from below and from above by the grid points zl = ẑ2l−1 and zl+1 =

ẑ2l+1, respectively, and its center is located at the grid point zl = ẑ2l. The atmosphere extends from zmin = z1 = ẑ1 to

zmax = zL+1 = ẑ2L+1 = zmin + L(2∆ẑ). We adopt a nonstandard multilayer method (Klostermeyer, 1972), and approximate

the altitude dependent matrix A in each layer l by its value at the layer center, i.e., Al = A(zl). The eigenpairs of the prop-300

agation matrix Al are denoted by (λnl,vnl) for n = 1, . . . ,N . The matrix differential equation (28) can be solved for (i) the

amplitudes al, l = 1, . . . ,L of the characteristic solutions, or (ii) the discrete values el = e(zl), l = 1, . . . ,L of the solution

vector e(z).

4.1 Amplitudes of the characteristic solutions

In the layers l and l + 1, the solutions are given by (cf. Eq. (36))305

el(z) = Vldiag[ekxλnl(z−zl)]al, zl ≤ z ≤ zl+1, (57)

and

el+1(z) = Vl+1diag[ekxλn,l+1(z−zl+1)]al+1, zl+1 ≤ z ≤ zl+2, (58)

respectively. The continuity condition at the interface z = zl+1,

el(zl+1) = el+1(zl+1), (59)310

gives

V−1
l Vl+1al+1 = diag[ekxλnl∆l ]al, (60)

where ∆l = zl+1− zl. To obtain a stable system of equations, we define a scaling matrix S1
l with entries

[S1
l ]nn =





e−kxλnl∆l ,

1,

Re(λnl) > 0

Re(λnl)≤ 0

, (61)

and a scaling matrix S0
l by315

S0
l = S1

l diag[ekxλnl∆l ], i.e., [S0
l ]nn =





1,

ekxλnl∆l ,

Re(λnl) > 0

Re(λnl)≤ 0

. (62)

Multiplying Eq. (60) from the left with S1
l gives the continuity equation

A1
l,l+1al+1−A0

l,l+1al = 02M , l = 1, ...,L− 1, (63)
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where 02M is the 2M -dimensional zero vector, and

A1
l,l+1 = S1

l (V
−1
l Vl+1), (64)320

A0
l,l+1 = S0

l . (65)

Actually, we have L−1 continuity equations imposed at the levels z2, . . . ,zL for the L unknowns a1, . . . ,aL. The two missing

equations are obtained from the lower and upper boundary conditions.

1. At the lower boundary, i.e., at z = z1(= zmin), we assume that only the ascending wave modes transport energy upward.

In this regard, we impose that in the layer l = 1, we have a+
1,l=1 = s = finite, and that the rest of a+

m,l=1 are zero,325

that is, a+
m,l=1 = 0 for m ̸= 1 (Klostermeyer, 1972). Note that a+

1,l=1 is the amplitude of the ascending gravity-wave

modes, while the condition a+
m,l=1 = 0 for m ̸= 1 means that the amplitudes of the ascending viscosity-wave and thermal

conduction-wave modes are assumed to be zero. In this case, the boundary condition for ascending modes is

e+
l=1(z1) =




û+
l=1(z1)

ŵ+
l=1(z1)

p̂+
l=1(z1)

T̂+
l=1(z1)

Û+
l=1(z1)

T̂ +
l=1(z1)




=
M∑

m=1

a+
m,l=1v

+
m,l=1 = sv+

1,l=1. (66)

Excluding for the moment the scale factor s, we express the boundary condition for amplitudes,330

a+
l=1 =




a+
1,l=1

a+
2,l=1

...

a+
M,l=1




= i1 with i1 =




1

0
...

0




, (67)

in matrix form as

[IM ,OM ]a1 = [IM ,OM ]


 a+

1

a−1


= i1, (68)

where in general, a±l0 = a±l=l0
, for l0 = 1, . . . ,L.

2. A reasonable upper boundary condition is that there is no downgoing energy at great altitudes, so that the amplitudes335

of all descending wave modes must be zero at the upper boundary (Klostermeyer, 1972). In this regard, we impose

a−m,l=L = 0 for all m = 1, . . . ,M , in which case, in the layer L, the boundary condition for descending modes is

e−l=L(z) =
M∑

m=1

a−m,l=Lekxλ−m,l=Lzv−m,l=L = 02M (69)
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for all zL ≤ z ≤ zL+1. In matrix form, the boundary condition for amplitudes

a−l=L =




a−1,l=L

a−2,l=L

...

a−M,l=L




= 0M (70)340

is written as

[OM , IM ]aL = [OM , IM ]


 a+

L

a−L


= 0M . (71)

Comments.

1. The scaling matrices defined by Eqs. (61) and (62) do not take into account a classification of the wave modes as

ascending and descending (as defined by Eq. (45)). Consequently, the continuity equations (63) do not account for this345

classification, and the only equations in which it is necessary to distinguish between ascending and descending modes

are the boundary condition equations (68) and (71). From this point of view, the method is similar to finite-difference

methods (Lindzen and Kuo, 1969; Hickey et al., 1998, 2009). For the continuity equations and the boundary condition

equations to be consistent (for both to rely on a categorization of wave modes as ascending or descending), we may

define the scaling matrices as350

[S1
l ]nn =





1,

e−kxλnl∆l ,

n = 1, . . . ,M

n = M + 1, . . . ,N

, (72)

and

S0
l = S1

l diag[ekxλnl∆l ], i.e., [S0
l ]nn =





ekxλnl∆l ,

1,

n = 1, . . . ,M

n = M + 1, . . . ,N

. (73)

2. Knight et al. (2022, 2019) specified the lower boundary condition for ascending modes in terms of M values b1,k,

k = 1, . . . ,M , as (compare with Eq. (66))355
[

dk−1e+
l=1

dzk−1
(z1)

]

q

= sb1,k, k = 1, ...,M, (74)

where as before, s is a scale factor, and the notation [x]q stands for the qth component of the vector x. Using the relations

dk−1e+
l=1

dzk−1
(z1) =

M∑

m=1

a+
m,l=1(kxλ

+
m,l=1)

k−1v+
m,l=1, k = 1, . . . ,M, (75)

14

https://doi.org/10.5194/egusphere-2025-3406
Preprint. Discussion started: 12 August 2025
c© Author(s) 2025. CC BY 4.0 License.



and360
[

dk−1e+
l=1

dzk−1
(z1)

]

q

= îT
q

dk−1e+
l=1

dzk−1
(z1) =

M∑

m=1

a+
m,l=1(kxλ

+
m,l=1)

k−1̂iT
q v+

m,l=1, (76)

where îq is a 2M -dimensional vector with components (compare with Eq. (67))

[̂iq]k =





1, k = q

0, k ̸= q
, k = 1, . . . ,2M, (77)

we find

M∑

m=1

[A]mka+
m,l=1 = sb1,k, k = 1, ...M, (78)365

where A is a matrix with entries

[A]mk = (kxλ
+
m,l=1)

k−1̂iT
q v+

m,l=1, m,k = 1, . . . ,M. (79)

Setting b1 = [b1,1, . . . , b1,M ]T , and omitting the scale factor s, we consider the boundary condition for amplitudes

a+
1 = A−1b1, (80)

that is (compare with Eq. (68))370

[IM ,OM ]a1 = A−1b1. (81)

Starting from the continuity equation (63), we will determine the amplitudes al by using two solution methods, namely, (i) the

so-called global matrix method with matrix exponential and (ii) the scattering matrix method.

4.1.1 Global matrix method with matrix exponential

The continuity equations (63), and the boundary conditions (68) and (71) are assembled into a system of equations for the375

stratified atmosphere, i.e.,

Aas = sb, (82)
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where

A =




[OM , IM ] 0 . . . 0 0

A1
L−1,L −A0

L−1,L . . . 0 0
...

...
. . .

...
...

0 0 . . . A1
12 −A0

12

0 0 . . . 0 [IM ,OM ]




, (83)

a =




aL

aL−1

...

a2

a1




, and b =




0M

02M

...

02M

i1




. (84)380

For the lower boundary condition (81), i1 in Eq. (84) should be replaced by A−1b1. The matrix A has 3M −1 sub- and super-

diagonals and it can be compressed into band-storage and inverted using standard methods. From Eq. (83), we see that the scale

factor s determines the solution, and can be interpreted as a source term. For this reason, in Eq. (82) we were more precise and

showed that the vector of amplitudes depends on the source term s. In what follows, when we want to show that a quantity

depends on the source term we will use the index s; when the index s is omitted, it will be understood that s = 1 (according to385

this convention, e+
l=1 in Eqs. (66) and (74) should also depend on the index s). After solving Eq. (82), we compute the solution

vector as

el = e(zl) =




û(zl)

ŵ(zl)

p̂(zl)

T̂ (zl)

Û(zl)

T̂ (zl)




= Vlal, l = 1, . . . ,L, (85)

and the wave amplitudes by means of the relation

fs(z) = sC(z)f̂(z), (86)390

where f stands for u, w, p, and T . The ascending and descending solution modes are computed by using Eq. (52), that is,

e±l = V±l a±l , l = 1, . . . ,L. (87)

According to the basic requirement of a linearization method, we can compute s by imposing that the perturbed quantities

are a small fraction of their unperturbed values. For example, we can impose,

max
z

∣∣∣∣
T ′(x,z, t)

T0(z)

∣∣∣∣= max
z

∣∣T̂ (z)
∣∣= δT, (88)395
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or

max
z

∣∣∣∣
u′(x,z, t)

u0(z)

∣∣∣∣=
ω0

kx
max

z

∣∣∣∣
û(z)
u0(z)

∣∣∣∣= δu, (89)

where δT and δu are prescribed tolerances. Alternatively, we can impose a value for the vertical energy flux at the lowest level

z1 = zmin as in (Hickey and Cole, 1988). In Section 5 s will be assumed to be some time dependent source function as in

(Knight et al., 2022, 2019, 2021).400

4.1.2 Scattering matrix method

We consider the continuity equation (63) and partition the matrices A0(1)
l,l+1 as

A0(1)
l,l+1 =


 [A0(1)

l,l+1]11 [A0(1)
l,l+1]12

[A0(1)
l,l+1]21 [A0(1)

l,l+1]22


 . (90)

Further, we define the scattering matrix at the interface between the layers l and l + 1 (in fact, at the layer grid point zl+1),

Sl,l+1 through the relation405

 a−l

a+
l+1


= Sl,l+1


 a+

l

a−l+1


 , (91)

where

Sl,l+1 =


 R+

l,l+1 T−l,l+1

T+
l,l+1 R−l,l+1


 , (92)

and R±l,l+1 and T±l,l+1 with dim(R±l,l+1) = dim(T±l,l+1) = M ×M , are the reflection and transmission matrices, respectively.

Eq. (91) is the so-called interaction principle equation at the interface (l, l +1), and it is apparent that the scattering matrix410

Sl,l+1 relates the amplitudes a−l and a+
l+1 of the waves leaving the interface with the amplitudes a+

l and a−l+1 of the waves

entering the interface. Starting with Eq. (63), inserting the partitioning of the matrices A0(1)
l,l+1 as given by Eq. (90), using

al(l+1) = [a+
l(l+1),a

−
l(l+1)]

T , and rearranging the resulting equation in a fashion as given by Eq. (91), we find


 R+

l,l+1 T−l,l+1

T+
l,l+1 R−l,l+1


=


 [A0

l,l+1]12 −[A1
l,l+1]11

[A0
l,l+1]22 −[A1

l,l+1]21



−1
 −[A0

l,l+1]11 [A1
l,l+1]12

−[A0
l,l+1]21 [A1

l,l+1]22


 . (93)

We organize the computational process as an upward recurrence using the concept of a “stack”. The stack Sl0l with l0 < l,415

is a group of interfaces characterized by the interaction principle equation

 a−l0

a+
l


=


 R+

l0l T −l0l

T +
l0l R−l0l




 a+

l0

a−l


 , (94)

where the matrices R±l0l and T ±l0l are obtained through a successive application of the interaction principle equation at the

interfaces (l0, l0+1), (l0+1, l0+2),...,(l−1, l). Adding a new layer l+1, and taking into account that at the interface (l, l+1),
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the reflection and transmission matrices are R±l,l+1 and T±l,l+1, respectively, we find that the interaction principle equation for420

the stack Sl0,l+1, is

 a−l0

a+
l+1


=


 R+

l0,l+1 T −l0,l+1

T +
l0.l+1 R−l0.l+1




 a+

l0

a−l+1


 , (95)

where R±l0,l+1 and T ±l0,l+1 are computed recursively by using of the “adding formulas”

R+
l0,l+1 =R+

l0l + T −l0l(IM −R+
l,l+1R−l0l)

−1R+
l,l+1T +

l0l, (96)

T −l0,l+1 = T −l0l(IM −R+
l,l+1R−l0l)

−1T−l,l+1, (97)425

T +
l0,l+1 = T+

l,l+1(IM −R−l0lR
+
l,l+1)

−1T +
l0l, (98)

R−l0,l+1 = R−l,l+1 + T+
l,l+1(IM −R−l0lR

+
l,l+1)

−1R−l0lT
−
l,l+1, (99)

for l = l0 +1, ...,L−1. The procedure is initialized with R±l0,l0+1 = R±l0,l0+1 and T ±l0,l0+1 = T±l0,l0+1, and is repeated until the

last interface is added to the stack. For the stack S1L, the interaction principle equation is

 a−1

a+
L


=


 R+

1L T −1L

T +
1L R−1L




 a+

1

a−L


 , (100)430

and from the boundary conditions for amplitudes (67) and (70), that is, from the relations a+
1 = i1 and a−L = 0M , respectively,

we find

a−1 =R+
1La+

1 and a+
L = T +

1La+
1 . (101)

To restore the entire set of amplitude vectors al, we consider the interaction principle equations for the stacks S1l and SlL,

yielding435

a+
l = (IM −R−1lR+

lL)−1T +
1l a

+
1 , (102)

a−l =R+
lLa+

l , (103)

for l = L− 1, ...,1. The solution vector and the wave amplitudes are then computed by using Eqs. (85) and (86), respectively.

In contrast to the previous method, this approach requires a clear differentiation between ascending and descending modes as

defined by Eq. (45).440

4.2 Discrete values of the solution vector

In this section, the global matrix method with matrix exponential and the scattering matrix method will be formulated for the

discrete values of the solution vector.
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4.2.1 Global matrix method with matrix exponential

In the layer l, with boundaries zl and zl+1, the discrete values el+1 = e(zl+1) and el = e(zl) are related through the relation445

(cf. Eq. (39))

el+1 = Vldiag[ekxλnl∆l ]V−1
l el, (104)

or equivalently,

V−1
l el+1 = diag[ekxλnl∆l ]V−1

l el. (105)

Taking into account that by Eq. (39), we have el = Vlal and el+1 = Vl+1al+1, we see that Eq. (60) and (105) are completely450

equivalent. Multiplying Eq. (105) with the scaling matrix S1
l , we obtain the layer equation

A1
l el+1−A0

l el = 02M , l = 1, ...,L− 1, (106)

where

A1
l = S1

l V
−1
l , (107)

A0
l = S0

l V
−1
l , (108)455

and S1
l and S0

l , are given by Eqs. (61) and (62), respectively. Essentially, we have L−1 equations imposed on layers 1, . . . ,L−1

for the L unknowns e1, . . . ,eL. On the layer l = 1, the boundary condition (cf. Eq. (67)) a+
1 = i1, translates into (cf. Eq. (49))

[IM ,OM ]V−1
1 e1 = i1, (109)

while on the layer l = L, the boundary condition (cf. Eq. (70)) a−L = 0M translates into (cf. Eq. (50))

[OM , IM ]V−1
L eL = 0M . (110)460

As before, the layer equations (106) together with the boundary conditions (109) and (110) are assembled into a system of

equations for the stratified atmosphere, i.e.,

Aes = sb, (111)
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where

A =




[OM , IM ]V−1
L 0 . . . 0 0

A1
L−1 −A0

L−1 . . . 0 0
...

...
. . .

...
...

0 0 . . . A1
1 −A0

1

0 0 . . . 0 [IM ,OM ]V−1
1




, (112)465

e =




eL

eL−1

...

e2

e1




and b =




0M

02M

...

02M

i1




. (113)

After solving Eq. (111) for s = 1, we compute the wave amplitudes by using Eq. (86).

Comments.

1. The ascending and descending solution modes can be derived by using the upward and downward recurrence relations

(cf. Eqs. (53)–(56), (66) and (69))470

e+
l+1 = T+

l el, for l = 1, . . . ,L− 1, with e+
1 = v+

1 , and (114)

e−l = T−l el+1, for l = L− 1, . . . ,1, with e−L = 02M , (115)

respectively, where

T+
l = Vl


 diag[ekxλ+

ml∆l ] OM

OM OM


V−1

l , (116)

T−l = Vl


 OM OM

OM diag[e−kxλ−ml∆l ]


V−1

l . (117)475

Obviously, the relation el = e+
l + e−l , l = 1, . . . ,L, can be used to verify the numerical algorithm.

2. If we assume that the ascending modes are the dominant modes, i.e., el ≈ e+
l for l = 1, . . . ,L, we may compute the

solution vector by means of the upward recurrence relation (cf. Eq. (114))

el+1 = T+
l el, for l = 1, . . . ,L− 1, with e1 = v+

1 . (118)

4.2.2 Global matrix method with the Padé approximation to the matrix exponential480

The layer equation (106) was derived from the solution representation (104). In fact, this equation is simply the matrix-

exponential representation of the solution, i.e.,

el+1 = ekx∆lAlel, (119)
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where the matrix exponential is calculated using an eigendecomposition of the propagation matrix Al, i.e., Al = Vldiag[λnl]V−1
l .

However, instead of an eigendecomposition method, we can use the Padé approximation to compute the matrix exponential485

(Doicu and Trautmann, 2009a, b). This method is presumably more efficient than the eigendecomposition method.

The nth diagonal Padé approximation to the matrix exponential is

exA = [D(xA)]−1N(xA), (120)

where D(xA) and N(xA) are polynomials in Ax of degree n given respectively, by

D(xA) =
n∑

k=0

(−1)kckxkAk, (121)490

N(xA) = D(−xA) =
n∑

k=0

ckxkAk. (122)

The coefficients ck are defined by

ck =
(2n− k)!n!

(2n)!k!(n− k)!
, (123)

and can be computed recursively by means of the relation

ck =
n− k +1

k(2n− k + 1)
ck−1, k ≥ 1 (124)495

with the initial value c0 = 1. The layer equation (119) then becomes

D(kx∆lAl)el+1 = N(kx∆lAl)el, (125)

that is

A1
l el+1−A0

l el = 02M , l = 1, ...,L− 1, (126)

where500

A1
l = Dkx∆l(Al), (127)

A0
l = N(kx∆lAl). (128)

Now, the layer equations (126) together with the boundary conditions (109) and (110) are assembled into a system of equa-

tions for the stratified atmosphere, which is then solved by standard methods for band matrices. Taking into account that the

boundary conditions (109) and (110) are expressed in terms of the eigenvector matrix, we see that in this approach, the eigen-505

decomposition method must only be used in the lower and upper layers, i.e., for l = 1 and l = L, while in the rest of the layers,

the Padé approximation is used.

Comments.
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1. The first-order Padé approximation is equivalent with the finite-difference scheme

el+1− el

∆l
= kxAl

el+1 + el

2
. (129)510

2. Considering the Taylor series approximation to the matrix exponential,

exA = I +
n∑

k=1

1
k!

xkAk, (130)

we deduce that for k = 1, we have

exA = I +xA, (131)

which, when used in Eq. (119), is equivalent with the forward finite-difference scheme515

el+1− el

∆l
= kxAlel. (132)

4.2.3 Scattering matrix method

The scattering matrix method can also be formulated in terms of the discrete values of the solution vector. Starting from the

interaction principle equation (74), using Eq. (52), i.e., e±l = V±l a±l , and Eqs. (49)–(50), i.e., (here we use the more precise

notation (Vl)−1 instead of V−1
l )520

a+
l = [IM ,OM ]al = [IM ,OM ](Vl)−1el, (133)

a−l = [OM , IM ]al = [OM , IM ](Vl)−1el, (134)

we find that for the stack Sl0l, the interaction principle equation involving the discrete values of the solution vector is

 e−l0

e+
l+1


=


 R+

l0l T −l0l

T +
l0l R−l0l




 e+

l0

e−l+1


 , (135)

where dim(R±l0l) = dim(T ±l0l) = 2M × 2M , and525


 R+

l0l T −l0l

T +
l0l R−l0l


= (I4M −A)−1A, (136)

with

A =


 V−l0R

+
l0l[(Vl0)

−1]1 V−l0T
−

l0l[(Vl)−1]2

V+
l T +

l0l[(Vl0)
−1]1 V+

l R−l0l[(Vl)−1]2


 , (137)

Vl = [V+
l ,V−l ], and (Vl)−1 =


 [(Vl)−1]1

[(Vl)−1]2


 . (138)
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The boundary values of the solution vector e−1 and e+
L are computed from Eqs. (101) with e+

1 = v+
1 and e−L = 02M , while530

the rest of the discrete values e+
l and e−l are obtained from Eqs. (102) and (103) with e replacing a, respectively. Because the

dimensions of the matrices R±l0l and T ±l0l are twice as large as those of the matrices R±l0l and T ±l0l, the computation time will be

higher. The computation time can be somewhat reduced, if the Neumann series representation (I4M −A)−1A =
∑∞

n=1 An is

used (this expansion is valid for
∥∥A
∥∥< 1, where ∥·∥ is some matrix norm).

5 Time dependent source function535

If the source term is time-dependent (or more precisely, if it lacks a temporal dependence in the form of exp(jωt)), the perturbed

quantity f ′(x,z, t) is not a wave with a specified angular frequency ω (a single-frequency wave). In this case, the equations

should be treated in the frequency domain by considering the Fourier transform in time (Knight et al., 2022, 2019, 2021). This

is defined by

f̃ ′(x,z,ω) =

∞∫

−∞

f ′(x,z, t)e−jωtdt = F [f ′](x,z,ω) (139)540

and its inverse by

f ′(x,z, t) =
1
2π

∞∫

−∞

f̃ ′(x,z,ω)ejωtdω = F−1[f̃ ′](x,z, t). (140)

Applying the Fourier transform to the linearized equations (A12)–(A16) of Appendix A, using the result

F
[
∂f ′

∂t

]
(x,z,ω) = jωf̃ ′(x,z,ω), (141)

and setting545

f̃ ′(x,z,ω) = f̃(z,ω)e−jkxx (142)

as the counterpart of Eq. (24) (in which the exponential term exp(jωt) is absorbed into the expression of f(z)), and

f̃(z,ω) = C(z)˜̂f(z,ω) (143)

as the counterpart of Eq. (30), we are led to the system of differential equations (A28)–(A33) of Appendix A (or equivalently, to

the matrix differential equation (28)), but with ˜̂f(z,ω) replacing f̂(z). In the frequency domain, the lower boundary conditions550

(66) and (74) for a unit source function become
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e+
l=1(z1,ω) =




û+
l=1(z1,ω)

ŵ+
l=1(z1,ω)

p̂+
l=1(z1,ω)

T̂+
l=1(z1,ω)

Û+
l=1(z1,ω)

T̂ +
l=1(z1,ω)




=
M∑

m=1

a+
m,l=1(ω)v+

m,l=1(ω) = v+
1,l=1(ω), (144)

for a+
m,l=1(ω) = δm1, where δm1 is the Kronecker delta, and

[
dk−1e+

l=1

dzk−1
(z1,ω)

]

q

= b1,k, k = 1, ...,M, (145)

respectively. As in Section 4.1.1, with ˜̂f(z,ω) being the solution of the differential equation (28) for a unit source function (in555

the frequency domain), we compute the perturbed quantity f ′s(x,z, t) by taking the inverse transform (140) with

f̃ ′s(x,z,ω) = C(z)s̃(ω)˜̂f(z,ω)e−jkxx, (146)

that is,

f ′s(x,z, t) =
1
2π

∞∫

−∞

f̃ ′s(x,z,ω)ejωtdω =
C(z)
2π

e−jkxx

∞∫

−∞

s̃(ω)˜̂f(z,ω)ejωtdω, (147)

where s̃(ω) is the Fourier transform of some source function s(t), i.e., s̃ = F [s]. The computation of ˜̂f(z,ω) can be performed560

without any limitations using any of the methods presented in Section 4. Note that the most general situation is when the

source function depends on time and the horizontal coordinate, that is, s = s(x,t). In this case, we have to consider the two-

dimensional Fourier transform in time and space. However, a simplification occurs in case that the variables are separable,

i.e., s = st(t)sx(x); in this case, the term s̃(ω)exp(−jkxx) in Eq. (146) should be replaced by the product of one-dimensional

Fourier transforms s̃t(ω)s̃x(kx).565

We conclude this section with a comment related to causality as discussed in (Knight et al., 2019). Causality means that a

wave field in response to any source function can never be nonzero prior to the earliest time at which the source function is

nonzero. According to the classification rule (45), we have

Re[λ+
1l(ω)] < Re[λ−1l(ω)], (148)

for any l = 1, . . . ,L and any real frequency ω. However, as shown by Knight et al. (2019), to preserve causality in solutions of570

two-point boundary value problems, a much stronger condition should be met. This condition is

max
l=1,...,L

Re[λ+
1l(ϖ)] < min

l=1,...,L
Re[λ−1l(ϖ)]. (149)
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for all ϖ = Re(ϖ) + jIm(ϖ) ∈ Uδ , where for any δ ≥ 0, U δ is the closed lower half-plane Im(ϖ)≤−δ. Eq. (149) states that

the upper altitude bound of the real part of the eigenvalues for ascending modes should be smaller than the lower altitude

bound of the same values for descending modes. In some situation, condition (149) is not satisfied for δ = 0, but it is satisfied575

for some δ > 0. If so, an imaginary frequency shifting, i.e., ω→ ω− jδ is required to preserve causality (Knight et al., 2019).

To summarize this approach, we consider the shifted source function in the frequency domain

s̃δ(ω) =

∞∫

−∞

s(t)e−j(ω−jδ)tdt = s̃(ω− jδ), (150)

and let

f̃ ′sδ(x,z,ω) = C(z)s̃(ω− jδ)˜̂f(z,ω− jδ)e−jkxx (151)580

be the Fourier transform of the perturbed quantity with frequency shifting f ′sδ(x,z, t), i.e., f̃ ′sδ = F [f ′sδ], where as usual,
˜̂
f(z,ω− jδ) is solution of the differential equation (28) for a unit source function. By Cauchy theorem it can be shown that the

perturbed quantity with frequency shifting computes as

f ′sδ(x,z, t) =
1
2π

∞∫

−∞

f̃ ′sδ(x,z,ω)ejωtdω = e−δtf ′s(x,z, t), (152)

where f ′s is the perturbed quantity without frequency shifting given by Eq. (147). As a result, we obtain the so called shift-585

invariance property of the solution, i.e.,

f ′s(x,z, t) = eδtf ′sδ(x,z, t). (153)

Summarizing, in the frequency shifting approach we (i) compute ˜̂f(z,ω−jδ) as the solution of the differential equation (28) for

a unit source function, (ii) calculate f̃ ′sδ by means of Eq. (151), (iii) determine f ′sδ as f ′sδ = F [f̃ ′sδ], and (iv) compute f ′s from

the shift-invariance property (153). An issue that may arise with this approach is that the interaction between a large frequency590

δ (which ensures the causality condition (149)) and the rounding errors in computing a small f ′sδ , through the exponential

term exp(δt), can cause the left-hand side of Eq. (153) to explode for large t. Since this problem appears frequently in our

simulations, we decided to renounce on the causality condition (149) (in other words, on the frequency shifting), and to

compute f ′s directly by using Eq. (147). Parenthetically we note that instead of condition (149) we can give another condition

that preserves causality. From Eqs. (151)–(153), we find595

f ′s(x,z, t) = eδtf ′sδ(x,z, t) = C(z)e−jkxx

∞∫

−∞

s(t1)f̂δ(z, t− t1)dt1, (154)

where

f̂δ(z, t− t1) =
1
2π

∞∫

−∞

˜̂
f(z,ω− jδ)ej(ω−jδ)(t−t1)dω. (155)
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Assume that the source function s(t) is applied at t = 0, and in view of Eq. (154), consider the convolution integral

I(z, t) =

∞∫

0

s(t1)f̂δ(z, t− t1)dt1. (156)600

Further, assume that

at any altitude level z, f̂δ(z,τ) = 0 for all τ ≤ T with some T ≥ 0. (157)

In this case, for t≤ T and t1 ≥ 0, we have τ = t− t1 ≤ T , implying f̂δ(z,τ = t− t1) = 0. Consequently, for t≤ T , we have

I(z, t) = 0, and we conclude that the effect (reaction) I(z, t) appears at t > T , while the cause (action) s(t) appears at t = 0.

Thus, in the new formulation, condition (157) is the analogue of condition (149). The problem arising here is that in practice,605

condition (157) should be verified for all z within the considered altitude range. However, if we decide not to be so strict in

verifying causality, we can determine the pair (z0, t0) = argmaxz,t f̂δ(z, t) and then compare s(t) with f̂δ(z0, t).

6 Numerical simulations

We designed a numerical model for solving the ionospheric linearized gravity-wave equations. The solution methods included

in the model are the following.610

Method 1: Global matrix method with matrix exponential for the amplitudes of the characteristic solutions;

Method 2: Scattering matrix method for the amplitudes of the characteristic solutions;

Method 3: Global matrix method with matrix exponential for the discrete values of the solution vector;

Method 4: Global matrix method with the Padé approximation to the matrix exponential for the discrete values of the solution

vector;615

Method 5: Scattering matrix method for the discrete values of the solution vector.

The main difference between global and scattering matrix methods is that the former with the scaling matrices (61) and (62),

require defining ascending and descending modes only at the upper and lower boundaries, while the latter require an explicit

determination of the mode type at every altitude.

The input parameters of the numerical model are the background quantities ρ0, T0, u0 and n0i. These are delivered by the620

SAMI2 model of the Naval Research Lab (Huba et al., 2000), while the derivatives dT0/dz, du0/dz, and dn0i/dz are computed

by finite-differences. Note that in SAMI2, the neutral atmosphere is specified using the Mass Spectrometer Incoherent Scatter

model (MSIS) (Hedin, 1987), and the Horizontal Wind Model (HWM) (Hedin et al., 1991). The background quantities T0, u0

and n0i, as well as their derivatives are illustrated in Fig. 1.

In our numerical analysis, we consider two types of source functions, namely625

s(t) = s0ejω0t, s̃(ω) = 2πs0δ(ω−ω0), (158)
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Figure 1. Background quantities T0, u0 and n0i (i = O+) delivered by SAMI2 (upper panels), and their height derivatives (lower panels).
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and

s(t) = s0e−(t−t0)
2/(2σ2

t )ejω0(t−t0), s̃(ω) =
√

2π

σω
s0e−(ω−ω0)

2/(2σ2
ω)e−jωt0 , (159)

where ω0 is the reference frequency (the central frequency in the Fourier spectrum), t0 is the time at which the source function

is maximum, σt and σω = 1/σt are the standard deviations in the time and frequency domains, respectively, and s0 is the630

amplitude of the source function (computed from Eq. (88) with δT = 0.1). The first type of source function leads to a single-

frequency solution with frequency ω0, that is,

f ′(x,z, t) = C(z)˜̂f(z,ω0)ej(ω0t−kxx), (160)

while the second type corresponds to a time wavepacket (with a Gaussian pulse function as envelope). The reference frequency

used in the definitions (31) and (32) of û and ŵ, respectively, is ω0. The quantities of interest (which will be calculated and635

analyzed) are the perturbations

fs(z) = sC(z)˜̂f(z,ω0) (161)

in the first case, and

fs(z, t) =
C(z)
2π

∞∫

−∞

s̃(ω)˜̂f(z,ω)ejωtdω (162)

in the second case.640

The numerical analysis is performed under the following assumptions.

1. The atmosphere extends from zmin = 50km to zmax = 500km, the number of layers is L = 400, the number of grid

points is 2L +1 = 801, the altitude discretization step is ∆ẑ = 0.56km, and the layer thickness is 2∆ẑ = 1.12km.

2. Unless stated otherwise, we assume non-zero height derivatives for background temperature and wind velocity, as well

as a constant background dynamic viscosity in each layer (in other words, we assume the layer conditions (27)).645

3. We choose ω0 = κω maxz ν0ni(z) with 0.6≤ κω ≤ 1, where ν0ni is the background neutral-ion collision frequency given

by Eq. (19). For κω ranging from 0.6 to 1.0, ω0 varies between 1.25×10−3 s−1 and 2.10×10−3 s−1, and correspondingly,

the time period T0 = 2π/ω0 varies between 50min and 83min.

4. For the first type of source function, we analyze fs(z) in the spatial frequency domain by applying a nonuniform Fourier

Transform (FT) with Nk = 256 points. The sampling wavenumber is ∆kz = kz0/20, where kz0 = 2π/λz0 and λz0 = 50650

km. The Fourier spectrum is smoothed using cubic smoothing spline, while for a better comparison, the FT-amplitudes

are normalized by their maximum values.

5. For the second type of source function, we choose σω = ω0/30, and t0 = κtσt with κt = 4 and σt = 1/σω , so that with

a good approximation, s(t)≈ 0 for t≤ 0 and t≥ 2κtσt. Thus, the time domain is tmin = 0 and tmax = 2κtσt, while
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the frequency domain is ωmin = ω0−κtσω and ωmax = ω0 + κtσω . We perform a nonuniform Fourier transform with655

Nt = Nω = 512 points; accordingly, the sampling time is ∆t = (tmax− tmin)/(Nt− 1) and the sampling frequency is

∆ω = (ωmax−ωmin)/(Nω − 1).

6. If not stated otherwise, we use Method 1 as solution method and set the frequency parameter κω to 0.8.

6.1 Single-frequency waves

Our numerical analysis is organized as follows. In a first step, we test the numerical model, and in a second step, we evaluate660

the accuracy and efficiency of the proposed solution methods. Further, we discuss the significance of the vertical wavenumber,

and analyze the pairwise classification of ascending and descending modes, as well as, the influence of the ion drag, lower

boundary condition, and lower altitude level on the results. Finally, we calculate the ascending and descending wave modes by

using Methods 1 and 3.

Model testing. To test the numerical model we compare the results obtained by solving (see Appendix A)665

1. the linearized equations (A28)–(A33) for an isothermal, homogeneous, and windless atmosphere, i.e., for the layer

conditions

dT0

dz
= 0, u0 = 0, µk = constant, and λk = constant, (163)

and

2. the linearized equations (A57)–(A62).670

In this simulation, the altitude range is from zmin = 125km to zmax = 450km. The results in Fig. 2 show that there are no

visible differences in the altitude profiles of temperature T s, vertical velocity ws, and horizontal velocity us.

Accuracy and efficiency of the solution methods. To test the accuracy of the solution methods, we choose Method 1 as a

reference, and calculate the relative root-mean square error of a method as

εMethod
f =

√√√√
∑

zi
[f

Method
s (zl)− f

Method 1
s (zl)]2

∑
zi

[f
Method 1
s (zl)]2

.675

In Fig. 3 we plot the relative root-mean square error in the perturbed temperature, vertical velocity, and horizontal velocity

versus the frequency parameters κω . The results were obtained using Method 4 with the second- and third-order Padé approx-

imations, and Method 5 with a third-order Neumann series approximation for matrix inversion. We present only these errors,

because the errors for Methods 2 and 3 are smaller than 10−6. The elapsed time (wall time) of all solution methods are shown

in Fig. 4. The following conclusions can be drawn.680

1. The relative root-mean square errors of the third-order Padé approximation are generally smaller than 5× 10−3. In

contrast, the errors of the second-order Padé approximation can reach values of 5× 10−2.
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Figure 2. Altitude profiles of the perturbed temperature T s, vertical velocity ws, and horizontal velocity us computed by solving the

linearized equations (A28)–(A33) (a) and (A57)–(A62) (b) of Appendix A.

2. Excluding an outlier, the relative root-mean square errors of Method 5 are of about 3× 10−2. These large errors may be

due to the fact that the rounding errors may affect the calculation of the reflection and transmission matrices of a stack

(these matrices have larger dimensions and require more matrix inversion operations than in Method 2).685

3. The scattering matrix methods (Methods 2 and 5) are more time consuming than the global matrix methods (Methods

1, 3, and 4). This is because scattering matrix methods necessitate many matrix operations per layer, while solving a

system of equations compressed into band-storage is not so time expensive.

The conclusion of this simulation is that Method 1 is not only the most accurate but also the most efficient.

Vertical wavelength. In Fig. 5, we illustrate the altitude profiles of the perturbed temperature T s, vertical velocity ws, and690

horizontal velocity us, as well as, their Fourier spectra in the spatial frequency domain. The calculation is done for three value

of the frequency parameter κω , namely, 1.0, 0.8, and 0.6. The variation of the vertical wavelength λz0, corresponding to the

maximum FT-amplitudes of the perturbed temperature, vertical velocity, and horizontal velocity, with respect to the frequency

parameter κω is depicted in Fig. 6. The results reveal that when the contribution of the ion drag increases (i.e., the frequency

parameters κω decreases)695

1. the widths of the Fourier spectra increases,

2. the vertical wavelength λz0, corresponding to the maximum FT-amplitude, decreases, and

30

https://doi.org/10.5194/egusphere-2025-3406
Preprint. Discussion started: 12 August 2025
c© Author(s) 2025. CC BY 4.0 License.



0,6 0,7 0,8 0,9 1

κ
ω

0

0,01

0,02

0,03

0,04

0,05

ε
T

0,6 0,7 0,8 0,9 1

κ
ω

ε
w

0,6 0,7 0,8 0,9 1

κ
ω

ε
u

a

b
c
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3. the wave is more absorbed (a wave with a larger vertical wavelength penetrates deeper into the atmosphere).

What appears to be problematic for our further analysis is the fact that for a fixed κω , we cannot associate a unique vertical

wavelength to the wave (the λz0 determined by analyzing the temperature, vertical velocity, and horizontal velocity Fourier700

spectra are different). Solving this problem requires more effort in the future.

Pairwise classification of ascending and descending modes. In the upper panels of Fig. 7, we plot the imaginary part of the

vertical wavenumber kzn, n = 1, . . . ,6 for the layer conditions (27) and (163). As expected, the plots demonstrate that only in

the second case, the vertical wavenumbers appear in pairs. In the first case, the problematic altitude range for gravity waves

seems to be from 50km to 120km, where the imaginary parts of the wavenumber for ascending and descending modes are705

nearly identical, either positive or negative. Although the vertical wavenumbers do not appear in pairs, the results obtained using

both (i) global matrix methods with the scaling matrices (61) and (62), and (ii) scattering matrix methods with classification

rule (44) exhibit very close agreement. Furthermore, the use of global matrix methods with the scaling matrices (72) and (73)

(which take into account the classification of modes as ascending and descending) does not produce a significant change in

the results (although not shown here, the relative errors are less than 10−5). On the other hand, because in the altitude range710

from 50 to 120 km, the amplitudes of the waves are small, categorizing wave modes into pairs seems not to be essential.

Parenthetically, we note that the wave modes almost appear in pairs for

1. the layer conditions

dT0

dz
̸= 0,

du0

dz
= 0, µ0 = constant, and λ0 = constant, (164)

that is, for a zero height derivative of the wind velocity, and715

2. the layer conditions (27) but with the altitude z ranging from zmin = 125km to zmax = 450km.

This can be seen in the lower panels of Fig. 7.

Ion drag. The ion-drag is important for time frequencies ω0 that are smaller than the neutral-ion collision frequency ν0ni. To

verify this result, we analyze the influence of the ion-drag on the perturbed temperature T s, vertical velocity ws, and horizontal

velocity us. The simulations are performed when the ion drag is excluded in the linearized equations, and when it is included;720

in the second case, the frequency parameter κω is chosen as 1.2 and 0.8. The results in Fig. 8, show a complete agreement

between the cases (i) ion-drag excluded and (ii) ion-drag included with κω = 1.2.

Lower Boundary Condition. In Fig. 9 we show the results for the lower boundary conditions (68) and (81) with b1 =

[1,0, . . . ,0]T . The boundary condition (81) is imposed on the horizontal velocity û+
1 (q = 1) and the vertical velocity ŵ+

1

(q = 2). In all cases, the amplitude s0 in Eq. (158) is computed from Eq. (88) with δT = 0.1. Small differences are visible in725

the case (81) with q = 2, compared to the other two cases.

Lower altitude level. To model waves in the ionosphere, the lower altitude level was chosen by Volland (1969b), Kloster-

meyer (1972), and Shibata (1983) at 150km, by Hickey and Cole (1988) at 120km, and by Maeda (1985) at 100 km. Our

choice zmin = 50km corresponds to that of Knight et al. (2019). It is interesting to see what is the effect of the lower altitude

32

https://doi.org/10.5194/egusphere-2025-3406
Preprint. Discussion started: 12 August 2025
c© Author(s) 2025. CC BY 4.0 License.



-100 -50 0 50 100

T
s
 [K]

50

100

150

200

250

300

350

400

450

500

z
 [

k
m

]

-20 -10 0 10 20

w
s
 [m/s]

-100 -50 0 50 100

u
s
 [m/s]

a

b
c

i

0 0.25 0.5
k

z
 [1/km]

0

0.2

0.4

0.6

0.8

1

N
o
rm

al
iz

ed
 F

T
-A

m
p
li

tu
d
e 

T
s

0 0.25 0.5
k

z
 [1/km]

N
o
rm

al
iz

ed
 F

T
-A

m
p
li

tu
d
e 

w
s

0 0.25 0.5
k

z
 [1/km]

N
o
rm

al
iz

ed
 F

T
-A

m
p
li

tu
d
e 

u
s

a
b
c

Figure 5. Altitude profiles of the perturbed temperature T s, vertical velocity ws, and horizontal velocity us(upper panels), and their normal-

ized FT-amplitudes in the spatial frequency domain (lower panels). The results correspond to κω = 1 (a), κω = 0.8 (b), and κω = 0.6 (c).
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Figure 6. Vertical wavelengths, corresponding to the maximum FT-amplitudes, versus the frequency parameter κω . The results are obtained

by analyzing the Fourier spectra of the perturbed temperature (a), vertical velocity (b), and horizontal velocity (c).

level on the results. In Fig. 10, we plot the perturbed temperature altitude profile and its Fourier spectrum for zmin = 50km730

and zmin = 70km. In the two cases, the Fourier spectrum is practically unchanged, which makes us conclude that modifying

the lower altitude level roughly causes a shift in the wave phase.

Computing ascending and descending wave modes. The ascending and descending modes can be computed with Method 1

by using Eq. (87), or with Method 3 by using the recurrence relations (114) and (115). The results in Fig. 11 demonstrate that (i)

both methods yield almost the same results, and (ii) the dominant wave mode is the ascending mode. Encouraged by this result,735

we calculated the solution vector by using the recurrence relation (118). The plots in Fig. 12 suggest that the approximation

el ≈ e+
l for l = 1, . . . ,L, does look quite reasonable; visible differences appear at high altitudes, say, at z ≥ 350km. Because

this method is very efficient, it can be used to obtain quickly a primary information about the gravity wave.

6.2 Time wavepacket

For the source function (159), we plot in Fig. 13, the time dependent perturbed temperature and vertical velocity profiles740

T s(z, t) and ws(z, t), respectively. For each perturbed temperature profile, we determine the pair (z0, t0) = argmaxz,t T s(z, t),

and depict in Fig. 14, the Gaussian envelope of the source function, still denoted by s(t), together with the perturbation

T s(z0, t). The plots reveal

1. a stronger attenuation of the waves in the case κω = 0.6;
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Figure 7. Upper panels: The imaginary part of the vertical wavenumber kzn, n = 1, . . . ,6 for the layer conditions (27) (left), and (163)

(right). Lower panels: The imaginary part of the vertical wavenumber kzn, n = 1, . . . ,6 for the layer conditions (164) (left), and (27) with

zmin = 125km and zmax = 450km (right). The labels 1 and 4 correspond to ascending and descending gravity-wave modes, respectively, 2

and 5 to ascending and descending viscosity-wave modes, respectively, and 3 and 6 to ascending and descending thermal conduction-wave

modes, respectively.
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Figure 8. Altitude profiles of the perturbed temperature T s, vertical velocity ws, and horizontal velocity us when the ion drag is excluded

in the linearized equations (a), and when it is included; in the latter case, the frequency parameter κω is 1.2 (b) and 0.8 (c).
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Figure 9. Altitude profiles of the perturbed temperature T s, vertical velocity ws, and horizontal velocity us for the lower boundary conditions

(68) (a), and (81) with q = 1 (b), and q = 2 (c).
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Figure 10. Perturbed temperature altitude profile and its Fourier spectrum for zmin = 50km (a) and zmin = 70km (b).

2. a positive time shift between the maxima of the wave and source function envelops; the time shift is (i) 168mins for745

κω = 1, (ii) 219mins for κω = 0.8, and (iii) 376mins for κω = 0.6.

Note that the computation time was 25s for Method 1 and 1530s for Method 2. If in the case of a pulse source function, we

interpret causality in terms of the occurrence of maximum values, we can conclude that this is preserved.

To understand the link between causality and imaginary frequency shifting, we plot in the upper panels of Fig. 15 the real part

of the eigenvalue λn, n = 1, . . . ,6 without and with an imaginary frequency shifting δ, that is, for δ = 0 and δ = 5×10−3. The750

results show that the causality condition (14) is not satisfied in the case δ = 0, but is almost satisfied in the case δ = 5× 10−3.

Coming to the causality condition (157), we illustrate in the lower panels of Fig. 15, the Gaussian envelope of the source

function s(t) together with the perturbations T̂ (z0, t) = T̂δ=0(z0, t) and T̂δ(z0, t) with δ = 5× 10−3. The plots highlight the

fact that T̂ (z0, t) has small oscillations around 0 for t≤ 0, and that these oscillations become smaller, in the case of T̂δ(z0, t).

However, if we are not so strict in defining causality, we can accept the solution without imaginary frequency shifting as755

realistic.

7 Conclusions

We designed a numerical model for solving the linearized gravity-wave equations by a multilayer method. The numerical

model employs the following solution methods: (i) global matrix methods using matrix exponentials, and (ii) scattering matrix
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Figure 11. Upper panels: Altitude profiles of the perturbed temperature T s corresponding to ascending and descending modes and being

computed with Method 1 (a) and Method 3 (b). Lower panels: Altitude profiles of the perturbed temperature T s, vertical velocity ws, and

horizontal velocity us corresponding to the total wave mode (a), ascending mode (b), and descending mode (c). The results are computed

with Method 1.
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Figure 12. Altitude profiles of the perturbed temperature T s, vertical velocity ws, and horizontal velocity us computed with Method 1 (a),

and by using the recurrence relation (118) (b).

methods for determining either (i) the amplitudes of the characteristic solutions or (ii) the discrete values of the solution760

vector. Ascending and descending wave modes are identified according to the rule that the real parts of the eigenvalues of

the characteristic equation for ascending modes are smaller than those for descending modes (or equivalently, the imaginary

parts of the vertical wavenumbers are smaller). Global matrix methods with the scaling matrices (61) and (62), require defining

ascending and descending modes only at the upper and lower boundaries, while the use of the scaling matrices (72) and

(73) requires a classification of modes as ascending and descending in each layer. Scattering matrix methods also require an765

explicit determination of the mode type at every altitude. The model includes two types of lower boundary condition, namely,

(68) and (81). Depending on the type of the source function, single-frequency waves or time wavepackets can be analyzed.

The amplitude of the source function can be computed by imposing an upper bound for the perturbed temperature (88), or

the horizontal wind velocity (89). The model is devoted to the solution of the linearized equations with viscosity, thermal

conduction, and ion drag included. According to Eqs. (A53)–(A55), it can be simplified to an isothermal atmosphere with770

constant wind velocity, a homogeneous atmosphere, and an atmosphere without ion drag.

Numerical simulations demonstrate that both global matrix and scattering matrix methods achieve comparable accuracies.

However, the former exhibit significantly greater efficiency than the latter, especially noticeable in simulations involving time

wavepackets. Within global matrix methods, the approach that solves for the amplitudes of the characteristic solutions appears

to offer the highest efficiency and accuracy.775

39

https://doi.org/10.5194/egusphere-2025-3406
Preprint. Discussion started: 12 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 13. Perturbed temperature (left panels) and vertical velocity (right panels) as functions of time and altitude. The upper panels corre-

spond to the frequency parameter κω = 1, the middle panels to κω = 0.8, and the lower panels to κω = 0.6.
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Figure 14. The Gaussian envelope of the source function s together with the perturbation T s(z0, ·). The results correspond to the frequency

parameter κω = 1 (a), κω = 0.8 (b), and κω = 0.6 (c).
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The linearized equations on which the solution methods were tested correspond to the ionosphere. In fact, the final goal of

our research is to design a complete model for analyzing ionospheric gravity waves from satellite limb measurements. The

approach presented in this paper represents only the first component of this complete model. Our strategy involves a two-step

process: first, to solve the neutral-atmosphere equations using Klostermeyer’s approximation, and then, in the second step, to

use the wave-induced perturbations from the initial step to solve the ionospheric equations for the perturbed density of O+-780

ions and to calculate the volume emission rate of a line with a wavelength of 630.0 nm. The ionospheric equations will be

solved using the SAMI2 model (Huba et al., 2000). Thus, our strategy is to prioritize the ionospheric equations of the SAMI2

model, and to manage the wave-induced perturbations using the present approximate approach. The final goal we proposed

also explains some of the approximations we made. First, we use a linearized model for faster processing of the measurements

made by the satellite instrument. Second, we consider a two-dimensional geometry because for limb measurements, it is much785

easier in this case to account for the curvature of the atmosphere through a series of approximations, such as the shallow-

atmosphere approximation and an order-of-magnitude approximation. A comprehensive description of this complete model

will be addressed in a future paper.

Appendix A: The linearized hydrodynamic equations for the neutral atmosphere

In this appendix we present a general model for the hydrodynamic equations including viscosity, thermal conduction, and ion790

drag, together with some simplified models, which are frequently found in the literature.

A1. General model

To solve the linearized hydrodynamic equations for the neutral atmosphere, we use assumptions A1–A4, and let

u0 = (u0,0,0), (A1)

u′ = (u′,0,w′), (A2)795

g = (0,0,−g), (A3)

b̂ = (−cosI,0,−sinI), (A4)

where I the geomagnetic inclination (being positive in the northern hemisphere). For

f(x,z, t) = f0(z) + f ′(x,z, t), (A5)
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that is,800

u(x,z, t) = u0(z) +u′(x,z, t), (A6)

w(x,z, t) = w′(x,z, t), (A7)

p(x,z, t) = p0(z) + p′(x,z, t), (A8)

T (x,z, t) = T0(z) +T ′(x,z, t), (A9)

ρ(x,z, t) = ρ0(z) + ρ′(x,z, t), (A10)805

and

n′i(x,z, t) = n0i(z) +n′i(x,z, t), (A11)

the linearized equations (2)–(5) can be written in component form as

∂ρ′

∂t
=−w′

∂ρ0

∂z
− ρ0

(
∂u′

∂x
+

∂w′

∂z

)
−u0

∂ρ′

∂x
, (A12)

810

ρ0
∂u′

∂t
=−∂p′

∂x
+

4
3
µ0

∂2u′

∂x2
+ µ0

∂2u′

∂z2
+

1
3
µ0

∂2w′

∂x∂z

+
dµ0

dz

(
∂u′

∂z
+

∂w′

∂x

)
+ µ0VT

(
T ′

T0

)
+ µ0VdT

∂

∂z

(
T ′

T0

)
,

− ρ0

(
u0

∂u′

∂x
+ w′

∂u0

∂z

)
− f ′IDx, (A13)

ρ0
∂w′

∂t
=−∂p′

∂z
− ρ′g +

4
3
µ0

∂2w′

∂z2
+ µ0

∂2w′

∂x2
+

1
3
µ0

∂2u′

∂x∂z
815

+
dµ0

dz

(
4
3

∂w′

∂z
− 2

3
∂u′

∂x

)
+ µ0VdT

(
1
T0

∂T ′

∂x

)

− ρ0u0
∂w′

∂x
− f ′IDz, (A14)

ρ0cv
∂T ′

∂t
=−p0

(
∂u′

∂x
+

∂w′

∂z

)
+ λ0

∂2T ′

∂x2
+ λ0

∂2T ′

∂z2
+

dλ0

dz

∂T ′

∂z

+ λ0CT

(
T ′

T0

)
+ λ0CdT

∂

∂z

(
T ′

T0

)
820

+ µ0Wu
∂u′

∂z
+ µ0Wu

∂w′

∂x
+ µ0WT

T ′

T0

− ρ0cv

(
u0

∂T ′

∂x
+ w′

∂T0

∂z

)
−P ′ID, (A15)

and

p′

p0
=

T ′

T0
+

ρ′

ρ0
. (A16)
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In the above equations, f ′ID = (f ′IDx,0,f ′IDz), µ0 and λ0 are computed by using the relations (cf. Eq. (25))825

µ0 = 3.34× 10−7T 0.71
0 and λ0 = 6.71× 10−4T 0.71

0 , (A17)

respectively, while the quantities VT, VdT, CT, CdT, Wu, and WT are given respectively, by

VT = 0.71
d2u0

dz2
+ 0.71

1
µ0

dµ0

dz

du0

dz
, VdT = 0.71

du0

dz
, (A18)

CT = 0.71
d2T0

dz2
+ 0.71

1
λ0

dλ0

dz

dT0

dz
, CdT = 0.71

dT0

dz
, (A19)

Wu = 2
du0

dz
, WT = 0.71

(
du0

dz

)2

. (A20)830

In a second step, we use Eq. (A16) to eliminate the mass density perturbation ρ′ in Eqs. (A12)–(A15), and in a third step,

we assume the plane wave solutions

f ′(x,z, t) = f(z)ej(ωt−kxx), (A21)

where f stands for u, w, p, T , and ni. Under assumption (A21), the linearized equations (A12)–(A15) transform into a linear

system of ordinary differential equations. This system of ordinary differential equations will be expressed in terms of the835

dimensionless quantities û, ŵ, p̂, and T̂ , defined through the relations

u(z) =
ω0

kx
û(z), (A22)

w(z) =
ω0

kx
ŵ(z), (A23)

p(z) = p0(z)p̂(z), (A24)

T (z) = T0(z)T̂ (z), (A25)840

and of the derivatives Û and T̂ , defined through the relations

Û = 3η
1
kx

dû

dz
, T̂ = ν

1
kx

dT̂

dz
, (A26)

where ω0 is a reference frequency, and

η = j
ω0µ0

3p0
and ν = j

k2
xλ0T0

ω0p0
(A27)

are dimensionless parameters. The linear system of ordinary differential equations consist of six equations. These are:845

1
kx

dû

dz
=

1
3η
Û , (A28)
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1
kx

dŵ

dz
=

1
kx

Auû +
1
kx

Awŵ +
1
ω0

App̂− 1
ω0

ApT̂ , (A29)

k2
x

ω0

(
4
3
µ0Ap− p0

)(
1
kx

dp̂

dz

)

=−
[
2
3

jkx
dµ0

dz
+
(

4
3

dµ0

dz
+

4
3
µ0Aw

)
Au

]
û

+
[

jω̂ρ0 + µ0k
2
x−

4
3
µ0

dAw

dz
−
(

4
3

dµ0

dz
+

4
3
µ0Aw

)
Aw

]
ŵ850

+
kx

ω0

[
ρ0g +

dp0

dz
− 4

3
µ0

dAp

dz
−
(

4
3

dµ0

dz
+

4
3
µ0Aw

)
AP

]
p̂

+
kx

ω0

[
jkxµ0VdT− ρ0g +

4
3
µ0

dAp

dz
+
(

4
3

dµ0

dz
+

4
3
µ0Aw

)
AP

]
T̂

+
kx

3η

(
1
3

jkxµ0−
4
3
µ0Au

)
Û +

4
3

k2
xµ0Ap

ω0ν
T̂ + ρ0ν0nif̂IDz, (A30)

1
kx

dT̂

dz
=

1
ν
T̂ , (A31)

k2
xµ0

3η

(
1
kx

dÛ
dz

)
855

=
[

jω̂ρ0 +
4
3
k2
xµ0 +

1
3

jkxµ0Au

]
û

+
(

jkx
dµ0

dz
+ ρ0

du0

dz
+

1
3

jkxµ0Aw

)
ŵ

+
kx

ω0

(
1
3

jkxµ0Ap− jkxp0

)
p̂

− kx

ω0

(
1
3

jkxµ0Ap + µ0VT

)
T̂

− kx

3η

(
dµ0

dz
−µ0

1
η

dη

dz

)
Û − k2

xµ0VdT

ω0ν
T̂ + ρ0ν0nif̂IDx, (A32)860

and
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k3
xλ0T0

ω0ν

(
1
kx

dT̂
dz

)

= (−jkxp0 + p0Au) û

+
(

ρ0cv
dT0

dz
+ jkxµ0Wu + p0Aw

)
ŵ

+
kx

ω0
p0App̂865

+
kx

ω0

[
jcvω̂ρ0T0 + k2

xλ0T0−λ0CT−µ0WT−
dλ0

dz

dT0

dz
− p0Ap−λ0

d2T0

dz2

]
T̂

− kxµ0Wu

3η
Û − k2

x

ω0ν

(
dλ0

dz
T0 + 2λ0

dT0

dz
+ λ0CdT−λ0

1
ν

dν

dz
T0

)
T̂ + ρ0ν0niP̂ID. (A33)

In Eqs. (A28)–(A33),

1. Au, Aw, and Ap are given respectively, by

Au = jkx, Aw =− 1
ρ0

dρ0

dz
, Ap =−jω̂, (A34)870

where ω̂ = ω− kxu0 is the intrinsic frequency,

2. the specific heat at constant volume is computed as cv = RM/(γ− 1), where γ = 1.4 is the ratio of specific heats and

RM = 287J/kg K the specific gas constant,

3. the background neutral-ion collision frequency ν0ni is calculated from Eq. (19),

4. the ion-drag terms in Eqs. (A30) and (A32) are given by875

f̂IDx =
(

fxu +
1
ω0

fxnNu +
1
ω0

fxnNdwAu

)
û

+
(

fxw +
1
ω0

fxnNw +
1
ω0

fxnNdwAw

)
ŵ

+
kx

ω0

(
fxn +

1
ω0

fxnNdwAp

)
p̂

+
kx

ω0

(
fxT− fxn−

1
ω0

fxnNdwAp

)
T̂

+
kx

ω0
fxnNdu

1
3η
Û (A35)880
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and

f̂IDz =
(

fzu +
1
ω0

fznNu +
1
ω0

fznNdwAu

)
û

+
(

fzw +
1
ω0

fznNw +
1
ω0

fznNdwAw

)
ŵ

+
kx

ω0

(
fzn +

1
ω0

fznNdwAp

)
p̂

+
kx

ω0

(
fzT− fzn−

1
ω0

fznNdwAp

)
T̂885

+
kx

ω0
fznNdu

1
3η
Û , (A36)

respectively, where

fxu = sin2 I, fxw =−cosI sinI, (A37)

fxT = 0.37sin2 Iu0, fxn = sin2 Iu0, (A38)

fzu =−cosI sinI, fzw = cos2 I, (A39)890

fzT =−0.37cosI sinIu0, fzn =−cosI sinIu0, (A40)

and

Nu =
ω0

ω

(
kx cos2 I + j

1
n0i

dn0i

dz
cosI sinI

)
, (A41)

Nw =
ω0

ω

(
kx cosI sinI + j

1
n0i

dn0i

dz
sin2 I

)
, (A42)

Ndu = j
ω0

ω
cosI sinI, Ndw = j

ω0

ω
sin2 I, (A43)895

and finally,

5. the ion-drag term in Eq. (A33) is given by

P̂ID =
(

Pu +
1
ω0

PnNu +
1
ω0

PnNdwAu

)
û

+
(

Pw +
1
ω0

PnNw +
1
ω0

PnNdwAw

)
ŵ

+
kx

ω0

(
Pn +

1
ω0

PnNdwAp

)
p̂900

+
kx

ω0

(
PT−Pn−

1
ω0

PnNdwAp

)
T̂

+
kx

ω0
PnNdu

1
3η
Û , (A44)
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where

Pu = 2sin2 Iu0, Pw =−2cosI sinIu0, (A45)

PT = 0.37sin2 Iu2
0, Pn = sin2 Iu2

0. (A46)905

Note that the ion drag terms f̂IDx, f̂IDz , and P̂ID are computed as described in the main text. In short, in a first step, we assume

the representations n′i(x,z, t) = ni(z)exp[j(ωt−kxx)] and ni(z) = n0i(z)n̂i(z), and use the continuity equation (18) to obtain

kxn̂i =
1
kx

(
Nuû +Nwŵ + Ndu

∂û

∂z
+ Ndw

∂ŵ

∂z

)
, (A47)

In a second step, we use Eq. (A47) together with Eqs. (19) and (20) to derive a representation for ν̂ni, which is then substituted910

in Eqs. (16) and (17) to compute the desired quantities.

The linear system of ordinary differential equations (A28)–(A33) can be written in matrix form as

1
kx

de
dz

= Ae, (A48)

where

e = [û, ŵ, p̂, T̂ , Û , T̂ ]T . (A49)915

For a numerical solution, the atmosphere is divided into thin layers, and the altitude dependent matrix A is approximated by

its value in the middle of each layer.

Some comments can be made here.

1. The background quantities ρ0, T0, p0 = ρ0RMT0, u0 and n0i are assumed to be input parameters of the model, in which

case, the derivatives920

dT0

dz
,

du0

dz
, and

1
n0i

dn0i

dz

are computed by finite-differences, and the derivatives dp0/dz and dρ0/dz with the relations

dp0

dz
=−ρ0g, (A50)

1
ρ0

dρ0

dz
=

1
p0

dp0

dz
− 1

T0

dT0

dz
=− 1

Ha
− 1

T0

dT0

dz
, (A51)

where925

Ha =
p0

ρ0g
=

RMT0

g
(A52)

is the atmospheric scale height.

2. The model can be particularized as follows:
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(a) for an isothermal atmosphere with constant wind velocity (characterized by T0 = constant and u0 = constant), we

set930

∂T0

∂z
= 0,

∂u0

∂z
= 0,

1
ρ0

∂ρ0

∂z
=− 1

Ha
, and

∂Aw

∂z
= 0. (A53)

(b) for a homogeneous atmosphere (characterized by µk = µ0/ρ0 = constant and λk = λ0/ρ0 = constant), we use the

computational formulas

dµ0

dz
= µk

dρ0

dz
and

dλ0

dz
= λk

dρ0

dz
, (A54)

and935

(c) for an atmosphere without ion drag, we set

f̂IDx = 0, f̂IDz = 0, and P̂ID = 0. (A55)

A2. Simplified models

Consider an isothermal, homogeneous, and windless atmosphere, that is,

dT0

dz
= 0, u0 = 0, µk = constant, and λk = constant. (A56)940

Assuming f ′ID ≈ ρ0ν0ni[u′− (u′ · b̂)b̂] and P ′ID ≈ 0 (compare with Eqs. (16) and (17)), we are led to the following linear

system of ordinary differential equations (ω0 = ω):

1
kx

dû

dz
=

1
3η
Û , (A57)

1
kx

dŵ

dz
= jû+ αŵ− jp̂+ jT̂ , (A58)

(1 +4η)
1
kx

dp̂

dz
=−(2ηα−βσ cosI sinI)û+ j[3η−β + jσβ cos2 I]ŵ945

+ αT̂ + Û + 4
η

ν
T̂ , (A59)

1
kx

dT̂

dz
=

1
ν
T̂ , (A60)

1
kx

dÛ
dz

= [3η−β + jβσ sin2 I]û− j(2ηα + βσ cosI sinI)ŵ

+ (η + 1)p̂− ηT̂ +αÛ , (A61)

1
kx

dT̂
dz

= jαŵ + p̂ +
(

ν− γ

γ− 1

)
T̂ +αT̂ , (A62)950
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where the dimensionless parameters η and ν are given by Eq. (A27), while the parameters α, β, and σ are given respectively,

by

α =
1

kxHa
, (A63)

β =
ω2

k2
xgHa

, (A64)

σ =
ν0ni

ω
. (A65)955

For e = [û, ŵ, p̂, T̂ , Û , T̂ ]T , the matrix differential equation associated to the system of differential equations (A57)–(A62) is

given by Eq. (A48). By further assuming that the geomagnetic field is either in the horizontal or the vertical direction, that

is, by neglecting the terms containing the product cosI sinI in Eqs. (A59) and (A61), we are led to the model developed by

Francis (1973). In this case, the characteristic equation, also known as the dispersion equation, is the cubic equation

C3R
3 + C2R

2 + C1R + C0 = 0, (A66)960

with the coefficients

C3 =−3ην(1+ 4η), (A67)

C2 =
3η(1 +4η)

γ− 1
+ νβ(1 +7η) + 3η

− jσβν[(1 + 4η)sin2 I + 3η cos2 I], (A68)

C1 =−[β2− 2ηα2(1 +3η)]ν− β(1 +7η)
γ− 1

−β965

+ jσβ sin2 I

[
γ + 4η

γ− 1
+ ν(1 + η + β)

]

+ jσβ cos2 I

[
3η

γ− 1
− ν(1 + η−β)

]
, (A69)

C0 =
β2− 2ηα2(1 +3η)

γ− 1
+ α2(1 +3η)

+ j
σβ

γ− 1
[cos2 I(γ + η−β)− sin2 I(γ + η + β)]. (A70)

If Rm, m = 1, . . . ,3 are the solutions of the dispersion equation, the corresponding vertical wavenumbers k±zm are computed970

as

k±zm =∓kx

√
Rm− 1− α2

4
. (A71)

The wavenumbers k+
zm with Im(k+

zm) < 0 are associated with ascending modes, and the wavenumbers k−zm with Im(k−zm) > 0

with descending modes. If we organize the wavenumbers k+
zm as

Im(k+
z3) < Im(k+

z2) < Im(k+
z1) < 0,975
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then (i) k+
z1 and k−z1 will correspond to ascending and descending gravity-wave modes, respectively, (ii) k+

z2 and k−z2 to ascending

and descending viscosity-wave modes, respectively, and (iii) k+
z3 and k−z3 to ascending and descending thermal conduction-wave

modes, respectively. Note that when the ion drag is completely neglected, the model simplifies to that of Midgley and Liemohn

(1966).

Consider an isothermal, homogeneous, and windless atmosphere, and neglect viscosity and ion drag. In this case, the linear980

system of ordinary differential equations simplify to (Volland, 1969b)

1
kx

∂ŵ

∂z
= αŵ + j

(
1
β
− 1
)

p̂ + jT̂ , (A72)

1
kx

∂p̂

∂z
=−jβŵ + αT̂ , (A73)

1
kx

∂T̂

∂z
=

1
ν
T̂ , (A74)

1
kx

∂T̂
∂z

= jαŵ + p̂ +
(

ν− γ

γ− 1

)
T̂ +αT̂ , (A75)985

and the additional equation

û =
1
β

p̂. (A76)

Thus, the matrix differential equation (A48) is solved for e = [ŵ, p̂, T̂ , T̂ ]T , and the dispersion equation is the quadratic equa-

tion

C2R
2 + C1R + C0 = 0, (A77)990

with

C2 = νβ, (A78)

C1 =−β2ν−β
γ

γ− 1
, (A79)

C0 =
β2

γ− 1
+ α2. (A80)

For Im(k+
z2) < Im(k+

z1) < 0, the permissible modes are (i) the ascending and descending gravity-wave modes associated to the995

pair (k+
z1,k

−
z1), and (ii) the ascending and descending thermal conduction-wave modes associated to the pair (k+

z2,k
−
z2).

We conclude this appendix by presenting Hines’ criticism of standard multilayer methods (Hines, 1973). Although this

criticism does not pertain to our adopted method (a nonstandard multilayer method), we find it valuable to discuss. This

is especially pertinent since the solution methods we proposed can be applied to any linear system of ordinary differential

equations with constant coefficients. Hines mentioned that in a standard multilayer method, the choice of the unknowns (the1000

components of the vector e) should depend on the physical meaning of the continuity condition at the layer interfaces. The

choice (A49) is the same as the one used by Volland (1969b) and implies the continuity of the pressure p̂. Midgley and Liemohn
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(1966) used instead the continuity of p̂+jŵ/(kxHa), which reflects the continuity of the pressure perturbation p′+jwp0/(ωHa)

evaluated at the interface between two layers; this interface being displaced by a distance jw/ω from its ambient position

because of the perturbing effect of the wave. To guarantee this interfacial condition, the components of the vector e are chosen1005

as

e1 = û, e2 = ŵ, e3 = p̂+ jαŵ, e4 = T̂ , e5 = Û , e6 = T̂ . (A81)

Inserting Eq. (A49) into Eqs. (A57)–(A62), we are led to the system of equations

1
kx

de1

dz
=

1
3η

e5, (A82)

1
kx

de2

dz
= j(e1− e3 + e6), (A83)1010

1
kx

de3

dz
=−[η1(2ηα−βσbxbz) +α]e1 + jη1[3η−β + jσβ(1− b2

z)]e2

+ αe3 + αη1e4 + η1e5 +
(
4
ηη1

ν
−α

)
e6, (A84)

1
kx

de4

dz
=

1
ν

e6, (A85)

1
kx

de5

dz
= [3η−β + jβσ(1− b2

x)]e1− j(3ηα + βσbxbz + α)e2

+ (η + 1)e3− ηe4 + αe5, (A86)1015

1
kx

de6

dz
= e3 +

(
ν− γ

γ− 1

)
e4 + αe6, (A87)

where η1 = 1/(1 + 4η). On the other hand, Hines (1973) and Francis (1973) showed that the continuity of

p̂ +
j

kxHa
ŵ + 2ηû + j

4η

kx

dŵ

dz
,

or equivalently, of the pressure perturbation

p′+ j
wp0

ωHa
− 2µ

3

(
2
∂w

∂z
− jkxu

)
,1020

is more realistic. In this case, the components of the vector e are chosen as

e1 = û, e2 = ŵ, e4 = T̂ , e6 = T̂ , (A88)

e3 = p̂+ jαŵ +2ηû+ j
4η

kx

dŵ

dz
, (A89)

e5 = Û + j4ηŵ, (A90)
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and the underlying system of equations is1025

1
kx

de1

dz
=−j

4
3
e2 +

1
3η

e5, (A91)

1
kx

de2

dz
= jη1[(1 + 2η)e1− e3 + e4], (A92)

(1− 4ηη1)
1
kx

de3

dz
=−η1[(4η +1)α−βσbxbz]e1

+ j
{

16
3

ηη1(1 +2η)− η

(
η1−

8
3

)
− η1[β− jσβ(1− b2

z)]
}

e2

+ αη1e3 +
[
η1−

4
3
η1(1 +2η) +

2
3

]
e5, (A93)1030

1
kx

de4

dz
=

1
ν

e6, (A94)

1
kx

de5

dz
= {−β + jβσ(1− b2

x) + η[4ηη1(1 +2η)− 2η + 1]}e1

− j[α(7η + 1)+ βσbxbz]e2 + [1− η(4ηη1− 1)]e3

+ η(4ηη1− 1)e4 + αe5, (A95)

1
kx

de6

dz
= 2η[2η1(1 +2η)− 1]e1 + (1− 4ηη1)e31035

+
(

4ηη1 + ν− γ

γ− 1

)
e4 + αe6. (A96)

Both system of equations (A82)–(A87) and (A91)–(A96) can be solved using the methods proposed in Section 4.
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