
Response to reviewer comments
Based on the comments provided by the reviewers, we undertook a major re-
vision and completely reformulated the manuscript. The major changes to the
manuscript are listed below.

1. The revised manuscript is organized as follows. In Section 2, we present
the derivation of the matrix exponential solution of the linearized equa-
tions, while Section 3 describes stable numerical methods for computing
the amplitudes of the characteristic solution in a stratified atmosphere.
Here, we focus only on the global matrix method based on matrix ex-
ponentials and the scattering matrix method for computing the ampli-
tudes of the characteristic solutions. Section 4 addresses the computation
of the perturbed quantities for both harmonic and non-harmonic source
functions, that is, for single-frequency waves and time-dependent wave
packets. The concepts of causality and the imaginary frequency shift are
also briefly discussed. Aspects of the numerical implementation are ad-
dressed in Section 5, and representative simulation results are presented
in Section 6. Additional theoretical issues are discussed in the appendices.
Some of the theoretical aspects discussed, especially in Appendices A and
B, may perhaps be unnecessary; however, our intention was to provide a
self-consistent and complete description of the models.

2. The linearization model is described in Appendix A. We reformulate the
linearized equations for the state vector e = [û, ŵ, T̂ , Û , Ŵ, T̂ ]T, following
the formulations of Vadas and Nicolls (2012) and Knight et al. (2024),
instead of using e = [û, ŵ, p̂, T̂ , Û , T̂ ]T , as adopted in earlier studies by
Midgley and Liemohn (1966), Volland (1969), Francis (1973), and Yeh
and Liu (1974). Appendix A provides a general model that accounts for
the altitude derivatives of the background velocity u0, temperature T0,
density scale height Hρ, and dynamic viscosity µ0. In addition, it in-
cludes a simplified model for an isothermal (T0 = constant), homogeneous
(µk0 = µ0/ρ0 = constant), and windless atmosphere without ion drag.
Appendix A is organized into the following sections: Hydrodynamic equa-
tions, Linearized equations, Plane wave solution, and Dispersion equation.

3. The computation of the ion-drag force and ion-drag heating is presented
in Appendix B. In the revised version, ion-drag effects are incorporated
in an approximate manner with the explicit aim of decoupling the hy-
drodynamic and ion equation systems, while explicitly accounting for the
plasma diffusion velocity. This is achieved by neglecting perturbed pro-
duction and loss terms in the ion continuity equation, reducing the ion
momentum equation to ambipolar diffusion by neglecting ion inertia and
ion–ion collisions and retaining only field-aligned transport, and assuming
fast field-aligned diffusion so that ion perturbations and the plasma diffu-
sion velocity remain nearly constant along magnetic field lines. Appendix
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B is organized into the following sections: Ion equations, Linearized equa-
tions, Decoupled system of equations, and Plane wave solutions.

4. The application the global matrix method based on matrix exponentials
and the scattering matrix method to compute the grid-point values of the
state vector is described in Appendix C. This appendix is organized into
the following sections: Global matrix method with matrix exponential and
Scattering matrix method.

5. In Appendix D, we discuss several implementation issues related to the
computation of lower and upper bounds for the wave period, the choice
of frequency and time discretization for the Fourier transform, and the
determination of the imaginary frequency shift using a practical, albeit
heuristic, approach.

6. We plan to provide a freely available open-source code for solving the
linearized gravity-wave equations on GitHub. Accordingly, only represen-
tative simulation results are presented in Section 6. The simulation results
are new for two reasons: (i) we employ a new linearization model, and (ii)
the previous implementation contained an error in the coefficient of ther-
mal conductivity, which was set to λ0 = 6.71 × 10−7T 0.71

0 instead of the
correct value λ0 = 6.71 × 10−4T 0.71

0 , thereby substantially reducing the
effect of thermal conduction.

For a better understanding of the revised manuscript, we have included the new
version in our response (not in the final form required by the journal). Please
find below our detailed replies (in black font) to the reviewer comments (in blue
font).

Reviewer 2
We are grateful to Stephan Buchert for his insightful and pertinent comments,
especially those concerning ion drag.

My review focuses on the issue of the ion drag, how it is introduced and
discussed.

Comment 1)
Lines 144-165: This discussion is about taking into account ion drag in the

neutral dynamics. It is based on equation (13) which seems to have appeared 1st
in Klostermeyer (1972). The implications of (13) are not entirely clear to me, so
I try to rephrase my understanding of the issue: In the direction parallel to the
magnetic field B the ions are dragged with the neutrals, and the unperturbed
velocities u|| and ui,|| are approximately the same (in lines 172-177 an approach
by Shibata (1983) which includes also diffusion and gravity is mentioned, but
then not applied). But the interesting yet in the manuscript not elaborated
aspect is what happens in the directions perpendicular to B?

Equations (14) and (15) suggest that the background ion velocity ui,⊥ is
assumed to be zero in the reference frame where the neutral wind u is given
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(presumably a co-rotating frame). The drag force fID and frictional heat PID
can only depend on the difference between ion and neutral velocity. So obviously
ui,⊥ = 0 is assumed. At high latitudes this assumption is quite unrealistic. The
aurora zone ion convection is dominated by coupling to the magnetosphere as
described by Dungey (1961). The Weimer (2005) model, among others, could be
used in combination with the HWM for the background difference u⊥ - uui,⊥.
At mid-latitudes there is inter-hemispheric coupling which determines the ion
velocity depending on inter-hemispheric wind differences, for example according
to the HWM (Laundal et al., 2025; Buchert, 2020). The SAMI2 model, as far
as I understand, includes inter-hemispheric coupling by particle transport, but
not electrodynamically, i.e. without a mid-latitude Sq current system.

This study is about gravity waves and linearized perturbations. According
to equations (16) and (17) the background state has an effect also on the per-
turbed fID’ and PID’. My guess is that quantitatively it is quite negligible. Also
reviewer 1 remarked on the very small difference that seems to arise from the
ion drag. An update to a more realistic background ion velocity model could be
done, and at high latitudes the effect should then become larger than observed
in the present draft. Finally I would like to remark that the perturbations by
gravity waves themselves should also affect the ion velocities, which would then
affect the perturbed ion drag. Equation (16) and (17) are incomplete, as it is
assumed that ui,⊥ faithfully remains unaffected by the perturbed u⊥’, or that
ui,⊥’ = 0 as well. To abandon this assumption and solve the ion momentum
equation (7) would be complicated and is understandably avoided in this work.
However, ion drag forcing and dissipation by gravity wave perturbations might
well be important and have comparable or even larger effect than a realistic
background state via the perturbed densities in the 2nd term of equations (16)
and (17). Even if a complete, linearized solution were available for both neu-
trals and ions, the very high mobility of electrons along magnetic field lines
should have the effect that these are electric equipotential also within gravity
waves. This seems not guaranteed with a complete neutral and ion solution
unless additional constraints are introduced.

Alternatively, a possible assumption is that the ions are completely dragged
by the neutrals, ui = u also in the perpendicular directions. This is equivalent
to ignoring the ions for neutral dynamics. Compared to the effective assumption
ui,⊥ = 0, which is chosen in the draft, this seems to me slightly preferable. The
above mentioned condition that magnetic field-lines are electric equipotential
also under perturbations by gravity waves would then generally be violated.

In summary, the authors have followed the approach in previous works when
taking into account the ion-neutral coupling in atmospheric dynamics which is
fine. My complaint is that the implications of the chosen approach had not
been made clear up to now. Therefore I recommend to explicitly state that the
Klostermeyer (1972) equation (13) implies that the ion velocities perpendicular
to B, both background and perturbed ones are assumed to be zero, and this
might be unrealistic in some situations. If possible, give quantitative estimates
about an expected inaccuracy related to this assumption.

We fully agree with these comments. In the revised manuscript, we derive
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in Appendix B the expressions for the ion-drag terms that enter the hydro-
dynamic equations. In this appendix, we treat the ion equations, derive the
linearized system, discuss the assumptions that lead to a decoupled set of equa-
tions, and present the corresponding plane-wave solutions. In particular, we
now state: “This approximation is justified when perpendicular ion transport is
small compared to the dominant field-aligned diffusion. The resulting formula-
tion captures the leading-order effects of ambipolar diffusion along the magnetic
field lines, while deliberately neglecting perpendicular electrodynamic coupling,
such as cross-field advection and E ×B drifts. Consequently, the model is ap-
plicable to regimes in which field-aligned transport dominates and perpendicular
electrodynamic effects play a secondary role. We note, however, that the ne-
glect of the electromagnetic drift velocity is not appropriate for all geophysical
regimes. At high latitudes, ion convection is largely controlled by magnetospheric
forcing [47], and realistic modeling generally requires externally imposed convec-
tion electric fields, for example from empirical models such as Weimer [48]. At
mid-latitudes, perpendicular ion motion may be influenced by inter-hemispheric
coupling and neutral-wind differences between conjugate hemispheres [49,50]. A
fully self-consistent electrodynamic formulation, in which the electric field is
obtained from an electrostatic potential Φ via E = −∇Φ, with Φ determined
from quasi-neutral current continuity and the conductivity-tensor relation [?],
is therefore beyond the scope of the present study but constitutes an important
extension for future work.”

In Section 6 (Numerical Simulations), we now state: “Ion Drag. The ef-
fect of ion drag on the perturbed temperature, vertical velocity, and horizontal
velocity is illustrated in Fig. 4. A moderate attenuation is observed in the al-
titude range from 180 to 350 km, where the ion number density is relatively
high. When E × B drifts are not included, ion drag does not exhibit the clas-
sical regime in which auroral convection strongly drives the neutral atmosphere.
Instead, ion drag mainly arises from diffusion- and pressure-gradient-driven ion
motion along the magnetic field, as well as from any relative ion–neutral mo-
tion induced by neutral winds. Consequently, ion drag does not constitute the
dominant forcing mechanism for the neutral perturbations in this configuration.”

In the Conclusions, we now add the following perspective on future exten-
sions of the model: “The approach presented in this paper represents only the
first component of such a model. Two options are envisaged for extending it to
a more complete formulation.

1. Fully coupled neutral–ion model. The linearized hydrodynamic equations
would be solved together with the ion equations. In this case, the ion
continuity equation would include perturbed production and loss terms,
whereas ion inertia and ion–ion collisions would continue to be neglected
in the ion momentum equation, and only transport parallel to the magnetic
field lines would be retained. The state vector would then be augmented by
two additional components, namely the perturbed ion number density and
the ion diffusion velocity.

2. Two-step coupling strategy. In the first step, the neutral-atmosphere equa-
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tions are solved using the fast field-aligned diffusion approximation. In
the second step, the wave-induced perturbations obtained from the neutral
solution are used as input to solve the ionospheric equations for the per-
turbed O+ ion density. The ionospheric equations may be solved using the
SAMI2 model for low latitudes, where the E×B drift is neglected, or the
SAMI3 model at higher altitudes, where the E×B drift is included. In this
strategy, priority is given to the ionospheric equations of the SAMI frame-
work, while wave-induced perturbations are handled using the approximate
approach developed in the present study. Along similar lines, Knight et
al. [34] solved the neutral-atmosphere equations without ion drag in a
first step, and subsequently addressed the ionospheric response using the
Field-Line Interhemispheric Plasma (FLIP) model [44].”

Comment 2)
Lines 181-182: "This topic will be discussed in more detail in the Conclu-

sions." I cannot find a more detailed discussion of the topic in the Conclusions?
In the previous version of the manuscript, this topic was discussed in the

Appendix rather than in the Conclusions. In the revised manuscript, we have
clarified this point and now discuss the topic in detail in Appendix B.

Comment 3)
Lines 129-130: "... neglected the Coriolis force ..." The statement is not very

specific. According to Klostermeyer (1972) the Earth rotation should be taken
into account for wave periods t>1 hour. So I guess for long period/large scale
gravity waves there could be effects from the Coriolis force. How is a limit "...
gravity waves with an angular frequency w > 2W, where W = 7.3 × 10−5 s−1
is the Earth’s angular velocity" justified, what does it mean in terms of small,
medium, and large scales?

In Appendix A of the new version of the paper, we use the following ar-
gument: “In the above hydrodynamic equations, the Coriolis force has been ne-
glected. For a two-dimensional wave geometry in which both the background flow
and the perturbation velocities are confined to the vertical (x, z) plane and all
variables are independent of the transverse horizontal coordinate y, the Coriolis
acceleration associated with the Earth’s rotation is directed entirely along the
transverse direction and therefore does not enter the momentum equations con-
sidered here. More precisely, for u = (u, 0, w) and Ω = (−Ω cosφ, 0,Ω sinφ),
where φ is the geographic latitude and Ω = 7.29× 10−5 s−1 the Earth’s angular
velocity, the Coriolis force per unit mass is fC = −2Ω × u = (0, 2Ω(cosφw +
sinφu), 0). Thus, the Coriolis acceleration is directed entirely along the trans-
verse horizontal direction y and does not affect the two-dimensional (x, z) mo-
mentum equations.” On the other hand, an alternative explanation is the follow-
ing: “In the above hydrodynamic equations, the Coriolis force has been neglected
because we are interested in gravity waves with frequencies ω > 2Ω, correspond-
ing to wave periods shorter than π/Ω ≈ 12 h,where Ω = 7.3 × 10−5 s−1 is the
Earth’s angular rotation rate.”

Comment 4)
Lines 620-624: The references to the SAMI2, MSIS and HWM models are a
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bit old, updates and newer versions of these models exist. I think that using not
the newest of these models is fine and does not significantly affect the results
and conclusions of this work. Updating the models is not necessary. But a brief
statement about which models exactly were used is recommended. According
to my research the latest models would be:

Huba, J. D. (2023). On the development of the SAMI2 ionosphere model.
Perspectives of Earth and Space Scientists, 4, e2022CN000195. https://doi.org/10.1029/2022CN000195

with a link to the SAMI2 code on Github, https://github.com/NRL-Plasma-
Physics-Division/SAMI2

Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones, M. Jr.,
Mlynczak, M. G., et al. (2021). NRLMSIS 2.0: A whole-atmosphere empirical
model of temperature and neutral species densities. Earth and Space Science, 8,
e2020EA001321. https://doi.org/10.1029/2020EA001321 with link to the public
code.

Drob, D. P., J. T. Emmert, J. W. Meriwether, J. J. Makela, E. Doornbos, M.
Conde, G. Hernandez, J. Noto, K. A. Zawdie, S. E. McDonald, et al. (2015), An
update to the Horizontal Wind Model (HWM): The quiet time thermosphere,
Earth and Space Science, 2, 301–319, doi:10.1002/2014EA000089.

We added the references indicated by the reviewer and now state: “The IRI
data are subsequently used in a manner analogous to that in the SAMI2 model of
the Naval Research Laboratory (https://github.com/NRL-Plasma-Physics-Division/SAMI2).
In the present implementation, the ionospheric equations follow the SAMI2
framework originally developed by Huba et al. [40] and described in detail by
Huba [41]. In SAMI2, the neutral atmospheric parameters–namely the neu-
tral number density, total mass density, and temperature–are specified using the
MSIS family of models. In this study, these parameters are based on the MSIS
formulation of Hedin [42], while we note that more recent updates are provided
by the NRLMSIS 2.0 model of Emmert et al. [43]. The meridional and zonal
winds are specified using the Horizontal Wind Model. In the present implemen-
tation, we follow the formulation of Hedin et al. [44], while more recent updates
are described by Drob et al. [45].”

References
J. W. Dungey (1961), Interplanetary Magnetic Field and the Auroral Zones,

Phys. Rev. Lett. 6, 47, DOI:https://doi.org/10.1103/PhysRevLett.6.47
Weimer, D. R. (2005), Improved ionospheric electrodynamic models and

application to calculating Joule heating rates, J. Geophys. Res., 110, A05306,
doi:10.1029/2004JA010884

Laundal, K. M., Skeidsvoll, A. S., Popescu Braileanu, B., Hatch, S. M.,
Olsen, N., and Vanhamäki, H.: Global inductive magnetosphere-ionosphere-
thermosphere coupling, Ann. Geophys., 43, 803–833, https://doi.org/10.5194/angeo-
43-803-2025, 2025.

Buchert, S. C.: Entangled dynamos and Joule heating in the Earth’s iono-
sphere, Ann. Geophys., 38, 1019–1030, https://doi.org/10.5194/angeo-38-1019-
2020, 2020. Citation: https://doi.org/10.5194/egusphere-2025-3406-RC2

We have included these references in the revised list of references.
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Abstract
We developed a numerical model for solving the linearized gravity-

wave equations using a multilayer approach that explicitly accounts for
viscosity, thermal conduction, and ion drag. The solution strategy is based
on a matrix-exponential formalism and comprises two classes of methods:
global matrix methods and scattering matrix methods. The model sup-
ports both single-frequency waves and time-dependent wave packets. Par-
ticular emphasis is placed on the global matrix method, which exploits the
structured form of the multilayer system to achieve high computational
efficiency while maintaining numerical accuracy. Numerical experiments
demonstrate that all methods yield identical accuracy, although the global
matrix method is significantly more efficient than the scattering matrix
method, especially for time-dependent wave packets. The impact of ion
drag on wave characteristics is quantified within this framework. The
implementation is freely available as open-source code on GitHub.

1 Introduction
Time-step methods [1, 2, 3] are commonly used to solve fully nonlinear sets of
governing equations for upper-atmospheric gravity waves, thereby allowing the
modeling of wave breaking, secondary wave generation, and weakly nonlinear
effects. However, as compared to linear methods for gravity waves [4, 5, 6, 7,
8, 9, 10, 11] they are computationally expensive. In Ref. [12] it was found that
a time-step model took several hours to run, while a linear method only took
several seconds. In this regard, linear methods are more suitable for analyzing
measured data.

The linearized equations can be transformed into a linear system of ordinary
differential equations with variable coefficients that depend on the background
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atmospheric parameters and their height derivatives (the atmospheric parame-
ters are assumed to be horizontally uniform but vertically varying). A common
technique for integrating the linearized equations is the multilayer method first
applied by Pfeifer and Zarichny [13]. In this method, the atmosphere is divided
into a sequence of thin layers, and in each layer, a linear system of ordinary
differential equations with constant coefficients is solved. The analytic wave
solutions in neighboring layers are matched by the continuity condition of the
variables across the interface. There are two methods for deriving a linear sys-
tem of ordinary differential equations with constant coefficients.

1. In the physical multilayer method, the atmospheric parameters, and in
particular, the temperature and wind velocity, are assumed to be constant
within each layer [4, 5, 6, 7, 8]. As a result of the piecewise constant
approximation, the height derivatives of the atmospheric parameters are
zero within each layer.

2. In the numerical multilayer method, the coefficients as a whole are ap-
proximated by their values in the middle of the layer [9]. As a result, the
height derivatives of the atmospheric parameters (approximated by their
values in the middle of the layers) are also included in the resulting system
of equations.

The criticism of physical multilayer methods by Hines [14] concerns whether the
equations describing the state variables in a layer are physically realistic. He
concluded that it is impossible to find the appropriate variables when either (i)
the viscosity and the wind velocity are nonzero or (ii) the thermal conductivity
and the temperature height derivative are nonzero. However, as mentioned by
Knight et al. [15], Hines’ concern about the physical meaning of the state vari-
ables is not relevant for a numerical multilayer method. The reason is that in a
purely mathematical context, it is sufficient to prove that the method, converges
to a correct solution in the infinitesimally thin layer limit. A justification of this
result, based on a matrix–exponential representation for the solution, can be
found in Ref. [10].

According to Volland [5], a layer is said to be isothermal if the background
temperature is constant, and homogeneous if the kinematic viscosity is constant.
In the case of an isothermal, homogeneous, and windless atmosphere, as in
Midgley and Liemohn [4], Volland [5, 6], Francis [7], and Yeh and Liu [8], the
dispersion relation, associated to the system of ordinary differential equations,
separates into three pairs of ascending and descending gravity-wave, viscosity-
wave, and thermal conduction-wave modes. The viscosity-wave and thermal
conduction-wave modes are also referred to as dissipative modes. The main
distinction between the two pairs of dissipative modes and the pair of gravity-
wave modes is that the latter have smaller vertical wavenumber imaginary parts.
This means that ascending gravity-wave modes do not decrease in amplitude as
rapidly with increasing altitude as dissipative modes. On the other hand, the
assumption of locally constant kinematic viscosity is unrealistic as discussed
in Ref. [16]. If one assumes instead that the dynamic viscosity is constant
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within each layer, it is generally not possible to distinguish between ascending
and descending modes for certain wavenumbers, frequencies, and background
parameters [15, 16, 17]. In this context, Knight et al. [15] explained that the
problem of distinguishing ascending from descending modes is related to the
problematic branch points of the root functions giving the vertical wavenumber
as a function of complex frequency. Along this line, the authors proposed a
technique called imaginary frequency shift to assist in achieving this separation.

The inclusion of dissipative modes in a linearized model produces a numerical
swamping [18] in which certain descending modes grow so rapidly in the upward
direction that numerical overflow occurs when the system of differential equation
is subject to lower and upper boundary conditions. Several methods have been
proposed to reduce numerical swamping.

1. Midgley and Liemohn [4] employed an iterative method that can be re-
garded as a Gauss–Seidel group iteration. However, the Gauss–Seidel
iteration may fail to converge in certain situations, in particular when
gravity and dissipative modes become strongly coupled, as discussed in
Refs. [5, 6]. Klostermeyer [10] avoids this difficulty by introducing the
concept of a transfer matrix, which relates the wave amplitudes at differ-
ent altitude levels and provides a more robust framework for treating such
coupling.

2. Volland [6] applied the scattering matrix formalism to a three-layer atmo-
sphere assuming (i) abrupt changes in variables at the interfaces between
the different layers and (ii) that certain background parameters remain
constant in the lower and upper layers. Knight et al. [16] also formu-
lated the problem in terms of scattering matrices which are closely related
to the reflection and transmission matrices appearing in seismology [19].
However, in contrast to Volland, the authors used a more rigorous ap-
proach, i.e., a sequence of composed scattering matrices instead of just a
one stand-alone scattering matrix.

3. Maeda [18] defined numerical swamping as the annihilation of linear inde-
pendence among supposedly independent solutions. To address this chal-
lenge and obtain a comprehensive set of special solutions that are linearly
independent, he utilized a technique developed by Inoue and Horowitz
[20].

In radiative transfer, it is also necessary to solve a linear system of ordinary
differential equations with constant coefficients. This arises by transforming the
continuous dependence of radiance on directions into a dependence on a discrete
set of direction. The standard methods for solving the linear system of ordi-
nary differential equations are the discrete ordinate method [21, 22, 23, 24] and
the matrix operator method [25, 26, 27, 28]. In the classical discrete ordinate
method, the solution to these equations is expressed as a linear combination
of characteristic solutions of the discretized problem. Conversely, the matrix
operator method focuses on numerical computations of reflection and transmis-
sion matrices. Both methods can be formulated using the matrix exponential
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formalism. In the framework of the so called discrete ordinate method with
matrix exponential, Doicu and Trautmann [29, 30] designed stable numerical
algorithms for computing the radiance field in a multi-layered atmosphere, while
in the framework of the matrix operator method with matrix exponential, Bu-
dak et al. [31, 32] provided explicit and stable representations for the reflection
and transmission matrices. A consistent overview of the matrix exponential
description of radiative transfer can be found in Ref. [33].

The main purpose of this article is to apply radiative transfer techniques to
solve the linearized gravity-wave equations. As a prototype, we will consider the
equations that describe gravity waves in the ionosphere, and that include vis-
cosity, thermal conduction, and ion drag. In principle, a full wave model for the
ionosphere comprises the hydrodynamic equations for the neutral atmosphere
and the ionospheric equations. These two sets of equations are coupled through
the ion drag, and should be solved together. However, to simplify the analysis,
we decouple the two sets of equations by adopting a fast field-aligned diffusion
approximation, which may be viewed as a generalization of an approximation
originally proposed by Klostermeyer [9].

Our paper is organized as follows. In Section 2, we present the derivation
of the matrix exponential solution of the linearized equations, while Section 3
describes stable numerical methods for computing the amplitudes of the charac-
teristic solution in a stratified atmosphere. Section 4, which is largely inspired
by the works of Knight et al. [11, 15, 16, 17], addresses the computation of the
perturbed quantities for both harmonic and non-harmonic source functions, that
is, for single-frequency waves and time-dependent wave packets. The concepts
of causality and the imaginary frequency shift, which are rigorously treated
in Refs. [15–17], are also briefly discussed. Aspects of the numerical imple-
mentation are addressed in Section 5, and representative simulation results are
presented in Section 6. Additional theoretical issues are discussed in the ap-
pendices. Appendix A contains the linearized hydrodynamic equations for the
neutral atmosphere and the derivation of the underlying system of differential
equations. Appendix B outlines the linearized ionospheric equations and dis-
cusses the assumptions employed to decouple the hydrodynamic and ionospheric
systems. Appendix C describes methods for computing grid-point values of the
state vector in a stratified atmosphere. Appendix D addresses several implemen-
tation issues, including a practical, albeit heuristic, approach for determining
the imaginary frequency shift.

2 Matrix exponential solution of the linearized
equations

To design a full wave model for the ionosphere, we use the hydrodynamic equa-
tions for the neutral atmosphere and the ionospheric equations. In a linearized
(perturbation) method, a quantity f is expressed as

f = f0 + f ′, (1)
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where f0 and f ′ are the unperturbed (background) and the perturbed quantity,
respectively. The perturbations are assumed to be small so that it is justified
to neglect all terms of higher than the first order.

Concretely, we solve the linearized hydrodynamic equations for the neutral
atmosphere together with the linearized ion continuity and momentum equa-
tions. The linearized neutral-atmosphere equations are solved under the follow-
ing assumptions:

A1. The geographic and geomagnetic coordinates are identical.

A2. The wave propagates in the meridional plane (the x-coordinate is positive
southwards while the z-coordinate is positive upwards), i.e.,

f = f(x, z, t). (2)

A3. All background (unperturbed) quantities vary only in the z-direction, i.e.,

f0 = f0(z), (3)

while all perturbations vary harmonically in time and the x-direction, i.e.,

f ′ = f ′(x, z, t) = f(z)ej(ωt−kxx), (4)

where ω is the angular frequency and kx the horizontal wavenumber. Note
that in some gravity-wave studies, the opposite sign convention for fre-
quency and horizontal wavenumber is used (e.g. Ref. [34]).

The linearization model is described in Appendix A. It provides a general frame-
work that accounts for the altitude derivatives of the background velocity u0,
temperature T0, density scale Height Hρ, and dynamic viscosity µ0. Apart from
the ion-drag terms, the formulation follows a structure similar to those employed
by Vadas and Nicolls [35] and Knight et al. [11].

The computation of the ion-drag force and ion-drag heating is presented
in Appendix B. The ion-drag terms are introduced in an approximate manner,
with the explicit aim of decoupling the hydrodynamic and ion equation systems.
To this end, we adopt the following assumptions:

B1. In the ion continuity equation, the perturbed production and loss terms
are neglected.

B2. In the ion momentum equation, ion inertia and ion–ion collisions are ne-
glected, and only transport parallel to the magnetic field lines is retained.
Under these assumptions, the ion momentum equation reduces to the am-
bipolar diffusion equation.

B3. To decouple the ion continuity equation from the diffusion equation, fast
field-aligned diffusion is assumed, meaning that the field-aligned diffusion
is sufficiently strong for the relative ion perturbation and the perturbed
diffusion velocity to remain nearly constant along a magnetic field line.
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The linearized equations lead to a linear system of ordinary differential equa-
tions, written in matrix form as

1

kx

de

dz
= Ae, (5)

where
e = [û, ŵ, T̂ , Û , Ŵ, T̂ ]T (6)

is the state vector, and A is the propagation matrix with altitude independent
elements (whose expressions follow from Eqs. (157)–(162) of Appendix A). In
general, the unknowns (the hat quantities in Eq. (6)) are defined through the
relation

f(z) = C(z)f̂(z), (7)

where f is defined by Eq. (4), and C is a known quantity that ensures that f̂ is
dimensionless and that may or may not depend on altitude (here, we indicate
that C depend on z). Specifically, for the background velocity u0 = (u0, 0, 0),
and the perturbed velocity u′ = (u′, 0, w′), we have (cf. Eqs. (155) and (156)
of Appendix A)

u(z) =
ω0

kx
û(z), (8)

w(z) =
ω0

kx
ŵ(z), (9)

T (z) = T0(z)T̂ (z), (10)

and

Û =
dû
dz
, Ŵ =

dŵ
dz
, T̂ =

dT̂
dz
.

where ω0 is a reference frequency.
If (λn,vn) is an eigenpair of the matrix A, i.e., Avn = λnvn for n = 1, . . . , N ,

where N = dim(e), the general solution of Eq. (5) is a linear combination of
the characteristic solutions exp(kxλnz)vn, that is,

e(z) =

N∑
n=1

anekxλnzvn

= [v1, . . .vN ]

 ekxλ1z · · · 0
...

. . .
...

0 · · · ekxλNz


 a1

...
aN


= Vdiag[ekxλnz]a, (11)

where

V = [v1, . . . ,vN ], diag[ekxλnz] =

 ekxλ1z · · · 0
...

. . .
...

0 · · · ekxλNz

 , (12)
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and a = [a1, . . . , aN ]T . At z = 0, we have e(0) = Va; thus,

a = V−1e(0), (13)

implying (cf. Eq. (11)),

e(z) = Vdiag[ekxλnz]V−1e(0) = ekxAze(0), (14)

and conversely,

e(0) = Vdiag[e−kxλnz]V−1e(z) = e−kxAze(z). (15)

From the theory of gravity waves within an isothermal, nondissipative at-
mosphere, it is generally known that the amplitude of an ascending modes in-
creases like exp[z/(2Ha)], where Ha is the atmospheric scale height [36]. This
is necessary to keep the wave energy constant in an atmosphere where the pres-
sure decreases exponentially with height. In this regard, we define the vertical
wavenumber kzn through the relation

diag[ekxλnz] = diag[ez/(2Ha)e−jkznz], (16)

yielding

λn = − j
kx
kzn +

1

2
α, (17)

and conversely,

kzn = jkx

(
λn −

1

2
α

)
, (18)

where α = 1/(kxHa). The characteristic equation det(A− λIN ) = 0 has N = 6
solutions. As shown in Appendix A, for a constant kinematic viscosity the solu-
tions occur in pairs and correspond to (i) ascending and descending gravity-wave
modes, (ii) ascending and descending viscosity-wave modes, and (iii) ascending
and descending thermal-conduction wave modes [6, 7]. In that appendix, this
pairing is explicitly demonstrated by deriving the dispersion relation for the
special case of an isothermal (constant background temperature), homogeneous
(constant kinematic viscosity), and windless atmosphere without ion drag. This
solution classification is made according to the imaginary part of the vertical
wavenumber kzn. In the more realistic case of a constant background dynamic
viscosity, it is generally not possible to define ascending and descending modes
as corresponding pairs (see Eq. (168) in Appendix A). However, in our model
we will use the same rule as in the case of a homogeneous atmosphere, even
though the traditional concept of classifying waves in pairs is no longer appli-
cable. Specifically, we compute kzn for n = 1, . . . , N by means of Eq. (18), and
order the set {kzn}Nn=1, and accordingly, {λn}Nn=1, such that

Im(kz3) < Im(kz2) < Im(kz1) < Im(kz4) < Im(kz5) < Im(kz6). (19)

By convention, (i) the pairs (kz1 = k+
z1, λ1 = λ+

1 ) and (kz4 = k−z1, λ4 = λ−1 )
will correspond to ascending and descending gravity-wave modes, respectively,
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(ii) the pairs (kz2 = k+
z2, λ2 = λ+

2 ) and (kz5 = k−z2, λ5 = λ−2 ) to ascending
and descending viscosity-wave modes, respectively, and (iii) the pairs (kz3 =
k+
z3, λ3 = λ+

3 ) and (kz6 = k−z3, λ6 = λ−3 ) to ascending and descending thermal
conduction-wave modes, respectively. Thus, the vertical wavenumber is an aux-
iliary quantity that is used only to identify the different modes. According to the
notation introduced above, {λ+

m}Mm=1, where M = N/2 is the number of modes,
is the set of eigenvalues defining ascending modes, and {λ−m}Mm=1 is the set of
eigenvalues defining descending modes. Because Re(λn) = Im(kzn)/kx + α/2,
it is obvious that we can put aside the concept of vertical wavenumber when
identifying the different wave modes. We can simply order the set {λn}Nn=1,
such that

Re(λ3) < Re(λ2) < Re(λ1) < Re(λ4) < Re(λ5) < Re(λ6), (20)

and use the same classification rule as above. A commonly cited interpreta-
tion of condition (20) is that, for increasing z, the exponential term exp(kxλnz)
will tend to be damped more for ascending modes than for descending modes;
conversely, for decreasing z, the roles of ascending and descending modes are
reversed. However, such a classification of upgoing and downgoing roots (e.g.,
Ref. [6] and related works) was primarily heuristic and lacked a rigorous the-
oretical justification. By contrast, the approach of Knight et al. [16], which is
discussed in Section 4, introduces additional constraints beyond condition (20)
that are explicitly related to causality and is therefore grounded in theoretical
considerations rather than heuristic arguments.

To highlight the different wave modes, we organize the state vector e(z) as

e(z) = e+(z) + e−(z)

=

(
M∑
m=1

a+
mekxλ

+
mzv+

m

)
+

(
M∑
m=1

a−mekxλ
−
mzv−m

)

= [V+,V−]

[
diag[ekxλ

+
mz] 0M

0M diag[ekxλ
−
mz]

] [
a+

a−

]
, (21)

where the eigenvector v±m corresponds to the eigenvalue λ±m,

V = [V+,V−], V± = [v±1 , . . . ,v
±
M ], (22)

a =

[
a+

a−

]
, a± =

 a±1
...
a±M

 , (23)

and 0M is the zero matrix of dimensionM×M . Some useful relations are listed
below

1. From Eq. (13), we find

a+ = [IM , 0M ]a = [IM , 0M ]V−1e(0), (24)

a− = [0M , IM ]a = [0M , IM ]V−1e(0), (25)
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where IM is the identity matrix of dimension M ×M .

2. From Eq. (21), that is,

e±(z) =

M∑
m=1

a±mekxλ
±
mzv±m = V±diag[ekxλ

±
mz]a±, (26)

we deduce that
e±(0) = V±a±. (27)

3. From Eq. (14), we obtain

e+(z) = T+e(0), (28)

where

T+ = V

[
diag[ekxλ

+
mz] 0M

0M 0M

]
V−1, (29)

while from Eq. (15), we find

e−(0) = T−e(z), (30)

where

T− = V

[
0M 0M
0M diag[e−kxλ

−
mz]

]
V−1. (31)

3 Solution of the linearized equations for a strat-
ified atmosphere

Consider an equidistant discretization of the atmosphere, i.e., ẑi = zmin + (i −
1)∆ẑ for i = 1, ..., 2L+ 1. A layer l, where l = 1, . . . , L and L is the number of
layers, is bounded from below and from above by the grid points zl = ẑ2l−1 and
zl+1 = ẑ2l+1, respectively, and its center is located at the grid point zl = ẑ2l.
The atmosphere extends from zmin = z1 = ẑ1 to zmax = zL+1 = ẑ2L+1 =
zmin + L(2∆ẑ). We adopt a numerical multilayer method [9, 15, 16], and ap-
proximate the altitude dependent matrix A in each layer l by its value at the
layer center, i.e., Al = A(zl). The eigenpairs of the propagation matrix Al are
denote by (λnl,vnl) for n = 1, . . . , N . The matrix differential equation (5) can
be solved either (i) in terms of the amplitudes al, l = 1, . . . , L of the character-
istic solutions, or (ii) in terms of the grid-point values el = e(zl), l = 1, . . . , L of
the state vector e(z). In the following we present the method based on the am-
plitude of the characteristic solutions, whereas the second method is described
in Appendix C.

In the layers l and l + 1, the solutions are given by (cf. Eq. (11))

el(z) = Vldiag[ekxλnl(z−zl)]al, zl ≤ z ≤ zl+1, (32)
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and
el+1(z) = Vl+1diag[ekxλn,l+1(z−zl+1)]al+1, zl+1 ≤ z ≤ zl, (33)

respectively. The continuity condition at the interface z = zl+1,

el(zl+1) = el+1(zl+1), (34)

gives
V−1
l Vl+1al+1 = diag[ekxλn,l∆l ]al, (35)

where ∆l = zl+1−zl. To obtain a stable system of equations, we define a scaling
matrix K1

lwith entries

[K1
l ]nn =

 e−kxλnl∆l ,

1,

Re(λnl) > 0

Re(λnl) ≤ 0
, (36)

and a second scaling matrix K0
l by

K0
l = K1

l diag[ekxλnl∆l ], i.e., [K0
l ]nn =

 1,

ekxλnl∆l ,

Re(λnl) > 0

Re(λnl) ≤ 0
. (37)

Multiplying Eq. (35) from the left with K1
l yields the continuity equation

A1
l,l+1al+1 − A0

l,l+1al = 02M , l = 1, ..., L− 1, (38)

where 02M is the 2M -dimensional zero vector, and

A1
l,l+1 = K1

l (V
−1
l Vl+1), (39)

A0
l,l+1 = K0

l . (40)

The scaling matrices K1
l and K0

l prevent a possible blow-up of the exponential
terms for Re(λnl) > 0 and Re(λnl) ≤ 0, respectively. Such scaling techniques
are standard in radiative transfer theory and are commonly used to obtain
stable numerical algorithms for computing the radiance field in multilayered
atmospheres [29, 30].

Actually, we have L−1 continuity equations imposed at the levels z2, . . . , zL
for the L unknowns a1, . . . ,aL. The two missing equations are obtained from
the lower and upper boundary conditions.

1. At the lower boundary, i.e., at z = z1(= zmin), we assume that only the
ascending wave modes transport energy upward. In this regard, we impose
that in the layer l = 1, we have a+

1,l=1 = s = finite, and that the rest of
a+
m,l=1 are zero, that is, a+

m,l=1 = 0 for m 6= 1 [9]. Note that a+
1,l=1 is

the amplitude of the ascending gravity-wave modes, while the condition
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a+
m,l=1 = 0 form 6= 1 means that the amplitudes of the ascending viscosity-

wave and thermal conduction-wave modes are assumed to be zero. In this
case, the boundary condition for ascending modes is

e+
l=1(z1) =



û+
l=1(z1)
ŵ+
l=1(z1)

T̂+
l=1(z1)

Û+
l=1(z1)

Ŵ+
l=1(z1)

T̂ +
l=1(z1)


=

M∑
m=1

a+
m,l=1v

+
m,l=1 = sv+

1,l=1. (41)

Excluding for the moment the scale factor s, we express the boundary
condition for amplitudes,

a+
l=1 =


a+

1,l=1

a+
2,l=1
...

a+
M,l=1

 = i1 with i1 =


1
0
...
0

 , (42)

in matrix form as

[IM , 0M ]a1 = [IM , 0M ]

[
a+

1

a−1

]
= i1, (43)

where in general, a±l0 = a±l=l0 , for l0 = 1, . . . , L. The boundary condition
(41) is a modal (eigenvector-based) boundary condition, which imposes
that the state at z1 is exactly aligned with a chosen eigenmode. In this
way, a pure normal mode is injected into the system.

2. A reasonable upper boundary condition is that there is no downgoing
energy at great altitudes, so that the amplitudes of all descending wave
modes must be zero at the upper boundary [9]. In this regard, we impose
a−m,l=L = 0 for all m = 1, . . . ,M , in which case, in the layer L, the
boundary condition for descending modes is

e−l=L(z) =

M∑
m=1

a−m,l=Le
kxλ

−
m,l=Lzv−m,l=L = 02M (44)

for all zL ≤ z ≤ zL+1. In matrix form, the boundary condition for ampli-
tudes

a−l=L =


a−1,l=L
a−2,l=L

...
a−M,l=L

 = 0M (45)

is written as
[0M , IM ]aL = [0M , IM ]

[
a+
L

a−L

]
= 0M . (46)
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Comments.

1. The scaling matrices defined by Eqs. (36) and (37) do not take into
account a classification of the wave modes as ascending and descending
(as defined by Eq. (20)). Consequently, the continuity equations (38) do
not account for this classification, and the only equations in which it is
necessary to distinguish between ascending and descending modes are the
boundary condition equations (43) and (46). From this point of view, the
method is similar to finite-difference methods [37, 38, 39].

2. An alternative type of lower boundary condition was proposed by Knight
et al. [15, 16]. In this approach, the lower boundary condition for ascend-
ing modes is prescribed in terms ofM values b1,k, k = 1, . . . ,M , according
to (compare with Eq. (41))[

dk−1e+
l=1

dzk−1
(z1)

]
q

= b1,k, k = 1, ...,M, (47)

where the notation [x]q denotes the qth component of the vector x. In the
present context, this refers to the first M components, corresponding to
û (q = 1), ŵ (q = 2), and T̂ (q = 3). In Eq. 47, k denotes the derivative
order, and in the case M = 3, we have explicitly,

[
e+
l=1(z1)

]
q

= b1,1,

[
de+

l=1

dz
(z1)

]
q

= b1,2,

[
d2e+

l=1

dz2
(z1)

]
q

= b1,3. (48)

Note that Eq. 47 generalizes Eq. (2.19) in Ref. [15], which is formulated
for the first state variable rather than for an arbitrary state variable. Using
the relations

dk−1e+
l=1

dzk−1
(z1) =

M∑
m=1

a+
m,l=1(kxλ

+
m,l=1)k−1v+

m,l=1, k = 1, . . . ,M, (49)

and[
dk−1e+

l=1

dzk−1
(z1)

]
q

= îTq
dk−1e+

l=1

dzk−1
(z1) =

M∑
m=1

a+
m,l=1(kxλ

+
m,l=1)k−1̂iTq v+

m,l=1,

(50)
where îq is a 2M -dimensional vector with components (compare with Eq.
(42))

[̂iq]k =

{
1, k = q
0, k 6= q

, k = 1, . . . , 2M, (51)

we find
M∑
m=1

[B]mka
+
m,l=1 = b1,k, k = 1, ...M, (52)
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where B is a matrix with entries

[B]mk = (kxλ
+
m,l=1)k−1̂iTq v+

m,l=1, m, k = 1, . . . ,M. (53)

Setting b1 = [b1,1, . . . , b1,M ]T, we consider the boundary condition for
amplitudes

a+
1 = B−1b1, (54)

that is (compare with Eq. (43))

[IM , 0M ]a1 = B−1b1. (55)

For the choice b1,k = 0 with k ≥ 2, the first component of the boundary-
value vector b1 can be identified with the scale factor s, that is, s = b1,1.
Consequently, for a unit scale factor and M = 3, we have b1 = [1, 0, 0]T.
The boundary condition (48) is a localized condition that prescribes the
value of a single state variable while enforcing vanishing slope and curva-
ture at the boundary. It effectively acts as an external driver applied to
one variable and is appropriate for non-harmonic source functions. Note
that this form of the lower boundary condition is used in the statement
of Theorem 1 in Ref. [16]. For causality considerations, boundary con-
ditions must be expressed in terms of state variables rather than modal
amplitudes, since modes are defined in the frequency domain.

3. The eigenvectors are not uniquely defined and may be scaled by an ar-
bitrary nonzero complex factor. When the LAPACK routine ZGEEV is
used, the eigenvectors are returned with a built-in normalization, namely
unit Euclidean norm together with a fixed phase convention. In the present
work, we follow Knight et al. [15, 16] and apply a component-wise nor-
malization, i.e.,

[vn]j =
1

|[vn]q|
[vn]j , j = 1, . . . , N,

in which each eigenvector is rescaled such that a selected reference compo-
nent has unit magnitude (|[vn]q| = 1). This reference component is chosen
to correspond to a boundary value, thereby fixing the overall amplitude
of the eigenmode in a manner consistent with the imposed boundary con-
ditions.

Starting from the continuity equation (38), we will determine the amplitudes al
by using two solution methods, namely, (i) the so-called global matrix method
with matrix exponential and (ii) the scattering matrix method.

3.1 Global matrix method with matrix exponential
The continuity equations (38), and the boundary conditions (43) and (46) for
a unit scale factor, are assembled into a system of equations for the stratified
atmosphere, i.e.,

Aa = b, (56)
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where

A =


[0M , IM ] 0 . . . 0 0
A1
L−1,L −A0

L−1,L . . . 0 0
...

...
. . .

...
...

0 0 . . . A1
12 −A0

12

0 0 . . . 0 [IM , 0M ]

 , (57)

a =


aL

aL−1

...
a2

a1

 , and b =


0M
02M

...
02M

i1

 . (58)

For the lower boundary condition (55), i1 in Eq. (58) should be replaced by
B−1b1, where, for a unit scale factor, b1 = [1, 0, 0]T. The matrix A has 3M − 1
sub- and superdiagonals (excluding the main diagonal) and can therefore be
stored in banded form and treated using standard band-matrix techniques. To
solve the resulting banded system of linear equations, we employed the LA-
PACK routines ZGBTRF and ZGBTRS. The routine ZGBTRF performs an LU
factorization with partial pivoting of the complex band matrix, and ZGBTRS
subsequently uses this factorization to solve the linear system for the prescribed
right-hand side. In this approach, the inverse of the full system matrix is not
computed explicitly, which improves the computational efficiency.

After solving Eq. (56), we compute the state vector as

el = e(zl) =



û(zl)
ŵ(zl)

T̂ (zl)

Û(zl)

Ŵ(zl)

T̂ (zl)


= Vlal, l = 1, . . . , L, (59)

and the wave amplitudes by means of the relation

f(z) = C(z)f̂(z), (60)

where f stands for u, w, and T . The ascending and descending solution modes
are computed by using Eq. (27), that is,

e±l = V±l a±l , l = 1, . . . , L. (61)

3.2 Scattering matrix method
We consider the continuity equation (38) and partition the matrices Ail,l+1, with
i = 0, 1, as

Ail,l+1 =

[
[Ail,l+1]11 [Ail,l+1]12

[Ail,l+1]21 [Ail,l+1]22

]
. (62)
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Further, we define the scattering matrix at the interface between the layers l
and l + 1 (in fact, at the layer grid point zl+1), Sl,l+1 through the relation[

a−l
a+
l+1

]
= Sl,l+1

[
a+
l

a−l+1

]
, (63)

where

Sl,l+1 =

[
R+
l,l+1 T−l,l+1

T+
l,l+1 R−l,l+1

]
, (64)

and R±l,l+1 and T±l,l+1 with dim(R±l,l+1) = dim(T±l,l+1) = M ×M , are the reflec-
tion and transmission matrices, respectively. In analogy with radiative transfer
theory (e.g., Refs. [31, 32]), Eq. (63) is referred to as the interaction principle
equation at the interface (l, l + 1). It shows that the scattering matrix Sl,l+1

relates the amplitudes a−l and a+
l+1 of the waves leaving the interface with the

amplitudes a+
l and a−l+1 of the waves entering the interface. From Eqs. (38)

and (63), we find[
R+
l,l+1 T−l,l+1

T+
l,l+1 R−l,l+1

]
=

[
[A0
l,l+1]12 −[A1

l,l+1]11

[A0
l,l+1]22 −[A1

l,l+1]21

]−1 [ −[A0
l,l+1]11 [A1

l,l+1]12

−[A0
l,l+1]21 [A1

l,l+1]22

]
.

(65)
We organize the computational process as an upward recurrence using the

concept of a “stack”. The stack Sl0l with l0 < l, is a group of interfaces charac-
terized by the interaction principle equation[

a−l0
a+
l

]
=

[
R+
l0l

T −l0l
T +
l0l

R−l0l

] [
a+
l0

a−l

]
, (66)

where the matrices R±l0l and T
±
l0l

are obtained through a successive application
of the interaction principle equation at the interfaces (l0, l0 + 1), (l0 + 1, l0 +
2),...,(l − 1, l). Adding a new layer l + 1, and taking into account that at the
interface (l, l+1), the reflection and transmission matrices are R±l,l+1 and T±l,l+1,
respectively, we find that the interaction principle equation for the stack Sl0,l+1,
is [

a−l0
a+
l+1

]
=

[
R+
l0,l+1 T −l0,l+1

T +
l0.l+1 R−l0.l+1

] [
a+
l0

a−l+1

]
, (67)

where R±l0,l+1 and T ±l0,l+1 are computed recursively by using of the “adding
formulas”

R+
l0,l+1 = R+

l0l
+ T −l0l(I− R+

l,l+1R
−
l0l

)−1R+
l,l+1T

+
l0l
, (68)

T −l0,l+1 = T −l0l(I− R+
l,l+1R

−
l0l

)−1T−l,l+1, (69)

T +
l0,l+1 = T+

l,l+1(I−R−l0lR
+
l,l+1)−1T +

l0l
, (70)

R−l0,l+1 = R−l,l+1 + T+
l,l+1(I−R−l0lR

+
l,l+1)−1R−l0lT

−
l,l+1, (71)

for l = l0 + 1, ..., L− 1. Note that Eqs. (68)–(71) are mathematically equivalent
to Eqs. (4.30)–(4.33) in Ref. [16]. The procedure is initialized with R±l0,l0+1 =
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R±l0,l0+1 and T ±l0,l0+1 = T±l0,l0+1, and is repeated until the last interface is added
to the stack. For the stack S1L, the interaction principle equation is[

a−1
a+
L

]
=

[
R+

1L T −1L
T +

1L R−1L

] [
a+

1

a−L

]
, (72)

and from the boundary conditions for amplitudes (42) and (45), that is, from
the relations a+

1 = i1 and a−L = 0M , respectively, we find

a−1 = R+
1La+

1 and a+
L = T +

1La+
1 . (73)

For the lower boundary condition (55), a+
1 in Eq. (73) is given by a+

1 =B−1b1,
where, for a unit scale factor, b1 = [1, 0, 0]T. To restore the entire set of
amplitude vectors al, we consider the interaction principle equations for the
stacks S1l and SlL, yielding

a+
l = (I −R−1lR

+
lL)−1T +

1l a
+
1 , (74)

a−l = R+
lLa+

l , (75)

for l = L−1, ..., 1. The state vector and the wave amplitudes are then computed
by using Eqs. (59) and (60), respectively. In contrast to the previous method,
this approach requires a clear differentiation between ascending and descending
modes as defined by Eq. (20).

4 Source function
In the derivation so far, the amplitude vector is uniquely defined up to a mul-
tiplicative factor, namely the scale factor s. Accordingly, the general solution
can be written as as = sa, where, here and it what follows, the subscript s
indicates the dependence on s. Since as satisfies the equation Aas = sb (cf. Eq.
(56)), the scale factor can be interpreted as a source factor. The source factor
is constant in the case of a harmonic (monochromatic) source function, corre-
sponding to a single-frequency wave, but is time dependent for a non-harmonic
source function, corresponding to a time-dependent wave packet. In this section,
we describe the computation of the perturbed quantities for both harmonic and
non-harmonic source functions. We also present a brief overview of the causality
condition and the imaginary frequency shift introduced by Knight et al. [16],
and latter extended and applied in Refs. [11, 15, 17, 34]. Although it would
be sufficient to simply refer to these works, we include a short discussion here
because the underlying mathematical structure provides valuable insight into
the method.

4.1 Non-harmonic source (time-dependent wave packet)
If the source term is not purely harmonic in time (i.e., it cannot be written
as a single factor exp(jωt)), the perturbed quantity f ′(x, z, t) is not a single-
frequency wave with a specified angular frequency ω. In this case, the equations
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are treated in the frequency domain by considering the Fourier transform in
time [15, 16, 17]. This is defined by

F ′(x, z, ω) =

∫ ∞
−∞

f ′(x, z, t)e−jωtdt = F [f ′(x, z, t)](x, z, ω) (76)

and its inverse by

f ′(x, z, t) =
1

2π

∫ ∞
−∞

F ′(x, z, ω)ejωtdω = F−1[F ′(x, z, ω)](x, z, t). (77)

Applying the Fourier transform to the linearized equations (145)–(147) of Ap-
pendix A, using the result

F
[
∂f ′

∂t
(x, z, t)

]
(x, z, ω) = jωF ′(x, z, ω), (78)

and setting
F ′(x, z, ω) = F (z, ω)e−jkxx (79)

as the counterpart of Eq. (148) (in which the exponential term exp(jωt) is
absorbed into f(z)), together with

F (z, ω) = C(z)F̂ (z, ω) (80)

as the counterpart of Eq. (7), we are led to the system of differential equations
(157)–(162) of Appendix A (or equivalently, to the matrix differential equation
(5)), but with F̂ (z, ω) replacing f̂(z).

At the lower boundary z1, we consider the localized boundary conditions

f ′sq0(x, z1, t) = Cq0(z1)s(x, t),
∂f ′sq0
∂z

(x, z1, t) = 0,
∂2f ′sq0
∂z2

(x, z1, t) = 0, (81)

where q0 takes the values 1, 2, and 3 for the horizontal velocity, vertical velocity,
and temperature, respectively. In Eq. (81), the source function is given by

s(x, t) = As(t)e−jkxx, (82)

with A denoting the scalar source amplitude and s(t) its prescribed time de-
pendence. Here, and in what follows, the index s s is used to indicate that
a quantity depends on the source function. In our implementation, the time-
dependent part of the source function is chosen as

s(t) = ejω0(t−t0)e
−

(t− t0)2

2σ2
t (83)

with the Fourier transform

S(ω) =

√
2π

σω
e−jωt0e

−
(ω − ω0)2

2σ2
ω , (84)
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where ω0 is the reference frequency (the central frequency in the Fourier spec-
trum), t0 is the time at which the source function is maximum, and σt and
σω = 1/σt are the standard deviations in the time and frequency domains, re-
spectively. The amplitude of the source function A is specified by imposing the
normalization condition:

|Re{f ′sq0(x = 0, z1, t0)}| = fbq0 , (85)

for some prescribed boundary value fbq0 > 0. For example, in the case q0 = 1,
fbq0 may be chosen as a fraction of the maximum horizontal velocity of neutrals
in the south direction over the altitude range, whereas in the case q0 = 3, fbq0
may be chosen as a fraction of the maximum temperature of neutrals over the
altitude range.

Applying the Fourier transform to Eq. (81) and using Eqs. (79) and (80),
we obtain the following boundary conditions in the frequency domain (note that
AS(ω) is the Fourier transform of As(t)):

F̂sq0(z1, ω) = AS(ω),
∂F̂sq0

∂z
(z1, ω) = 0,

∂2F̂sq0

∂z2
(z1, ω) = 0. (86)

Comparing Eqs. (86) and (48), we see that the latter corresponds to the choice
b1,2 = b1,3 = 0. In this case, the source factor s = b1,1 can be identified with
AS(ω). Therefore, as in Section 3, we define F̂q(z, ω) = [e(z, ω)]q, q = 1, 2, 3,
where e(z, ω) denotes the solution of the differential equation (5) for a unit
source factor in the frequency domain (i.e., for b1 = [1, 0, 0]T). The perturbed
quantity f ′sq(x, z, t) is then obtained by applying the inverse transform (77) to

F ′sq(x, z, ω) = AS(ω)e−jkxxCq(z)F̂q(z, ω), (87)

that is,

f ′sq(x, z, t) =
1

2π

∫ ∞
−∞

F ′sq(x, z, ω)ejωtdω = Afq(z, t)e
−jkxx, (88)

where

fq(z, t) =
Cq(z)

2π

∫ ∞
−∞

S(ω)F̂q(z, ω)ejωtdω. (89)

For S(ω) as above, fq(z, t) can be written as

fq(z, t) =
Cq(z)

2π

∫ ∞
−∞

S (ω)F̂q(z, ω)ejω(t−t0)dω, (90)

with

S (ω) =

√
2π

σω
e
−

(ω − ω0)2

2σ2
ω . (91)
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The computation of F̂q(z, ω) can be performed using any of the methods pre-
sented in Section 3. The computed quantity is fq(z, t), the amplitude A > 0, is
determined from the normalization condition (85) as

A =
fbq0

|Re{fq0(z1, t0)}|
, (92)

and the perturbed quantity f ′sq(x, z, t) is computed from Eq. (88).

4.2 Monochromatic source (single-frequency wave)
The case of a monochromatic source is obtained as a special case of the above
approach by choosing

s(t) = ejω0t, (93)

whose Fourier transform is

S(ω) =

∫ ∞
−∞

s(t) e−jωt dt =

∫ ∞
−∞

e−j(ω−ω0)t dt = 2πδ(ω − ω0), (94)

where the equality is understood in the sense of distributions.
The lower boundary conditions in the time domain are specified as

f ′sq0(x, z1, t) =
1

2π
Cq0(z1) s(x, t),

∂f ′sq0
∂z

(x, z1, t) = 0,
∂2f ′sq0
∂z2

(x, z1, t) = 0,

(95)

with
s(x, t) = As(t)e−jkxx = Aejω0t e−jkxx. (96)

Applying the Fourier transform with respect to time yields

F̂sq0(z1, ω) = Aδ(ω − ω0). (97)

Since the forcing is monochromatic, the frequency-domain problem is solved
only at the excitation frequency ω = ω0. Accordingly, the localized boundary
conditions are imposed directly on the harmonic amplitudes at ω0, namely

F̂sq0(z1, ω0) = A,
∂F̂sq0

∂z
(z1, ω0) = 0,

∂2F̂sq0

∂z2
(z1, ω0) = 0. (98)

Again, by comparing Eqs. (98) and (48), we see that the source factor s = b1,1
can be identified with A. In this regard, let F̂q(z, ω0) =

[
e(z, ω0)

]
q
, q = 1, 2, 3,

where e(z, ω0) denotes the solution of the differential equation (5) for a unit
source factor in the frequency domain. The perturbed quantity f ′sq(x, z, t) is
then obtained by the inverse Fourier transform (77) of F ′sq(x, z, ω) (cf. Eq.
(87)), and the result is

f ′sq(x, z, t) = Af sq(z)e
j(ω0t−kxx), (99)
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where
f sq(z) = Cq(z) F̂q(z, ω0). (100)

Thus, the computed quantity is f sq(z), and the amplitude A is determined from
the normalization condition

|Re{f ′sq0(x = 0, z1, t = 0)}| = fbq0 , (101)

which yields

A =
fbq0

|Re{f sq(z1)}|
. (102)

Note that for a monochromatic source, the modal boundary condition (41) can
be used instead of the localized boundary condition (98).

4.3 Causality and imaginary frequency shifting
Causality means that the wave field in response to any source function cannot
be nonzero prior to the earliest time at which the source function is nonzero.
According to the classification rule (20), we have

Re[λ+
1l(ω)] < Re[λ−1l(ω)], (103)

for any layer l = 1, . . . , L and any real frequency ω. To preserve causality in
solutions of two-point boundary value problems, a stronger condition is required,
namely

max
l=1,...,L

Re[λ+
1l(ω)] < min

l=1,...,L
Re[λ−1l(ω)] (104)

for all ω ∈ R. Equivalently, this condition requires that there exists a single real
constant σ, such that

Re[λ+
1l(ω)] < σ < Re[λ−1l(ω)], (105)

for all l and all ω ∈ R.
In some situations, condition (105) is not satisfied on the real frequency axis

but can be enforced by introducing an imaginary frequency shift ω → ω − jδ.
Following Ref. [16], we impose a causality requirement, which we refer to as the
Global Causality (GC) condition. This condition demands that there exists a
single real constant σ, such that

Re[λ+
1l(ω − jδ)] < σ < Re[λ−1l(ω − jδ)], (106)

for all l and all ω ∈ R.
Knight et al. [11] subsequently relaxed the requirement that (106) hold for

all layers l for a fixed σ. The new condition, which we refer to as the Layerwise
Causality (LC) condition, requires that at each layer l there is a σl such that

Re[λ+
1l(ω − jδ)] < σl < Re[λ−1l(ω − jδ)], (107)
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for all ω ∈ R. Equivalently, if at each layer l,

dl(ω) = Re[λ−1l(ω − jδ)]− Re[λ+
1l(ω − jδ)] > 0, (108)

for all ω ∈ R, then the multilayer algorithm will still preserve causality. The
LC condition requires a strict separation between the two eigenvalue families
within each layer, but it does not require that the same separator works for all
layers. Thus, each layer may have its own separating value σl. Equivalently,
dl(ω) > 0 means that, in layer l, the real parts of the eigenvalues associated with
the ascending and descending gravity waves remain separated (and therefore do
not cross) as functions of the real frequency ω after the shift.

To summarize the approach for computing f ′Sq(x, z, t) in the case of imagi-
nary frequency shifting, we introduce the shifted spectrum

Sδ(ω) = S(ω − jδ) =

∫ ∞
−∞

s(t)e−j(ω−jδ)tdt =

∫ ∞
−∞

[
s(t)e−δt

]
e−jωtdt, (109)

which can be viewed as the analytic continuation of S(ω) to complex frequencies.
Note that the shift ω → ω− jδ corresponds in the time domain to multiplication
by exp(−δt). Let

F ′δsq(x, z, ω) = AS(ω − jδ)Cq(z)F̂q(z, ω − jδ)e−jkxx (110)

be the Fourier transform (in time) of the perturbed quantity with frequency
shifting f ′δsq(x, z, t), where as usual, F̂q(z, ω − jδ) = [e(z, ω − jδ)]q is solution of
the differential equation (5) for a unit source factor in the frequency domain.
Under the usual analyticity and decay assumptions (so that contour shifting is
permitted), Cauchy’s theorem yields the shift relation

f ′δsq(x, z, t) =
1

2π

∫ ∞
−∞

F ′δsq(x, z, ω)ejωtdω = e−δtf ′sq(x, z, t), (111)

where f ′sq is the perturbed quantity without frequency shifting given by Eq.
(88). Equivalently, this implies the shift-invariance property

f ′sq(x, z, t) = eδtf ′δsq(x, z, t). (112)

Summarizing, the computational steps for the frequency-shifting approach
are as follows:

1. Compute e(z, ω − jδ) as the solution of the differential equation (5) for a
unit source factor, and set F̂q(z, ω − jδ) = [e(z, ω − jδ)]q.

2. Calculate F ′δsq by means of Eq. (110) with S(ω) replaced by S(ω− jδ) and
F̂q(z, ω) replaced by F̂q(z, ω − jδ).

3. Compute f ′δsq by inverse Fourier transform

f ′δsq(x, z, t) = Ae−jkxxCq(z)

2π

∫ ∞
−∞

S(ω − jδ)F̂q(z, ω − jδ)ejωtdω. (113)
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4. Recover f ′sq from the shift-invariance property (112).

For S(ω) as in Eq. (84), it is convenient to write the recovered solution in the
form

f ′sq(x, z, t) = Afδq(z, t)e
−jkxx, (114)

where (compare with Eq. (90))

fδq(z, t) = eδ(t−t0)Cq(z)

2π

∫ ∞
−∞

S (ω − jδ)F̂q(z, ω − jδ)ejω(t−t0)dω, (115)

and S is given by Eq. (91). The computed quantity is fδq(z, t), the amplitude
A > 0 is determined from the normalization condition (85) as

A =
fbq0

|Re{fδq(z1, t0)}|
, (116)

and the perturbed quantity f ′sq(x, z, t) is computed from Eq. (114). The Fourier
integral in Eq. (115) is evaluated using a direct discrete Fourier transform (FT)
rather than a fast Fourier transform (FFT). The frequency and time discretiza-
tion used in the Fourier transform are discussed in Appendix D.

A potential numerical issue with this approach is that a large frequency
shift δ, while ensuring the causality condition, may amplify rounding errors
when recovering f ′sq from f ′δsq through the exponential term exp[δ(t− t0)]. For
large t, this may lead to an uncontrolled growth of the right-hand side of Eq.
(115). Therefore, care is required in selecting δ: it must be large enough to
ensure the layerwise causality condition , but not significantly larger than that.
Rigorous methods for determining the minimum sufficient δ were described by
Knight et al. in Refs. [15, 16, 17], while the numerical blow-up associated with
the exponential growth term was discussed in Appendix B of Ref. [17]. In our
implementation we employ a heuristic approach that combines (i) the Layerwise
Causality (LC) condition applied at selected altitude levels, and (ii) a Source-
Function Reconstruction (SFR) test. First, an admissible interval [δmin, δmax]
is constructed by enforcing the SFR criterion, and within this interval, the LC
condition is applied at selected altitude levels to obtain a refined lower bound
δmin. In the final selection step, a discrete set of candidate shifts is evaluated,
and for each candidate the LC condition is checked over the entire altitude range.
Among all shifts that satisfy causality at all altitudes, the algorithm selects the
one whose maximum-amplitude vector is closest to the center of mass of the
admissible solutions. A detailed description of this approach is provided in
Appendix D.

5 Numerical implementation
An implementation of the method is freely available as an open-source code on
GitHub. The code uses as input the data file produced by the International Ref-
erence Ionosphere (IRI) code available at https://ccmc.gsfc.nasa.gov/models/IRI~2016/
is used. From these date, we read
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Location Latitude
[deg]

Longitude
[deg]

Height
[km]

Jicamarca (Peru) -12 283 300
Arecibo (Puerto Rico) +18 293 300
Millstone Hill (USA) +42 288 300
Saint-Santin (France) +44 2 300

EISCAT Tromsø (Auroral) +70 19 300
Svalbard archipelago (Norway) +80 15 300

Table 1: Geographic locations and heights of the IRI data sets

1. the date (year, month, and day) and the time,

2. the geographic latitude and longitude,

3. the magnetic dip angle,

4. the solar radio flux f10.7 and its 81-day average,

5. the number density of O+ ions as a function of altitude.

In its present implementation, the IRI data files correspond to the locations
summarized in Table 1. The altitude grid extends from zmin = 80 km to zmax =
500 km with a step size of dz = 1.0 km. Users may generate custom data files
by running the IRI code and specifying the corresponding file names in the input
namelist.

The IRI data are subsequently used in a manner analogous to that in the
SAMI2 model of the Naval Research Laboratory (https://github.com/NRL-
Plasma-Physics-Division/SAMI2). In the present implementation, the iono-
spheric equations follow the SAMI2 framework originally developed by Huba
et al. [40] and described in detail by Huba [41]. In SAMI2, the neutral atmo-
spheric parameters–namely the neutral number density, total mass density, and
temperature–are specified using the MSIS family of models. In this study, these
parameters are based on the MSIS formulation of Hedin [42], while we note that
more recent updates are provided by the NRLMSIS 2.0 model of Emmert et al.
[43]. The meridional and zonal winds are specified using the Horizontal Wind
Model. In the present implementation, we follow the formulation of Hedin et
al. [44], while more recent updates are described by Drob et al. [45].

The derivatives of the background parameters are computed using central
finite differences. Prior to applying the finite-difference calculations, the back-
ground parameters are smoothed by means of cubic spline interpolation with
regularization.

Other features of the model are summarized as follows:

1. Two linearization models are included in the code:

(a) a general model that accounts for the altitude derivatives of the back-
ground velocity, temperature, density scale height, and dynamic vis-
cosity; and
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(b) a simplified model for an isothermal, homogeneous, and windless at-
mosphere without ion drag.

2. The methods for solving the linearized equations based on the matrix
exponential formalism comprise:

(a) the Global Matrix Method for the Amplitudes (GMMA) of the char-
acteristic solutions;

(b) the Scattering Matrix Method for the Amplitudes (SMMA) of the
characteristic solutions; and

(c) the Global Matrix Method for the Nodal (grid-point) values (GMMN)
of the state vector.

3. At the lower boundary, we impose that a selected component of the state
vector is finite and that its first and second derivatives with respect to
height vanish. At the upper boundary, we assume that there is no down-
ward energy propagation, i.e., the amplitudes of all descending wave modes
are set to zero.

4. The code first computes the wave parameters for a single-frequency wave
and then for a time-dependent wave packet.

5. Typical values of the horizontal wavelength lie in the range 300–700 km.

6. The algorithm computes lower and upper bounds for the wave period by
solving the inviscid dispersion equation for two prescribed minimum and
maximum values of the vertical wavelength. The computational procedure
is described in Appendix D. The user then selects an appropriate value
within this range.

7. For a single-frequency wave, the output quantity of interest is Af sq(z),
where f sq(z) and A are given by Eqs. (100) and (102), respectively,
whereas for a time-dependent wave packet the corresponding output quan-
tity is Afδq(z, t), where fδq(z, t) and A are given by Eqs. (115) and (116),
respectively.

6 Numerical simulations
The simulations are performed using, as input, an IRI data file corresponding
to the EISCAT Tromsø (auroral) location on 11 February 2012 at 10:00. The
solar zenith angle is 84.2°, the magnetic inclination angle is 78.28°, the daily
solar radio flux F10.7 is 109.4 sfu, and the 81-day averaged solar radio flux is
116.9 sfu, where 1 sfu = 10−22 Wm−2Hz−1. In the simulations, the Prandtl
number is 0.66, the magnetic index is 7.0, and the horizontal wind model 14
implemented in SAMI2 is used. The altitude grid extends from 80 km to 500
km and contains 801 grid points. The lower boundary can, in principle, be
set to smaller altitudes (e.g., 50 km), but we choose 80 km because this level
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is typically adopted as the lower boundary for ionospheric equations. Unless
stated otherwise, the horizontal wavelength is λx = 400 km, the wave period is
λt = 40 min, and the imaginary frequency shift for a single-frequency wave is
10−6 s−1. The lower boundary conditions are imposed on the vertical velocity
with fb2 = 5× 10−2 ms−1 in Eqs. (85) and (101).

Accuracy and efficiency of the solution methods. Taking the global matrix
method for amplitudes as a reference, we find that the relative root-mean-square
errors in the perturbed temperature, vertical velocity, and horizontal velocity
obtained with the other two solution methods are smaller than 10−6. Thus, all
methods exhibit comparable accuracy. On the other hand, we find that the scat-
tering matrix method is more time-consuming than the global matrix methods,
particularly for time-dependent wave packets. This is because the scattering
matrix approach requires numerous matrix operations in each layer, whereas
solving a system of equations compressed into band storage is computationally
less expensive.

Background atmospheric parameters. The code provides altitude-dependent
profiles of the input parameters used in the numerical model. These include
the temperature, mass density, pressure, southward horizontal velocity, atmo-
spheric scale height, density scale height, specific heat capacity, ratio of specific
heats, sound speed, number density of O+ ions, neutral–ion collision frequency,
ion–neutral collision frequency, and the diffusion velocity. In addition, alti-
tude derivatives of the temperature, horizontal velocity, mass density, pressure,
density scale height, and ion number density are also provided. As an illustra-
tive example, Fig. 1 shows the background temperature T0, horizontal velocity
u0 and the ion number density ni0, together with their corresponding altitude
derivatives.

Pairwise classification of ascending and descending modes. In the upper and
middle panels of Fig. 2, we plot the imaginary part of the vertical wavenumber
for ascending (kz1) and descending (kz4) gravity waves, computed using the
general and the simplified models, respectively. The plots demonstrate that only
in the latter case do the vertical wavenumbers appear in pairs. In the former
case, a problematic altitude range for gravity waves is observed between 80 km
and 120 km, where the imaginary parts of the vertical wavenumbers for the
ascending and descending modes are nearly identical, being either both positive
or both negative. In the lower panel of Fig. 2, we show the imaginary part
of the vertical wavenumber kz for all wave types (kzn, n = 1, . . . , 6), computed
using the general model. The plots reveal a clear distinction between gravity
waves and viscosity- and thermal-conduction waves. However, the viscosity and
thermal-conduction waves are very close to each other. In the upper panel
of Fig. 2, we also compare the imaginary part of the vertical wavenumber
computed with and without ion drag. No pronounced effect of ion drag on
the vertical wavenumber is observed. A small effect appears in the altitude
range from 180 to 300 km, where the ion number density is relatively high.
This finding is consistent with the results of Shibata [46], who showed that,
for gravity waves, plasma diffusion is of minor importance with respect to the
vertical wavenumber, which is mainly controlled by dissipation due to viscosity
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Figure 1: Background temperature T0, horizontal velocity u0 and ion number
density ni0 (i = O+) (upper panels), and their height derivatives (lower panels).
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and thermal conduction in the neutral gas.
General and simplified models. The altitude profiles of the perturbed tem-

perature, vertical velocity, and horizontal velocity computed using the general
and simplified models are shown in Fig. 3. The plots show that, in the altitude
range 150–300 km, the amplitudes obtained with the general model are larger
than those obtained with the simplified model. If the imaginary parts of the
vertical wavenumber for ascending gravity waves computed with the general
and simplified models were plotted on the same graph (i.e. by merging the
lower and middle panels of Fig. 2 ), it would be seen that the imaginary part
of the vertical wavenumber corresponding to the general model is negative but
larger (i.e., less negative) than that obtained with the simplified model. As a
consequence, the exponential attenuation with altitude is weaker in the general
model, leading to systematically larger wave amplitudes in this region. This
difference reflects the modified balance between wave propagation and dissipa-
tion introduced by the inclusion of altitude-dependent background properties
and by relaxing the assumption of constant kinematic viscosity in the general
model, which reduces the effective vertical damping compared to the simplified,
homogeneous approximation.

Ion Drag. The effect of ion drag on the perturbed temperature, vertical
velocity, and horizontal velocity is illustrated in Fig. 4. A moderate atten-
uation is observed in the altitude range from 180 to 350 km, where the ion
number density is relatively high. When E × B drifts are not included, ion
drag does not exhibit the classical regime in which auroral convection strongly
drives the neutral atmosphere. Instead, ion drag mainly arises from diffusion-
and pressure-gradient-driven ion motion along the magnetic field, as well as
from any relative ion–neutral motion induced by neutral winds. Consequently,
ion drag does not constitute the dominant forcing mechanism for the neutral
perturbations in this configuration.

Horizontal wavelength and time period. The influence of the horizontal wave-
length λx and the wave period λt on the perturbed quantities is shown in Fig.
5. These plots indicate that the wave amplitude decreases with increasing λx
and λt. The underlying reasons are as follows:

1. Horizontal wavelength. As the horizontal wavelength increases, horizontal
pressure gradients become weaker, which reduces the driving of the wave
motion. This also weakens the coupling between horizontal and vertical
motions, resulting in smaller gravity-wave amplitudes.

2. Wave period. As the wave period increases, the buoyancy restoring force
acts more slowly, leading to weaker oscillations for a given forcing. In addi-
tion, dissipative processes such as viscosity and thermal diffusion act more
effectively on low-frequency waves, further reducing their amplitudes.

Computing ascending and descending wave modes. The ascending and de-
scending solution modes in layer l, denoted by e+

l and e−l , respectively, can
be computed using the GMMA through Eq. (61) or using the GMMN via the
recurrence relations (269) and (270). The total solution mode el, obtained from
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using the general model. The results correspond to λx = 400 km and λt = 40
min 28
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Figure 3: Altitude profiles of the perturbed temperature T , vertical velocity
w, and horizontal velocity u for the general and simplified models. The results
correspond to λx = 400 km and λt = 40 min
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results correspond to λx = 400 km and λt = 40 min
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Figure 5: Altitude profiles of the perturbed temperature T , vertical velocity
w, and horizontal velocity u for (i) λx = 300, 400, and 500 km with λt = 40
min (upper panels), and (ii) λx = 400 km with λt = 40, 60, and 80 min (lower
panels). The results correspond to the general model with ion drag.
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Eq. (59) in the GMMA formulation and by solving Eq. (266) in the GMMN
formulation, should satisfy the relation el = e+

l +e−l . In all our simulations, this
identity is satisfied. Furthermore, the results shown in Fig. 6 indicate that the
ascending mode is dominant, except in the altitude range between 120 km and
180 km in the case of the general model. This finding, which is consistent with
the results presented by Knight et al. [16] (see their Fig. 6), suggests that in a
simplified model one may assume the ascending modes to be dominant at alti-
tudes above 200 km, that is, el ≈ e+

l for l = 1, . . . , L. Under this assumption,
the state vector can be computed using the upward recurrence relation (269). In
Ref. [16], this approach was referred to as the transmission-only approximation,
whereas in Ref. [17] a related single-mode approximation was introduced.

Time-dependent wave packet. For the source function (82)–(83), Fig. 7
shows the perturbed temperature and vertical velocity as functions of time and
altitude. Note the different time intervals used for each horizontal wavelength
λx in these plots. The maximum values of the perturbed temperature are 32.21
K, 31.15 K, and 32.73 K for the horizontal wavelengths 300 km, 500 km, and
700 km, respectively, whereas the corresponding maximum values of the vertical
velocity are 21.40ms−1, 16.21ms−1, and 12.08ms−1.

Imaginary frequency shift. For the time-dependent wave packet, we choose
the minimum and maximum values of the imaginary frequency shift as δmin =
10−6 s−1 and δmax = 10−4 s−1, respectively, and set the discrete step to ∆δ =
δmin. Referring to Appendix D, the results obtained with the imaginary fre-
quency shift approach for λx = 500 km and λt = 40 min are summarized as
follows:

· In the first step, the input value δmin = 10−6 s−1 passes the Source-
Function Reconstruction (SFR) test.

· In the second step, the SFR test reduces the input value δmax = 10−4 s−1

to δmax = 32.24× 10−6 s−1.

· In the third step, it is found the the interval [δmin, δmax] contains a suf-
ficient number of internal grid points, spaced by ∆δ, to be used in the
subsequent step.

· In the fourth step, the Layerwise Causality (LC) condition is evaluated at
10 altitude starting at 80 km with a spacing of 20 km. It is found to be
satisfied for δLC = δmin, and therefore for all δ ∈ [δmin, δmax], for which
the SFR test also holds.

· In the fifth step, five equidistant frequency shifts in [δmin, δmax] are con-
sidered; for each, the wave parameters and their maximum values are
computed and the layerwise causality condition is verified over the full al-
titude range. All five frequency shifts satisfy this condition and yield very
similar maximum amplitudes (Table 2). The final solution is selected as
the one whose maximum-amplitude vector is closest to the center of mass
in the space of perturbed horizontal velocity, vertical velocity, and tem-
perature, corresponding to δ = 16.62 × 10−6 s−1. The maxima occur at
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Figure 6: Altitude profiles of the perturbed temperature T , vertical velocity
w, and horizontal velocity u for the total mode (el = e+

l + e−l in layer l),
the ascending mode (e+

l ), and the descending mode (e−l ). The upper panels
correspond to the general model, and the lower panels to the simplified model.
The horizontal wavelength is λx = 400 km and the wave period is λt = 40 min
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Figure 7: Perturbed temperature (left panels) and vertical velocity (right panels)
as functions of time and altitude. The upper panels correspond to λx = 300 km
and λt = 30 min, the middle panels to λx = 500 km and λt = 40 min, and the
lower panels to λx = 700 km and λt = 60 min
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δ [10−6s−1] umax [ms−1
] wmax [ms−1

] Tmax [K]
32.24 38.084 16.210 31.153
24.43 38.115 16.224 31.132
16.62 38.079 16.210 31.158
8.81 38.110 16.225 31.186
1.00 38.017 16.186 31.113

Table 2: Maximum values of the perturbed horizontal velocity (umax), vertical
velocity (wmax), and temperature (Tmax) for different values of the imaginary
frequency shift δ

11.06 hr and 248.00 km for the horizontal velocity, 10.98 hr and 303.64 km
for the vertical velocity, and 10.90 hr and 257.45 km for the temperature.

7 Conclusions
We designed a numerical model for solving the linearized gravity-wave equations
using a multilayer method, which is freely available as open-source code on
GitHub. To decouple the hydrodynamic equations for the neutral atmosphere
from the ionospheric equations, which are coupled through ion drag, we adopt
a fast field-aligned diffusion approximation. This approximation may be viewed
as a generalization of an approach originally proposed by Klostermeyer [9].

To solve the linearized equations, we employ (i) global matrix methods based
on matrix exponentials and (ii) scattering matrix methods to determine either
(a) the amplitudes of the characteristic solutions or (b) the grid-point values of
the state vector. Ascending and descending wave modes are identified accord-
ing to the criterion that the real parts of the eigenvalues of the characteristic
equation for ascending modes are smaller than those for descending modes (or,
equivalently, that the imaginary parts of the vertical wavenumbers are smaller).
Global matrix methods using the scaling matrices (36) and (37) require the clas-
sification of ascending and descending modes only at the lower and upper bound-
aries, whereas scattering matrix methods require an explicit determination of
the mode type at every altitude. The model is devoted to solving the linearized
equations including viscosity, thermal conduction, and ion drag. A simplified
model, corresponding to an isothermal, homogeneous atmosphere with constant
kinematic viscosity, no background wind, and no ion drag, is also considered.

Depending on the form of the source function, either single-frequency waves
or time-dependent wave packets can be analyzed. A heuristic approach for
determining the imaginary frequency shift introduced by Knight et al. [16] is
also considered. This approach is based on (i) a layerwise causality condition
applied at selected altitude levels, and (ii) a source-function reconstruction test.

Numerical simulations demonstrate that both global matrix and scattering
matrix methods achieve comparable accuracy. However, the former are sig-
nificantly more efficient than the latter, particularly in simulations involving
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time-dependent wave packets. Among the global matrix methods, the approach
based on solving for the amplitudes of the characteristic solutions appears to
provide the highest efficiency and accuracy.

The linearized equations on which the solution methods were tested corre-
spond to ionospheric conditions. The ultimate goal of our research is to develop
a comprehensive model for analyzing ionospheric gravity waves using satellite
measurements. The approach presented in this paper represents only the first
component of such a model. Two options are envisaged for extending it to a
more complete formulation.

1. Fully coupled neutral–ion model. The linearized hydrodynamic equations
would be solved together with the ion equations. In this case, the ion
continuity equation would include perturbed production and loss terms,
whereas ion inertia and ion–ion collisions would continue to be neglected in
the ion momentum equation, and only transport parallel to the magnetic
field lines would be retained. The state vector would then be augmented
by two additional components, namely the perturbed ion number density
and the ion diffusion velocity.

2. Two-step coupling strategy. In the first step, the neutral-atmosphere equa-
tions are solved using the fast field-aligned diffusion approximation. In the
second step, the wave-induced perturbations obtained from the neutral
solution are used as input to solve the ionospheric equations for the per-
turbed O+ ion density. The ionospheric equations may be solved using the
SAMI2 model [40] for low latitudes, where the E × B drift is neglected,
or the SAMI3 model [47] at higher altitudes, where the E × B drift is
included and the electric field is determined from the solution of a two-
dimensional potential equation. In this strategy, priority is given to the
ionospheric equations of the SAMI framework, while wave-induced per-
turbations are handled using the approximate approach developed in the
present study. Along similar lines, Knight et al. [34] solved the neutral-
atmosphere equations without ion drag in a first step, and subsequently
addressed the ionospheric response using the Field-Line Interhemispheric
Plasma (FLIP) model [48].

The development and application of these complete models will be addressed in
future papers.

Appendix A. Derivation of the linear system of
ordinary differential equations
In this appendix, we derive the explicit representation of the linear system of
ordinary differential equations (5).
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Hydrodynamic equations
The hydrodynamic equations for the neutral atmosphere consist in the continu-
ity, momentum, heat, and ideal gas equations (e.g., Refs. [4, 5])

Dρ

Dt
= −ρ∇ · u, (117)

ρ
Du

Dt
= −∇p+ ρg +∇ · σ − fID, (118)

ρcv
DT

Dt
= −p∇ · u + σ : ∇u +∇ · (Λ∇T )− qID, (119)

p = ρRMT, (120)

where ρ is the density, p the pressure, T the temperature, u the velocity, D/Dt =
∂/∂t+u·∇ the material (substantial) derivative, cv the specific heat at constant
volume, Λ the coefficient of thermal conductivity, RM the specific gas constant,
and σ the viscous stress tensor. The quantities fID and qID denote the ion-drag
force exerted by neutrals on ions per unit volume, and the frictional heating rate
per unit volume arising from ion–neutral collisions, respectively. In a Cartesian
coordinate system (x1, x2, x3), the components of the viscous stress tensor are
given by

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij∇ · u

)
, (121)

where µ is the dynamic viscosity and δij the Kroneker delta. Accordingly, the
double dot product of σ =

∑
ij σijx̂i ⊗ x̂j with ∇u =

∑
ij ∂ui/∂xjx̂i ⊗ x̂j is

σ : ∇u =
∑
ij

σij
∂ui
∂xj

. (122)

Using the ideal-gas law p = ρRMT so that ∇p = ρRM∇T + RMT∇ρ, the
momentum equation can be written as

∂u

∂t
= −RMT

ρ
∇ρ−RM∇T − (u · ∇)u + g +

1

ρ
∇ · σ − 1

ρ
fID. (123)

Moreover, using
cp = cv +RM, γ =

cp
cv
, Λ =

cpµ

Pr
, (124)

where cp is the specific heat at constant pressure, γ the ratio of specific heats,
and Pr the Prandtl number, and assuming that cp and Pr are constant, the heat
equation becomes

∂T

∂t
= − (γ − 1)T∇·u−u ·∇T +

1

ρcv
σ : ∇u +

γ

ρPr
∇· (µ∇T )− 1

ρcv
qID. (125)
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In the momentum and heat equations, the ion-drag force and the correspond-
ing heating per unit mass are given by

1

ρ
fID = νni(u− ui), (126)

1

ρ
qID =

1

ρ
fID · (u− ui) = νni|u− ui|2, (127)

where νni is the neutral-ion collision frequency (the collision frequency between
a neutral particle and all kind of ions).

We choose a rectangular coordinate system such that the x-axis is directed
to the geographic south, the y-axis to the east and the z-axis upward. The wave
propagates in the meridional plane, i.e., in the (x, z) plane. The viscous terms
per unit mass in the momentum equation are then given by

1

ρ
(∇ · σ)x = µk

[(
∂2u

∂x2
+
∂2u

∂z2

)
+

1

3

(
∂2u

∂x2
+

∂2w

∂x∂z

)]
+

1

ρ

∂µ

∂z

(
∂u

∂z
+
∂w

∂x

)
,

(128)

1

ρ
(∇ · σ)z = µk

[(
∂2w

∂x2
+
∂2w

∂z2

)
+

1

3

(
∂2u

∂x∂z
+
∂2w

∂z2

)]
+

1

ρ

∂µ

∂z

(
4

3

∂w

∂z
− 2

3

∂u

∂x

)
,

(129)

while the viscous dissipation term per unit mass appearing in the heat equation
is

1

ρ
σ : ∇u =

4

3
µk

(
∂u

∂x

)2

− 4

3
µk
∂u

∂x

∂w

∂z
+

4

3
µk

(
∂w

∂z

)2

+ µk

(
∂u

∂z

)2

+ 2µk
∂u

∂z

∂w

∂x
+ µk

(
∂w

∂x

)2

. (130)

Here, µk = µ/ρ is the kinematic viscosity, and we have assumed that the vis-
cosity depends only on altitude, so that

∂µ

∂x
= 0. (131)

Using Eqs. (128)–(130) together with assumption (131), we express the
hydrodynamic equations as

∂u

∂t
= −RMT

ρ

∂ρ

∂x
−RM

∂T

∂x
−
(
u
∂u

∂x
+ w

∂u

∂z

)
+ µk

[(
∂2u

∂x2
+
∂2u

∂z2

)
+

1

3

(
∂2u

∂x2
+

∂2w

∂x∂z

)]
+

1

ρ

∂µ

∂z

(
∂u

∂z
+
∂w

∂x

)
− 1

ρ
fIDx, (132)
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∂w

∂t
= −RMT

ρ

∂ρ

∂z
−RM

∂T

∂z
−
(
u
∂w

∂x
+ w

∂w

∂z

)
− g

+ µk

[(
∂2w

∂x2
+
∂2w

∂z2

)
+

1

3

(
∂2u

∂x∂z
+
∂2w

∂z2

)]
+

1

ρ

∂µ

∂z

(
4

3

∂w

∂z
− 2

3

∂u

∂x

)
− 1

ρ
fIDz, (133)

∂T

∂t
= − (γ − 1)T

(
∂u

∂x
+
∂w

∂z

)
−
(
u
∂T

∂x
+ w

∂T

∂z

)
+

1

cv

[
4

3
µk

(
∂u

∂x

)2

− 4

3
µk
∂u

∂x

∂w

∂z
+

4

3
µk

(
∂w

∂z

)2

+µk

(
∂u

∂z

)2

+ 2µk
∂u

∂z

∂w

∂x
+ µk

(
∂w

∂x

)2
]

+
µkγ

Pr

(
∂2T

∂x2
+
∂2T

∂z2

)
+

γ

ρPr
∂µ

∂z

∂T

∂z
− 1

cvρ
qID, (134)

where fIDx and fIDz are the components of the ion drag force fID on the x- and
z-axis, respectively.

In the above hydrodynamic equations, the Coriolis force has been neglected.
For a two-dimensional wave geometry in which both the background flow and the
perturbation velocities are confined to the vertical (x, z) plane and all variables
are independent of the transverse horizontal coordinate y, the Coriolis accelera-
tion associated with the Earth’s rotation is directed entirely along the transverse
direction and therefore does not enter the momentum equations considered here.
More precisely, for u = (u, 0, w) and Ω = (−Ω cosφ, 0,Ω sinφ), where φ is the
geographic latitude and Ω = 7.29 × 10−5 s−1 the Earth’s angular velocity, the
Coriolis force per unit mass is fC = −2Ω × u = (0, 2Ω(cosφw + sinφu), 0).
Thus, the Coriolis acceleration is directed entirely along the transverse hori-
zontal direction y and does not affect the two-dimensional (x, z) momentum
equations.

Linearized equations
To linearize the hydrodynamic equations, we assume that all background (un-
perturbed) quantities vary only in the z-direction and write

f(x, z, t) = f0(z) + f ′(x, z, t),

where f denotes any state variable. In particular, we assume

u0(z) = (u0(z), 0, w0(z) = 0), ρ0 = ρ0(z), T0 = T0(z). (135)

Furthermore, we neglect the second derivative of the background horizontal
wind and background temperature,

d2u0

dz2
= 0,

d2T0

dz2
= 0, (136)
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1. The linearized continuity equation is

∂ρ′

∂t
= −u0

∂ρ′

∂x
+
ρ0

Hρ
w′ − ρ0

(
∂u′

∂x
+
∂w′

∂z

)
. (137)

2. The linearized momentum equations are

∂u′

∂t
= −du0

dz
w′ − u0

∂u′

∂x
− c2s
γρ0

∂ρ′

∂x
− c2s
γT0

∂T ′

∂x

+ µk0

[(
∂2u′

∂x2
+
∂2u′

∂z2

)
+

1

3

(
∂2u′

∂x2
+
∂2w′

∂x∂z

)]
+

1

ρ0

dµ0

dz

(
∂u′

∂z
+
∂w′

∂x

)
+

1

ρ0

du0

dz
∂µ′

∂z
− 1

ρ0

dµ0

dz
du0

dz
ρ′

ρ0
−
(

1

ρ
fIDx

)′
(138)

and

∂w′

∂t
= − c2s

γρ0

∂ρ′

∂z
+

c2s
γHρ

(
T ′

T0
− ρ′

ρ0

)
− c2s
γT0

∂T ′

∂z
− u0

∂w′

∂x

+ µk0

[(
∂2w′

∂x2
+
∂2w′

∂z2

)
+

1

3

(
∂2u′

∂x∂z
+
∂2w′

∂z2

)]
+

1

ρ0

dµ0

dz

(
4

3

∂w′

∂z
− 2

3

∂u′

∂x

)
−
(

1

ρ
fIDz

)′
, (139)

where
cs =

√
γRMT0 (140)

is the speed of sound and Hρ is the density scale height defined by

dρ0

dz
= − ρ0

Hρ
. (141)

Here, (fIDx/ρ)′ and (fIDz/ρ)′ denote the perturbations of the x- and z-
components, respectively, of the ion-drag force per unit mass fIDx/ρ and
fIDz/ρ.

3. The linearized heat equation is

∂T ′

∂t
= − (γ − 1)T0

(
∂u′

∂x
+
∂w′

∂z

)
−
(
u0
∂T ′

∂x
+

dT0

dz
w′
)

+
2µk0

cv

du0

dz

(
∂u′

∂z
+
∂w′

∂x

)
+

µ0

cvρ0

(
du0

dz

)2(
µ′

µ0
− ρ′

ρ0

)
+
µk0γ

Pr

(
∂2T ′

∂x2
+
∂2T ′

∂z2

)
+

γ

ρ0Pr

(
dµ0

dz
∂T ′

∂z
+

dT0

dz
∂µ′

∂z

)
− 1

cv

(
1

ρ
qID

)′
,

(142)

where (qID/ρ)′ denotes the perturbation of the ion-drag heating per unit
mass.
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The linearized equations (137), (138), (139), and (142) are structurally con-
sistent with Eqs. (7), (4), (5), and (6) in Ref. [35], respectively, when only
the terms in black and blue are considered (the terms indicated in red are not
included). They are likewise related to Eqs. (3.5), (3.1), (3.3), and (3.4) in
Ref. [11], when only the terms indicated in black are considered (the additional
contributions indicated in red and blue are not included).

Using the following representation for the dynamic viscosity µ [49]

µ = 3.34× 10−7T 0.71, (143)

we obtain

µ′ = 0.71µ0
T ′

T0
,
∂µ′

∂z
= 0.71

dµ0

dz

(
T ′

T0

)
+ 0.71µ0

∂

∂z

(
T ′

T0

)
. (144)

With these relations, the linearized equations can be written as follows:

1. x-momentum equation

∂u′

∂t
= −du0

dz
w′ − u0

∂u′

∂x
− c2s
γρ0

∂ρ′

∂x
− c2s
γT0

∂T ′

∂x

+ µk0

[(
∂2u′

∂x2
+
∂2u′

∂z2

)
+

1

3

(
∂2u′

∂x2
+
∂2w′

∂x∂z

)]
+

1

ρ0

dµ0

dz

(
∂u′

∂z
+
∂w′

∂x

)
+

1

ρ0

du0

dz

[
0.71

dµ0

dz
T ′

T0
+ 0.71µ0

∂

∂z

(
T ′

T0

)]
− 1

ρ0

dµ0

dz
du0

dz
ρ′

ρ0
−
(

1

ρ
fIDx

)′
, (145)

2. z-momentum equation

∂w′

∂t
= − c2s

γρ0

∂ρ′

∂z
+

c2s
γHρ

(
T ′

T0
− ρ′

ρ0

)
− c2s
γT0

∂T ′

∂z
− u0

∂w′

∂x

+ µk0

[(
∂2w′

∂x2
+
∂2w′

∂z2

)
+

1

3

(
∂2u′

∂x∂z
+
∂2w′

∂z2

)]
+

1

ρ0

dµ0

dz

(
4

3

∂w′

∂z
− 2

3

∂u′

∂x

)
−
(

1

ρ
fIDz

)′
, (146)

3. heat equation

∂T ′

∂t
= − (γ − 1)T0

(
∂u′

∂x
+
∂w′

∂z

)
−
(
u0
∂T ′

∂x
+

dT0

dz
w′
)

+
2µk0

cv

du0

dz

(
∂u′

∂z
+
∂w′

∂x

)
+

µ0

cvρ0

(
du0

dz

)2(
0.71

T ′

T0
− ρ′

ρ0

)
+
µk0γ

Pr

(
∂2T ′

∂x2
+
∂2T ′

∂z2

)
+

γ

ρ0Pr
dµ0

dz
∂T ′

∂z

+
γ

ρ0Pr
dT0

dz

[
0.71

dµ0

dz

(
T ′

T0

)
+ 0.71µ0

∂

∂z

(
T ′

T0

)]
− 1

cv

(
1

ρ
qID

)′
.

(147)
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Plane wave solution
We assume that all perturbations vary harmonically in time and in the x-
direction, that is,

f ′(x, z, t) = f(z)ej(ωt−kxx), (148)

where ω is the angular frequency and kx the horizontal wavenumber. It then
follows that

∂f ′

∂t
= jωf ′,

∂f ′

∂x
= −jkxf

′,
∂2f ′

∂x2
= −k2

xf
′. (149)

The linearized continuity equation becomes

ρ

ρ0
=
kx

Ω
u− j

ΩHρ
w +

j
Ω

dw
dz
, (150)

where
Ω = ω − kxu0 (151)

is the intrinsic frequency. Further, using

d
dz

(
ρ

ρ0

)
=

1

ρ0

dρ
dz

+
1

Hρ

ρ

ρ0
(152)

together with
dΩ

dz
= −kx

du0

dz
,

dρ0

dz
= − ρ0

Hρ
, (153)

we obtain

1

ρ0

dρ
dz

+
1

Hρ

ρ

ρ0
=
k2
x

Ω2

du0

dz
u− j

ΩHρ

(
kx

Ω

du0

dz
− 1

Hρ

dHρ

dz

)
w

+
kx

Ω

du
dz

+
j
Ω

(
kx

Ω

du0

dz
− 1

Hρ

)
dw
dz

+
j
Ω

d2w

dz2
. (154)

In a first step, we use Eqs. (150) and (154), together with the linearized forms
of the momentum and the heat equation given in Eqs. (145)–(147), to express
the governing equations in terms of u, w, T/T0, and their vertical derivatives.

In a second step, we introduce the dimensionless state variables û, ŵ, and
T̂ , defined by

u(z) =
ω0

kx
û(z), w(z) =

ω0

kx
ŵ(z), T (z) = T0(z)T̂ (z), (155)

where ω0 is a reference frequency, together with their vertical derivatives

Û =
dû
dz
, Ŵ =

dŵ
dz
, T̂ =

dT̂
dz
. (156)
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The state vector is organized as

e = [û, ŵ, T̂ , Û , Ŵ, T̂ ]T

and the corresponding system of ordinary differential equations is given by

1

kx

dû
dz

=
1

kx
Û , (157)

1

kx

dŵ
dz

=
1

kx
Ŵ, (158)

1

kx

dT̂
dz

=
1

kx
T̂ , (159)

kxµk0

(
1

kx

dÛ
dz

)
=

[
jΩ +

4

3
k2
xµk0 +

kx

Ω

(
1

ρ0

dµ0

dz
du0

dz
− jkx

c2s
γ

)]
û

+

[
du0

dz
+ jkx

1

ρ0

dµ0

dz
− j

ΩHρ

(
1

ρ0

dµ0

dz
du0

dz
− jkx

c2s
γ

)]
ŵ

− kx

ω0

(
jkx

c2s
γ

+ 0.71
1

ρ0

dµ0

dz
du0

dz

)
T̂ − 1

ρ0

dµ0

dz
Û

+

[
1

3
jkxµk0 +

j
Ω

(
1

ρ0

dµ0

dz
du0

dz
− jkx

c2s
γ

)]
Ŵ

− 0.71
µ0

ρ0

du0

dz
kx

ω0
T̂ +

kx

ω0

(
1

ρ
fIDx

)
, (160)

kx

(
4

3
µk0 −

jc2s
γΩ

)(
1

kx

dŴ
dz

)
=

(
−2

3
jkx

1

ρ0

dµ0

dz
+
c2sk

2
x

γΩ2

du0

dz

)
û

+

[
jΩ + k2

xµk0 −
jc2s

γΩHρ

(
kx

Ω

du0

dz
− 1

Hρ

dHρ

dz

)]
ŵ

− c2s
γ

kx

ω0

(
1

Hρ
− 1

T0

dT0

dz

)
T̂ +

(
1

3
jkxµk0 +

kxc
2
s

γΩ

)
Û

+

[
jc2s
γΩ

(
kx

Ω

du0

dz
− 1

Hρ

)
− 4

3

1

ρ0

dµ0

dz

]
Ŵ

+
c2s
γ

kx

ω0
T̂ +

kx

ω0

(
1

ρ
fIDz

)
, (161)
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kx
µk0γ

Pr

(
1

kx

dT̂
dz

)
= ω0

[
−j (γ − 1) +

1

Ω

µ0

cvT0ρ0

(
du0

dz

)2
]
û

+
ω0

kx

[
1

T0

dT0

dz
+ j

2µk0kx

cvT0

du0
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− j

ΩHρ

µ0

cvT0ρ0

(
du0
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)2
]
ŵ

+

[
jΩ +

µk0γ

Pr
k2
x − C1

γ

ρ0Pr
dµ0

dz
1

T0

dT0

dz
− 0.71

µ0

cvT0ρ0

(
du0

dz

)2
]
T̂

− 2µk0

cvT0

ω0

kx

du0

dz
Û +

ω0

kx

[
(γ − 1) +

j
Ω

µ0

cvT0ρ0

(
du0

dz

)2
]
Ŵ

− γ

Pr

(
1

ρ0

dµ0

dz
+ C2µk0

1

T0

dT0

dz

)
T̂ +

1

cvT0

(
1

ρ
qID

)
. (162)

Equations (160), (161), and (162) with the constants C1 = 1.71 and C2 =
2.71 correspond to the general model, in which all altitude derivatives of the
background parameters u0, T0, Hρ, and µ0 are retained. The terms shown in
black and blue in these equations, with the constants C1 = 1.0 and C2 = 2.0,
correspond to the model of Vadas and Nicolls [35]. Moreover, Eqs. (160),
(161), and (162), when only the black terms are retained and the constants
are set to C1 = C2 = 0, are consistent in form with Eqs. (3.32), (3.31), and
(3.33) in Ref. [11], respectively. Note that in Ref. [11], the wave propagates in
three-dimensional space, the harmonic dependence of the perturbed quantities is
taken as exp[−j(ωt−kxx−kyy)], rather than exp[j(ωt−kxx)], the characteristic
solutions have an exp(jmz) dependence, rather than exp(kxλz), and the state
vector is defined as [u,w, T̂ ,U ,W, T̂ ]T instead of [û, ŵ, T̂ , Û , Ŵ, T̂ ]T , where U =
du/dz and W = dw/dz. Essentially, the difference between the model of Vadas
and Nicolls [35] and that of Knight et al. [11] is that, in the latter, the derivative
of the dynamic viscosity dµ0/dz is omitted. In the code, for testing purposes,
we included a hard-coded logical flag that selects the linearized model to be
used. Our numerical simulations show that there are no significant differences
between the general model and that of Vadas and Nicolls [35], and that the
effect of the assumption dµ0/dz = 0 is relatively small. This latter assumption
was discussed in detail in Ref. [11]. In the general model, the derivative dµ0/dz
is computed as

dµ0

dz
= 0.71µ0

1

T0

dT0

dz
,

whereas the derivatives of u0, T0, and Hρ are computed using central finite
differences.

The model can be particularized as follows:

1. For an isothermal (T0 = constant), homogeneous (µk0 = µ0/ρ0 = constant),
and windless atmosphere (u0 = 0), we set

du0

dz
= 0,

dT0

dz
= 0, Ω = ω0,

dHρ

dz
= 0, and

1

ρ0

dµ0

dz
= −µk0

Hρ
. (163)
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In this case, the density scale height Hρ coincides with the atmospheric
scale height Ha, which satisfies

1

ρ0

dρ0

dz
=

1

p0

dp0

dz
= − 1

Ha
(164)

and is given by

Ha =
p0

ρ0g
=
RMT0

g
= constant. (165)

2. For an atmosphere without ion drag, we set

fIDx = 0, fIDz = 0, and qID = 0. (166)

Dispersion equation

For f̂(z) ∝ exp(kxλz), we obtain

F̂ =
df̂
dz

= kxλf̂ ,
dF̂
dz

= k2
xλ

2f̂ , (167)

where f denotes u, w, and T , and F denotes U , W, and T . Inserting Eq. (167)
into Eqs. (160)–(162) yields a homogeneous system of equations. Requiring the
determinant of this system to vanish, and neglecting the ion-drag terms, leads
to the following dispersion equation:

− Ω

c2s

[
Ω− j

γµk0

Pr
k2
x
(
1− λ2

)] [
Ω− jµk0k

2
x
(
1− λ2

)] [
Ω− j

4µk0

3
k2
x
(
1− λ2

)]

+
[
Ω− jµk0k

2
x
(
1− λ2

)] [
Ω− j

µk0

Pr
k2
x
(
1− λ2

)] [
k2
x
(
1− λ2

)
+
kxλ

Hρ

]
− k2

xc
2
s

γ2H2
ρ

(γ − 1)

= 0. (168)

The dispersion equation (168) is the counterpart of dispersion relation (3.35) in
Knight et al. [11], under the aforementioned equivalences. Remarkably, it does
not include derivatives of the background parameters u0, T0, Hρ, and µ0. This
result follows from the variable-change method discussed by Knight et al. [11]
in their Section 2.2.

For an isothermal, homogeneous, and windless atmosphere without ion drag,
the dispersion equation reduces to the cubic equation [4]

C3R
3 + C2R

2 + C1R+ C0 = 0, (169)

for R = −λ2 + αλ + 1,where α = 1/kxHa, or equivalently, R = κ2 − jακ + 1,
where

κ = jλ =
1

kx

(
kz + j

1

2Ha

)
. (170)
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The coefficients of the cubic equations are given by

C3 = −3ην(1 + 4η), (171)

C2 =
3η(1 + 4η)

γ − 1
+ νβ(1 + 7η) + 3η, (172)

C1 = −[β2 − 2ηα2(1 + 3η)]ν − β(1 + 7η)

γ − 1
− β, (173)

C0 =
β2 − 2ηα2(1 + 3η)

γ − 1
+ α2(1 + 3η), (174)

where

η = j
ω0µ0

3p0
, ν = j

k2
xΛ0T0

ω0p0
, Λ0 =

γcvµ0

Pr
, β =

ω2
0

k2
xgHa

. (175)

If Rm, m = 1, . . . , 3 are the solutions of the dispersion equation, the correspond-
ing vertical wavenumbers k±zm are given by

k±zm = ∓kx

√
Rm − 1− α2

4
. (176)

The wavenumbers k+
zm with Im(k+

zm) < 0 are associated with ascending modes,
whereas the wavenumbers k−zm with Im(k−zm) > 0 correspond to descending
modes. Ordering the ascending wavenumbers as

Im(k+
z3) < Im(k+

z2) < Im(k+
z1) < 0,

we identify (i) k+
z1 and k−z1 as ascending and descending gravity-wave modes, re-

spectively, (ii) k+
z2 and k−z2 as ascending and descending viscosity-wave modes, re-

spectively, and (iii) k+
z3 and k−z3 as ascending and descending thermal-conduction

wave modes, respectively. A similar cubic equation was derived by Francis [7]
under the assumption that the geomagnetic field is either in the horizontal or
the vertical direction.

For an isothermal, homogeneous, and windless atmosphere, without viscosity
and ion drag, the dispersion equation (169) reduces to the quadratic equation

C2R
2 + C1R+ C0 = 0, (177)

with

C2 = νβ, (178)

C1 = −β2ν − β γ

γ − 1
, (179)

C0 =
β2

γ − 1
+ α2. (180)

For Im(k+
z2) < Im(k+

z1) < 0, the permissible modes are (i) the ascending and
descending gravity-wave modes associated to the pair (k+

z1, k
−
z1), and (ii) the

ascending and descending thermal conduction-wave modes associated to the
pair (k+

z2, k
−
z2).
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Appendix B. Derivation of the ion-drag terms
In this appendix we derive the expressions for the ion-drag terms that enter the
hydrodynamic equations (160)–(162).

Ion equations
For each ion species i, the ion continuity equation is

∂ni
∂t

+∇ · (niui) = Pi − niLi, (181)

and the corresponding ion momentum equation, including pressure gradient,
electric field, magnetic field, gravity, and collisions, is

∂ui
∂t

+ (ui · ∇)ui = − 1

mini
∇pi +

qi
mi

E +
qi
mi

ui ×B + g

− νin(ui − u)−
∑
j

νij(ui − uj). (182)

Here ni, ui, Ti, mi, and pi = nikBTi are the number density, velocity, tempera-
ture, mass, and pressure of ion species i; E is the electric field, B the magnetic
field, qi the ion charge, g the gravitational acceleration, and kB the Boltzmann
constant. The quantities Pi and Li denote the ionization production rate and
the loss rate due to chemical processes of ion i, respectively. The neutral wind
velocity is u, and the collision frequencies νin and νij describe ion–neutral and
ion–ion collisions.

In addition to ion equations, we consider the electron momentum equation

0 = − 1

mene
∇pe −

e

me
E− e

me
ue ×B, (183)

where ne, ue, Te,me, and pe = nekBTe are the number density, velocity, temper-
ature, mass, and pressure of electrons. In Eq. (183), electron inertia is neglected
because of the small electron mass, while electron collisional terms are neglected
because νe � Ωe, where νe denotes the electron collision frequencies and Ωe is
the electron cyclotron frequency.

In the ion momentum equation we neglect the ion inertia and the ion–ion
collisions, and introduce the drift velocity uD by writing ui = u + uD. This
yields

miνinuD = qi [E + (u + uD)×B]− 1

ni
∇pi +mig. (184)

The momentum equation is projected along the direction of the magnetic field b̂
and perpendicular to it. The parallel and perpendicular ·force-balance equations
are

miνinuD‖ = qiE‖ −
1

ni
(∇pi)‖ +mig‖, (185)
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and

miνinuD⊥ = qi [E⊥ + (u⊥ + uD⊥)×B]− 1

ni
(∇pi)⊥ +mig⊥, (186)

respectively, where in general a‖ = (a · b̂)b̂ = a‖b̂ and a⊥ = a−a‖. The parallel
transport equation for electrons reduces to

E‖ = − 1

ene

∂pe
∂b

. (187)

The parallel and perpendicular force-balance equations are solved as follows.
We first consider the ambipolar diffusion velocity, and then the electromagnetic
drift velocity.

1. Ambipolar diffusion velocity. For a single dominant ion species of
charge qi = +e, the parallel force balance equation for ions becomes

miνinuD‖ = eE‖ −
1

ni

∂pi
∂b

+mig‖, (188)

where ∂pi/∂b = ∇pi · b̂. Inserting Eq. (187) into Eq. (188), gives

miνinuD‖ = −
(

1

ne

∂pe
∂b

+
1

ni

∂pi
∂b

)
+mig‖, (189)

where g‖ = g · b̂. Using the ideal-gas relations pi = nikBTi and pe =
nekBTe, assuming quasi-neutrality ne = ni, and thermal equilibrium Ti =
Te = T , we obtain

uD‖ = −DA

(
1

ni

∂ni
∂b

+
1

T

∂T

∂b

)
+

g‖

νin
, (190)

where
DA =

2kBT

miνin
(191)

is the ambipolar diffusion coefficient.

2. Electromagnetic drift velocity. Neglecting perpendicular pressure-
gradient and gravity terms, which are often small compared to the elec-
tromagnetic drift terms, and assuming a collisionless or weakly collisional
limit in which the ion–neutral drag term is negligible, the perpendicular
momentum balance reduces to

E⊥ + (u⊥ + uD⊥)×B = 0. (192)

With ui⊥ = u⊥ + uD⊥, this gives ui⊥ ×B = −E⊥, whose solution is the
electromagnetic drift velocity

uE =
E⊥ ×B

B2
=

E×B

B2
. (193)

Consequently,
uD⊥ = uE − u⊥. (194)
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Collecting all contributions, the ion velocity can be written as

ui = u‖ + uD‖ + uE, (195)

where u‖ = (u · b̂)b̂ is the field-aligned neutral velocity, uD‖ = uD‖b̂ is the
ambipolar diffusion velocity given by Eq. (190), and uE is the electromagnetic
drift velocity given by Eq. (193). This expression follows from the decomposition
ui = u + uD, together with uD⊥ = uE − u⊥, so that the perpendicular neutral
velocity cancels.

In our model, the ion velocity is assumed to be aligned with the magnetic
field lines. This assumption is introduced to decouple the hydrodynamic and
ion equation systems. Accordingly, the ion velocity is approximated by

ui ≈ (u · b̂)b̂ + uD‖b̂. (196)

This approximation is justified when perpendicular ion transport is small com-
pared to the dominant field-aligned diffusion. The resulting formulation cap-
tures the leading-order effects of ambipolar diffusion along the magnetic field
lines, while deliberately neglecting perpendicular electrodynamic coupling, such
as cross-field advection and E×B drifts. Consequently, the model is applicable
to regimes in which field-aligned transport dominates and perpendicular elec-
trodynamic effects play a secondary role. We note, however, that the neglect of
the electromagnetic drift velocity is not appropriate for all geophysical regimes.
At high latitudes, ion convection is largely controlled by magnetospheric forc-
ing [50], and realistic modeling generally requires externally imposed convec-
tion electric fields, for example from empirical models such as Weimer [51]. At
mid-latitudes, perpendicular ion motion may be influenced by inter-hemispheric
coupling and neutral-wind differences between conjugate hemispheres [52, 53].
A fully self-consistent electrodynamic formulation, in which the electric field is
obtained from an electrostatic potential Φ via E = −∇Φ, with Φ determined
from quasi-neutral current continuity and the conductivity-tensor relation [51],
is therefore beyond the scope of the present study but constitutes an important
extension for future work.

In the following, for simplicity, the subscript ‖ is omitted, and we write uD
and uD instead of uD‖ and uD‖, respectively. Let

g = (0, 0,−g), b̂ = (− cos I, 0,− sin I), u = (u, 0, w), (197)

where I is the geomagnetic inclination. The field-aligned derivative is

∂

∂b
= ∇ · b̂ = −

(
cos I

∂

∂x
+ sin I

∂

∂z

)
,

and the scalar field-aligned diffusion velocity becomes (cf. Eq. (190))

uD = DA

(
cos I

1

ni

∂ni
∂x

+ sin I
1

ni

∂ni
∂z

+ cos I
1

T

∂T

∂x
+ sin I

1

T

∂T

∂z

)
+

g

νin
sin I.

(198)
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Linearized equations
The linearized continuity equation, together with the linearized expressions for
the diffusion velocity, ion-drag force, and ion-drag heating, are as follows.

1. Ion continuity equation. Neglecting the perturbed production and loss
terms, the perturbed ion continuity equation is

∂n′i
∂t

+ n′i∇ · ui0 + ui0 · ∇n′i + ni0∇ · u′i + u′i · ∇ni0 = 0. (199)

Using Eq. (197) and the standard assumptions ni0 = ni0(z), u0(z) =
(u0(z), 0, 0), and uD0 = uD0(z), we obtain

∂

∂t

(
n′i
ni0

)
= −uD0

[
∂

∂b

(
n′i
ni0

)
− 1

ni0

dni0
dz

sin I

(
n′i
ni0

)]
+

duD0

dz
sin I

(
n′i
ni0

)
+

(
∂u′

∂b
− 1

ni0

dni0
dz

sin Iu′
)

cos I +

(
∂w′

∂b
− 1

ni0

dni0
dz

sin Iw′
)

sin I

−
(
∂u′D
∂b
− 1

ni0

dni0
dz

sin Iu′D

)
+ u0 cos I

∂

∂b

(
n′i
ni0

)
− cos I sin I

(
du0

dz
+ u0

1

ni0

dni0
dz

)(
n′i
ni0

)
. (200)

2. Diffusion velocity. For the perturbed diffusion velocity u′D , we have
the representation

u′D = −DA0
∂

∂b

(
T ′

T0

)
−DA0

∂

∂b

(
n′i
ni0

)
+

(
1

ni0

dni0
dz

+
1

T0

dT0

dz

)
sin ID′A −

g sin I

νin0

(
ν′in
νin0

)
. (201)

3. Ion-drag force and ion-drag heating. For the ion-drag force per unit
mass (cf. Eq. (126) of Appendix A),

1

ρ
fID = νni(u− ui),

we obtain (
1

ρ
fIDx

)′
= νni0

[
sin2 Iu′ − sin I cos Iw′ + cos Iu′D

+
(
uD0 cos I + u0 sin2 I

)( ν′ni
νni0

)]
, (202)(

1

ρ
fIDz

)′
= νni0

[
− sin I cos Iu′ + cos2 Iw′ + sin Iu′D

+ (uD0 sin I − u0 cos I sin I)

(
ν′ni
νni0

)]
. (203)
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For the ion-drag heating per unit mass (cf. Eq. (127) of Appendix A)

1

ρ
qID = νni|u− ui|2,

we find (
1

ρ
qID

)′
= νni0

[
2
(
sin2 Iu0u

′ − cos I sin Iu0w
′ + uD0u

′
D
)

+
(
u2

0 sin2 I + u2
D0

)( ν′ni
νni0

)]
. (204)

Under the assumption that, in the ionosphere, the atomic oxygen O and O+-
ions are the main neutral and ionic constituents, we compute the background
neutral-ion and ion-neutral collision frequencies as [46, 54]

νni0 = 7.22× 10−17T 0.37
0 ni0, νin0 =

νni0
ni0

nn, n = O, i = O+

and their perturbed values as

D′A = DA0

(
T ′

T0
− ν′in
νin0

)
, (205)

ν′in
νin0

= 0.37
T ′

T0
+
ρ′

ρ0
, (206)

ν′ni
νni0

= 0.37
T ′

T0
+

n′i
ni0

. (207)

Decoupled system of equations
From Eqs. (200)–(204) we deduce that the hydrodynamic equations should be
solved together with the ion continuity and momentum equations by introducing
two additional state variables, namely n′i/ni0 and u′D. The resulting system then
consists of eight equations, obtained by augmenting the hydrodynamic system
with the ion continuity and momentum equations. This fully coupled approach
was used by Shibata [46].

In our analysis we instead employ a simplified, approximate model that
decouples the hydrodynamic and ion equations. We have several options.

1. Klostermeyer Approximation. Klostermeyer solved the ion-continuity
equation by neglecting the diffuse velocity and neutral winds, i.e.,

∂

∂t

(
n′i
ni0

)
= −

(
cos I

∂u′

∂x
+ sin I

∂u′

∂z
+

1

ni0

dni0
dz

sin Iu′
)

cos I

−
(

cos I
∂w′

∂x
+ sin I

∂w′

∂z
+

1

ni0

dni0
dz

sin Iw′
)

sin I, (208)
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and then computed the ion-drag force and ion-drag heating by including
the background neutral wind, i.e.,(

1

ρ
fIDx

)′
= νni0

[
sin2 Iu′ − sin I cos Iw′ + u0 sin2 I

(
ν′ni
νni0

)]
, (209)(

1

ρ
fIDz

)′
= νni0

[
− sin I cos Iu′ + cos2 Iw′ − u0 cos I sin I

(
ν′ni
νni0

)]
,

(210)

and(
1

ρ
qID

)′
= νni0

[
2
(
sin2 Iu0u

′ − cos I sin Iu0w
′)+ u2

0 sin2 I

(
ν′ni
νni0

)]
.

(211)

Klostermeyer’s method is best viewed as a semi–diagnostic approxima-
tion: one solves a simplified ion continuity equation driven only by the
wave-induced divergence, and then evaluates ion-drag force and heating,
including u0 and ν′ni, but assuming no diffusion velocity. In other words,
field-aligned diffusion and background neutral wind are neglected in the
ion continuity equation when computing n′i, and the ion drag is treated
as a diagnostic based on the neutral wave field and background wind.

2. Fast Field-Aligned Diffusion. In the second method, we assume that
field-aligned diffusion is sufficiently strong that the relative ion perturba-
tion and the perturbed diffusion velocity are nearly constant along the
magnetic field line (but can vary across it):

∂

∂b

(
n′i
ni0

)
= −

(
cos I

∂

∂x
+ sin I

∂

∂z

)(
n′i
ni0

)
≈ 0 (212)

and
∂u′D
∂b

= cos I
∂u′D
∂x

+ sin I
∂u′D
∂z
≈ 0. (213)

We then obtain

∂

∂t

(
n′i
ni0

)
=

(
uD0

1

ni0

dni0
dz
− cos I

du0

dz
− cos Iu0

1

ni0

dni0
dz

+
duD0

dz

)
sin I

(
n′i
ni0

)
+

1

ni0

dni0
dz

sin Iu′D

−
(

cos I
∂u′

∂x
+ sin I

∂u′

∂z
+

1

ni0

dni0
dz

sin I u′
)

cos I

−
(

cos I
∂w′

∂x
+ sin I

∂w′

∂z
+

1

ni0

dni0
dz

sin I w′
)

sin I (214)
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and

u′D = DA0

[
cos I

∂

∂x

(
T ′

T0

)
+ sin I

∂

∂z

(
T ′

T0

)]
+

(
1

ni0

dni0
dz

+
1

T0

dT0

dz

)
sin I D′A −

g sin I

νin0

(
ν′in
νin0

)
. (215)

The ion-drag force and ion-drag heating are still computed from Eqs.
(202)–(204).

Plane wave solutions
Let

n′i(x, z, t) = ni(z) ej(ωt−kxx), ni(z) = ni0(z) n̂i(z), (216)

and (cf. Eq. (148) of Appendix A)

f ′(x, z, t) = f(z) ej(ωt−kxx).

As in Appendix A, we introduce the dimensionless state variables û, ŵ, and T̂ ,
defined by

u =
ω0

kx
û, w =

ω0

kx
ŵ,

T

T0
= T̂ ,

together with their derivatives

du

dz
=
ω0

kx
Û , dw

dz
=
ω0

kx
Ŵ,

d

dz

(
T

T0

)
=

dT̂

dz
= T̂

1. Representation of uD. From Eq. (215) we obtain

uD = −jkxDA0 cos I T̂ +DA0 sin I T̂

+

(
1

ni0

dni0
dz

+
1

T0

dT0

dz

)
sin I DA −

g sin I

νin0

(
νin
νin0

)
. (217)

Using

DA

DA0
=

T

T0
− νin
νin0

, (218)

νin
νin0

= 0.37
T

T0
+

ρ

ρ0
, (219)

together with (cf. Eq. (150) of Appendix A)

ρ

ρ0
=
kx

Ω
u− j

ΩHρ
w +

j
Ω

dw
dz

we express uD as

uD = Uuû+ Uwŵ + UTT̂ + UWŴ + UT T̂ , (220)
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where the U coefficients are given by

Uu = −ω0

Ω
(DA0E +G), (221)

Uw = j
ω0

Ω

1

kxHρ
(DA0E +G), (222)

UT = −jkxDA0 cos I + 0.63DA0E − 0.37G, (223)

UW = − j
ω0

Ω

1

kx
(DA0E +G), (224)

UT = DA0 sin I, (225)

with
E = sin I

(
1

ni0

dni0
dz

+
1

T0

dT0

dz

)
, G =

g sin I

νin0
. (226)

2. Representation of n̂i. From Eq. (214) we obtain(
jω − uD0

1

ni0

dni0
dz

sin I +
du0

dz
cos I sin I

+ u0
1

ni0

dni0
dz

cos I sin I − duD0

dz
sin I

)
n̂i

=
1

ni0

dni0
dz

sin I uD +

(
jkx cos I − 1

ni0

dni0
dz

sin I

)
cos I

ω0

kx
û

+

(
jkx cos I − 1

ni0

dni0
dz

sin I

)
sin I

ω0

kx
ŵ − cos I sin I

ω0

kx
Û − sin2 I

ω0

kx
Ŵ.

(227)

After some manipulations, the expression for n̂i reads

n̂i = Nuû+Nwŵ +NTT̂ +NU Û +NWŴ +NT T̂ , (228)
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where the N coefficients are given by

Nu =
1

N0

[(
jkx cos I − 1

ni0

dni0
dz

sin I

)
cos I

ω0

kx
+

1

ni0

dni0
dz

sin IUu

]
,

(229)

Nw =
1

N0

[(
jkx cos I − 1

ni0

dni0
dz

sin I

)
sin I

ω0

kx
+

1

ni0

dni0
dz

sin IUw

]
,

(230)

NT =
1

N0

1

ni0

dni0
dz

sin IUT, (231)

NU = − 1

N0
cos I sin I

ω0

kx
, (232)

NW = − 1

N0

(
sin2 I

ω0

kx
− 1

ni0

dni0
dz

sin IUW

)
, (233)

NT =
1

N0

1

ni0

dni0
dz

sin IUT , (234)

and

N0 = jω − uD0
1

ni0

dni0
dz

sin I +
du0

dz
cos I sin I

+ u0
1

ni0

dni0
dz

cos I sin I − duD0

dz
sin I. (235)

3. Ion-drag force and ion-drag heating. Using Eqs. (220) and (228),
together with

νni
νni0

= 0.37
T

T0
+

ni
ni0

= 0.37T̂ + n̂i, (236)

we obtain

1

νni0

(
1

ρ
fIDx

)
= Fxuû+ Fxwŵ + FxTT̂ + FxU Û + FxWŴ + FxT T̂ , (237)

1

νni0

(
1

ρ
fIDz

)
= Fzuû+ Fzwŵ + FzTT̂ + FzU Û + FzWŴ + FzT T̂ , (238)

1

νni0

(
1

ρ
qID

)
= Puû+ Pwŵ + PTT̂ + PU Û + PWŴ + PT T̂ . (239)

With

Ax = uD0 cos I+u0 sin2 I, Az = uD0 sin I−u0 cos I sin I, B = u2
D0+u2

0 sin2 I,
(240)
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the coefficients corresponding to fIDx are

Fxu = sin2 I
ω0

kx
+AxNu + cos I Uu, (241)

Fxw = − sin I cos I
ω0

kx
+AxNw + cos I Uw, (242)

FxT = 0.37Ax +AxNT + cos I UT, (243)

FxU = AxNU , (244)

FxW = AxNW + cos I UW , (245)

FxT = AxNT + cos I UT , (246)

the coefficients corresponding to fIDz are

Fzu = − sin I cos I
ω0

kx
+AzNu + sin I Uu, (247)

Fzw = cos2 I
ω0

kx
+AzNw + sin I Uw, (248)

FzT = 0.37Az +AzNT + sin I UT, (249)

FzU = AzNU , (250)

FzW = AzNW + sin I UW , (251)

FzT = AzNT + sin I UT , (252)

and the coefficients corresponding to qID are

Pu = 2 sin2 I
ω0

kx
u0 +BNu + 2uD0Uu, (253)

Pw = −2 cos I sin I
ω0

kx
u0 +BNw + 2uD0Uw, (254)

PT = 0.37B +BNT + 2uD0UT, (255)

PU = BNU , (256)

PW = BNW + 2uD0UW , (257)

PT = BNT + 2uD0UT . (258)

Note that, in the algorithm implementation, the derivatives dni0/dz and duD0/dz
are computed using central finite differences.

Appendix C. Solution methods for the grid-point
values of the state vector
In this appendix, the global matrix method with matrix exponential and the
scattering matrix method will be formulated for the grid-point values of the
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state vector.

Global matrix method with matrix exponential
In the layer l, with boundaries zl and zl+1, the discrete values el+1 = e(zl+1)
and el = e(zl) are related through the relation (cf. Eq. (14))

el+1 = Vldiag[ekxλnl∆l ]V−1
l el, (259)

or equivalently,
V−1
l el+1 = diag[ekxλnl∆l ]V−1

l el. (260)

Taking into account that by Eqs. (13) and (14), we have el = Vlal and el+1 =
Vl+1al+1,we see that Eq. (35) and (260) are completely equivalent. Multiplying
Eq. (260) with the scaling matrix K1

l,, we obtain the layer equation

A1
l el+1 − A0

l el = 02M , l = 1, ..., L− 1, (261)

where

A1
l = K1

l,V
−1
l , (262)

A0
l = K0

l,V
−1
l , (263)

and K1
l and K0

l , are given by Eqs. (36) and (37), respectively. Essentially,
we have L − 1 equations imposed on layers 1, . . . , L − 1 for the L unknowns
e1, . . . , eL. On the layer l = 1, the boundary condition (cf. Eq. (42)) a+

1 = i1,
translates into (cf. Eq. (24))

[IM , 0M ]V−1
1 e1 = i1, (264)

while on the layer l = L, the boundary condition (cf. Eq. (45)) a−L = 0M
translates into (cf. Eq. (25))

[0M , IM ]V−1
L eL = 0M . (265)

As in Section 3, the layer equations (261) together with the boundary con-
ditions (264) and (265) for a unit scale factor, are assembled into a system of
equations for the stratified atmosphere, i.e.,

Ae = b, (266)
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where

A =


[0M , IM ]V−1

L 0 . . . 0 0
A1
L−1 −A0

L−1 . . . 0 0
...

...
. . .

...
...

0 0 . . . A1
1 −A0

1

0 0 . . . 0 [IM , 0M ]V−1
1

 , (267)

e =


eL

eL−1

...
e2

e1

 and b =


0M
02M

...
02M

i1

 . (268)

When applying the lower boundary condition (55), i1 in Eq. (268) should be
replaced by B−1b1, where, for a unit scale factor, b1 = [1, 0, 0]T. After solving
Eq. (266), we compute the wave amplitudes by using Eq. (60).

Comments.

1. The ascending and descending solution modes can be derived by using the
upward and downward recurrence relations (cf. Eqs. (28)–(31), (41) and
(44))

e+
l+1 = T+

l el, for l = 1, . . . , L− 1, with e+
1 = v+

1 , and (269)

e−l = T−l el+1, for l = L− 1, . . . , 1, with e−L = 02M , (270)

respectively, where

T+
l = Vl

[
diag[ekxλ

+
ml∆l ] 0M

0M 0M

]
V−1
l , (271)

T−l = Vl

[
0M 0M
0M diag[e−kxλ

−
ml∆l ]

]
V−1
l . (272)

Obviously, the relation el = e+
l + e−l , l = 1, . . . , L, can be used to verify

the numerical algorithm.

2. If we assume that the ascending modes are the dominant modes, i.e.,
el ≈ e+

l for l = 1, . . . , L, we may compute the state vector by means of
the upward recurrence relation (cf. Eq. (269))

el+1 = T+
l el, for l = 1, . . . , L− 1, with e1 = v+

1 . (273)

3. The layer equation (261) was derived from the solution representation
(259). In fact, this equation is simply the matrix-exponential represen-
tation of the solution, i.e., el+1 = exp(Alkx∆l)el, where the matrix ex-
ponential is calculated using an eigendecomposition of the propagation
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matrix Al, i.e., Al = Vldiag[λnl]V
−1
l . However, instead of an eigende-

composition method, we can use the Padé approximation to compute
the matrix exponential [29, 30]. The nth diagonal Padé approximation
to the matrix exponential is exp(Ax) = [D(Ax)]−1N(Ax), where D(Ax)
and N(Ax) are polynomials in Ax of degree n given respectively, by
D(Ax) =

∑n
k=0(−1)kckx

kAk and N(Ax) = D(−Ax) =
∑n
k=0 ckx

kAk.
The coefficients ck can be computed recursively by means of the relation

ck =
n− k + 1

k(2n− k + 1)
ck−1, k ≥ 1 (274)

with the initial value c0 = 1. The layer equation then becomes

A1
l el+1 − A0

l el = 02M , l = 1, ..., L− 1, (275)

where A1
l = D(Alkx∆l) and A0

l = N(Alkx∆l). The resulting system of
layer equations, together with the boundary conditions, is assembled into
a banded linear system. Eigendecomposition is required only in the lower
and upper layers to apply the boundary conditions, whereas the Padé
approximation is used in all interior layers. This approach is presum-
ably more efficient than a full eigendecomposition. However, since the
first-order Padé approximation corresponds to a centered finite-difference
scheme, whereas the first-order Taylor expansion yields a forward finite-
difference scheme, the method is less accurate. For this reason, the Padé
approximation of the matrix exponential is not implemented in our com-
puter code and is included here solely for theoretical completeness.

Scattering matrix method
In principle, the scattering matrix method can also be formulated in terms of
the discrete values of the state vector. Starting from the interaction principle
equation (67), using Eq. (27), i.e., e±l = V±l a±l , and Eqs. (24)–(25), i.e.,

a+
l = [IM , 0M ]al = [IM , 0M ]V−1

l el, (276)

a−l = [0M , IM ]al = [0M , IM ]V−1
l el, (277)

we find that for the stack Sl0l, the interaction principle equation involving the
discrete values of the state vector is[

e−l0
e+
l+1

]
=

[
R+
l0l

T −l0l
T +
l0l

R−l0l

] [
e+
l0

e−l+1

]
, (278)

where dim(R±l0l) = dim(T ±l0l) = 2M × 2M , and[
R+
l0l

T −l0l
T +
l0l

R−l0l

]
= (I4M −A)−1A, (279)
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with

A =

[
V−l0R

+
l0l

[V−1
l0

]1 V−l0T
−
l0l

[V−1
l ]2

V+
l T

+
l0l

[V−1
l0

]1 V+
l R
−
l0l

[V−1
l ]2

]
, (280)

Vl = [V+
l ,V

−
l ], and V−1

l =

[
[V−1
l ]1

[V−1
l ]2

]
. (281)

Since the matrices R±l0l and T ±l0l are twice the size of the matrices R±l0l and
T ±l0l, the associated computational cost is significantly higher. Owing to its low
numerical efficiency, this method is therefore of purely theoretical interest and
is not implemented in our computer code.

Appendix D. Implementation issues
In this appendix, we discuss several implementation issues related to the com-
putation of lower and upper bounds for the wave period, the choice of frequency
and time discretization for the Fourier transform, and the determination of the
imaginary frequency shift.

Wave period
To define practical bounds for the wave period λt, we solve the inviscid dis-
persion equation (cf. Eq. (177) with ν = 0 and with the intrinsic frequency
Ω = ω − kxu0 replacing ω)

Ω4 −
[
ω2

a + c2s
(
k2
x + k2

z
)]

Ω2 + c2sk
2
x ω

2
g = 0, (282)

for an assumed value of the vertical wavenumber kz, where ωg =
√
γ − 1g/cs is

the buoyancy (gravity-wave) frequency and ωa = γg/(2cs) is the acoustic cutoff
frequency. Thus, for a stratified atmosphere, the solution Ωinv depends on the
altitude z and the wavenumber kz, and satisfies Ωinv(z, kz) < ωg(z). In this
context we define ωinv(kz) = minz[Ωinv(z, kz) +kxu0(z)]. The equation is solved
for two assumed minimum and maximum values of the vertical wavelength λz,
namely λzmin = 125 km and λzmax = 250 km, implying kzmin = 2π/λzmax
and kzmax = 2π/λzmin. The corresponding solutions are denoted by ωmin =
ωinv(kzmax) and ωmax = ωinv(kzmin), and the resulting time periods are λt,min =
2π/ωmax and λt,max = 2π/ωmin. These values are likely underestimates, since
dissipative effects (ν 6= 0) tend to reduce the oscillation frequencies and thus
increase the wave periods. For this reason, we round the bounds upward to
the nearest multiple of 10 min, and set λt,min = 10 [λt,min/10] and λt,max =
10 [λt,max/10], where [x] denotes the upward rounding of x to the next integer.

To provide a physical interpretation of this approach, we note that Eq. (282)
yields

k2
z =

Ω2 − ω2
a

c2s
+ k2

x

(
ω2

g

Ω2
− 1

)
, (283)
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so that, under the assumption Ω� ωa , we obtain

kz

kx
= ±

√
ω2

g

Ω2
− 1− 1

4k2
xH

2
a
. (284)

If
ω2

g

Ω2
− 1− 1

4k2
xH

2
a
> 0 for all z, (285)

then kz is real and exp(−jkzz) ∈ C; thus, the wave is propagating. When this
condition is not satisfied, kz is purely imaginary and exp(−jkzz) ∈ R; thus, for
Im(kz) < 0, the wave is evanescent. This condition yields

ω < Ωinv(z, kz = 0) + kxu0(z) for all z, (286)

where
Ωinv(z, kz = 0) =

ωg√
1 + 1

4k2xH
2
a

(287)

is the solution of the inviscid dispersion equation in the case kz = 0 (λz →∞).
We conclude that the condition ωinv(kz) = minz[Ωinv(z, kz) + kxu0(z)] implies
that the time period is chosen such that only propagating waves are considered.
Condition (286), written Ω(z) < Ωinv(z, kz = 0) was used by Knight et al.
[11] to determine the intrinsic evanescent frequencies that lead to the so-called
“anomalous results”. In practice, evanescent frequencies occur at altitudes up to
at least 100 km; consequently, these anomalous results are of limited relevance
for upper-thermospheric gravity-wave studies, since evanescence below about
100 km and critical layers in the lower thermosphere strongly attenuate such
waves before they can reach higher altitudes [11].

Frequency and time discretization for the Fourier transform
In the code, we do not use a Fast Fourier Transform (FFT). Instead, we perform
a direct (discrete) Fourier Transform (FT) by explicitly discretizing the Fourier
integral. The discretization parameters are chosen to resolve a source that is
localized both in frequency and in time.

1. Frequency band centered on ω0. The Fourier transform is performed
over a frequency band centered on the reference frequency ω0. We in-
troduce a frequency standard deviation σω defined as a fraction of ω0,
i.e., σω = ω0/κω, where κω ≥ 6 is an input parameter. The effective
frequency band of interest is chosen to cover approximately plus/minus
three standard deviations of the source spectrum: ωmin = ω0 − 3σω and
ωmax = ω0 + 3σω. The total frequency interval and the frequency step
are, respectively, Lω = ωmax − ωmin = 6ω0/κω and ∆ω = Lω/(NFT − 1),
where NFT is the number of discrete points. The discrete frequency grid
ωk is then constructed as ωk = ωmin + (k − 1)∆ω, k = 1, 2, . . . , NFT.
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2. Time interval and time step. The time grid is chosen to be consistent
with the assumed temporal localization of the source and with the chosen
frequency bandwidth. First, we define the time standard deviation σt
as σt = 1/σω . The time interval Lt is chosen to contain Np periods
of the reference frequency. The time period is given by λt = 2π/ω0,
and therefore, Lt = Npλt. The time step ∆t is then computed as ∆t =
Lt/(NFT−1). The time grid tk is defined on the interval [tmin, tmax], where
tmin is an input parameter and tmax = tmin +Lt, by tk = tmin + (k−1)∆t,
k = 1, 2, . . . , NFT. We also define a time shift by t0 = (tmax − tmin)/2
which places the reference time close to the center of the time window.

In the code, NFT, κω, Np and tmin are input parameters. Specifically, κω de-
termines the length of the frequency interval Lω, whereas Np determines the
length of the time interval Lt. The discretization is considered adequate if the
following conditions are satisfied:

1. The time window is long enough for the chosen frequency bandwidth.
This requires that the number of time standard deviations contained in
the interval satisfies Lt/σt > 6, which ensures that the main part of the
source is well contained within the time window and that truncation effects
are negligible.

2. The Nyquist condition ∆t < π/ωmax, and the dual Nyquist condition
∆ω < 2π/Lt are satisfied. These conditions ensure that the temporal
signal is properly sampled in time and frequency, prevent aliasing effects,
and guarantee a consistent discrete Fourier transform between the time
and frequency domains

Since the Fourier transform is computed by direct discretization of the Fourier
integral, no FFT-specific constraint is imposed between the frequency step ∆ω
and the time step ∆t. In particular, the grid relation ∆t∆ω = 2π/NFT, which
is characteristic of discrete Fourier transforms based on periodic sampling and
exact discrete orthogonality, is not required here. Instead, the frequency and
time grids are chosen independently, based on the desired frequency band and
time window needed to resolve a source that is localized in both domains. This
provides greater flexibility in selecting the bandwidth, resolution, and window
length.

Imaginary frequency shift
The imaginary frequency shift is determined using a heuristic approach that
combines two criteria: application of the Layerwise Causality (LC) condition at
selected altitude levels, and a Source-Function Reconstruction (SFR) test.

1. LC condition at selected altitude levels. Choose a subset L0 ⊂
{1, 2, . . . , L} of altitude indices, and let NL0

be the number of elements
of the set L0, i.e., NL0 = |L0|. At each altitude level l0 ∈ L0, start with
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δl0 = δstart and increases δl0 in steps of ∆δ, i.e., δl0 ← min(δl0 +∆δ, δstop),
until the LC condition (c.f. Eq. (108))

dl0(ωk) = Re[λ−1l0(ωk − jδl0)]− Re[λ+
1l0

(ωk − jδl0)] > εLC (288)

is satisfied for all ωk = ωmin + (k − 1)∆ω, k = 1, 2, . . . , NFT, and some
prescribed tolerance εLC. If there exists an altitude level for which it is
not possible to satisfy the LC condition for all frequencies ωk by increasing
the imaginary frequency shift within the interval from the start value δstart
to the stop value δstop, then the subset-based LC criterion is said to fail.
Otherwise, the LC frequency shift is computed as

δLC = max
l0∈L0

δl0 . (289)

2. SFR. A frequency shift δ is considered valid if the relative RMS error
between the source function s(t) and the inverse Fourier transform applied
to S(ω− jδ) is below a prescribed tolerance εSFR = 5× 10−3. In practice,
we compare the normalized functions

ŝ(t) =
s(t)

maxtRe{s(t)}
, ŝδ(t) =

sδ(t)

maxtRe{sδ(t)}
,

where (compare with Eq. (115))

sδ(t) = Aeδ(t−t0) 1

2π

∫ ∞
−∞

S (ω − jδ)ejω(t−t0)dω, (290)

and s(t) and S (ω) are given by Eqs. (83) and (91), respectively. The
relative RMS error is computed as

εsδ =

√√√√∑NFT
k=1 [ŝ(tk)− ŝδ(tk)]2∑NFT

k=1 ŝ(tk)2
(291)

with tk = tmin + (k − 1)∆t, k = 1, 2, . . . , NFT. In the algorithm,

(a) if εsδ > εSFR, the frequency shift is relaxed according to δ ← max(δ−
∆δ, δstop), and

(b) if εsδ > εSFR also holds for δ = δstop, the SFR test fails.

The algorithm proceeds as follows.

Step 1: Initialization and SFR test at δmin We choose δmin = ∆δ and
δmax = kδ ∆δ, where ∆δ (e.g., ∆δ = 10−6 s−1) is the initial discrete step of the
imaginary frequency shift and kδ is an integer. We first apply the SFR test to
the input δmin, using δstop = ∆δ and the step ∆δ as a decreasing update of δ.
With this choice, the algorithm effectively checks whether δmin passes the SFR
test, that is, without invoking a frequency-shift relaxation. If the SFR test fails,
we stop the algorithm. Otherwise, the value δmin is accepted as SFR-admissible.
Based on the monotonic behavior of the SFR error in δ, we assume that any
δ ≤ δmin would also satisfy the SFR test.
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Step 2: SFR test at δmax and refinement of δmax We apply the SFR test
to the input δmax, using δstop = δmin and the step ∆δ again as a decreasing
update of δ. Since the SFR test has already been successful at δmin, this second
SFR call is guaranteed to succeed: if necessary, the procedure can always relax
δ down to δmin. Let δSFR = kSFR ∆δ denote the value returned by the SFR
routine. We then reset δmax ← δSFR. By construction, every δ ∈ [δmin, δmax]
satisfies the SFR test.

Step 3: Construction and adjustment of an internal δ-grid The next
steps require an internal grid of discrete values of δ between δmin and δmax,
with a sufficiently large number of points (e.g., at least five) to reliably apply
the LC procedure. This internal grid uses the spacing ∆δ, but is independent
of the number Nδ used later in the final selection step. To avoid a degenerate
interval and to obtain a reasonably fine internal spacing, we adjust δmin and ∆δ
according to the following rules: if δmax − δmin < ∆δ/2 (i.e., δmax ≈ δmin), then
set δmin ← δmax −∆δ/2 and ∆δ ← ∆δ/8; else if ∆δ/2 < δmax − δmin < 3∆δ/2
(i.e., δmax − δmin ≈ ∆δ), then set ∆δ ← ∆δ/4; else if 3∆δ/2 < δmax − δmin <
5∆δ/2 (i.e., δmax − δmin ≈ 2∆δ), then set ∆δ ← 2∆δ/3. After this adjustment,
the interval [δmin, δmax] contains a suitable number of internal grid points spaced
by ∆δ. These internal points are used only in the LC procedure described in
the next step.

Step 4: LC procedure and update of δmin We apply the subset-based
LC procedure to δ, starting from the current value δmin and moving towards
larger values, with an upper bound δstop = δmax − ∆δ and an increasing step
∆δ. If there exists an altitude level for which the LC test fails, we stop the
algorithm. Otherwise, let δLC = kLC ∆δ denote the LC-based estimate returned
by the procedure. We then update δmin ← δLC. By construction, for every
δ ∈ [δmin, δmax], both the SFR test and the LC condition at the selected altitude
levels are satisfied.

Step 5: Final selection of the frequency shift The final selection step
is based on a separate set of Nδ equidistant values of δ in the interval δmin ≤
δ ≤ δmax. Here, Nδ is chosen independently of the internal grid used in Steps 3
and 4, and we define δj = δmin + (j− 1) ∆δfinal , j = 1, 2, . . . , Nδ, with ∆δfinal =
(δmax − δmin)/(Nδ − 1). For each δj , we perform the following tasks:

1. Compute the wave parameters corresponding to δj .

2. Evaluate the maximum perturbed horizontal velocity, the maximum per-
turbed vertical velocity, and the maximum perturbed temperature.

3. Check whether the layerwise causality condition is satisfied over the entire
altitude range.

Finally, among all frequency shifts for which the causality condition is satisfied
over the full altitude range, the algorithm determines the center of mass in
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the space spanned by the maximum values of the perturbed horizontal velocity,
vertical velocity, and temperature, and selects the solution whose maximum-
amplitude vector is closest to this center of mass.

Comments:

1. The algorithm determines not a single value but an interval of admissible
imaginary frequency shifts. This is necessary for two reasons.

(a) First, the LC procedure evaluates the layerwise causality condition
only at a selected subset of altitude levels. As a consequence, the
value returned by the LC test guarantees causality only at these
selected levels, but not necessarily across the entire altitude range.
By retaining an interval rather than a single value, we ensure that the
subsequent analysis can identify those values of the frequency shift
that satisfy the LC condition everywhere, not just at the sampled
altitudes.

(b) Second, even when the LC condition is applied across the full altitude
range, it is often the case that more than one frequency shift satisfies
the LC condition over all altitudes. Since these admissible shifts may
lead to solutions with different numerical behaviors, a mechanism is
needed to select an optimal value. For this purpose, the algorithm
evaluates the wave parameters for a discrete set of shifts within the
admissible interval and selects the optimal value based on the dis-
tance to the center of mass.

2. In principle, a Global Causality (CG) test can be applied at selected fre-
quencies. Such a test proceeds as follows. Choose a set of NK0

equidistant
frequencies ωk0 ∈ {ωk}

NFT

k=1 with k0 ∈ K0 = {1, 2, . . . , NK0
}. For each test

frequency ωk0 , start with δk0 = δstart and increases δk0 in steps of ∆δ, i.e.,
δk0 ← min(δk0 + ∆δ, δstop), until the GC condition (c.f. Eq. (104))

max
l=1,...,L

Re[λ+
1l(ωk0 − jδk0)] < min

l=1,...,L
Re[λ−1l(ωk0 − jδk0)]

is satisfied. If there exists a test frequency for which the GC condition
is not satisfied, we say that the subset-based GC criterion fails for δstop.
Otherwise, the GC frequency shift is computed as

δGC = max
k0∈K0

δk0 .

This test can be applied after the first step to determine δmax = δGC.
However, our numerical experiments indicate that this test is computa-
tionally very expensive and typically yields an excessively large value of
δGC. In the subsequent step, this large value would be reduced by the
SFR test. Importantly, if one instead prescribes a moderate but still suffi-
ciently large input value for δmax, the source-function reconstruction test
reduces δmax to the same final value as when starting from δGC. Since the
LC test alone is sufficient to ensure causality, we therefore do not employ
the GC test in practice and use a prescribed moderate value of δmax.
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