Response to reviewer comments

Based on the comments provided by the reviewers, we undertook a major re-
vision and completely reformulated the manuscript. The major changes to the
manuscript are listed below.

1. The revised manuscript is organized as follows. In Section 2, we present
the derivation of the matrix exponential solution of the linearized equa-
tions, while Section 3 describes stable numerical methods for computing
the amplitudes of the characteristic solution in a stratified atmosphere.
Here, we focus only on the global matrix method based on matrix ex-
ponentials and the scattering matrix method for computing the ampli-
tudes of the characteristic solutions. Section 4 addresses the computation
of the perturbed quantities for both harmonic and non-harmonic source
functions, that is, for single-frequency waves and time-dependent wave
packets. The concepts of causality and the imaginary frequency shift are
also briefly discussed. Aspects of the numerical implementation are ad-
dressed in Section 5, and representative simulation results are presented
in Section 6. Additional theoretical issues are discussed in the appendices.
Some of the theoretical aspects discussed, especially in Appendices A and
B, may perhaps be unnecessary; however, our intention was to provide a
self-consistent and complete description of the models.

2. The linearization model is described in Appendix A. We reformulate the
linearized equations for the state vector e = [u, @, T,U, W, T|*, following
the formulations of Vadas and Nicolls (2012) and Knight et al. (2024),
instead of using e = [u, W, p, f,LA{,ﬂT, as adopted in earlier studies by
Midgley and Liemohn (1966), Volland (1969), Francis (1973), and Yeh
and Liu (1974). Appendix A provides a general model that accounts for
the altitude derivatives of the background velocity ug, temperature Ty,
density scale height H,, and dynamic viscosity pg. In addition, it in-
cludes a simplified model for an isothermal (T = constant), homogeneous
(ko = po/po = constant), and windless atmosphere without ion drag.
Appendix A is organized into the following sections: Hydrodynamic equa-
tions, Linearized equations, Plane wave solution, and Dispersion equation.

3. The computation of the ion-drag force and ion-drag heating is presented
in Appendix B. In the revised version, ion-drag effects are incorporated
in an approximate manner with the explicit aim of decoupling the hy-
drodynamic and ion equation systems, while explicitly accounting for the
plasma diffusion velocity. This is achieved by neglecting perturbed pro-
duction and loss terms in the ion continuity equation, reducing the ion
momentum equation to ambipolar diffusion by neglecting ion inertia and
ion—ion collisions and retaining only field-aligned transport, and assuming
fast field-aligned diffusion so that ion perturbations and the plasma diffu-
sion velocity remain nearly constant along magnetic field lines. Appendix



B is organized into the following sections: lon equations, Linearized equa-
tions, Decoupled system of equations, and Plane wave solutions.

4. The application the global matrix method based on matrix exponentials
and the scattering matrix method to compute the grid-point values of the
state vector is described in Appendix C. This appendix is organized into
the following sections: Global matriz method with matriz exponential and
Scattering matriz method.

5. In Appendix D, we discuss several implementation issues related to the
computation of lower and upper bounds for the wave period, the choice
of frequency and time discretization for the Fourier transform, and the
determination of the imaginary frequency shift using a practical, albeit
heuristic, approach.

6. We plan to provide a freely available open-source code for solving the
linearized gravity-wave equations on GitHub. Accordingly, only represen-
tative simulation results are presented in Section 6. The simulation results
are new for two reasons: (i) we employ a new linearization model, and (ii)
the previous implementation contained an error in the coefficient of ther-
mal conductivity, which was set to A\g = 6.71 x 1077T3"! instead of the
correct value \g = 6.71 x 107471, thereby substantially reducing the
effect of thermal conduction.

For a better understanding of the revised manuscript, we have included the new
version in our response (not in the final form required by the journal). Please
find below our detailed replies (in black font) to the reviewer comments (in blue
font).

Reviewer 1

We are sincerely grateful to Harold Knight for his helpful and insightful com-
ments. His detailed explanations greatly clarified several results from his work
that we had used in this paper without a full understanding. We also warmly
acknowledge his recommendation of his two most recent papers, which were
previously unknown to us and have now become an important foundation for
the present study.

Here are some general issues affecting clarity that occur through the paper:

1. Most citations just give the article reference without a specific section
and/or equation number. Throughout the revised manuscript, we have
supplemented citations with explicit section and equation numbers wher-
ever necessary.

2. The same symbols are used in multiple contexts in some instances identi-
fied below. We have reviewed the notation and eliminated ambiguous or
overlapping symbol usage.



3. The figure labels are not sufficiently descriptive, making it difficult for the
reader to understand the figures. In almost all figures (e.g., Figure 5),
lines and symbols are labeled a, b, c, etc., and the reader has to look at
the caption to know what is meant. This makes it unnecessarily difficult
to interpret the figures. Descriptive information should be given in the
line/symbol labels instead of a, b, ¢, etc. All figures have been revised to
include descriptive labels directly on the lines and symbols, rather than
generic labels such as a, b, c.

4. Often, equations involve terms that are not introduced until many lines
after the equation. It is better to introduce terms before they appear in
equations. We have reorganized the presentation of equations so that all
variables, parameters, and coefficients are introduced and defined before
they appear in the equations.

Specific Comments

Lines 1-11. The abstract should be revised to reflect changes suggested
below. The main results of scientific interest are the effectiveness and efficiency
of a banded-matrix technique and the examination of the effects of ion drag, so
these should be the focus of the abstract.

In the abstract we state: “Particular emphasis is placed on the global matriz
method, which exploits the structured form of the multilayer system to achieve
high computational efficiency while maintaining numerical accuracy.” and “The
impact of ton drag on wave characteristics is quantified within this framework.”

Line 14. This sentence should mention that it is talking about upper-
atmospheric gravity waves.

We agree and have revised the sentence to explicitly refer to upper-atmospheric
gravity waves: “Time-step methods [1,2,3] are commonly used to solve fully non-
linear sets of governing equations for upper-atmospheric gravity waves, thereby
allowing the modeling of wave breaking, secondary wave generation, and weakly
nonlinear effects.”

Lines 15-16. Please add Knight et al. (2024) to this list.

We have added Knight et al. (2024) to this list.

Lines 26-34. Knight et al. (2022, Section 1) introduced the term “numeri-
cal multilayer method” to replace the term “nonstandard” suggested by Hines
(1973). The term “physical multilayer” can be used in place of “standard”.
The terms “nonstandard” and “standard” are anachronistic and nondescriptive,
considering that the supposed “standard” approach is not in use anymore. I
encourage the authors to use the terms “numerical multilayer” and “physical
multilayer” in place of “nonstandard” and “standard”, respectively.

Following the reviewer’s suggestion, we have replaced the terms “nonstan-
dard” and “standard” with “numerical multilayer” and “physical multilayer,” re-
spectively, as introduced by Knight et al. (2022, Section 1).

Lines 47-52. It should be mentioned here that the assumption of locally
constant kinematic molecular viscosity is unrealistic, as discussed in Knight et
al. (2019, Section 1). Also, Knight et al. (2024, Section 6.5) describes the



effect of relaxing the assumption that uz = 0, where p is dynamic molecular
viscosity. The effects are small, generally. Knight et al. (2021,2024) allow p to
vary according to the standard Dalgarno and Smith (1962) formula, but terms
involving pz are omitted from the vertical structure equations associated with
the main results.

We have clarified this point by stating in the main text that “On the other
hand, the assumption of locally constant kinematic viscosity is unrealistic as
discussed in Knight et al. [16].“, and by explaining in Appendix A that “Fs-
sentially, the difference between the model of Vadas and Nicolls [35] and that of
Knight et al. [11] is that, in the latter, the derivative of the dynamic viscosity
dpo/dz is omitted. In the code, for testing purposes, we included a hard-coded
logical flag that selects the linearized model to be used. Our numerical simula-
tions show that there are no significant differences between the general model and
that of Vadas and Nicolls [35], and that the effect of the assumption dug/dz =0
1s relatively small. This latter assumption was discussed in detail in Knight et
al. [11].”

Lines 57-65. This discussion of Midgley and Liemohn (1966) seems too
detailed. I have not seen this problem involving coupling and critical layers in
any other context. Perhaps it is specific to their assumption of locally constant
kinematic viscosity.

We agree with the reviewer that the original discussion of Midgley and
Liemohn (1966) was overly detailed. Accordingly, we have reduced and stream-
lined this section. It now reads: “Midgley and Liemohn [4] employed an iterative
method that can be regarded as a Gauss—Seidel group iteration. However, the
Gauss—Seidel iteration may fail to converge in certain situations, in particu-
lar when gravity and dissipative modes become strongly coupled, as discussed in
Refs. [5,6]. Klostermeyer [10] avoids this difficulty by introducing the concept of
a transfer matriz, which relates the wave amplitudes at different altitude levels
and provides a more robust framework for treating such coupling.”

Line 76. Change direction to directions.

We have changed.

Line 110. Define & or give a specific reference for it. Also, what does the
prime symbol mean in (V- )" ?

The stress tensor & is defined in Appendix A. In an earlier version, the prime
symbol in (V - @)’ denoted the perturbation of the stress-divergence term. This
notation has been removed in the revised manuscript.

Lines 113-123. It is best to leave out the equations of motion for ions, since
this is not being modeled here.

The modeling of the ion equations is described in detail in Appendix B.

Lines 145-182. This discussion should be simplified, given that the ion con-
tinuity equation is not modeled in this paper and ionospheric effects are left for
future work. I suggest using words rather than equations. Note that Knight et
al. (2025) modeled the effects of atmospheric gravity waves on the ionosphere by
driving an ionospheric model with the numerical multilayer method of Knight
et al. (2024). It was seen in Knight et al. (2025, Section 4.3) that the down-
ward flow of ions from the plasmasphere is needed in order to properly describe



plasma fluctuations resulting from gravity waves.

In the revised manuscript, this discussion has been removed from the main
text. As noted above, the modeling of the ion equations is described in detail
in Appendix B. In addition, the following statement has been added to the
conclusions: “The linearized equations on which the solution methods were tested
correspond to ionospheric conditions. The ultimate goal of our research is to
develop a comprehensive model for analyzing ionospheric gravity waves using
satellite measurements. The approach presented in this paper represents only
the first component of such a model. Two options are envisaged for extending
it to a more complete formulation.

1. Fully coupled neutral-ion model. The linearized hydrodynamic equations
would be solved together with the ion equations. In this case, the ion
continuity equation would include perturbed production and loss terms,
whereas ion inertia and ion—ion collisions would continue to be neglected
in the ion momentum equation, and only transport parallel to the magnetic
field lines would be retained. The state vector would then be augmented by
two additional components, namely the perturbed ion number density and
the ion diffusion velocity.

2. Two-step coupling strategy. In the first step, the neutral-atmosphere equa-
tions are solved using the fast field-aligned diffusion approximation. In
the second step, the wave-induced perturbations obtained from the neutral
solution are used as input to solve the ionospheric equations for the per-
turbed O" ion density. The ionospheric equations may be solved using the
SAMI2 model for low latitudes, where the E x B drift is neglected, or the
SAMIS model at higher altitudes, where the Ex B drift is included. In this
strategy, priority is given to the ionospheric equations of the SAMI frame-
work, while wave-induced perturbations are handled using the approximate
approach developed in the present study. Along similar lines, Knight et
al.  [34] solved the neutral-atmosphere equations without ion drag in a
first step, and subsequently addressed the ionospheric response using the
Field-Line Interhemispheric Plasma (FLIP) model [44].”

Line 192. The opposite sign convention for frequency and horizontal wavenum-
bers is typical for gravity-wave studies. See, e.g., Knight et al. (2025, eq. 1).
This should be mentioned here to prevent confusion.

In the main text, we have added the following remark: “Note that in some
gravity-wave studies, the opposite sign convention for frequency and horizontal
wavenumber is used (e.g. [34]).”

Line 196. Give the value for Pr. Also, the numerical formula for thermal
conductivity, A = 6.71 x 10—4 T 0.71, does not look right. Is constant cp
assumed? If so, what value? The specific heat at constant pressure varies
with composition. The value of the Prandtl number is given in the Numerical
simulations section ( Pr=0.66).



In Appendix A, we define
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where ¢, is the specific heat at constant pressure, -y the ratio of specific heats,
Pr the Prandtl number, A the coefficient of thermal conductivity, and Ry the
specific gas constant. Moreover, to derive the heat equation, we assume that c,
and Pr are constant, which yields
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The empirical power-law expression used for A (as a function of T) is consistent
with this closure through A = ¢,u/Pr, under the assumption of constant ¢, and
Pr.

Line 226. Say Appendix or Appendix A instead of just A.

“A” has been replaced by “Appendix A.”

Line 227. The notation An for eigenvalues conflicts with the notation A for
thermal conductivity. This should be fixed.

This has been corrected by denoting the coefficient of thermal conductivity
by A.

Line 249. Say “Appendix A.2” instead of just “A”. Say that it is to be
expected that the vertical wavenumbers will separate into pairs when kinematic
viscosity is assumed to be constant given earlier work, e.g., Volland (1969b).

We reformulate the text as follows: “As shown in Appendiz A, for a constant
kinematic viscosity the solutions occur in pairs and correspond to (i) ascending
and descending gravity-wave modes, (ii) ascending and descending viscosity-
wave modes, and (i) ascending and descending thermal-conduction wave modes
[6,7]. In that appendiz, this pairing is explicitly demonstrated by deriving the
dispersion relation for the special case of an isothermal (constant background
temperature), homogeneous (constant kinematic viscosity), and windless atmo-
sphere without ion drag.“

Lines 260. Is it really possible to distinguish between viscosity-wave modes
and thermal- conduction-wave modes? What is the theoretical basis for this
distinction? Presumably, such a distinction would change based on the Prandtl
number.

We agree with the reviewer that there is no significant distinction between
viscosity and thermal-conduction waves. In the section Simulation results, we
plot the imaginary part of the vertical wavenumber for all wave types and
state: “The plots reveal a clear distinction between gravity waves and viscosity-
and thermal-conduction waves. However, the viscosity and thermal-conduction
waves are very close to each other.”

Line 264. “we can renounce on the vertical wavenumber” does not sound
right in English. Perhaps instead say “we can put aside the concept of vertical
wavenumber.”

We replaced the phrase with “we can put aside the concept of the vertical
wavenumber.”



Lines 267-270. You say “providing a more intuitive explanation compared
with the analogy with an isothermal and homogeneous atmosphere.” This should
be reworded. The classification of upgoing and downgoing roots done earlier by
Volland, etc. had no theoretical justification other than the wish for dissipation
to increase rather than decrease magnitudes. The Knight et al. approach, which
will be discussed in Section 5, requires other conditions beyond (45) having to do
with causality, and was motivated by theoretical concerns rather than intuition.

We reformulate the text as follows: “A commonly cited interpretation of con-
dition (20) is that, for increasing z, the exponential term exp(kyApz) will tend to
be damped more for ascending modes than for descending modes; conversely, for
decreasing z, the roles of ascending and descending modes are reversed. How-
ever, such a classification of upgoing and downgoing roots (e.g., Volland [6] and
related works) was primarily heuristic and lacked a rigorous theoretical justifi-
cation. By contrast, the approach of Knight et al. [16], which is discussed in
Section 4, introduces additional constraints beyond condition (20) that are ex-
plicitly related to causality and is therefore grounded in theoretical considerations
rather than heuristic arguments.”

Line 299. It would make sense to say “a numerical multilayer method (Knight
et al., 2022)” here instead of “nonstandard.” Note that the term “nonstandard”
does not appear in Klostermeyer (1972).

We replaced “nonstandard” with “a numerical multilayer method [9,15,16]”
as suggested.

Lines 313-321. Why is it necessary to apply (61) and (62)? It appears
that the method would work setting S 1 to the identity matrix and S 0 to the
diagonal matrix of exponential terms or by setting S 1 to the diagonal matrix of
inverse exponential terms and S 0 to the identity matrix. What specific problem
does applying the condition Re(A,;) > 0 etc., prevent?

In the revised manuscript the scaling matrices are denoted by Kj and K?,
and the layer matrices are written as Al ; = K} (V;'Vi41) and AY, = K},
To explain the role of the scaling matrices, we included the following text: “The
scaling matrices Kl1 and K? prevent a possible blow-up of the exponential terms
for Re(An;) > 0 and Re(An) < 0, respectively. Such scaling techniques are stan-
dard in radiative transfer theory and are commonly used to obtain stable nu-
merical algorithms for computing the radiance field in multilayered atmospheres
[29,30].” To verify the robustness of the approach, we performed a series of
simulations in which the number of altitude levels was reduced from 800 to 400,
200, 100, and 10, corresponding to an increase in the grid spacing A; from 0.5
km to 42 km. In all cases, the results remained stable and reliable.

Line 313 says “To obtain a stable system of equations.” Does the banded-
matrix method not work without dividing up the diagonal terms this way? This
step of dividing up the diagonal terms is not needed with the scattering-matrix
approach. It is not done in the Knight et al. references.

In general, the computation of the matrix exponential exp(Ax) becomes
numerically problematic when the argument of the exponential term exp(Ax)
is large, that is, when Az > 1. For small values of Az, no serious numerical



difficulties arise. In radiative transfer theory, it is well known that the global
(banded) matrix method requires such scaling to ensure numerical stability,
whereas the scattering-matrix approach does not. The reason is that, in the
latter case, the interaction principle equation is inherently numerically stable.

Lines 348-353. These lines do not need to be included. It says “For the
continuity equations and the boundary conditions to be consistent ...” There
does not appear to be any need for such consistency. If there is no numerical or
mathematical reason for (72) and (73), then there is no need to include them.

These lines have been removed and Egs. (72) and (73) have been deleted.

Line 354. I suggest beginning by saying something like “Here define an
alternative type of lower boundary condition ...”.

We revised the text to begin with the sentence: “An alternative type of lower
boundary condition was proposed by Knight et al. [15,16].”

Line 356. For clarity, it should be stated here that eq. (74) is a generalization
of Knight et al. (2022, eq. 2.19), which refers to the first state variable rather
than an arbitrary state variable.

For clarity, we now state: “Note that Eq. (47) generalizes Eq. (2.19) in Ref.
[15], which is formulated for the first state variable rather than for an arbitrary
state variable.”

Line 356. The following is for the authors’ information. The motivation for
this form of the lower boundary condition comes from Knight et al. (2019, eq.
3.5), which is used in the statement of Knight et al. (2019, Theorem 1). For
causality results, it is necessary to formulate boundary conditions in terms of
state variables rather than modes, since modes are in the frequency domain.Note
also that Knight et al. (2022, eq. 2.19) should be used with caution in cases
where conditions are nearly inviscid at the lower boundary. See Knight et al.
(2024, eq. 5.5).

We added the following explanation to the manuscript: “The boundary con-
dition (48) is a localized condition that prescribes the value of a single state
variable while enforcing vanishing slope and curvature at the boundary. It ef-
fectively acts as an external driver applied to one variable and is appropriate
for non-harmonic source functions. Note that this form of the lower boundary
condition is used in the statement of Theorem 1 in Ref. 16. For causality con-
siderations, boundary conditions must be expressed in terms of state variables
rather than modal amplitudes, since modes are defined in the frequency domain.”

Line 364. The symbol A is overused in this paper. See lines 267 and 300,
for instance. Also, a similar symbol is used for the continuity equation and the
global matrix. A different symbol should be used here.

We replaced the symbol A with B to avoid overuse.

Line 377. Move the explanation at lines 383-386 to before eq. (83). Other-
wise, the term as is confusing.

In the revised manuscript the index s, which indicates the dependency of a
perturbed quantity on the source factor, has been removed in Section 4 (Source
function).

Line 381. “The matrix A has 3M — 1 sub- and super-diagonals.” Give the
numbers of sub- and super- diagonals separately. Are these distinct from the



diagonal? 3M — 1 does not seem right. It looks like there should be 4M diagonal
bands total.

We revised the text to read: “The matrix A has 3M — 1 sub- and superdiag-
onals (excluding the main diagonal)...”

Line 382. Give more specifics on the method used to solve the banded-matrix
equation, including the software package and/or a book or article reference. Do
you actually invert the banded matrix or do you solve a linear equation of the
form Av = b This will make a difference in numerical efficiency. Your global
matrix is extremely ill-conditioned due to the very large and very small dissipa-
tive wavenumbers towards the inviscid end of the altitude range. One benefit of
the scattering-matrix approach is that it avoids this problem, at least as formu-
lated in Knight et al. (2019). It would be interesting to see some discussion of
how your banded-matrix method avoids the problem of ill conditioned matrices,
especially with a lower boundary at or below 50 km altitude, where kinematic
viscosity is very small.

We added the following explanation to the manuscript: “The matriz A has
3M — 1 sub- and superdiagonals (excluding the main diagonal) and can there-
fore be stored in banded form and treated using standard band-matrix techniques.
To solve the resulting banded system of linear equations, we employed the LA-
PACK routines ZGBTRF and ZGBTRS. The routine ZGBTRE' performs an
LU factorization with partial pivoting of the complex band matriz, and ZGBTRS
subsequently uses this factorization to solve the linear system for the prescribed
right-hand side. In this approach, the inverse of the full system matriz is not
computed explicitly, which improves the computational efficiency.” Moreover,
for lower boundary conditions imposed at 40, 45, 50, 60, 70, 75, and 80 km, we
found that all solution methods yield nearly identical results. Accordingly, the
maximum values of the perturbed vertical velocity are 50.86, 20.35, 14.57, 14.19,
16.16, 8.39, and 3.44 m/s. In these simulations: the horizontal wavelength is
Ax = 400 km, the wave period is Ay = 40 min, the imaginary frequency shift
for a single-frequency wave is 107 s7!, and the lower boundary conditions are
imposed on the vertical velocity with fi,o =1 x 1072 ms™1.

Lines 393-395. It is not clear why the authors feel the need to state this
condition. Generally, in discussion of linear methods, it goes without saying
that the approximation is valid in the asymptotic limit of small perturbations.
It does not appear that the authors have an actual estimate of the range of
validity of their linear equations, so why bother stating eq. (88)? Knight et al.
(2024, eq. 6.2) give a condition for wave breaking, but weakly nonlinear effects
can occur at smaller amplitudes. Unless the authors can give a good reason for
including eq. (88) and the related discussion, it should be deleted.

In the revised manuscript, we clarified that the amplitude of the source
function is specified through a normalization condition rather than as a strict
criterion for linear validity. Specifically, we determine the amplitude of the
source function by imposing a lower-boundary value on the amplitude of the
perturbed temperature, horizontal velocity, or vertical velocity. We added the
following text in Section 4: “The amplitude of the source function A is specified
by imposing the normalization condition: |Re{f, (v = 0,z1,t0)} = foqy, for



some prescribed boundary value fiq, > 0. For example, in the case qo =1, fiq,
may be chosen as a fraction of the maximum horizontal velocity of neutrals in
the south direction over the altitude range, whereas in the case qo = 3, fpq, may
be chosen as a fraction of the maximum temperature of neutrals over the altitude
range.”

Lines 399-400. This statement is problematic because s is in the frequency
domain up to here, while in Section 5 it becomes a time-dependent function. I
suggest rewording so that the term s is not explicitly mentioned.

As noted above, in the revised manuscript the source factor s appears only
in Section 4. For time-dependent wave packets, we now state: “Applying the
Fourier transform to Eq. (81) and using Eqs. (79) and (80), we obtain the
following boundary conditions in the frequency domain (note that AS(w) is the
Fourier transform of As(t)):
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Comparing Eqs. (86) and (48), we see that the latter corresponds to the choice
bi2 = big = 0. In this case, the source factor s = by can be identified
with AS(w).“ Similarly, for a single-frequency wave, we state: “Accordingly, the
localized boundary conditions are imposed directly on the harmonic amplitudes
at wg, namely

Fogo(21,w) = AS(w), (z1,w) =0,

(z1,w) = 0.
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Again, by comparing Eqs. (98) and (48), we see that the source factor s = by 1
can be identified with A.”

Line 403. Do 1 and 2 correspond to + and -7 State this earlier.

We clarified this point by adding the following explanation: “We consider
the continuity equation (38) and partition the matrices Af’lﬂ, with i = 0,1,
as...”

Lines 406-408. There is a notational conflict with egs. (61-62), since this
reuses the symbol S.

The scaling matrices are now denoted by K} and K

Line 410. Where does the term “interaction principle” come from? Line 414.
Give a reference for this formulation of the scattering matrix. Lines 424-427.
Give a reference for these equations. They are similar to Knight et al. (2019,
egs. 4.30-33), for instance. Line 102. Give a reference for this equation. It is
similar to Knight et al. (2019, eq. 4.34), for instance.

The term “interaction principle equation,” the concept of a “stack,” as well
as the term “adding formulas” are standard in radiative transfer theory. As
examples, we indicated Refs. [31,32]. We also note: “Note that Fgs. (68)—(71)
are mathematically equivalent to Eqs. (4.80)—(4.88) in Ref. [16]”.

Line 441. I find Section 4.2 problematic and think it should be deleted.
In Section 6, it is seen that there is no advantage in using the formulations
in Section 4.2, so why add all of this unnecessary detail? If you think it is
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important, then summarize this alternative in a few sentences, including the
finding in Section 6 that it offers no advantage. That aside, the use of the word
“discrete” in the title of this section is unclear. In what sense is it discrete? How
is it any more discrete than the approach of Section 4.17 Discrete ordinates are
mentioned in the introduction, but that does not appear to be related.

We agree with the reviewer that Section 4.2 does not offer a practical ad-
vantage. Accordingly, Section 4.2 has been deleted from the main text. The
solution methods described there, which we consider to be of purely theoretical
interest, have been moved to Appendix C, entitled Solution methods for the
grid-point values of the state vector. In addition, the term “discrete values” has
been replaced by “grid-point values” to avoid ambiguity.

Line 554. Shouldn’t b1,k depend on w?

Yes, b1,1 depend on w; this is clarified in our response to the comment
referring to Lines 399-400.

Lines 563-565. This sentence about the separable case appears to be unnec-
essary.

The sentence has been deleted.

Line 572. It should be mentioned that in Knight et al. (2024, eq. 2.29) a
relaxed condition is given, in which the bounds are allowed to vary with attitude.

In Section 4, we added the following text: “Knight et al. [11] subsequently
relazed the requirement that (106) hold for all layers | for a fized o. The new
condition, which we refer to as the Layerwise Causality (LC) condition, requires
that at each layerl there is a o; such that

Re[\f(w — j8)] < o1 < Re[Aj;(w — 0], (1)
for all w € R. Equivalently, if at each layer I,
di(w) = Re[Ay;(w — j8)] — Re[fy(w — 50)] > 0, (2)

for all w € R, then the multilayer algorithm will still preserve causality. The
LC' condition requires a strict separation between the two eigenvalue families
within each layer, but it does not require that the same separator works for all
layers. Thus, each layer may have its own separating value o;. FEquivalently,
di(w) > 0 means that, in layer , the real parts of the eigenvalues associated with
the ascending and descending gravity waves remain separated (and therefore do
not cross) as functions of the real frequency w after the shift.“

Lines 577-594. Since imaginary frequency shifting is not used in this work,
much of this summary should be deleted. Regardless, the explanation given
here is incomplete, in that there is no indication of how § was selected. Meth-
ods for determining the minimum sufficient § are described in Knight et al.
(2019,2021,2022). Instead of giving this summary, the paper should say that
the imaginary frequency shifting technique was not applied and that further
study is needed to determine the effect. Also, below I will suggest a new figure
for Section 6 that will give a good indication of whether problematic branch
points are present. If there are problematic branch points, they will primarily
affect nearby frequencies.
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Lines 590-594. The problem of the numerical blowup associated with the
exponential growth term is discussed at length in Knight et al. (2021, App.
B) and should be cited here. Numerical blowup is especially a problem for
large time domains. If, in future work, you are unable to obtain results without
the blowup, then I suggest reducing the size of the time domain and consid-
ering narrower time wave packets. Care is needed in selecting 6. It should be
large enough to prevent the crossing seen in Knight et al. (2019, Fig 2b), but
not much greater than that. Rigorous methods are discussed in Knight et al.
(2019,2021,2022), but it would suffice to look for the curve-crossing issue. I
recommend replacing the discussion from line 577 to 594 with brief references
to Knight et al. (2019, Section 3.4) and Knight et al. (2021, Section 2.4). You
can mention that you encountered the numerical blowup problem mentioned in
Knight et al. (2021, App. B) and that further study is needed to resolve this is-
sue. It is good that you introduce imaginary frequency shifting in lines 570-675,
however, since that allows you to explore the effect of § on the root-crossing
issue illustrated in Knight et al. (2019, Fig. 2b).

In the new algorithm implementation, we employ an imaginary frequency
shift. In Subsection 4.3, we summarize the imaginary frequency shift approach
and conclude the discussion with the following text: “A potential numerical issue
with this approach is that a large frequency shift §, while ensuring the causality
condition, may amplify rounding errors when recovering féq from fésq through
the exponential term exp[d(t —tg)]. For large t, this may lead to an uncontrolled
growth of the right-hand side of Eq. (115). Therefore, care is required in select-
ing 0: it must be large enough to ensure the layerwise causality condition , but
not significantly larger than that. Rigorous methods for determining the mini-
mum sufficient 6 were described by Knight et al. in Refs. [15,16,17], while the
numerical blow-up associated with the exponential growth term was discussed in
Appendix B of Ref. [17]. In our implementation we employ a heuristic approach
that combines (i) the Layerwise Causality (LC) condition applied at selected al-
titude levels, and (ii) a Source-Function Reconstruction (SFR) test. First, an
admissible interval [Omin, Omax] s constructed by enforcing the SFR criterion,
and within this interval, the LC condition is applied at selected altitude levels to
obtain a refined lower bound dmin. In the final selection step, a discrete set of
candidate shifts is evaluated, and for each candidate the LC condition is checked
over the entire altitude range. Among all shifts that satisfy causality at all alti-
tudes, the algorithm selects the one whose maximum-amplitude vector is closest
to the center of mass of the admissible solutions. A detailed description of this
approach is provided in Appendiz D.” Thus, the imaginary frequency shift ap-
proach is discussed in Appendix D. In Section 6 (Numerical Simulations), we
illustrate how this algorithm operates in practice.

Lines 594-607. This alternative approach should not be included in the pa-
per. In practice, it is impossible to verify (157) rigorously without Titchmarsh’s
theorem (Knight et al., 2019, Section 2). A concise statement of the causality
condition is given in the short paragraph following the proof of Lemma 1 in
Knight et al. (2019, Section 2). Using the notation given there, the condition
B(t) = 0 for ¢ < 0 can be required for the lower boundary condition 3, but
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Titchmarsh’s theorem is needed to establish it for w (Knight et al., 2019, eq.
2.4).

We agree with the reviewer and have therefore removed this alternative ap-
proach from the manuscript.

Line 608. It does not appear that the horizontal wavenumber or wavelength
is ever given in Section 6. It is important to specify this.

In Section 6, we have now specified the values of the horizontal wavelength
and the wave period.

Lines 613-616. Methods 3, 4, and 5 should not be included here, given that
they offer no advantages in accuracy or efficiency. The derivations in Section 4.2
do not seem scientifically interesting, given that they mostly rearrange terms
from Section 4.1. (The Pade approximation would be of interest if it actually
provided advantages, but it does not, so there is no apparent need to mention it
except perhaps very briefly.) Method 2 is of interest because a related method
is currently in use for atmospheric gravity waves (referring to the Knight et al.
work).

In the code, we implemented the following methods: the Global Matrix
Method for the Amplitudes (GMMA) of the characteristic solutions; the Scatter-
ing Matrix Method for the Amplitudes (SMMA) of the characteristic solutions;
and the Global Matrix Method for the Nodal (grid-point) values (GMMN) of
the state vector. The first two methods are described in the main text, whereas
the third method is described in Appendix C. We do not wish to omit the third
method, because it is the approach commonly used in radiative transfer the-
ory, where the solution is formulated in terms of the grid-point values of the
radiance.

Line 620. This does not look like a complete list of background parameters.
It might be complete with p0 , cv , and Pr added.

In Section 6, we have now specified the value of the Prandtl number and
added the following text: “Background atmospheric parameters. The code pro-
vides altitude-dependent profiles of the input parameters used in the numerical
model. These include the temperature, mass density, pressure, southward hori-
zontal velocity, atmospheric scale height, density scale height, specific heat capac-
ity, ratio of specific heats, sound speed, number density of OF ions, neutral-ion
collision frequency, ion—neutral collision frequency, and the diffusion velocity.
In addition, altitude derivatives of the temperature, horizontal velocity, mass
density, pressure, density scale height, and ion number density are also pro-
vided. As an illustrative example, Fig. 1 shows the background temperature
To, horizontal velocity ug and the ton number density n;g, together with their
corresponding altitude derivatives.”

Lines 520-525. What are the input parameters for SAMI2 and HWM?

We have added a new section, namely Section 5 (Numerical Implementation),
in which the input data and their use are described in detail. We now state: “The
code uses as input the data file produced by the International Reference Iono-
sphere (IRI) code available at https://ccme.gsfe.nasa.gov/models/IRI~2016/ is
used. From these date, we read
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1. the date (year, month, and day) and the time,

2. the geographic latitude and longitude,

3. the magnetic dip angle,

4. the solar radio flux f10.7 and its 81-day average,

5. the number density of O ions as a function of altitude.

In its present implementation, the IRI data files correspond to the locations
summarized in Table 1. The altitude grid extends from zmin = 80 km to zpmax =
500 km with a step size of dz = 1.0 km. Users may generate custom data files
by running the IRI code and specifying the corresponding file names in the input
namelist.

The IRI data are subsequently used in a manner analogous to that in the
SAMI2 model of the Naval Research Laboratory (hitps://github.com/NRL-Plasma-
Physics-Division/SAMI2). In the present implementation, the ionospheric equa-
tions follow the SAMI2 framework originally developed by Huba et al. [40] and
described in detail by Huba [41]. In SAMI2, the neutral atmospheric parameters—
namely the neutral number density, total mass density, and temperature—are
specified using the MSIS family of models. In this study, these parameters are
based on the MSIS formulation of Hedin [42], while we note that more recent
updates are provided by the NRLMSIS 2.0 model of Emmert et al. [43]. The
meridional and zonal winds are specified using the Horizontal Wind Model. In
the present implementation, we follow the formulation of Hedin et al. [44], while
more recent updates are described by Drob et al. [45].” In addition, at the be-
ginning of Section 6 we now specify the numerical input used in the simulations:
“The simulations are performed using, as input, an IRI data file corresponding
to the EISCAT Tromsg (auroral) location on 11 February 2012 at 10:00. The
solar zenith angle is 84.2°, the magnetic inclination angle is 78.28°, the daily
solar radio flux F10.7 is 109.4 sfu, and the 81-day averaged solar radio flux
is 116.9 sfu, where 1 sfu = 10722 Wm 2Hz"'. In the simulations, the Prandtl
number is 0.66, the magnetic index is 7.0, and the horizontal wind model 14
implemented in SAMI2 is used. The altitude grid extends from 80 km to 500
km and contains 801 grid points. The lower boundary can, in principle, be
set to smaller altitudes (e.g., 50 km), but we choose 80 km because this level
is typically adopted as the lower boundary for ionospheric equations. Unless
stated otherwise, the horizontal wavelength is A\, = 400 km, the wave period is
At = 40 min, and the imaginary frequency shift for a single-frequency wave is
1076 s71. The lower boundary conditions are imposed on the vertical velocity
with fre =5 x 1072 ms~! in Eqs. (85) and (101).”

Line 627. pg , ¢, , and pg should also be shown in a figure. The density scale
height H, should also be shown.

The freely available code computes these quantities, among others, as altitude-
dependent input parameters. In order to avoid an overabundance of figures
showing background profiles, we decided to display only the background tem-
perature, the horizontal velocity, and the ion number density, together with
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their corresponding altitude derivatives, as representative examples of the input
data.

Lines 649-652. I suggest omitting the Fourier transform in the altitude di-
mension. There are several reasons for this: 1. It is confusing, since it means
that there are two types of vertical wavenumbers, one obtained from the verti-
cal structure equations and one obtained directly from the Fourier transform.
2. It creates notational ambiguity, since the same notation is used for both
types of vertical wavenumbers. 3. Taking the Fourier transform in the vertical
dimension does not make sense given that the vertical wavenumbers coming
from the vertical structure equations include both real and imaginary parts.
See Knight et al. (2025, Section 4.2, first paragraph). Vertical wavelengths are
not defined, strictly speaking, when significant dissipation is occurring. 4. The
Fourier transform makes the most sense with periodic or unbounded domains,
neither of which applies to the altitude dimension. Aside from that, the values
given here are difficult to interpret. If the vertical Fourier transform is left in
the paper (which I recommend against), then the actual value for Ak, should
be given, and NyAk, should approximately equal 450 km. Line 655. Give a
reference for the nonuniform Fourier transform.

We agree with the reviewer’s assessment and have removed the consideration
of the Fourier transform in the altitude dimension from the revised manuscript.

Lines 665-672. There is no need to include this discussion, and it should be
deleted, along with Figure 2. Figure 2 merely confirms that the derivations in
Appendix A.2 are correct, and it should go without saying that they are correct.

Lines 673-689. Again, methods 3, 4, and 5 should be omitted, making Fig-
ure 3 unnecessary. Continuing with lines 673-689, Figure 4 probably becomes
unnecessary if it is just a comparison of the first two methods. Given M = 3, 1
would expect about factor of three ratio of processing times between methods
2 and 1, assuming that the banded-matrix method solves the linear equation
Awv = b directly rather than inverting A. This is because the scattering-matrix
approach effectively solves for a general three-dimensional lower-boundary con-
dition, meaning that it does more computations than would be needed for a
specific lower-boundary condition, in principle. The ratio in Figure 2 is more
like a factor of five. This makes me wonder whether your scattering-matrix
computations are done as efficiently as they could be. Rigorous analysis of the
computational steps involved with methods 1 and 2 would be needed to clarify
this. I am not suggesting that such analysis be included in the current paper,
but I would like for your paper to mention that more rigorous analysis is needed
to make the result definite.

We agree with the reviewer’s assessment. In the revised manuscript, Fig-
ures 2, 3, and 4 have been removed, and the corresponding discussion has been
deleted. Instead, we now include the following concise summary: “Accuracy
and efficiency of the solution methods. Taking the global matriz method for am-
plitudes as a reference, we find that the relative root-mean-square errors in the
perturbed temperature, vertical velocity, and horizontal velocity obtained with
the other two solution methods are smaller than 1075, Thus, all methods ex-
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hibit comparable accuracy. On the other hand, we find that the scattering matriz
method is more time-consuming than the global matriz methods, particularly for
time-dependent wave packets. This is because the scattering matriz approach
requires numerous matriz operations in each layer, whereas solving a system of
equations compressed into band storage is computationally less expensive.” We
deliberately leave open the possibility for users to further improve the imple-
mentation of the scattering-matrix method and, eventually, its computational
efficiency. Instead of these figures, we have included Fig. 3, which shows the
altitude profiles of the perturbed temperature, vertical velocity, and horizontal
velocity computed using the general and simplified models.

Lines 690-701. It is not clear what is gained by merely comparing results for
different values of kw . This is because there is no way of knowing to what extent
differences in neutral-atmospheric dynamics are contributing to the differences.
To clarify this, I recommend combining the results in the upper panels of Figure
5 with the results shown in Figure 8 in the same figure (maybe a different figure
for each state variable) and discussing these results together. I would give results
without ion damping for each of the three kw values so they can be compared
in each case. Why are the apparent vertical wavelengths in the upper panels
of Figure 5 so similar for the three kw 7 As mentioned above, I could not see
where you specified the horizontal wavelength. The vertical wavelength coming
from the vertical structure equations should change with xw , assuming that the
horizontal wavelength is kept fixed. These issues need to be clarified in Section
6. As indicated above, I recommend omitting the type of analysis shown in the
lower panels of Figure 5 and in Figure 6. You can replace it with a comparison
of results for the three kw values, with and without ion damping, as described
above. If you want to talk about vertical wavenumbers, I recommend looking at
vertical profiles of the upgoing gravity-wave roots and interpreting differences
in model results in terms of those. It would also be good to include discussion
of previous analysis of the effects of ion damping on gravity waves and relate it
to your present work.

In the previous implementation, an error was present in the coefficient of
thermal conductivity, which was set to A\g = 6.71 X 10’7T8'71 instead of the
correct value \g = 6.71 x 107473-™, thereby substantially reducing the effect
of thermal conduction in favor of ion-drag effects. After correcting this error,
we have revised the numerical analysis accordingly. In the revised manuscript,
Fig. 8 of the previous version has been replaced by a new Fig. 4, which focuses
explicitly on the effect of ion drag. The new Fig. 4 includes the following
explanation: “Ion Drag. The effect of ion drag on the perturbed temperature,
vertical velocity, and horizontal velocity is illustrated in Fig. 4. A moderate
attenuation is observed in the altitude range from 180 to 350 km, where the
ton number density is relatively high. When E x B drifts are not included, ion
drag does not exhibit the classical regime in which auroral convection strongly
drives the neutral atmosphere. Instead, ion drag mainly arises from diffusion-
and pressure-gradient-driven ion motion along the magnetic field, as well as
from any relative ion—neutral motion induced by neutral winds. Consequently,
ton drag does not constitute the dominant forcing mechanism for the neutral
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perturbations in this configuration.”

After Fig. 4, we included a new figure, namely Fig. 5, illustrating the influ-
ence of the horizontal wavelength A\, and the wave period A\; on the perturbed
quantities. We found these effects to be of interest and summarize them as
follows:

1. “Horizontal wavelength. As the horizontal wavelength increases, horizontal
pressure gradients become weaker, which reduces the driving of the wave
motion. This also weakens the coupling between horizontal and vertical
motions, resulting in smaller gravity-wave amplitudes.”

2. “Wave period. As the wave period increases, the buoyancy restoring force
acts more slowly, leading to weaker oscillations for a given forcing. In
addition, dissipative processes such as viscosity and thermal diffusion act
more effectively on low-frequency waves, further reducing their amplitudes.”

Lines 702-722. Pairwise classification of vertical wavenumbers is less important
than being able to divide the roots into separated upgoing and downgoing sets.
Figure 7 should include more descriptive titles and labels giving the meaning
of the panels. The figure caption is difficult to interpret because it merely
refers to equation numbers without reminding the reader of the meaning. While
Figure 7 illustrates the differences between two governing-equation assumptions
(i.e., locally varying and constant kinematic viscosity) in their effect on vertical
wavenumbers, which is of some value, it does not say much about whether the
roots can be separated into upgoing and downgoing sets. To do this, one would
need to look at how the roots vary with frequency. This applies even for fixed-
frequency cases. I recommend giving a figure like Knight et al. (2019, Fig. 2b)
for several different altitudes, e.g., 150, 250, 350, and 450 km. If any of the roots
cross like in Knight et al. (2019, Fig. 2b), it means that there is a problematic
branch point nearby. Generally, there is no problem for single-frequency results
provided that the frequency is far from the problematic branch point. Even
though the global method does not explicitly require upgoing and downgoing
modes to be defined at intermediate altitudes, the solution still may not be valid
without appropriate imaginary frequency shifting for problematic branch points
occurring over the entire altitude range. I hope to write a paper clarifying these
issues in the future.

In the revised manuscript, Fig. 2 is now the counterpart of Fig. 7 from
the previous version and has been substantially revised, including clearer titles,
labels, and an expanded caption. The new Fig. 2 includes the following ex-
planation: “In the upper and middle panels of Fig. 2, we plot the imaginary
part of the vertical wavenumber for ascending (k) and descending (k.4) grav-
ity waves, computed using the general and the simplified models, respectively.
The plots demonstrate that only in the latter case do the vertical wavenumbers
appear in pairs. In the former case, a problematic altitude range for gravity
waves is observed between 80 km and 120 km, where the imaginary parts of the
vertical wavenumbers for the ascending and descending modes are nearly iden-
tical, being either both positive or both negative. In the lower panel of Fig. 2,
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we show the imaginary part of the vertical wavenumber k, for all wave types
(kunym = 1,...,6), computed using the general model. The plots reveal a clear
distinction between gravity waves and viscosity- and thermal-conduction waves.
However, the wviscosity and thermal-conduction waves are very close to each
other. In the upper panel of Fig. 2, we also compare the imaginary part of the
vertical wavenumber computed with and without ion drag. No pronounced effect
of ion drag on the vertical wavenumber is observed. A small effect appears in the
altitude range from 180 to 300 km, where the ion number density is relatively
high. This finding is consistent with the results of Shibata [43], who showed that,
for gravity waves, plasma diffusion is of minor importance with respect to the
vertical wavenumber, which is mainly controlled by dissipation due to viscosity
and thermal conduction in the neutral gas.” We emphasize that, in Fig. 2,
the pairwise classification of vertical wavenumbers for the simplified model is
included primarily to support the statements in Section 2 and the dispersion
equation in Appendix A. The crossing of the curves corresponding to the real
parts of the eigenvalues associated with ascending and descending gravity waves
as functions of frequency is encapsulated in the Layerwise Causality (LC) con-
dition. In the code, this condition is checked first at selected altitude levels
and, in a second step, over the entire altitude range. If the LC condition is not
satisfied, an error message is issued and, in the second case, the corresponding
solution is considered invalid. Finally, we note that a routine for plotting the
eigenvalue curves as functions of frequency could, in principle, be incorporated
into the code without difficulty. However, we do not regard this as necessary for
the purposes of the present study (code description), since any user with access
to the freely available source code can readily generate such plots and carry out
this analysis independently.

Line 718. “The ion-drag is important for time frequencies . ..” Give a specific
reference for this.

This sentence has been removed from the revised manuscript.

Lines 718-722. As mentioned above, this discussion should be combined with
the discussion in lines 690-701. Also, the results discussed here are puzzling. It
says there is complete agreement between results with and without ion drag for
kw = 1.2. This does not seem possible. Surely, ion drag would have some effect.
The authors should double-check this and provide further explanation if there
really is no effect. In particular, they should look at the vertical wavenumbers
(obtained from the vertical structure equations) and see whether there is any
difference. Aside from this, the caption of Figure 8 is puzzling. Case (a) is with
ion drag excluded. What is kw for (a)? If kw = 0.8 for (a), then the similarity
between results for (a) and (b) makes even less sense, given that xw = 1.2 for
(b). The wording here and in the text should be made clearer, and errors, if
any, should be corrected.

The numerical analysis related to the effects of ion drag has been revised. We
refer to our response to the comments on Lines 690-701 for a detailed description
of the corrections and the revised interpretation.

Lines 723-726. These lines should be deleted. Figure 9 gives a comparison
of nearly identical results, and if the results are identical there is most likely a
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trivial reason for it, so the discussion, along with Figure 9, does not need to be
included.

Lines 723-726 and Fig. 9 have been deleted from the revised manuscript.

Lines 733-738. This is similar to some previous work, which should be cited.
Knight et al. (2019) defines the “transmission-only” approximation, which is
similar to your eq. (118), and Knight et al. (2021) discusses a single-mode
approximation, which is related to the transmission-only approximation. Ad-
ditionally, Knight et al. (2019, Section 6) shows the upgoing and downgoing
contributions to a wavefield. Although (118) is introduced in Section 4.2, which
I recommend deleting, it should be possible to give very similar definition in
Section 4.1.2.

We have revised this part of the manuscript and now explicitly relate our
formulation to the work of Knight et al. In particular, the new Fig. 6 addresses
the computation of ascending and descending wave modes and is explained
as follows: “The ascending and descending solution modes in layer I, denoted
by elJr and e, , respectively, can be computed using the GMMA through Eq.
(61) or using the GMMN via the recurrence relations (269) and (270). The
total solution mode e;, obtained from Eq. (59) in the GMMA formulation and
by solving Eq. (266) in the GMMN formulation, should satisfy the relation
e = el+ +e; . In all our simulations, this identity is satisfied. Furthermore, the
results shown in Fig. 6 indicate that the ascending mode is dominant, except in
the altitude range between 120 km and 180 km in the case of the general model.
This finding, which is consistent with the results presented by Knight et al. [16]
(see their Fig. 6), suggests that in a simplified model one may assume the
ascending modes to be dominant at altitudes above 200 km, that is, e; ~ el+ for
l=1,...,L. Under this assumption, the state vector can be computed using the
upward recurrence relation (269). In Ref. [17], this approach was referred to as
the transmission-only approrimation, whereas in Ref. [16] a related single-mode
approrimation was introduced.”

Lines 747-748. This reflects a naive view of causality. Causality is really
about whether upgoing and downgoing modes are defined and valid. For fre-
quencies near problematic branch points, asingle-frequency solution will be in-
correct, regardless of whether the peak in amplitude seems to be moving with
altitude.

Lines 749-756. This discussion is problematic. Firstly, Figure 15 is the
wrong type of plot for analyzing issues with causality, i.e., whether upgoing
and downgoing roots are valid. What is needed is a figure like I described for
lines 702-722 above, showing the imaginary parts vs. frequency. There is no
indication of how the § value was selected. Note how in Fig 2b of Knight et al.
(2019), two roots cross, while in Fig. 2d they do not cross. This indicates that
the § value used in Fig. 2d was sufficient. If § is not large enough to prevent the
roots from crossing, then it will not work. The bottom three panels of Figure 15
should be omitted. To really assess the effect of problematic branch points, you
need a solution that is known to be correct. Just observing that the solution
is small before ¢ = 0 is not sufficient. Regarding Figure 15, are the eigenvalues
specific to w0 ? This should be stated.
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We are grateful to the reviewer for these comments, which clarified our
understanding of the concept of causality and the role of problematic branch
points. In the revised manuscript, the previous Fig. 15 has been removed, and
the corresponding discussion has been deleted. The new Fig. 7 is now the
counterpart of Fig. 13 from the previous version.

Line 747. The extreme difference in computation time between methods 1
and 2 is very puzzling given that only a factor of five difference was seen for the
single-frequency case. What possible reason could there be for this? It seems
like this must be a mistake.

Lines 773-774. As discussed above for line 747, there is no apparent reason
why there should be a difference in relative efficiency between single-frequency
and time-varying cases.

In the revised manuscript, we no longer report the computation times of the
solution methods. Instead, we leave it to the user to assess the efficiency of the
implemented methods and, if desired, to further optimize their performance.

Lines 768-769. “The amplitude of the source function can be computed ...”
This is unclear. Why would one want to compute the amplitude of the source
function? Generally, one starts with the source and computes the wavefield from
that.

We agree with the reviewer’s comment. However, as explained in our re-
sponse to the comments on Lines 393—-395, in our approach the amplitude of the
source function is determined indirectly by imposing a lower-boundary value
on the amplitude of the perturbed temperature, horizontal velocity, or vertical
velocity. In other words, we prescribe the effect at the lower boundary and
infer the corresponding source amplitude, rather than prescribing the source
amplitude a priori, thereby prioritizing the effect over the cause.

Appendix A. Converting to non-dimensional form makes the equations more
complicated than they would be otherwise, and it also makes it impossible to
check equations via units.

Line 793. “A1-A4” is unclear. Does this mean eqs. (A1-4)? Maybe say “eqgs.
A1-A4 below”.

Lines 916-917. This statement is redundant with discussion in the main text.

Line 927. Say whether this is density or pressure scale height.

Line 940. Say “p0 = uk = constant”, etc., here.

Lines 997-1037. These lines would belong in a separate section, but I do not
think they should be included in the paper at all. If you have fresh insights into
Hines’ criticism, I suggest describing them briefly in the main text without any
additional equations.

Appendix A has been completely reformulated, and all of the reviewer’s
comments have been taken into account. In particular, the notation has been
clarified, redundant statements have been removed, ambiguous definitions have
been specified, and the extended discussion in Lines 997-1037 has been deleted.

Final comment: It would be advantageous for the authors to show that they
can reproduce a previous result. To this end, they could apply their method 1 to
the case illustrated by Figure 2a in Knight et al. (2022). It would be interesting
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to hear whether they get similar results, although it would not be necessary to
add a figure for this.

Our code is designed to operate with realistic, altitude-dependent back-
ground parameters, and for this reason it is not straightforward to reproduce
the results presented in Knight et al. (2022), which are based on a more ide-
alized configuration. However, we are able to reproduce the results reported in
Knight et al. (2024), which are formulated within a framework more consistent
with the present model.

New References Knight, H., Broutman, D., & Eckermann, S. (2024). Com-
pressible and anelastic governing- equation solution methods for thermospheric
gravity waves with realistic background parameters. Theoretical and Compu-
tational Fluid Dynamics, 38(4), 479-509. https://doi.org/10.1007/s00162-024-
00709-x Knight, H. K., Richards, P. G., Martinis, C. R., & Goncharenko, L.
P. (2025). Modeling MSTIDs produced by gravity waves with parameters ob-
tained from all-sky imager observations and comparisons to incoherent scat-
ter radar observations. Journal of Geophysical Research: Space Physics, 130,
€2025JA033906. https://doi.org/10.1029,/2025JA033906.

We have included these references in the revised list of references.
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Abstract

We developed a numerical model for solving the linearized gravity-
wave equations using a multilayer approach that explicitly accounts for
viscosity, thermal conduction, and ion drag. The solution strategy is based
on a matrix-exponential formalism and comprises two classes of methods:
global matrix methods and scattering matrix methods. The model sup-
ports both single-frequency waves and time-dependent wave packets. Par-
ticular emphasis is placed on the global matrix method, which exploits the
structured form of the multilayer system to achieve high computational
efficiency while maintaining numerical accuracy. Numerical experiments
demonstrate that all methods yield identical accuracy, although the global
matrix method is significantly more efficient than the scattering matrix
method, especially for time-dependent wave packets. The impact of ion
drag on wave characteristics is quantified within this framework. The
implementation is freely available as open-source code on GitHub.

1 Introduction

Time-step methods [1, 2, 3] are commonly used to solve fully nonlinear sets of
governing equations for upper-atmospheric gravity waves, thereby allowing the
modeling of wave breaking, secondary wave generation, and weakly nonlinear
effects. However, as compared to linear methods for gravity waves [4, 5, 6, 7,
8,9, 10, 11] they are computationally expensive. In Ref. [12] it was found that
a time-step model took several hours to run, while a linear method only took
several seconds. In this regard, linear methods are more suitable for analyzing
measured data.

The linearized equations can be transformed into a linear system of ordinary
differential equations with variable coefficients that depend on the background



atmospheric parameters and their height derivatives (the atmospheric parame-
ters are assumed to be horizontally uniform but vertically varying). A common
technique for integrating the linearized equations is the multilayer method first
applied by Pfeifer and Zarichny [13]. In this method, the atmosphere is divided
into a sequence of thin layers, and in each layer, a linear system of ordinary
differential equations with constant coeflicients is solved. The analytic wave
solutions in neighboring layers are matched by the continuity condition of the
variables across the interface. There are two methods for deriving a linear sys-
tem of ordinary differential equations with constant coefficients.

1. In the physical multilayer method, the atmospheric parameters, and in
particular, the temperature and wind velocity, are assumed to be constant
within each layer [4, 5, 6, 7, 8]. As a result of the piecewise constant
approximation, the height derivatives of the atmospheric parameters are
zero within each layer.

2. In the numerical multilayer method, the coefficients as a whole are ap-
proximated by their values in the middle of the layer [9]. As a result, the
height derivatives of the atmospheric parameters (approximated by their
values in the middle of the layers) are also included in the resulting system
of equations.

The criticism of physical multilayer methods by Hines [14] concerns whether the
equations describing the state variables in a layer are physically realistic. He
concluded that it is impossible to find the appropriate variables when either (i)
the viscosity and the wind velocity are nonzero or (ii) the thermal conductivity
and the temperature height derivative are nonzero. However, as mentioned by
Knight et al. [15], Hines’ concern about the physical meaning of the state vari-
ables is not relevant for a numerical multilayer method. The reason is that in a
purely mathematical context, it is sufficient to prove that the method, converges
to a correct solution in the infinitesimally thin layer limit. A justification of this
result, based on a matrix—exponential representation for the solution, can be
found in Ref. [10].

According to Volland [5], a layer is said to be isothermal if the background
temperature is constant, and homogeneous if the kinematic viscosity is constant.
In the case of an isothermal, homogeneous, and windless atmosphere, as in
Midgley and Liemohn [4], Volland [5, 6], Francis [7], and Yeh and Liu [8], the
dispersion relation, associated to the system of ordinary differential equations,
separates into three pairs of ascending and descending gravity-wave, viscosity-
wave, and thermal conduction-wave modes. The viscosity-wave and thermal
conduction-wave modes are also referred to as dissipative modes. The main
distinction between the two pairs of dissipative modes and the pair of gravity-
wave modes is that the latter have smaller vertical wavenumber imaginary parts.
This means that ascending gravity-wave modes do not decrease in amplitude as
rapidly with increasing altitude as dissipative modes. On the other hand, the
assumption of locally constant kinematic viscosity is unrealistic as discussed
in Ref. [16]. If one assumes instead that the dynamic viscosity is constant



within each layer, it is generally not possible to distinguish between ascending
and descending modes for certain wavenumbers, frequencies, and background
parameters [15, 16, 17]. In this context, Knight et al. [15] explained that the
problem of distinguishing ascending from descending modes is related to the
problematic branch points of the root functions giving the vertical wavenumber
as a function of complex frequency. Along this line, the authors proposed a
technique called imaginary frequency shift to assist in achieving this separation.

The inclusion of dissipative modes in a linearized model produces a numerical
swamping [18] in which certain descending modes grow so rapidly in the upward
direction that numerical overflow occurs when the system of differential equation
is subject to lower and upper boundary conditions. Several methods have been
proposed to reduce numerical swamping.

1. Midgley and Liemohn [4] employed an iterative method that can be re-
garded as a Gauss—Seidel group iteration. However, the Gauss—Seidel
iteration may fail to converge in certain situations, in particular when
gravity and dissipative modes become strongly coupled, as discussed in
Refs. [5, 6]. Klostermeyer [10] avoids this difficulty by introducing the
concept of a transfer matrix, which relates the wave amplitudes at differ-
ent altitude levels and provides a more robust framework for treating such
coupling.

2. Volland [6] applied the scattering matrix formalism to a three-layer atmo-
sphere assuming (i) abrupt changes in variables at the interfaces between
the different layers and (ii) that certain background parameters remain
constant in the lower and upper layers. Knight et al. [16] also formu-
lated the problem in terms of scattering matrices which are closely related
to the reflection and transmission matrices appearing in seismology [19].
However, in contrast to Volland, the authors used a more rigorous ap-
proach, i.e., a sequence of composed scattering matrices instead of just a
one stand-alone scattering matrix.

3. Maeda [18] defined numerical swamping as the annihilation of linear inde-
pendence among supposedly independent solutions. To address this chal-
lenge and obtain a comprehensive set of special solutions that are linearly
independent, he utilized a technique developed by Inoue and Horowitz
[20].

In radiative transfer, it is also necessary to solve a linear system of ordinary
differential equations with constant coefficients. This arises by transforming the
continuous dependence of radiance on directions into a dependence on a discrete
set of direction. The standard methods for solving the linear system of ordi-
nary differential equations are the discrete ordinate method [21, 22, 23, 24] and
the matrix operator method [25, 26, 27, 28]. In the classical discrete ordinate
method, the solution to these equations is expressed as a linear combination
of characteristic solutions of the discretized problem. Conversely, the matrix
operator method focuses on numerical computations of reflection and transmis-
sion matrices. Both methods can be formulated using the matrix exponential



formalism. In the framework of the so called discrete ordinate method with
matrix exponential, Doicu and Trautmann [29, 30] designed stable numerical
algorithms for computing the radiance field in a multi-layered atmosphere, while
in the framework of the matrix operator method with matrix exponential, Bu-
dak et al. [31, 32| provided explicit and stable representations for the reflection
and transmission matrices. A consistent overview of the matrix exponential
description of radiative transfer can be found in Ref. [33].

The main purpose of this article is to apply radiative transfer techniques to
solve the linearized gravity-wave equations. As a prototype, we will consider the
equations that describe gravity waves in the ionosphere, and that include vis-
cosity, thermal conduction, and ion drag. In principle, a full wave model for the
ionosphere comprises the hydrodynamic equations for the neutral atmosphere
and the ionospheric equations. These two sets of equations are coupled through
the ion drag, and should be solved together. However, to simplify the analysis,
we decouple the two sets of equations by adopting a fast field-aligned diffusion
approximation, which may be viewed as a generalization of an approximation
originally proposed by Klostermeyer [9].

Our paper is organized as follows. In Section 2, we present the derivation
of the matrix exponential solution of the linearized equations, while Section 3
describes stable numerical methods for computing the amplitudes of the charac-
teristic solution in a stratified atmosphere. Section 4, which is largely inspired
by the works of Knight et al. [11, 15, 16, 17], addresses the computation of the
perturbed quantities for both harmonic and non-harmonic source functions, that
is, for single-frequency waves and time-dependent wave packets. The concepts
of causality and the imaginary frequency shift, which are rigorously treated
in Refs. [15-17], are also briefly discussed. Aspects of the numerical imple-
mentation are addressed in Section 5, and representative simulation results are
presented in Section 6. Additional theoretical issues are discussed in the ap-
pendices. Appendix A contains the linearized hydrodynamic equations for the
neutral atmosphere and the derivation of the underlying system of differential
equations. Appendix B outlines the linearized ionospheric equations and dis-
cusses the assumptions employed to decouple the hydrodynamic and ionospheric
systems. Appendix C describes methods for computing grid-point values of the
state vector in a stratified atmosphere. Appendix D addresses several implemen-
tation issues, including a practical, albeit heuristic, approach for determining
the imaginary frequency shift.

2 Matrix exponential solution of the linearized
equations

To design a full wave model for the ionosphere, we use the hydrodynamic equa-
tions for the neutral atmosphere and the ionospheric equations. In a linearized
(perturbation) method, a quantity f is expressed as

f=rf+f, (1)



where fy and f’ are the unperturbed (background) and the perturbed quantity,
respectively. The perturbations are assumed to be small so that it is justified
to neglect all terms of higher than the first order.

Concretely, we solve the linearized hydrodynamic equations for the neutral
atmosphere together with the linearized ion continuity and momentum equa-
tions. The linearized neutral-atmosphere equations are solved under the follow-
ing assumptions:

A1. The geographic and geomagnetic coordinates are identical.

A2. The wave propagates in the meridional plane (the z-coordinate is positive
southwards while the z-coordinate is positive upwards), i.e.,

A3. All background (unperturbed) quantities vary only in the z-direction, i.e.,

fo = fo(2), (3)
while all perturbations vary harmonically in time and the z-direction, i.e.,
fr=f(w,2,0) = Fz)d@ ), (4)

where w is the angular frequency and ky the horizontal wavenumber. Note
that in some gravity-wave studies, the opposite sign convention for fre-
quency and horizontal wavenumber is used (e.g. Ref. [34]).

The linearization model is described in Appendix A. It provides a general frame-
work that accounts for the altitude derivatives of the background velocity uy,
temperature Tp, density scale Height H,, and dynamic viscosity po. Apart from
the ion-drag terms, the formulation follows a structure similar to those employed
by Vadas and Nicolls [35] and Knight et al. [11].

The computation of the ion-drag force and ion-drag heating is presented
in Appendix B. The ion-drag terms are introduced in an approximate manner,
with the explicit aim of decoupling the hydrodynamic and ion equation systems.
To this end, we adopt the following assumptions:

B1. In the ion continuity equation, the perturbed production and loss terms
are neglected.

B2. In the ion momentum equation, ion inertia and ion—ion collisions are ne-
glected, and only transport parallel to the magnetic field lines is retained.
Under these assumptions, the ion momentum equation reduces to the am-
bipolar diffusion equation.

B3. To decouple the ion continuity equation from the diffusion equation, fast
field-aligned diffusion is assumed, meaning that the field-aligned diffusion
is sufficiently strong for the relative ion perturbation and the perturbed
diffusion velocity to remain nearly constant along a magnetic field line.



The linearized equations lead to a linear system of ordinary differential equa-
tions, written in matrix form as

1 de
—E A
L te (5)
where R
e=[u,wT,UW,T" (6)

is the state vector, and A is the propagation matrix with altitude independent
elements (whose expressions follow from Eqs. (157)—(162) of Appendix A). In
general, the unknowns (the hat quantities in Eq. (6)) are defined through the
relation

f(2) = C(2)f(2), (7)

where f is defined by Eq. (4), and C is a known quantity that ensures that fis
dimensionless and that may or may not depend on altitude (here, we indicate
that C' depend on z). Specifically, for the background velocity uy = (ug, 0, 0),
and the perturbed velocity u’ = (u/,0,w’), we have (cf. Egs. (155) and (156)
of Appendix A)

WO ~
() = Laz), 0
wo
w(e) = (), Q
T(2) = To(=)T(2), (10)
and R
~ du —~ dw -~ dT
=4 W= T T = P
where wy is a reference frequency.
If (A, v,,) is an eigenpair of the matrix A, i.e., Av,, = A\, v, forn=1,... N,

where N = dim(e), the general solution of Eq. (5) is a linear combination of
the characteristic solutions exp(kxA,2)vy,, that is,

N
e(z) = Z aneAniv,
n=1

ek?x/\lz . 0 aj
= [v1,...VN] : ) :

0 co. ekxAnz an

= Vdiag[e=*»7]a, (11)
where

ekxhlz “ee 0

V = [vi,...,vy], diagle®**] = : : ) (12)
O N ekx)‘NZ



and a = [ay,...,an]T. At z =0, we have e(0) = Va; thus,

a=V'e(0), (13)
implying (cf. Eq. (11)),
e(z) = Vdiagle™***]V~1e(0) = e"*%e(0), (14)
and conversely,
e(0) = Vdiag[e*k"’\"'z]\fﬂe(z) = efk"AZe(Z)- (15)

From the theory of gravity waves within an isothermal, nondissipative at-
mosphere, it is generally known that the amplitude of an ascending modes in-
creases like exp[z/(2H,)], where H, is the atmospheric scale height [36]. This
is necessary to keep the wave energy constant in an atmosphere where the pres-
sure decreases exponentially with height. In this regard, we define the vertical
wavenumber k,,, through the relation

diag[e?=*?] = diag[ez/(QHa)e_jkmz], (16)
yielding
j 1
)\n = _7kzn 5% 17
oo + 50 (17)
and conversely,
1
kun :ka ()\n - 20() 3 (18)

where o = 1/(kxH,). The characteristic equation det(A — AXIy) =0 has N =6
solutions. As shown in Appendix A, for a constant kinematic viscosity the solu-
tions occur in pairs and correspond to (i) ascending and descending gravity-wave
modes, (ii) ascending and descending viscosity-wave modes, and (iii) ascending
and descending thermal-conduction wave modes [6, 7|. In that appendix, this
pairing is explicitly demonstrated by deriving the dispersion relation for the
special case of an isothermal (constant background temperature), homogeneous
(constant kinematic viscosity), and windless atmosphere without ion drag. This
solution classification is made according to the imaginary part of the vertical
wavenumber k,,. In the more realistic case of a constant background dynamic
viscosity, it is generally not possible to define ascending and descending modes
as corresponding pairs (see Eq. (168) in Appendix A). However, in our model
we will use the same rule as in the case of a homogeneous atmosphere, even
though the traditional concept of classifying waves in pairs is no longer appli-
cable. Specifically, we compute k,, for n =1,..., N by means of Eq. (18), and
order the set {k,,}_,, and accordingly, {\,}\_;, such that

Im(k,3) < Im(kye) < Im(ky) < Im(kug) < Im(k,s) < Im(kgeg). (19)

By convention, (i) the pairs (k,1 = kJ;, A1 = A7) and (k= k;, A4 = A])
will correspond to ascending and descending gravity-wave modes, respectively,



(ii) the pairs (ko = k3, e = M) and (ks = k5, A5 = A;) to ascending
and descending viscosity-wave modes, respectively, and (iii) the pairs (k,3 =
kA3 = AT) and (k6 = k,3,\¢ = A3 ) to ascending and descending thermal
conduction-wave modes, respectively. Thus, the vertical wavenumber is an aux-
iliary quantity that is used only to identify the different modes. According to the
notation introduced above, {\} }M_, where M = N/2 is the number of modes,
is the set of eigenvalues defining ascending modes, and {\, }*_, is the set of
eigenvalues defining descending modes. Because Re(\,) = Im(k,,)/kx + a/2,
it is obvious that we can put aside the concept of vertical wavenumber when
identifying the different wave modes. We can simply order the set {\,}2_;,
such that

Re(A3) < Re(A2) < Re(A1) < Re(Ag) < Re(As) < Re(Xe), (20)

and use the same classification rule as above. A commonly cited interpreta-
tion of condition (20) is that, for increasing z, the exponential term exp(kxA,z)
will tend to be damped more for ascending modes than for descending modes;
conversely, for decreasing z, the roles of ascending and descending modes are
reversed. However, such a classification of upgoing and downgoing roots (e.g.,
Ref. [6] and related works) was primarily heuristic and lacked a rigorous the-
oretical justification. By contrast, the approach of Knight et al. [16], which is
discussed in Section 4, introduces additional constraints beyond condition (20)
that are explicitly related to causality and is therefore grounded in theoretical
considerations rather than heuristic arguments.

To highlight the different wave modes, we organize the state vector e(z) as

e(z) =eq(2) +e(2)

M M
_ + kx)\;tzz + — ks ALz, —
= E a,,e Vo | + E a,,e Vo
m=1 m=1

. +,
S B e e ] @
where the eigenvector vt corresponds to the eigenvalue A=,
V=[V,,V.], Vi=[i, ... vl (22)
ai
a[ZJr},ai i , (23)
Oy

and 0jy is the zero matrix of dimension M x M. Some useful relations are listed
below

1. From Eq. (13), we find
a; = [Inr,0n]a = [Inr, 00/]V " 'e(0), (24)
a_ = [0ar, Ins]a = [0ar, Tn ]V~ te(0), (25)



where I/ is the identity matrix of dimension M x M.
2. From Eq. (21), that is,

M
ex(z) = Y afePnivi = Vidiagle nla, (26)

m=1

we deduce that

er(0) =Viay. (27)
3. From Eq. (14), we obtain
e4(2) =T e(0), (28)
where
T, =V [ diag[gz;kfzz] 85 ] vl (29)
while from Eq. (15), we find
e_(0) =T_e(2), (30)
where 0 0
==V { OZ diag[ei\ix)‘;z] } v (31)

3 Solution of the linearized equations for a strat-
ified atmosphere

Consider an equidistant discretization of the atmosphere, i.e., Z; = zmin + (1 —
DAZ for i =1,...,2L 4+ 1. A layer I, where [ =1,...,L and L is the number of
layers, is bounded from below and from above by the grid points z; = Z5;_1 and
Z141 = 22141, respectively, and its center is located at the grid point zZ; = Zy;.
The atmosphere extends from zyin = 21 = 21 t0 Zmax = 241 = 22041 =
Zmin + L(2AZ). We adopt a numerical multilayer method [9, 15, 16], and ap-
proximate the altitude dependent matrix A in each layer [ by its value at the
layer center, i.e., A; = A(%Z;). The eigenpairs of the propagation matrix A; are
denote by (Any, vp) for n =1,..., N. The matrix differential equation (5) can
be solved either (i) in terms of the amplitudes a;, I = 1,..., L of the character-
istic solutions, or (ii) in terms of the grid-point values ; = e(z;),l =1,...,L of
the state vector e(z). In the following we present the method based on the am-
plitude of the characteristic solutions, whereas the second method is described
in Appendix C.
In the layers [ and [ + 1, the solutions are given by (cf. Eq. (11))

ei(z) = VidiagleP 1 GE==0]a; 2 < 2 < 244, (32)



and
e1(z) = VHldiag[ek"AN“(z_z“rl)]alﬂ, 2101 < 2 < 2, (33)

respectively. The continuity condition at the interface z = 241,

e(z141) = err1(z141), (34)

gives

V 'WVipiap = diagle 18y, (35)

where A; = 2,11 —2;. To obtain a stable system of equations, we define a scaling
matrix K with entries

e FxAndi - Re(A\y) > 0
[Kll]nn = ) (36)
1; Re(Anl) < 0

and a second scaling matrix K? by

1, Re(/\nl) >0
K? = K} diag[e®™* 21 ie., K9, = . (31
efAmi - Re(Ay) <0

Multiplying Eq. (35) from the left with K} yields the continuity equation
Al —A)ay =0y, 1=1,..,L—1, (38)
where 05); is the 2M-dimensional zero vector, and

All,Hl =K} (V; 'Vi3), (39)
A?,H—l = K?~ (40)

The scaling matrices K} and K? prevent a possible blow-up of the exponential
terms for Re(\,;) > 0 and Re(A,;) < 0, respectively. Such scaling techniques
are standard in radiative transfer theory and are commonly used to obtain
stable numerical algorithms for computing the radiance field in multilayered
atmospheres [29, 30].

Actually, we have L — 1 continuity equations imposed at the levels 2, ..., 2,
for the L unknowns aj,...,ar. The two missing equations are obtained from
the lower and upper boundary conditions.

1. At the lower boundary, i.e., at z = 2z1(= Zmin), we assume that only the
ascending wave modes transport energy upward. In this regard, we impose
that in the layer [ = 1, we have aflzl = s = finite, and that the rest of
a ,_, are zero, that is, a ,_, = 0 for m # 1 [9]. Note that a;,_, is

the amplitude of the ascending gravity-wave modes, while the condition
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a;rl 1—1 = 0for m # 1 means that the amplitudes of the ascending viscosity-
wave and thermal conduction-wave modes are assumed to be zero. In this

case, the boundary condition for ascending modes is

Tt

M
e_(z1) = ur = Z a;,,z:1vjn,z:1 = 5V1+,l:1~ (41)
m=1

Excluding for the moment the scale factor s, we express the boundary
condition for amplitudes,

a£1:1 1

Qo _ 0
al = | 7' | =i withiy = | |, (42)

GX/I,1=1 0

in matrix form as
ab 1.
[Iar,0nr]ar = [Iaz, Ons] o | =1t (43)
1

where in general, alﬂ; = ali:l07 for [p = 1,..., L. The boundary condition

(41) is a modal (eigenvector-based) boundary condition, which imposes
that the state at z; is exactly aligned with a chosen eigenmode. In this
way, a pure normal mode is injected into the system.

. A reasonable upper boundary condition is that there is no downgoing
energy at great altitudes, so that the amplitudes of all descending wave
modes must be zero at the upper boundary [9]. In this regard, we impose
Upier, = 0 for all m = 1,..., M, in which case, in the layer L, the
boundary condition for descending modes is

M
e_p(z) = Z a;n,z:Lekx/\’"”:LZV;l,l:L = 02 (44)

m=1

for all z;, < 2z < zp41. In matrix form, the boundary condition for ampli-
tudes

ay iy,
_ 9,11,
al:L = . = OM (45)
appi=1
is written as N
a
[OM,IM]aL = [OM,IM] |: aE ] = OM. (46)
L

11



Comments.

1. The scaling matrices defined by Egs. (36) and (37) do not take into

account a classification of the wave modes as ascending and descending
(as defined by Eq. (20)). Consequently, the continuity equations (38) do
not account for this classification, and the only equations in which it is
necessary to distinguish between ascending and descending modes are the
boundary condition equations (43) and (46). From this point of view, the
method is similar to finite-difference methods [37, 38, 39].

. An alternative type of lower boundary condition was proposed by Knight
et al. [15, 16]. In this approach, the lower boundary condition for ascend-
ing modes is prescribed in terms of M values by 5, k = 1,..., M, according
to (compare with Eq. (41))

dkfl +

e
dzk_lll(ﬁ)] =biy, k=1,...,M, (47)
q

where the notation [x], denotes the gth component of the vector x. In the
present context, this refers to the first M components, corresponding to
u(g=1),w (¢g=2),and T (¢ = 3). In Eq. 47, k denotes the derivative
order, and in the case M = 3, we have explicitly,

+ 2o+
de_, de,,

[el+:1(21)]q:b1,1’ [ Ep (Zl)} = b0, [(122(21)] =b13. (48)

Note that Eq. 47 generalizes Eq. (2.19) in Ref. [15], which is formulated
for the first state variable rather than for an arbitrary state variable. Using
the relations

e+ M
= k—1
dzk—ll Ha1) = Z g g (e ) v =100 M, (49)
m=1
and
dk_le*‘r N dk—le+ M .
=1 _;7T =1 _ + + E—13T_ +
l dzk-1 ()| =14 dok—1 (21) = Z =1 (R Ay 1=1)™ g Vi o
q m=1

(50)
where iy is a 2M-dimensional vector with components (compare with Eq.

(42))

o 1, k=gq B
[lq]k_{o’ TSN E S N 178 (51)
we find
M
> Blmkat oy =big, k=1,..M, (52)
m=1
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where B is a matrix with entries

Bk = (kA )90V, mak=1,... M. (53)
Setting by = [b11,...,b1.:]T, we consider the boundary condition for
amplitudes
al =B by, (54)
that is (compare with Eq. (43))
[Iar,0ar]a; = B 'by. (55)

For the choice b; ;, = 0 with k£ > 2, the first component of the boundary-
value vector b; can be identified with the scale factor s, that is, s = b .
Consequently, for a unit scale factor and M = 3, we have by = [1,0,0]*.
The boundary condition (48) is a localized condition that prescribes the
value of a single state variable while enforcing vanishing slope and curva-
ture at the boundary. It effectively acts as an external driver applied to
one variable and is appropriate for non-harmonic source functions. Note
that this form of the lower boundary condition is used in the statement
of Theorem 1 in Ref. [16]. For causality considerations, boundary con-
ditions must be expressed in terms of state variables rather than modal
amplitudes, since modes are defined in the frequency domain.

. The eigenvectors are not uniquely defined and may be scaled by an ar-
bitrary nonzero complex factor. When the LAPACK routine ZGEEV is
used, the eigenvectors are returned with a built-in normalization, namely
unit Euclidean norm together with a fixed phase convention. In the present
work, we follow Knight et al. [15, 16] and apply a component-wise nor-
malization, i.e.,

valy = o vy 5= 100N

Vulj = 77— 71Vnljy, J=4,..., 1V,

|[Vnlql

in which each eigenvector is rescaled such that a selected reference compo-
nent has unit magnitude (|[v,]4| = 1). This reference component is chosen
to correspond to a boundary value, thereby fixing the overall amplitude
of the eigenmode in a manner consistent with the imposed boundary con-
ditions.

Starting from the continuity equation (38), we will determine the amplitudes a;
by using two solution methods, namely, (i) the so-called global matrix method
with matrix exponential and (ii) the scattering matrix method.

3.1 Global matrix method with matrix exponential

The continuity equations (38), and the boundary conditions (43) and (46) for
a unit scale factor, are assembled into a system of equations for the stratified
atmosphere, i.e.,

Aa=b, (56)
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where

[ [Oar, Tas] 0 ... 0 0
Ap ,p —AY . ... 0 0
0 0 Al, A%
.0 0 0 [Iar,0nm]
[ ap Onr
ay 1 02M
a= g , and b = : . (58)
ag 0217
L ap il

For the lower boundary condition (55), i; in Eq. (58) should be replaced by
B~!by, where, for a unit scale factor, by = [1,0,0]T. The matrix A has 3M — 1
sub- and superdiagonals (excluding the main diagonal) and can therefore be
stored in banded form and treated using standard band-matrix techniques. To
solve the resulting banded system of linear equations, we employed the LA-
PACK routines ZGBTRF and ZGBTRS. The routine ZGBTRF performs an LU
factorization with partial pivoting of the complex band matrix, and ZGBTRS
subsequently uses this factorization to solve the linear system for the prescribed
right-hand side. In this approach, the inverse of the full system matrix is not
computed explicitly, which improves the computational efficiency.
After solving Eq. (56), we compute the state vector as

e
kS

(S7} :e(zl) = 2 :Vlah = 1,...,L7 (59)
W(z)
L T(z)
and the wave amplitudes by means of the relation
F(z) = C(2)f(2), (60)

where f stands for u, w, and T. The ascending and descending solution modes
are computed by using Eq. (27), that is,

e =Via, l=1,...,L (61)

3.2 Scattering matrix method

We consider the continuity equation (38) and partition the matrices Af,l 41, with
1=0,1, as
: Al (AL
i Bl A | 62
b+l [ ;,l—&-l]?l [Af,l+1]22 (62)
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Further, we define the scattering matrix at the interface between the layers [
and [ + 1 (in fact, at the layer grid point z,41), S;4+1 through the relation

EARMES)

A1 A1
where N
R, T/,
Sti41 = [ et b } , (64)
Tl,l+1 Rl,lﬂ
and Ri[lﬂ and sz,[l+1 with dim(RﬁH) = dim(Tl{[lH) = M x M, are the reflec-

tion and transmission matrices, respectively. In analogy with radiative transfer
theory (e.g., Refs. [31, 32]), Eq. (63) is referred to as the interaction principle
equation at the interface (1,1 + 1). It shows that the scattering matrix S; ;41
relates the amplitudes a; and alt_l of the waves leaving the interface with the
amplitudes alJr and a;_, of the waves entering the interface. From Egs. (38)
and (63), we find

{ R?,_Hl Tl_,l+1 ] _ { [A?JH}H *[All,lﬂ]ll } ! [ *[A?,lﬂhl [All,l+1]12
T 1 R (A ]2 —[Al ] —[A7 o (AT ]2
(65)
We organize the computational process as an upward recurrence using the
concept of a “stack”. The stack &;,; with Iy < [, is a group of interfaces charac-
terized by the interaction principle equation

a; | _ Rl""l lo_l}{alt}

HINE R 0
where the matrices Ril and 7;0il are obtained through a successive application
of the interaction principle equation at the interfaces (lo,lo + 1), (Io + 1,lp +
2),..,(I = 1,1). Adding a new layer [ + 1, and taking into account that at the
interface (/,1+1), the reflection and transmission matrices are Rfl 4+ and Tli)l 415
respectively, we find that the interaction principle equation for the stack Sy, 141,

is
- + - +
a, | _ Ry 141 Tig 41 a, (67)
a Tr R, a_ ’
1+1 lol+1 lo.1+1 1+1
where Rlio’l 41 and 7;3[1 41 are computed recursively by using of the “adding
formulas”

Rip i1 = Riby + T (U= R Ry ) TR T (68)
Tur = Tt M= R Ry) T T, (69)
Tiaasr = Tl (0= Ry Ry 0) ™ T (70)
Rl},lﬂ = Rf,z+1 + Til+1(1 - th)szJ,rlH)_le;zT;zH’ (71)

forl =1lp+1,...,L — 1. Note that Egs. (68)—(71) are mathematically equivalent
to Egs. (4.30)—(4.33) in Ref. [16]. The procedure is initialized with RlimloJr1 =
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RljE 141 and 7;0 o4l = T?;-,lo-i-l’ and is repeated until the last interface is added
to the stack. For the stack &1y, the interaction principle equation is

AEEEAIES (
= LI o, 72)
[ aj ] [ T Ri a,
and from the boundary conditions for amplitudes (42) and (45), that is, from
the relations af" =1i; and a; = 0y, respectively, we find

a; =R} al and af =T Tal. (73)

For the lower boundary condition (55), aj” in Eq. (73) is given by a] =B~'by,
where, for a unit scale factor, by = [1,0,0]T. To restore the entire set of
amplitude vectors a;, we consider the interaction principle equations for the
stacks S1; and Spp, yielding

+ =(I- RflRlJrL) T a1 , (74)
RlLal ) (75)

for! = L—1,...,1. The state vector and the wave amplitudes are then computed
by using Eqs. (59) and (60), respectively. In contrast to the previous method,
this approach requires a clear differentiation between ascending and descending
modes as defined by Eq. (20).

4 Source function

In the derivation so far, the amplitude vector is uniquely defined up to a mul-
tiplicative factor, namely the scale factor s. Accordingly, the general solution
can be written as a; = sa, where, here and it what follows, the subscript s
indicates the dependence on s. Since ag satisfies the equation Aay = sb (cf. Eq.
(56)), the scale factor can be interpreted as a source factor. The source factor
is constant in the case of a harmonic (monochromatic) source function, corre-
sponding to a single-frequency wave, but is time dependent for a non-harmonic
source function, corresponding to a time-dependent wave packet. In this section,
we describe the computation of the perturbed quantities for both harmonic and
non-harmonic source functions. We also present a brief overview of the causality
condition and the imaginary frequency shift introduced by Knight et al. [16],
and latter extended and applied in Refs. [11, 15, 17, 34]. Although it would
be sufficient to simply refer to these works, we include a short discussion here
because the underlying mathematical structure provides valuable insight into
the method.

4.1 Non-harmonic source (time-dependent wave packet)

If the source term is not purely harmonic in time (i.e., it cannot be written
as a single factor exp(jwt)), the perturbed quantity f’(x,z,t) is not a single-
frequency wave with a specified angular frequency w. In this case, the equations
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are treated in the frequency domain by considering the Fourier transform in
time [15, 16, 17]. This is defined by

Fl(z,2,w) = / f(x, z,t)e At = F[f'(z, z, )] (x, z,w) (76)
and its inverse by
Pl t) = 2i / Fl(z, 2 w)edw = FUF (2, 2,0)](z, 2,8).  (77)
T J-—co

Applying the Fourier transform to the linearized equations (145)—(147) of Ap-
pendix A, using the result

F [%i(az,t)} (2, 2,w) = jwF'(z, z,w), (78)

and setting - _
F'(z,2,w) = F(z,w)e = (79)

as the counterpart of Eq. (148) (in which the exponential term exp(jwt) is
absorbed into f(z)), together with

—_— ~

F(z,w) =C(2)F(z,w) (80)

as the counterpart of Eq. (7), we are led to the system of differential equations
(157)—(162) of Appendix A (or equivalently, to the matrix differential equation

~

(5)), but with F(z,w) replacing f(z).
At the lower boundary 21, we consider the localized boundary conditions

O fsgo D floe
fs/qo (1’,217t) = qu (Zl)S(CL‘,t)7 a; (1’,21,t> =0, azgq (w,zl,t) =0, (81)

where qg takes the values 1, 2, and 3 for the horizontal velocity, vertical velocity,
and temperature, respectively. In Eq. (81), the source function is given by

s(x,t) = As(t)e =, (82)

with A denoting the scalar source amplitude and s(t) its prescribed time de-
pendence. Here, and in what follows, the index s s is used to indicate that
a quantity depends on the source function. In our implementation, the time-
dependent part of the source function is chosen as

(t—t9)?
s(t) = elolt—tole 20¢ (83)
with the Fourier transform
(w— wp)?
5 . W)
S(w) = Y emiwtog 205 (84)

Ow
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where wy is the reference frequency (the central frequency in the Fourier spec-
trum), to is the time at which the source function is maximum, and oy and
0, = 1/oy are the standard deviations in the time and frequency domains, re-
spectively. The amplitude of the source function A is specified by imposing the
normalization condition:

[Re{feg, (& =0, 21,t0)} = fogo: (85)

for some prescribed boundary value fi,4, > 0. For example, in the case ¢y = 1,
fog, may be chosen as a fraction of the maximum horizontal velocity of neutrals
in the south direction over the altitude range, whereas in the case gy = 3, fuq,
may be chosen as a fraction of the maximum temperature of neutrals over the
altitude range.

Applying the Fourier transform to Eq. (81) and using Eqgs. (79) and (80),
we obtain the following boundary conditions in the frequency domain (note that
AS(w) is the Fourier transform of As(t)):

aﬁSQO _ 82ﬁsqo
o2 (Zlaw) - 0; 82’2

quo (Zl,w) = AS((“))7 (Zlvw) =0. (86)
Comparing Egs. (86) and (48), we see that the latter corresponds to the choice
bi2 = b1,3 = 0. In this case, the source factor s = b1 can be identified with
AS(w). Therefore, as in Section 3, we define ﬁq(z,w) = le(z,w)],, ¢ =1,2,3,
where e(z,w) denotes the solution of the differential equation (5) for a unit
source factor in the frequency domain (i.e., for by = [1,0,0]T). The perturbed
quantity fi,(z,z2,t) is then obtained by applying the inverse transform (77) to

Fl (z,z,w) = AS(w)e*jk"‘”Cq(z)ﬁq(@w), (87)
that is,
fiq(,2,1) = % /_ Fly(2,2,w)eddw = Af (2, t)e 2, (88)
where
fa(zt) = C’g(z) / S(w)ﬁq(z,w)ej‘”tdw. (89)
™ — 00

For S(w) as above, f,(z,t) can be written as

fo(zt) = 0577(:) /700 y(w)ﬁq(z,w)eiw(t—to)dw, (90)
with ( 2
w — Wy
L (w) = @e_ 293 (91)

Ow

18



The computation of ﬁq (2,w) can be performed using any of the methods pre-
sented in Section 3. The computed quantity is f,(z,t), the amplitude A > 0, is
determined from the normalization condition (85) as
A — 7qu0
Re(Ty, (1. 10))]

and the perturbed quantity fg,(z, z,t) is computed from Eq. (88).

(92)

4.2 Monochromatic source (single-frequency wave)

The case of a monochromatic source is obtained as a special case of the above
approach by choosing ‘
s(t) = &0, (93)

whose Fourier transform is
© . © .
S(w) = / s(t)e ¥t dt = / e Iw=wolt gt — 276 (w — wp), (94)
— 00 — 00

where the equality is understood in the sense of distributions.
The lower boundary conditions in the time domain are specified as

1 6f/ an/
fago (@, 21, 1) = ﬂqu(zl) s(x,t), (,;;0 (x,21,t) =0, 8;2(10 (x,21,t) =0,
(95)
with _ . _
s(x,t) = As(t)e P = Ae)wol = ikx, (96)
Applying the Fourier transform with respect to time yields
Figo(21,0) = Ad(w — wy). (97)

Since the forcing is monochromatic, the frequency-domain problem is solved
only at the excitation frequency w = wqy. Accordingly, the localized boundary
conditions are imposed directly on the harmonic amplitudes at wg, namely

aﬁSQO
0z

82 FSQO
072

ﬁsqo (21, wp) = A, (z1,wp) =0, (21,wp) = 0. (98)
Again, by comparing Eqgs. (98) and (48), we see that the source factor s = b1 1
can be identified with A. In this regard, let ﬁq(z,wo) = [e(z,wo)]q, q=1,2,3,
where e(z,wp) denotes the solution of the differential equation (5) for a unit
source factor in the frequency domain. The perturbed quantity fs’q(x,z7t) is
then obtained by the inverse Fourier transform (77) of I (z,z,w) (cf. Eq.
(87)), and the result is

flo(@, 2, t) = A f, ()el@ot=hxr) (99)
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where

~

?sq(z) = Cq(z) Fq(Z,wO). (100>
Thus, the computed quantity is f, q(z)7 and the amplitude A is determined from

the normalization condition

‘Re{fs/qo (*T =0,21,t = 0)}‘ = qum (101>

which yields
A= %.
|Re{fsq(zl)}|

Note that for a monochromatic source, the modal boundary condition (41) can
be used instead of the localized boundary condition (98).

(102)

4.3 Causality and imaginary frequency shifting

Causality means that the wave field in response to any source function cannot
be nonzero prior to the earliest time at which the source function is nonzero.
According to the classification rule (20), we have

Re[A\],(w)] < Re[Aj;(w)], (103)

for any layer [ = 1,..., L and any real frequency w. To preserve causality in
solutions of two-point boundary value problems, a stronger condition is required,
namely

max Re[\],(w)] < minLRe[)\l_l(w)] (104)

.....

for all w € R. Equivalently, this condition requires that there exists a single real
constant o, such that

Re[)\fl (w)] < o < Re[Af;(w)], (105)

for all [ and all w € R.

In some situations, condition (105) is not satisfied on the real frequency axis
but can be enforced by introducing an imaginary frequency shift w — w — jd.
Following Ref. [16], we impose a causality requirement, which we refer to as the
Global Causality (GC) condition. This condition demands that there exists a
single real constant o, such that

Re[M\,(w —jo)] < o < Re[Aj;(w —jd)], (106)

for all I and all w € R.

Knight et al. [11] subsequently relaxed the requirement that (106) hold for
all layers [ for a fixed 0. The new condition, which we refer to as the Layerwise
Causality (LC) condition, requires that at each layer [ there is a o; such that

Re[A;(w — j0)] < oy < Re[A};(w — jd)], (107)
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for all w € R. Equivalently, if at each layer [,
di() = Re[Ay,(w — j0)] — Re[Af;(w — j8)] > 0, (108)

for all w € R, then the multilayer algorithm will still preserve causality. The
LC condition requires a strict separation between the two eigenvalue families
within each layer, but it does not require that the same separator works for all
layers. Thus, each layer may have its own separating value o;. Equivalently,
d;(w) > 0 means that, in layer [, the real parts of the eigenvalues associated with
the ascending and descending gravity waves remain separated (and therefore do
not cross) as functions of the real frequency w after the shift.

To summarize the approach for computing fg,(, z,t) in the case of imagi-
nary frequency shifting, we introduce the shifted spectrum

Ss(w) = S(w—jo) = /00 s(t)e 1wt = /OO [s(t)e™ e i“tdt,  (109)

—0Q0 — 00

which can be viewed as the analytic continuation of S(w) to complex frequencies.
Note that the shift w — w —jd corresponds in the time domain to multiplication
by exp(—dt). Let

Fésq(xv 2, w) = AS(W - J(;)Cq(z)ﬁq(z» W = j(;)efjerx (110)
be the Fourier transform (in time) of the perturbed quantity with frequency
shifting fj,, (2, z,t), where as usual, Fy(z,w —jé) = [e(z,w — j6)],, is solution of
the differential equation (5) for a unit source factor in the frequency domain.

Under the usual analyticity and decay assumptions (so that contour shifting is
permitted), Cauchy’s theorem yields the shift relation

1 o0 .
fisq(@, 2,t) = */ Fig(2,z,w)e dw = e 7O f (x, 2, ), (111)

21 J_ o

where fs’q is the perturbed quantity without frequency shifting given by Eq.
(88). Equivalently, this implies the shift-invariance property

fag(,2,t) = eétfgsq(x, 2, t). (112)
Summarizing, the computational steps for the frequency-shifting approach
are as follows:

1. Compute e(z,w — jd) as the solution of the differential equation (5) for a
unit source factor, and set Fy(z,w — jé) = [e(z,w —jd)],-

2. Calculate Fj,, by means of Eq. (110) with S(w) replaced by S(w —jo) and
ﬁq(z,w) replaced by ﬁq(z,w —j9).

3. Compute f5,, by inverse Fourier transform

fssq(,2,t) = Ae‘jkﬂcgig:)/ S(w _j(s)ﬁq(z7w — )t dw.  (113)
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4. Recover f!, from the shift-invariance property (112).

For S(w) as in Eq. (84), it is convenient to write the recovered solution in the
form

f;q(x, z,t) = A?(;q(,z7 t)e ke (114)
where (compare with Eq. (90))

Fog(z,t) = eﬁ(t—twcgiff)/ y(w—jé)ﬁq(z,w—jé)ej“’(t_t")(iw7 (115)

and .¥ is given by Eq. (91). The computed quantity is f(;q (z,1), the amplitude
A > 0 is determined from the normalization condition (85) as

— 7qu0
[Re{f5q(21,t0)}]

and the perturbed quantity f; (w, z,t) is computed from Eq. (114). The Fourier
integral in Eq. (115) is evaluated using a direct discrete Fourier transform (FT)
rather than a fast Fourier transform (FFT). The frequency and time discretiza-
tion used in the Fourier transform are discussed in Appendix D.

A potential numerical issue with this approach is that a large frequency
shift &, while ensuring the causality condition, may amplify rounding errors
when recovering f/, from fésq through the exponential term exp[d(t — tg)]. For
large t, this may lead to an uncontrolled growth of the right-hand side of Eq.
(115). Therefore, care is required in selecting §: it must be large enough to
ensure the layerwise causality condition , but not significantly larger than that.
Rigorous methods for determining the minimum sufficient § were described by
Knight et al. in Refs. [15, 16, 17|, while the numerical blow-up associated with
the exponential growth term was discussed in Appendix B of Ref. [17]. In our
implementation we employ a heuristic approach that combines (i) the Layerwise
Causality (LC) condition applied at selected altitude levels, and (ii) a Source-
Function Reconstruction (SFR) test. First, an admissible interval [dmin, Omax)
is constructed by enforcing the SFR criterion, and within this interval, the LC
condition is applied at selected altitude levels to obtain a refined lower bound
Odmin- In the final selection step, a discrete set of candidate shifts is evaluated,
and for each candidate the LC condition is checked over the entire altitude range.
Among all shifts that satisfy causality at all altitudes, the algorithm selects the
one whose maximum-amplitude vector is closest to the center of mass of the
admissible solutions. A detailed description of this approach is provided in
Appendix D.

(116)

5 Numerical implementation

An implementation of the method is freely available as an open-source code on
GitHub. The code uses as input the data file produced by the International Ref-

erence Ionosphere (IRI) code available at https://ccme.gsfc.nasa.gov/models/TRI2016/
is used. From these date, we read
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Latitude Longitude Height

Location e degl [k

Jicamarca (Peru) -12 283 300
Arecibo (Puerto Rico) +18 293 300
Millstone Hill (USA) 42 288 300
Saint-Santin (France) +44 2 300
EISCAT Tromsg (Auroral) +70 19 300
Svalbard archipelago (Norway) +80 15 300

Table 1: Geographic locations and heights of the IRI data sets

1. the date (year, month, and day) and the time,

2. the geographic latitude and longitude,

3. the magnetic dip angle,

4. the solar radio flux f10.7 and its 81-day average,

5. the number density of O ions as a function of altitude.

In its present implementation, the IRI data files correspond to the locations
summarized in Table 1. The altitude grid extends from zy;, = 80 km to zpax =
500 km with a step size of dz = 1.0 km. Users may generate custom data files
by running the IRI code and specifying the corresponding file names in the input
namelist.

The IRI data are subsequently used in a manner analogous to that in the
SAMI2 model of the Naval Research Laboratory (https://github.com/NRL-
Plasma-Physics-Division/SAMI2). In the present implementation, the iono-
spheric equations follow the SAMI2 framework originally developed by Huba
et al. [40] and described in detail by Huba [41]. In SAMI2, the neutral atmo-
spheric parameters—namely the neutral number density, total mass density, and
temperature—are specified using the MSIS family of models. In this study, these
parameters are based on the MSIS formulation of Hedin [42], while we note that
more recent updates are provided by the NRLMSIS 2.0 model of Emmert et al.
[43]. The meridional and zonal winds are specified using the Horizontal Wind
Model. In the present implementation, we follow the formulation of Hedin et
al. [44], while more recent updates are described by Drob et al. [45].

The derivatives of the background parameters are computed using central
finite differences. Prior to applying the finite-difference calculations, the back-
ground parameters are smoothed by means of cubic spline interpolation with
regularization.

Other features of the model are summarized as follows:

1. Two linearization models are included in the code:

(a) a general model that accounts for the altitude derivatives of the back-
ground velocity, temperature, density scale height, and dynamic vis-
cosity; and
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(b) a simplified model for an isothermal, homogeneous, and windless at-
mosphere without ion drag.

2. The methods for solving the linearized equations based on the matrix
exponential formalism comprise:

(a) the Global Matrix Method for the Amplitudes (GMMA) of the char-
acteristic solutions;

(b) the Scattering Matrix Method for the Amplitudes (SMMA) of the
characteristic solutions; and

(c) the Global Matrix Method for the Nodal (grid-point) values (GMMN)
of the state vector.

3. At the lower boundary, we impose that a selected component of the state
vector is finite and that its first and second derivatives with respect to
height vanish. At the upper boundary, we assume that there is no down-
ward energy propagation, i.e., the amplitudes of all descending wave modes
are set to zero.

4. The code first computes the wave parameters for a single-frequency wave
and then for a time-dependent wave packet.

5. Typical values of the horizontal wavelength lie in the range 300-700 km.

6. The algorithm computes lower and upper bounds for the wave period by
solving the inviscid dispersion equation for two prescribed minimum and
maximum values of the vertical wavelength. The computational procedure
is described in Appendix D. The user then selects an appropriate value
within this range.

7. For a single-frequency wave, the output quantity of interest is A?Sq(z),
where f,,(z) and A are given by Egs. (100) and (102), respectively,
whereas for a time-dependent wave packet the corresponding output quan-
tity is Af5,(z,t), where f5,(z,t) and A are given by Egs. (115) and (116),
respectively.

6 Numerical simulations

The simulations are performed using, as input, an IRI data file corresponding
to the EISCAT Tromsg (auroral) location on 11 February 2012 at 10:00. The
solar zenith angle is 84.2°, the magnetic inclination angle is 78.28°, the daily
solar radio flux F10.7 is 109.4 sfu, and the 81-day averaged solar radio flux is
116.9 sfu, where 1sfu = 10722 Wm 2Hz"!. In the simulations, the Prandtl
number is 0.66, the magnetic index is 7.0, and the horizontal wind model 14
implemented in SAMI2 is used. The altitude grid extends from 80 km to 500
km and contains 801 grid points. The lower boundary can, in principle, be
set to smaller altitudes (e.g., 50 km), but we choose 80 km because this level
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is typically adopted as the lower boundary for ionospheric equations. Unless
stated otherwise, the horizontal wavelength is Ay = 400 km, the wave period is
At = 40 min, and the imaginary frequency shift for a single-frequency wave is
107% s71. The lower boundary conditions are imposed on the vertical velocity
with fhe =5 x 1072ms~! in Egs. (85) and (101).

Accuracy and efficiency of the solution methods. Taking the global matrix
method for amplitudes as a reference, we find that the relative root-mean-square
errors in the perturbed temperature, vertical velocity, and horizontal velocity
obtained with the other two solution methods are smaller than 10~6. Thus, all
methods exhibit comparable accuracy. On the other hand, we find that the scat-
tering matrix method is more time-consuming than the global matrix methods,
particularly for time-dependent wave packets. This is because the scattering
matrix approach requires numerous matrix operations in each layer, whereas
solving a system of equations compressed into band storage is computationally
less expensive.

Background atmospheric parameters. The code provides altitude-dependent
profiles of the input parameters used in the numerical model. These include
the temperature, mass density, pressure, southward horizontal velocity, atmo-
spheric scale height, density scale height, specific heat capacity, ratio of specific
heats, sound speed, number density of O™ ions, neutral-ion collision frequency,
ion—neutral collision frequency, and the diffusion velocity. In addition, alti-
tude derivatives of the temperature, horizontal velocity, mass density, pressure,
density scale height, and ion number density are also provided. As an illustra-
tive example, Fig. 1 shows the background temperature Tj, horizontal velocity
up and the ion number density n;g, together with their corresponding altitude
derivatives.

Pairwise classification of ascending and descending modes. In the upper and
middle panels of Fig. 2, we plot the imaginary part of the vertical wavenumber
for ascending (k,1) and descending (k,4) gravity waves, computed using the
general and the simplified models, respectively. The plots demonstrate that only
in the latter case do the vertical wavenumbers appear in pairs. In the former
case, a problematic altitude range for gravity waves is observed between 80 km
and 120 km, where the imaginary parts of the vertical wavenumbers for the
ascending and descending modes are nearly identical, being either both positive
or both negative. In the lower panel of Fig. 2, we show the imaginary part
of the vertical wavenumber k, for all wave types (k,,,n = 1,...,6), computed
using the general model. The plots reveal a clear distinction between gravity
waves and viscosity- and thermal-conduction waves. However, the viscosity and
thermal-conduction waves are very close to each other. In the upper panel
of Fig. 2, we also compare the imaginary part of the vertical wavenumber
computed with and without ion drag. No pronounced effect of ion drag on
the vertical wavenumber is observed. A small effect appears in the altitude
range from 180 to 300 km, where the ion number density is relatively high.
This finding is consistent with the results of Shibata [46], who showed that,
for gravity waves, plasma diffusion is of minor importance with respect to the
vertical wavenumber, which is mainly controlled by dissipation due to viscosity
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Figure 1: Background temperature T, horizontal velocity ug and ion number
density ny (i = O") (upper panels), and their height derivatives (lower panels).
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and thermal conduction in the neutral gas.

General and simplified models. The altitude profiles of the perturbed tem-
perature, vertical velocity, and horizontal velocity computed using the general
and simplified models are shown in Fig. 3. The plots show that, in the altitude
range 150-300 km, the amplitudes obtained with the general model are larger
than those obtained with the simplified model. If the imaginary parts of the
vertical wavenumber for ascending gravity waves computed with the general
and simplified models were plotted on the same graph (i.e. by merging the
lower and middle panels of Fig. 2 ), it would be seen that the imaginary part
of the vertical wavenumber corresponding to the general model is negative but
larger (i.e., less negative) than that obtained with the simplified model. As a
consequence, the exponential attenuation with altitude is weaker in the general
model, leading to systematically larger wave amplitudes in this region. This
difference reflects the modified balance between wave propagation and dissipa-
tion introduced by the inclusion of altitude-dependent background properties
and by relaxing the assumption of constant kinematic viscosity in the general
model, which reduces the effective vertical damping compared to the simplified,
homogeneous approximation.

Ion Drag. The effect of ion drag on the perturbed temperature, vertical
velocity, and horizontal velocity is illustrated in Fig. 4. A moderate atten-
uation is observed in the altitude range from 180 to 350 km, where the ion
number density is relatively high. When E x B drifts are not included, ion
drag does not exhibit the classical regime in which auroral convection strongly
drives the neutral atmosphere. Instead, ion drag mainly arises from diffusion-
and pressure-gradient-driven ion motion along the magnetic field, as well as
from any relative ion—neutral motion induced by neutral winds. Consequently,
ion drag does not constitute the dominant forcing mechanism for the neutral
perturbations in this configuration.

Horizontal wavelength and time period. The influence of the horizontal wave-
length Ay and the wave period \; on the perturbed quantities is shown in Fig.
5. These plots indicate that the wave amplitude decreases with increasing Ay
and X¢. The underlying reasons are as follows:

1. Horizontal wavelength. As the horizontal wavelength increases, horizontal
pressure gradients become weaker, which reduces the driving of the wave
motion. This also weakens the coupling between horizontal and vertical
motions, resulting in smaller gravity-wave amplitudes.

2. Wave period. As the wave period increases, the buoyancy restoring force
acts more slowly, leading to weaker oscillations for a given forcing. In addi-
tion, dissipative processes such as viscosity and thermal diffusion act more
effectively on low-frequency waves, further reducing their amplitudes.

Computing ascending and descending wave modes. The ascending and de-
scending solution modes in layer [, denoted by elJr and e; , respectively, can
be computed using the GMMA through Eq. (61) or using the GMMN via the
recurrence relations (269) and (270). The total solution mode e;, obtained from
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computed using the simplified model. Lower panel: The imaginary part of the
vertical wavenumber k, for all types of waves (kz,,n = 1,...,6), computed
using the general model. The results correspond to Ay = 400 km and A\ = 40
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Figure 3: Altitude profiles of the perturbed temperature T, vertical velocity
w, and horizontal velocity w for the general and simplified models. The results
correspond to Ay = 400 km and A\ = 40 min
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Figure 4: Altitude profiles of the perturbed temperature T, vertical velocity w,

and horizontal velocity u for the general model, with and without ion drag. The
results correspond to Ay = 400 km and Ay = 40 min

30



500

400

200

100

0 -40 20 0 20 40

-40 20 0 20 40 -

1 I 1 I 1 1 I 1 I 1
20-10 0 10 20
T K] W [m/s] U [ms]

wIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

oIII||||||||IIII||||IIIIIIIIIIIIIIIIIIIIII

500 —

400

200

1 I 1
40 -20 -10 O 10 20 -40 -20 O 20 40
T [K] w [m/s] u [m/s]

IS
S
!
)
=
o
&}
S

Figure 5: Altitude profiles of the perturbed temperature T, vertical velocity
w, and horizontal velocity @ for (i) Ax = 300, 400, and 500 km with A = 40
min (upper panels), and (ii) Ax = 400 km with Ay = 40, 60, and 80 min (lower
panels). The results correspond to the general model with ion drag.
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Eq. (59) in the GMMA formulation and by solving Eq. (266) in the GMMN
formulation, should satisfy the relation e, = ;" +e; . In all our simulations, this
identity is satisfied. Furthermore, the results shown in Fig. 6 indicate that the
ascending mode is dominant, except in the altitude range between 120 km and
180 km in the case of the general model. This finding, which is consistent with
the results presented by Knight et al. [16] (see their Fig. 6), suggests that in a
simplified model one may assume the ascending modes to be dominant at alti-
tudes above 200 km, that is, e; ~ el+ for l =1,..., L. Under this assumption,
the state vector can be computed using the upward recurrence relation (269). In
Ref. [16], this approach was referred to as the transmission-only approximation,
whereas in Ref. [17] a related single-mode approximation was introduced.

Time-dependent wave packet. For the source function (82)—(83), Fig. 7
shows the perturbed temperature and vertical velocity as functions of time and
altitude. Note the different time intervals used for each horizontal wavelength
Ax in these plots. The maximum values of the perturbed temperature are 32.21
K, 31.15 K, and 32.73 K for the horizontal wavelengths 300 km, 500 km, and
700 km, respectively, whereas the corresponding maximum values of the vertical
velocity are 21.40ms™!, 16.21 ms~', and 12.08 ms~!.

Imaginary frequency shift. For the time-dependent wave packet, we choose
the minimum and maximum values of the imaginary frequency shift as i, =
1076 s7! and Sy = 1074 571, respectively, and set the discrete step to AJ =
Odmin- Referring to Appendix D, the results obtained with the imaginary fre-
quency shift approach for Ay = 500 km and A; = 40 min are summarized as
follows:

- In the first step, the input value &, = 1076 s~ passes the Source-
Function Reconstruction (SFR) test.

- In the second step, the SFR test reduces the input value §pay = 1074 571
t0 Omax = 32.24 x 1076 571,

- In the third step, it is found the the interval [dmin, dmax] contains a suf-
ficient number of internal grid points, spaced by Ad, to be used in the
subsequent step.

- In the fourth step, the Layerwise Causality (LC) condition is evaluated at
10 altitude starting at 80 km with a spacing of 20 km. It is found to be
satisfied for dp,c = Omin, and therefore for all 6 € [dmin, Omax], for which
the SFR test also holds.

- In the fifth step, five equidistant frequency shifts in [0min, dmax] are con-
sidered; for each, the wave parameters and their maximum values are
computed and the layerwise causality condition is verified over the full al-
titude range. All five frequency shifts satisfy this condition and yield very
similar maximum amplitudes (Table 2). The final solution is selected as
the one whose maximum-amplitude vector is closest to the center of mass
in the space of perturbed horizontal velocity, vertical velocity, and tem-
perature, corresponding to § = 16.62 x 1076 s~!. The maxima occur at
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Figure 6: Altitude profiles of the perturbed temperature T, vertical velocity
w, and horizontal velocity @ for the total mode (e; = elJr + e, in layer I),
the ascending mode (el+), and the descending mode (e; ). The upper panels
correspond to the general model, and the lower panels to the simplified model.
The horizontal wavelength is Ay = 400 km and the wave period is Ay = 40 min
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Figure 7: Perturbed temperature (left panels) and vertical velocity (right panels)
as functions of time and altitude. The upper panels correspond to A = 300 km
and A\¢ = 30 min, the middle panels to Ay = 500 km and A\; = 40 min, and the
lower panels to Ay = 700 km and Ay = 60 min
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5[107%5™ 1] Tmax [MS '] Winax (08~ ]  Tax K]

32.24 38.084 16.210 31.153
24.43 38.115 16.224 31.132
16.62 38.079 16.210 31.158
8.81 38.110 16.225 31.186
1.00 38.017 16.186 31.113

Table 2: Maximum values of the peiturbed horizontal velocity (Tmax), vertical

velocity (Wmax), and temperature (Tax) for different values of the imaginary
frequency shift ¢

11.06 hr and 248.00 km for the horizontal velocity, 10.98 hr and 303.64 km
for the vertical velocity, and 10.90 hr and 257.45 km for the temperature.

7 Conclusions

We designed a numerical model for solving the linearized gravity-wave equations
using a multilayer method, which is freely available as open-source code on
GitHub. To decouple the hydrodynamic equations for the neutral atmosphere
from the ionospheric equations, which are coupled through ion drag, we adopt
a fast field-aligned diffusion approximation. This approximation may be viewed
as a generalization of an approach originally proposed by Klostermeyer [9].

To solve the linearized equations, we employ (i) global matrix methods based
on matrix exponentials and (ii) scattering matrix methods to determine either
(a) the amplitudes of the characteristic solutions or (b) the grid-point values of
the state vector. Ascending and descending wave modes are identified accord-
ing to the criterion that the real parts of the eigenvalues of the characteristic
equation for ascending modes are smaller than those for descending modes (or,
equivalently, that the imaginary parts of the vertical wavenumbers are smaller).
Global matrix methods using the scaling matrices (36) and (37) require the clas-
sification of ascending and descending modes only at the lower and upper bound-
aries, whereas scattering matrix methods require an explicit determination of
the mode type at every altitude. The model is devoted to solving the linearized
equations including viscosity, thermal conduction, and ion drag. A simplified
model, corresponding to an isothermal, homogeneous atmosphere with constant
kinematic viscosity, no background wind, and no ion drag, is also considered.

Depending on the form of the source function, either single-frequency waves
or time-dependent wave packets can be analyzed. A heuristic approach for
determining the imaginary frequency shift introduced by Knight et al. [16] is
also considered. This approach is based on (i) a layerwise causality condition
applied at selected altitude levels, and (ii) a source-function reconstruction test.

Numerical simulations demonstrate that both global matrix and scattering
matrix methods achieve comparable accuracy. However, the former are sig-
nificantly more efficient than the latter, particularly in simulations involving
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time-dependent wave packets. Among the global matrix methods, the approach
based on solving for the amplitudes of the characteristic solutions appears to
provide the highest efficiency and accuracy.

The linearized equations on which the solution methods were tested corre-
spond to ionospheric conditions. The ultimate goal of our research is to develop
a comprehensive model for analyzing ionospheric gravity waves using satellite
measurements. The approach presented in this paper represents only the first
component of such a model. Two options are envisaged for extending it to a
more complete formulation.

1. Fully coupled neutral-ion model. The linearized hydrodynamic equations
would be solved together with the ion equations. In this case, the ion
continuity equation would include perturbed production and loss terms,
whereas ion inertia and ion—ion collisions would continue to be neglected in
the ion momentum equation, and only transport parallel to the magnetic
field lines would be retained. The state vector would then be augmented
by two additional components, namely the perturbed ion number density
and the ion diffusion velocity.

2. Two-step coupling strategy. In the first step, the neutral-atmosphere equa-
tions are solved using the fast field-aligned diffusion approximation. In the
second step, the wave-induced perturbations obtained from the neutral
solution are used as input to solve the ionospheric equations for the per-
turbed O ion density. The ionospheric equations may be solved using the
SAMI2 model [40] for low latitudes, where the E x B drift is neglected,
or the SAMI3 model [47] at higher altitudes, where the E x B drift is
included and the electric field is determined from the solution of a two-
dimensional potential equation. In this strategy, priority is given to the
ionospheric equations of the SAMI framework, while wave-induced per-
turbations are handled using the approximate approach developed in the
present study. Along similar lines, Knight et al. [34] solved the neutral-
atmosphere equations without ion drag in a first step, and subsequently
addressed the ionospheric response using the Field-Line Interhemispheric
Plasma (FLIP) model [48].

The development and application of these complete models will be addressed in
future papers.

Appendix A. Derivation of the linear system of
ordinary differential equations

In this appendix, we derive the explicit representation of the linear system of
ordinary differential equations (5).
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Hydrodynamic equations

The hydrodynamic equations for the neutral atmosphere consist in the continu-
ity, momentum, heat, and ideal gas equations (e.g., Refs. [4, 5])

% =—pV -u, (117)
p%l: = _—Vp+pg+V-o—fip, (118)

DT _
Py =—pV-u+7:Vu+V:(AVT) — gmp, (119)
p = pRuT, (120)

where p is the density, p the pressure, T the temperature, u the velocity, D/Dt =
0/0t+u-V the material (substantial) derivative, ¢, the specific heat at constant
volume, A the coefficient of thermal conductivity, Ry the specific gas constant,
and o the viscous stress tensor. The quantities fip and gip denote the ion-drag
force exerted by neutrals on ions per unit volume, and the frictional heating rate
per unit volume arising from ion—neutral collisions, respectively. In a Cartesian
coordinate system (z1,x2,x3), the components of the viscous stress tensor are

given by

Oui | Ou; 25 G.u (121)

oij = - 305V-ul,
J # 8.%‘j 8%‘1 3 J

where 1 is the dynamic viscosity and d;; the Kroneker delta. Accordingly, the
double dot product of & =3 _,. 04;%; ® X; with Vu =3, 0u;/0z;X; ® X; is

Ou;
7:Vu=) o—ija—;. (122)
ij

Using the ideal-gas law p = pRMT so that Vp = pRyVT + RyTVp, the

momentum equation can be written as

b, RuT 1 1
A M g, RuVT - (u-Viutg+-V-7— ~fip. (123)
ot p p p
Moreover, using
c Cplh
—¢, +R =2 g=2F 124
¢ =cvt B, v =5, P (124)

where ¢, is the specific heat at constant pressure, v the ratio of specific heats,
and Pr the Prandtl number, and assuming that ¢, and Pr are constant, the heat
equation becomes

oT 1 _ vy 1
s ——('y—l)TV~u—u~VT+E0'.Vu—i-ﬁV(uVT)—pTVqID. (125)
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In the momentum and heat equations, the ion-drag force and the correspond-
ing heating per unit mass are given by

1

;fID = Vm(u — 'lli)7 (126)
1 1 ,

—qip = ;fID (=) = vpilu— gl (127)

where v,; is the neutral-ion collision frequency (the collision frequency between
a neutral particle and all kind of ions).

We choose a rectangular coordinate system such that the z-axis is directed
to the geographic south, the y-axis to the east and the z-axis upward. The wave
propagates in the meridional plane, i.e., in the (z, z) plane. The viscous terms
per unit mass in the momentum equation are then given by

E(VE) = @_A'_@ _~_1 @_’_8211} +18M 8“’_’_87’“}
p xTH\ B2 T 522 3\ 0z2  Ox0z pOz \0z Ox)’

(128)
l(v E) — a2w+62w +1 aQu +a2w +1@ éaﬂ_g%
p A AR 3 \0zx0z 022 p0z\30z 30z
while the viscous dissipation term per unit mass appearing in the heat equation

(129)
is
L el d ()1 oudw 4 (o’
p 3H\ oz 3o 9, T 31\ a2
ou\? Ou dw ow\?
+ i (82) +2Hk£%+ﬂk <3x> . (130)

Here, pi = p/p is the kinematic viscosity, and we have assumed that the vis-
cosity depends only on altitude, so that
op
Ox
Using Eqgs. (128)—(130) together with assumption (131), we express the
hydrodynamic equations as

=0. (131)

u_ RuTOp 0T (0w o
ot p Oz MOz ox 0z

n Ou  OPu\ 1 (0% 0w
Pei\oz2 T 922) "3\ 022 " 9202

10p (Ou  Ow 1
4+ Lom (az + ax) —— fi (132)
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Ow  RmT dp R 8T_( ow 8w>_g

ot = p 9z Mar \"or "oz
(P Py (o
Fie |\ 922 ™ 922 3\ 0x0z 022
10u (40w 20u 1
e 1
+ p 0z (3 0z 38x> prDZ’ (183)

ain,( fl)T %4,8711) _ a£+ 8£
a ar | 0z Yor "oz
LA (ou 4 udw 4 (Ow)®
c SMk ox 3/1k or 0z SMk 0z
Hie 0z Nkazax Hie ox

LY (32T 82T> L ou 0T 1

Pr \ 022 022
where fipx and fip, are the components of the ion drag force fip on the - and
z-axis, respectively.

In the above hydrodynamic equations, the Coriolis force has been neglected.
For a two-dimensional wave geometry in which both the background flow and the
perturbation velocities are confined to the vertical (x, z) plane and all variables
are independent of the transverse horizontal coordinate ¥, the Coriolis accelera-
tion associated with the Earth’s rotation is directed entirely along the transverse
direction and therefore does not enter the momentum equations considered here.
More precisely, for u = (u,0,w) and @ = (—Qcos ¢, 0, Q2sin @), where ¢ is the
geographic latitude and Q = 7.29 x 107°s~! the Earth’s angular velocity, the
Coriolis force per unit mass is fo = —2Q x u = (0,29Q(cos pw + sin ¢u), 0).
Thus, the Coriolis acceleration is directed entirely along the transverse hori-
zontal direction y and does not affect the two-dimensional (x,z) momentum
equations.

pPr 0z 0z  cyup

gD (134)

Linearized equations

To linearize the hydrodynamic equations, we assume that all background (un-
perturbed) quantities vary only in the z-direction and write

f@,2,t) = fo(2) + f'(=, 2,1),

where f denotes any state variable. In particular, we assume
uo(2) = (uo(2),0,wo(2) =0), po = po(z), To="To(z). (135)

Furthermore, we neglect the second derivative of the background horizontal
wind and background temperature,
d?uy d*Ty

7 =0, 4z =0, (136)
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1. The linearized continuity equation is

dp’ ap' ou'  ouw'
P

2. The linearized momentum equations are

ou'  dug o' 2 op 2 or

ot dz Wt or  ypo Ox  ~1y Ox
n %! N %! n 1 0%/ n %'’
Hro |\ 922 T 22 3\ 022  Oz0z
1 duo (Ou'  Ouw' 1 dug dp’ 1 dpg dug o 1 !
——— |3+t JiDx
0z ox

po dz po dz 0z po dz dz po p
(138)
and
aw'__cgip' c2 A _cg aT’_uﬁiw’
ot qpo 0z  ~H, \Ty po Ty 0z 0"
n 0w’ n 0w’ n 1 /0% n %’
MO\ 922 7 922 ) T3\ 0w0z T 922
1 dpg (40w 20U 1 !
S22 ) (Zhn, ) 139
+ po dz (3 dz 30z prD (139)
where

cs = v/ YRmTh (140)

is the speed of sound and H,, is the density scale height defined by

dpo _ _ro

141
dz H, (141)

Here, (fipx/p)’ and (fipz/p)’ denote the perturbations of the z- and z-
components, respectively, of the ion-drag force per unit mass fipyx/p and

fIDz/P-

. The linearized heat equation is

or o' ow or' dT, ,
o~ 0~ DT (aﬁ az>‘<“° i +dz“’>

+2/1k0% ou’ +8iw’ 4 Mo dug 8 woop
¢y dz \ 9z ox cypo \ dz Lo Po

woy (0T 9T v (dpe dT"  dT, ou 1 /1 !
+ Pr (5‘z2 + 022 +p0Pr dz 0z + dz 0z Cy quD ’

(142)

where (gip/p)’ denotes the perturbation of the ion-drag heating per unit
mass.
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The linearized equations (137), (138), (139), and (142) are structurally con-
sistent with Egs. (7), (4), (5), and (6) in Ref. [35], respectively, when only
the terms in black and blue are considered (the terms indicated in red are not
included). They are likewise related to Egs. (3.5), (3.1), (3.3), and (3.4) in
Ref. [11], when only the terms indicated in black are considered (the additional
contributions indicated in red and blue are not included).

Using the following representation for the dynamic viscosity u [49]

p=3.34 x 1077707 (143)
we obtain
T o duo (T’ o ([T
"=0Tlpy—, — =0.711—" [ =— 0.71po=— [ = ). 144
s to T07 0z dz TO + Ho 0z T() ( )

With these relations, the linearized equations can be written as follows:
1. x-momentum equation

ou _ dug o' 2 op & or

o VT "oy vpo Ox  ~1p Ox
n 0%/ n 0%/ +1 0%/ N 0w’
Hio 02 022 3\ 0x2 0Oz0z

14 / N 1d due T’ T
y —SHo (a“ 4w ) 4o {0.71“O 07102 ()]

po dz \ 0z Ox po dz dz Ty 92 \ T,
1 dpg dug p’ 1 !

- T2 () 145
po dz dz po PfID (145)

2. z-momentum equation
ow 2 o N 2 (T’ p’) c2 or ow’

= — — — - ] — — up——
ot vpo 0z vH, \Ty  po ~vTp Oz s

N 0w’ N 0%’ +1 0%’ N 0w’
Hxo Ox? 0722 3\ 0x0z 022
1 duo (40w 200 1 !
el e 14
+ po dz (3 Jdz 30z prD (146)
3. heat equation
oT" o' ouw' or’  dTy
o~ =D (aﬂ az) - (“0 e +dz“’>
2uo dug [ Ou’  Ow’ o [ dug 2 ™ P
o (9% I =0 i _ 2
* cy dz (32 * Ox * cypo \ dz 0.7 T  po

[0 82T’+82T’ L dpo OT"
Pr \ 0x2 0z poPr dz 0z

v dTy duo (T o (T 1 /1 !
— 0.71— [ — 0.71 — - - .
+ poPr dz [ dz <T0 + Ho 0z \ Ty Cy quD

(147)

+
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Plane wave solution

We assume that all perturbations vary harmonically in time and in the z-
direction, that is, B .
f(@, 2, t) = F(z)ed@ ), (148)

where w is the angular frequency and ky the horizontal wavenumber. It then
follows that

af/ ) , af/ ) 82f/
A L= ik f = —k2f. 149
5 — il - f's 5 of (149)
The linearized continuity equation becomes
Pk _ jdw
— =—u- = — 1
o o' am T ad (150)
where
Q=w — keug (151)
is the intrinsic frequency. Further, using
d (p 1 dp 1 7
@qp+ﬂ (152)
dz \po/) podz  Hypo
together with
dQ dug de Po
— = —ky—, — = 153
dz dz ~ dz H, (153)
we obtain
1 dﬁ+ 1 7 k2 dug_ j ky dug 1 dH,\ _
——t——=Z=—u- —— ———t | w
podz  H,py Q2 dz QH, \Q dz H, dz

Qd: ' Q

00 1= 154
Q dz H, + (154)

kedi | j (kedug 1\ dw jd*w
dz  Q dz?

In a first step, we use Egs. (150) and (154), together with the linearized forms
of the momentum and the heat equation given in Eqs. (145)—(147), to express
the governing equations in terms of u, w, T /Ty, and their vertical derivatives.
_ In a second step, we introduce the dimensionless state variables u, w, and
T, defined by

u(z) = —u(z), w(z)=-—w(z), T(z) = To(z)j;(z)7 (155)

W=—, T=—. (156)
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The state vector is organized as

1 ~
Ldu L 1
ky dz kxu’ (157)
1do 1 —~
Ldw 1 1
ky dz kzxw’ (158)
14dT 1 ~
L1 1
k, dz kxT’ (159)

1 did 4 ke (1 dpodug . 2\ .
Jox — =) = |jQ+=k2 =00 g
Hko (kx dz) [J T 3Rxto T <p0 o4 5 u

dug ., 1 dpg j 1 dpodug ., c2\] .
el YA —SHo %o S
+ {dz + po dz QH, \ po dz dz . v v

ey 2 1o d 1 dpo ~
kS o LA du) 5 1 diog
Y po dz dz po dz
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Siky J(ZCC e &
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Ho C UU 7’ ( fIDx) , (160)
wo \ P
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Equations (160), (161), and (162) with the constants C; = 1.71 and Cy =
2.71 correspond to the general model, in which all altitude derivatives of the
background parameters ug, Ty, H,, and p are retained. The terms shown in
black and blue in these equations, with the constants C; = 1.0 and Cy = 2.0,
correspond to the model of Vadas and Nicolls [35]. Moreover, Eqs. (160),
(161), and (162), when only the black terms are retained and the constants
are set to C; = Cy = 0, are consistent in form with Eqgs. (3.32), (3.31), and
(3.33) in Ref. [11], respectively. Note that in Ref. [11], the wave propagates in
three-dimensional space, the harmonic dependence of the perturbed quantities is
taken as exp[—j(wt — kxx — kyy)], rather than exp[j(wt — kxx)], the characteristic
solutions have an eXp(sz) dependence, rather than exp(k /\z) and the state
vector is defined as [@,w, T, U, W, T]T instead of [@, @, T, U, W, 717, where U =
du/dz and W = dw/dz. Essentially, the difference between the model of Vadas
and Nicolls [35] and that of Knight et al. [11] is that, in the latter, the derivative
of the dynamic viscosity dug/dz is omitted. In the code, for testing purposes,
we included a hard-coded logical flag that selects the linearized model to be
used. Our numerical simulations show that there are no significant differences
between the general model and that of Vadas and Nicolls [35], and that the
effect of the assumption dug/dz = 0 is relatively small. This latter assumption
was discussed in detail in Ref. [11]. In the general model, the derivative dug/dz
is computed as

dpo 1 ATy : luo \ | &
+|jo+ BTy oy TSR0 2 €0 gy SO (”ﬂ}T

. 2pro wo dug 5 wo

cvTo ky dz ky

dpo 1 dTp

— =0.7T1lpy——

dz KT dz
whereas the derivatives of ug, Ty, and H, are computed using central finite
differences.

The model can be particularized as follows:

1. For an isothermal (Tp = constant), homogeneous (ko = 10/po = constant),
and windless atmosphere (ug = 0), we set
duo dTO de 1 d,uo . Hk0

=0, —2 =0, Q and — —2
dZ ) b

= —* = . (163
dz “o g po dz H, (163)
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In this case, the density scale height H, coincides with the atmospheric
scale height H,, which satisfies

1d 1d 1
290 _ 2 %%0 (164)
po dz  pg dz H,
and is given by
RuT
H, = Lo _ M0 _ onstant. (165)
Pog g
2. For an atmosphere without ion drag, we set
Jiox =0, fip, =0, and gip = 0. (166)
Dispersion equation
For f(z) x exp(kxAz), we obtain
~ df ~ dF e
:7:kXA’7:]€A 3 167
F=Lokar L= pn (167)

where f denotes u, w, and T, and F denotes U, W, and T. Inserting Eq. (167)
into Eqgs. (160)—(162) yields a homogeneous system of equations. Requiring the
determinant of this system to vanish, and neglecting the ion-drag terms, leads
to the following dispersion equation:

Q VM . Ap
O fo- i )] ok (- )] [ 5002 (- )

. N kx A k2c2
+ [Q _JMkOki (1 — )\2)] [Q —J%kzi (1 — )\2)} {ki (1 — )\2) + Hp] — ’YQH,% (v—1)
=0. (168)

The dispersion equation (168) is the counterpart of dispersion relation (3.35) in
Knight et al. [11], under the aforementioned equivalences. Remarkably, it does
not include derivatives of the background parameters ug, To, H,, and pg. This
result follows from the variable-change method discussed by Knight et al. [11]
in their Section 2.2.

For an isothermal, homogeneous, and windless atmosphere without ion drag,
the dispersion equation reduces to the cubic equation [4]

C3R® + CoR* + C1R+ Cy = 0, (169)

for R = =A% + a\ + 1,where a = 1/k,H,, or equivalently, R = k? — jar + 1,
where

. 1 .1
K=]j\= ™ </<:Z—|—J2Ha>. (170)
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The coefficients of the cubic equations are given by

C3 = =3nv(l +4n), (171)
Cy = W +vB(1+7n)+ 3n, (172)
€1 = {62~ 2?1 + 3y - 20T g (173)
oo = o 220‘_2(11 30 4021 4 3p), (174)
where
If R,,, m=1,...,3 are the solutions of the dispersion equation, the correspond-

ing vertical wavenumbers k. are given by

Lo @
B = Fhx\[ R =1 = . (176)

The wavenumbers k£, with Im(k},) < 0 are associated with ascending modes,
whereas the wavenumbers k_,, with Im(k,,,) > 0 correspond to descending
modes. Ordering the ascending wavenumbers as

Im(kf) < Im(k)f;) < Im(kf;) < 0,

we identify (i) kjl and k,; as ascending and descending gravity-wave modes, re-
spectively, (ii) k5 and k, as ascending and descending viscosity-wave modes, re-
spectively, and (iii) k3 and k; as ascending and descending thermal-conduction
wave modes, respectively. A similar cubic equation was derived by Francis [7]
under the assumption that the geomagnetic field is either in the horizontal or
the vertical direction.

For an isothermal, homogeneous, and windless atmosphere, without viscosity
and ion drag, the dispersion equation (169) reduces to the quadratic equation

CoR?* +C1R+ Cy =0, (177)
with
Cy = v, (178)
C =B — 5%, (179)
Co = i +a? (180)
v—1

For Im(k;) < Im(k};) < 0, the permissible modes are (i) the ascending and
descending gravity-wave modes associated to the pair (k,k,;), and (ii) the

ascending and descending thermal conduction-wave modes associated to the
pair (kfy, k).
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Appendix B. Derivation of the ion-drag terms

In this appendix we derive the expressions for the ion-drag terms that enter the
hydrodynamic equations (160)-(162).
Ion equations

For each ion species 7, the ion continuity equation is

6’1%
ot

+ V- (niwg) = P — ni L, (181)

and the corresponding ion momentum equation, including pressure gradient,
electric field, magnetic field, gravity, and collisions, is

ou; 1 ; ;
1+(ui-V)ui:f sz+£E+ﬂule+g
ot mgn; m; m;

— I/in(ui — u) — Z I/ij(lli — llj). (182)

Here n;, u;, T;, m;, and p; = n;kgT; are the number density, velocity, tempera-
ture, mass, and pressure of ion species i; E is the electric field, B the magnetic
field, ¢; the ion charge, g the gravitational acceleration, and kg the Boltzmann
constant. The quantities P; and £; denote the ionization production rate and
the loss rate due to chemical processes of ion i, respectively. The neutral wind
velocity is u, and the collision frequencies v;, and v;; describe ion-—neutral and
ion—ion collisions.

In addition to ion equations, we consider the electron momentum equation

€

1 e
Vp. — —E —
MeNe Me Me

0=-— u. X B, (183)
where ne, ue, Te, me, and p. = n kT, are the number density, velocity, temper-
ature, mass, and pressure of electrons. In Eq. (183), electron inertia is neglected
because of the small electron mass, while electron collisional terms are neglected
because v, < ()., where v, denotes the electron collision frequencies and ). is
the electron cyclotron frequency.

In the ion momentum equation we neglect the ion inertia and the ion—ion
collisions, and introduce the drift velocity up by writing u; = u 4+ up. This
yields

1
mivipup = ¢; [E + (u+up) x B] — ;Vpi +m;g. (184)

The momentum equation is projected along the direction of the magnetic field b
and perpendicular to it. The parallel and perpendicular -force-balance equations
are

1
mivinup| = 4B = — (V) +mag, (185)

%
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and

1
miVinupL = ¢; [E1 4+ (uy +up1) x B] — o (Vpi), +migy, (186)
respectively, where in general a| = (aB)B = aHB and a; = a—a|. The parallel
transport equation for electrons reduces to
1 JOp.
Ey=—— .
I ene Ob
The parallel and perpendicular force-balance equations are solved as follows.

We first consider the ambipolar diffusion velocity, and then the electromagnetic
drift velocity.

(187)

1. Ambipolar diffusion velocity. For a single dominant ion species of
charge ¢; = +e, the parallel force balance equation for ions becomes

1 Op;
MVinUp| = eEH — ;% +mig, (188)
where dp;/0b = Vp;, - b. Inserting Eq. (187) into Eq. (188), gives
o 1 Ope 1 Op;
MiVinUp|| = — (ne % + mﬁb> +mig; (189)

where g = g - b. Using the ideal-gas relations p; = n;kg7T; and p, =
nekpTe, assuming quasi-neutrality n. = n;, and thermal equilibrium T; =
T. =T, we obtain

1 on, 10T g
- Dy~ e B 1
uDj = T 5A <m o T ab) Vin (190)
where
2kpgT
Da = (191)
MmiVin

is the ambipolar diffusion coefficient.

2. Electromagnetic drift velocity. Neglecting perpendicular pressure-
gradient and gravity terms, which are often small compared to the elec-
tromagnetic drift terms, and assuming a collisionless or weakly collisional
limit in which the ion—neutral drag term is negligible, the perpendicular
momentum balance reduces to

EL+(UL+UDL)XB:0. (192)

With u;; =u,; +up_, this gives u;; x B = —E,, whose solution is the
electromagnetic drift velocity

_ E, xB _ ExB
- B2 T B2

Consequently,
Uup| = Ug —Uuj. (194)
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Collecting all contributions, the ion velocity can be written as
u; = u +up| + ug, (195)

where uj = (u- E)B is the field-aligned neutral velocity, up| = UDHE is the
ambipolar diffusion velocity given by Eq. (190), and ug is the electromagnetic
drift velocity given by Eq. (193). This expression follows from the decomposition
u; = u + up, together with up; = ug — u_, so that the perpendicular neutral
velocity cancels.

In our model, the ion velocity is assumed to be aligned with the magnetic
field lines. This assumption is introduced to decouple the hydrodynamic and
ion equation systems. Accordingly, the ion velocity is approximated by

u; ~ (u-b)b + upb. (196)

This approximation is justified when perpendicular ion transport is small com-
pared to the dominant field-aligned diffusion. The resulting formulation cap-
tures the leading-order effects of ambipolar diffusion along the magnetic field
lines, while deliberately neglecting perpendicular electrodynamic coupling, such
as cross-field advection and E x B drifts. Consequently, the model is applicable
to regimes in which field-aligned transport dominates and perpendicular elec-
trodynamic effects play a secondary role. We note, however, that the neglect of
the electromagnetic drift velocity is not appropriate for all geophysical regimes.
At high latitudes, ion convection is largely controlled by magnetospheric forc-
ing [50], and realistic modeling generally requires externally imposed convec-
tion electric fields, for example from empirical models such as Weimer [51]. At
mid-latitudes, perpendicular ion motion may be influenced by inter-hemispheric
coupling and neutral-wind differences between conjugate hemispheres [52, 53].
A fully self-consistent electrodynamic formulation, in which the electric field is
obtained from an electrostatic potential ® via E = —V®, with & determined
from quasi-neutral current continuity and the conductivity-tensor relation [51],
is therefore beyond the scope of the present study but constitutes an important
extension for future work.

In the following, for simplicity, the subscript || is omitted, and we write up
and up instead of up| and up||, respectively. Let

g =(0,0,—g), b= (—cosI,0,—sinl), u= (u,0,w), (197)

where I is the geomagnetic inclination. The field-aligned derivative is

0 ~ 7] . .0
(%—V'b——<coslam+smlaz),

and the scalar field-aligned diffusion velocity becomes (cf. Eq. (190))

1 oOn; .1 0n 10T . 10T .
up = Da (COSIM (';; —|—smIE 82 +COSIT% +s1nITaZ> + Vi sin [.

(198)
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Linearized equations

The linearized continuity equation, together with the linearized expressions for
the diffusion velocity, ion-drag force, and ion-drag heating, are as follows.

1. Ion continuity equation. Neglecting the perturbed production and loss
terms, the perturbed ion continuity equation is

onl;
ot

Using Eq. (197) and the standard assumptions n;0 = n;o(2), uo(z) =
(up(z),0,0), and upg = upo(z), we obtain

% (;i) = —upo [881) (:i)) — niwd(?;o sin [ <:i)>} + dZZDO sin 1 (:i))
+ <C(j,;tb/ — nlio dg;o sin Iu/) cosI + (8611;’ — nto d(;léo sin Iw') sin 1
_ (3523 3 nlio dg;;o sinlub) + ug COSI% (;i)
—cosIsinT (Cgio + g nlz‘o d(?j) (:i)) . (200)

2. Diffusion velocity. For the perturbed diffusion velocity uf, , we have
the representation

o (T 0 [ n!
''— —Dag— [ — | = Dapg— | —%
uD AD 8b <To) A0 (9() <ni0)
1 dnso 1 dTy )\ . ,  gsinl [V
—— ID) — ) 201
* <ni0 dz * Ty dz ) A Vino  \ Vino (201)

3. Ion-drag force and ion-drag heating. For the ion-drag force per unit
mass (cf. Eq. (126) of Appendix A),

1
—fip = vpi(u — w;),

+ ’I’L;V - Wi + W - Vn; + ’I’Liov . u; + u; . Vnio =0. (199)

we obtain

, _
1 . .

(fIDX = Upio |sin® Tu/ — sin T cos Tw’ + cos Tuf,
p

/
+ (UDo cos I + ug sin? I) (V’”)] , (202)

Vnio

1 ! i
<prDz> = Upio | —sin I cos T/ + cos? Tw' + sin Tuf,

/!
+ (uposin I — ugcosIsinl) < Uni )] . (203)

Vni0
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For the ion-drag heating per unit mass (cf. Eq. (127) of Appendix A)

1 2
—¢ip = Vpslu —wy|”,
p

we find

1 /
(quD) = Unio {2 (sin2 Tugu' — cos I sin Tugw’ + uDoub)

/
+ (udsin® T+ udy) ( Uni )] . (204)

Vnio
Under the assumption that, in the ionosphere, the atomic oxygen O and O*-
ions are the main neutral and ionic constituents, we compute the background

neutral-ion and ion-neutral collision frequencies as [46, 54]

— Vnio .
Vnio = 7.22 x 10 17T8'377’Li0, Vino = n1 Np, N = O, 1= O+

140
and their perturbed values as
™ v
D, =D - - 2
w=Dao (7 - 22). (205)
V/ T/ pl
=037+ —, 206
Vino To  po (206)
v ™ nl
= 0.37— L. 207
Vni0 To - 740 (207)

Decoupled system of equations

From Egs. (200)—(204) we deduce that the hydrodynamic equations should be
solved together with the ion continuity and momentum equations by introducing
two additional state variables, namely n}/n;o and up,. The resulting system then
consists of eight equations, obtained by augmenting the hydrodynamic system
with the ion continuity and momentum equations. This fully coupled approach
was used by Shibata [46].

In our analysis we instead employ a simplified, approximate model that
decouples the hydrodynamic and ion equations. We have several options.

1. Klostermeyer Approximation. Klostermeyer solved the ion-continuity
equation by neglecting the diffuse velocity and neutral winds, i.e.,

/ ! ! 1 dn;
;(;:J) =— <COSI887;LC +sinI%—Z+ - :;zo sinIu’) cos I

ow' ow’ 1 dn;,
— <cosI 81; +sint (;Z + -~ ;:O sian’) sinl,  (208)
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and then computed the ion-drag force and ion-drag heating by including
the background neutral wind, i.e.,

1 ! -
<prDX) = Unio {sin2 Iv —sin I cos Tw' + ugsin? I (ﬁ)} . (209)
0

1 ! ,
(prDz) = Vni0 {— sin I cos Tu' + cos® Tw' — ugcos I sin I <:n1 )} 7
ni0
(210)

and

1 ' ;-
<QID) = Upnio {2 (sin2 Tugu' — cos I'sin Tugw') + udsin? (Vm)] )
P Vnio
(211)

Klostermeyer’s method is best viewed as a semi-diagnostic approxima-
tion: one solves a simplified ion continuity equation driven only by the
wave-induced divergence, and then evaluates ion-drag force and heating,
including ug and v/,;, but assuming no diffusion velocity. In other words,
field-aligned diffusion and background neutral wind are neglected in the
ion continuity equation when computing n}, and the ion drag is treated

as a diagnostic based on the neutral wave field and background wind.

. Fast Field-Aligned Diffusion. In the second method, we assume that
field-aligned diffusion is sufficiently strong that the relative ion perturba-
tion and the perturbed diffusion velocity are nearly constant along the
magnetic field line (but can vary across it):

o (n 0 0 n'
— L) =— I— inl— L) = 212
8[) <n10> <COS (9.1‘ +sin 8z> (’I’Lio) O ( )
and o o o
up up . up
o cos [ B +sin/ 9. 0. (213)

We then obtain
1 dnio IdUO I 1 dnio

—cos]— —cosIu
Nio "ni dz dz O dz

d n’ 1 dnjo
3 I [ - I /
) sin (nio) —i——nio 1z Sin £ up,

é)u 1 dnio
I — nl —
(COS - sin 0z + ngo dz

( Cooou 1 dnjp

sinIu’) cos T

Sin

2 o sian’) sinl  (214)
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and

o [T o [T
! . - . . -
up = Dag {cos]am (To> —|—sm[az (T())}

1 dnig 1 dT; inl [ v
+( no 4 0>sinIDg—gsm (”“l) (215)

nyg dz Ty dz Vino  \Vin0

The ion-drag force and ion-drag heating are still computed from FEgs.
(202)—(204).

Plane wave solutions

Let
ni(x, z,t) = (2) @R (2) = ngo(2) Ra(2), (216)

and (cf. Eq. (148) of Appendix A)
fw, 2, t) = f(z) @ik,

As in Appendix A, we introduce the dimensionless state variables u, @, and f,
defined by
. Wo~ __  Wo
U= -—u, W=-—

W
kx ki
together with their derivatives

=T,

|

di  wys; A wos d (TN AT
dz ke | dz kg o

- - T Az \Tp
1. Representation of up. From Eq. (215) we obtain

up = —jkxDao cosIT 4+ Dag sinI’?

1d n 1 dT, . - inI Vin
+< n0+0)81nIDA—gSIH (”) (217)

n;o dz Ty dz Vino  \ Vin0
Using
E T Vin
Za_ 2 Vin (218)
Dxo  To  Vino
Vin _ 37z + L (219)
Vino Ty po’
together with (cf. Eq. (150) of Appendix A)
Lo Q QHP Q dz
we express up as
Up = Untl + Uy@ + UrT + UpW + U T, (220)
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where the U coefficients are given by

U, = _% (DaoE + G), (221)
. Wo 1
Uy =]— —— (DagFE + G), 222
Iq o, (PrE+6) (222)
Ut = —jkyDagcosI +0.63 DagFE — 0.37G, (223)
1
Uy = —j=2 (DaoE + G), (224)
Q ky
Ur = Dpgsinl, (225)
with 1d 1 dT; in 1
. N0 0 gsin
E = I — = . 226
Sin (nio dz TO dz ) ) Vino ( )
2. Representation of n;. From Eq. (214) we obtain
1 dn; d
jw — upo nOsinI—i—ﬂcosIsinI
n;o dz dz
1 dn; . d . B
+ uo—ﬂ cosIsinl — Do smI)m
150 dz dz
= nOsmIED+ jkxcos I — 1o sin [ cos]ﬂu
no dz nio dz ky

1 dn, . . ~ =
4 (kecosT — — 0 gin I ) sin T 2% — cos I'sin I 2207 — sin® I 22,
nio dz k k k

(227)
After some manipulations, the expression for n; reads
i = Nuti + Ny@ + NoT + Nyl + NyW + N¢T, (228)
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where the NV coefficients are given by

1 1d n 1d i .
Nu:{(jkxcosl— Z;Osinl> cos[ﬂ—i— nosmIUu],

Ny n;o dz kx ni dz
(229)
1 . 1 dnjo . R 1 dng .
Ny = — kycos — — I I —+ — U |,
N |:<J cos o s sin ) sin ™ + o s sin IU, ]
(230)
1 1 dnio .
Nt = —— 1U 231
v = e i U, (251)
1
Ny = N cosIsinI:—i, (232)
1 /. wo 1 dng |
N - . 2 I - ~ I 2
W No (bm e sin UW>7 (233)
1 1 dTLZ‘() .
Ny = — sin IU- 234
T = N de S AUT (234)
and
dn;o . d .
Ny = jw — upo nOsmI—l—ﬂcosIsmI
ngo dz dz
1 dn; . d .
+ up o~ % cosIsinl — ZZDO sin 1. (235)

3. Ion-drag force and ion-drag heating. Using Eqgs. (220) and (228),
together with

T i S~
=037 + 0 = 0.37T + 7z, (236)
Vni0 To  n4o

Vni

we obtain

1 1 N N ~ ~ — ~
<fIDx> = quu + waw + FXTT + quu + FXWW + FXTTv (237)

Vni0
1 /1 R ~ _ ~ _ _
» ;fIDz = Fu+ Faw+ F,rT + Fyd + FonW + FZTT, (238)
ni0
1 71 ~ ~ . _ __ _
ni0
With

Ay = upg cos [+ugsin® I, A, = upgsin [—ugcos IsinI, B =ud,+ulsin®I,
(240)
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the coefficients corresponding to fipx are

Fry = sin? % + ANy + cos T U, (241)
Fyw = —sinlcosI % + AxNy, + cos I Uy, (242)
For =037Ax + AyNp +cosl Ur, (243)
Fa = ANy, (244)
FxW = AXNW + COSI[]]/\;7 (245)
Fyr = AxNt + cos I U, (246)
the coefficients corresponding to fip, are
Fpu = —sinlcos] % + AN, +sin I Uy, (247)
2+ Wo .
F, =cos“ T . + A,Ny +sinI Uy, (248)
F,r =037A, + A,Ny +sin [ Ur, (249)
Fa = ANy, (250)
F,w = A, Ny +sinl Uy, (251)
F,r = A,N7 +sinl Uy, (252)
and the coeflicients corresponding to ¢ip are

P, = 2sin% [ %uo + BN, + 2upoUs, (253)
P, = —2cos Isin [ %uo + BN, + 2upoUs, (254)
Pr =0.37B + BNt + 2upoUr, (255)
Py = BNy, (256)
Py = BNy + 2upoUyy, (257)
Pr = BNy + 2upoUr. (258)

Note that, in the algorithm implementation, the derivatives dn;g/dz and dupg/dz
are computed using central finite differences.

Appendix C. Solution methods for the grid-point
values of the state vector

In this appendix, the global matrix method with matrix exponential and the
scattering matrix method will be formulated for the grid-point values of the
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state vector.

Global matrix method with matrix exponential

In the layer I, with boundaries z; and z;41, the discrete values e;11 = e(z;41)
and e; = e(z;) are related through the relation (cf. Eq. (14))

e;r1 = Vidiag[et 121V, ey, (259)

or equivalently,
Ve = diagle® 121V, ey (260)

Taking into account that by Eqs. (13) and (14), we have e; = V;a; and e;4; =
Viyr1a;41,we see that Eq. (35) and (260) are completely equivalent. Multiplying
Eq. (260) with the scaling matrix Kll’, we obtain the layer equation

Aler s —AVej = 0oy, 1=1,...,L —1, (261)

where
Al =K}V, (262)
A) =K)V, (263)

and K| and K{, are given by Eqgs. (36) and (37), respectively. Essentially,
we have L — 1 equations imposed on layers 1,...,L — 1 for the L unknowns
e1,...,er. On the layer [ = 1, the boundary condition (cf. Eq. (42)) aj =i,
translates into (cf. Eq. (24))

s, 00 Vi ey = iy, (264)

while on the layer [ = L, the boundary condition (cf. Eq. (45)) aj = Oum
translates into (cf. Eq. (25))

[0ar, Tn ]V 'er = 04y (265)

As in Section 3, the layer equations (261) together with the boundary con-
ditions (264) and (265) for a unit scale factor, are assembled into a system of
equations for the stratified atmosphere, i.e.,

Ae=b, (266)
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where

[ [0ar, I V! 0 .0 0
Al | -AY .00 0
A= : Lo : . (267)
0 0 ... Al —A9
i 0 0 oo 0 [T, 0Vt
[ er On
er—1 O2n1
e= and b = . (268)
e 02/
L € 1

When applying the lower boundary condition (55), i; in Eq. (268) should be
replaced by B~'by, where, for a unit scale factor, by = [1,0,0]T. After solving
Eq. (266), we compute the wave amplitudes by using Eq. (60).

Comments.

1. The ascending and descending solution modes can be derived by using the
upward and downward recurrence relations (cf. Egs. (28)—(31), (41) and

(44))

elt_l = T;rel, forl=1,...,L —1, with e] =v{, and (269)
e, =T, ey, forl=L—-1,...,1, with e = 02y, (270)

respectively, where

; kAl A
T = v, | daele A Oy (271)
Opm Opm
_ On Onr 1
T, = - A 272
Lo { Onr  diagle™ = mi] } : 27
Obviously, the relation e¢; = el+ +e, ,l=1,...,L, can be used to verify

the numerical algorithm.

2. If we assume that the ascending modes are the dominant modes, i.e.,
e ~ el+ for Il = 1,...,L, we may compute the state vector by means of
the upward recurrence relation (cf. Eq. (269))

er1 =T/ e, forl=1,...,L —1, with e; = v7. (273)

3. The layer equation (261) was derived from the solution representation
(259). In fact, this equation is simply the matrix-exponential represen-
tation of the solution, i.e., €41 = exp(A;kxA;)e;, where the matrix ex-
ponential is calculated using an eigendecomposition of the propagation
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matrix Ay, ie., A; = Vldiag[)\nl}VfI. However, instead of an eigende-
composition method, we can use the Padé approximation to compute
the matrix exponential [29, 30]. The nth diagonal Padé approximation
to the matrix exponential is exp(Az) = [D(Az)]"!N(Az), where D(Ax)
and N(Az) are polynomials in Az of degree n given respectively, by
D(Az) = Y i_o(—1)Fcpa®AF and N(Az) = D(—Az) = Y p_,craA*.
The coefficients ¢; can be computed recursively by means of the relation

—k+1
= T hE )ck_l,kZI (274)

kE(2n —k+1
with the initial value ¢y = 1. The layer equation then becomes
Alejy1 —Ale; =09y, 1=1,....,L -1, (275)

where A] = D(Akx4;) and A? = N(A;k4;). The resulting system of
layer equations, together with the boundary conditions, is assembled into
a banded linear system. Eigendecomposition is required only in the lower
and upper layers to apply the boundary conditions, whereas the Padé
approximation is used in all interior layers. This approach is presum-
ably more efficient than a full eigendecomposition. However, since the
first-order Padé approximation corresponds to a centered finite-difference
scheme, whereas the first-order Taylor expansion yields a forward finite-
difference scheme, the method is less accurate. For this reason, the Padé
approximation of the matrix exponential is not implemented in our com-
puter code and is included here solely for theoretical completeness.

Scattering matrix method

In principle, the scattering matrix method can also be formulated in terms of
the discrete values of the state vector. Starting from the interaction principle
equation (67), using Eq. (27), i.e., eli = Vlj[alj[7 and Eqs. (24)-(25), i.e.,
a; = [Iar, Oarlay = [Iar, 0]V ey, (276)
a; = [0ar, Iarlar = [0ar, Tar]V; tey, (277)

we find that for the stack S, the interaction principle equation involving the
discrete values of the state vector is

- + - +
EIRE R
€1 ol Pyl €11
where dim(%lfl) = dim(yﬁ) =2M x 2M, and

A T
‘71+ ‘@l;l

ol

] = (Iyp — A) A, (279)
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with

Vi R5IVE VTV e }
A= l lol B, lo lgl l_ , 280
VISV ViRV (280)
V= [V/, V], and V]! = { [Vl:h } . (281)
[Vl }2

Since the matrices %ljgl and Zji are twice the size of the matrices Ril and
’7;?3, the associated computational cost is significantly higher. Owing to its low
numerical efficiency, this method is therefore of purely theoretical interest and
is not implemented in our computer code.

Appendix D. Implementation issues

In this appendix, we discuss several implementation issues related to the com-
putation of lower and upper bounds for the wave period, the choice of frequency
and time discretization for the Fourier transform, and the determination of the
imaginary frequency shift.

Wave period

To define practical bounds for the wave period A;, we solve the inviscid dis-
persion equation (cf. Eq. (177) with » = 0 and with the intrinsic frequency
Q = w — kyug replacing w)

O — [w?+ ¢ (K2 + k)] Q% + Zkiwg =0, (282)

for an assumed value of the vertical wavenumber k,, where wy = v/ — 1g/cs is
the buoyancy (gravity-wave) frequency and w, = vg/(2¢s) is the acoustic cutoff
frequency. Thus, for a stratified atmosphere, the solution €2;,, depends on the
altitude z and the wavenumber k,, and satisfies Qiny(2,k,) < wg(2). In this
context we define wiyy (k,) = min, [Qiny (2, k,) + kxuo(2)]. The equation is solved
for two assumed minimum and maximum values of the vertical wavelength \,,
namely Aymin = 125 km and Ajpax = 250 km, implying kymin = 27/Asmax
and kymax = 27/Aumin- The corresponding solutions are denoted by wpmin =
Winy (Kzmax) and Wmax = Winy(Kzmin), and the resulting time periods are A min =
27 [wimax and Ay max = 27/wmin. These values are likely underestimates, since
dissipative effects (v # 0) tend to reduce the oscillation frequencies and thus
increase the wave periods. For this reason, we round the bounds upward to
the nearest multiple of 10 min, and set A¢min = 10 [A¢ min/10] and Ag max =
10 [A¢,max/10], where [z] denotes the upward rounding of = to the next integer.
To provide a physical interpretation of this approach, we note that Eq. (282)
yields
2 2 2
ki:%ﬂci <g§—1>, (283)

S
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so that, under the assumption 2 < w, , we obtain

k, w2 1
2z & 1 — 284
e 0 T2 (284)
If
wé 1
@—1—@>0f0rallz, (285)

then k, is real and exp(—jk,z) € C; thus, the wave is propagating. When this
condition is not satisfied, k, is purely imaginary and exp(—jk,z) € R; thus, for
Im(k,) < 0, the wave is evanescent. This condition yields

w < Qinv(2z, k, = 0) + kxug(z) for all z, (286)

where

Qiny(2,k, =0) = ——— (287)
Vit T

is the solution of the inviscid dispersion equation in the case k, = 0 (A, = 00).
We conclude that the condition wipy(k,;) = min, [Qiny (2, k,) + kxug(2)] implies
that the time period is chosen such that only propagating waves are considered.
Condition (286), written Q(z) < Qinv(z,k, = 0) was used by Knight et al.
[11] to determine the intrinsic evanescent frequencies that lead to the so-called
“anomalous results”. In practice, evanescent frequencies occur at altitudes up to
at least 100 km; consequently, these anomalous results are of limited relevance
for upper-thermospheric gravity-wave studies, since evanescence below about
100 km and critical layers in the lower thermosphere strongly attenuate such
waves before they can reach higher altitudes [11].

Frequency and time discretization for the Fourier transform

In the code, we do not use a Fast Fourier Transform (FFT). Instead, we perform
a direct (discrete) Fourier Transform (FT) by explicitly discretizing the Fourier
integral. The discretization parameters are chosen to resolve a source that is
localized both in frequency and in time.

1. Frequency band centered on wy. The Fourier transform is performed
over a frequency band centered on the reference frequency wy. We in-
troduce a frequency standard deviation o, defined as a fraction of wy,
ie., 0, = wo/Kw, where Kk, > 6 is an input parameter. The effective
frequency band of interest is chosen to cover approximately plus/minus
three standard deviations of the source spectrum: wpin = wo — 30, and
Wmax = wo + 30,. The total frequency interval and the frequency step
are, respectively, Ly, = Wmax — Wmin = 6w0/’1w and Aw = Lw/(NFT - 1);
where Npr is the number of discrete points. The discrete frequency grid
wy is then constructed as wy = wmin + (K — 1)Aw, k =1,2,..., Np.
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2. Time interval and time step. The time grid is chosen to be consistent
with the assumed temporal localization of the source and with the chosen
frequency bandwidth. First, we define the time standard deviation oy
as oy = 1/0, . The time interval L; is chosen to contain N, periods
of the reference frequency. The time period is given by Ay = 27/wy,
and therefore, Ly = NpA¢. The time step At is then computed as At =
Li/(Npr—1). The time grid t; is defined on the interval [tmin, tmax|, Where
tmin 18 an input parameter and tymax = tmin + Lt, by tx = tmin + (K — 1) At,
k=1,2,...,Npr. We also define a time shift by t¢ = (tmax — tmin)/2
which places the reference time close to the center of the time window.

In the code, Npr, Ky, INp and tnin are input parameters. Specifically, x,, de-
termines the length of the frequency interval L., whereas N, determines the
length of the time interval L;. The discretization is considered adequate if the
following conditions are satisfied:

1. The time window is long enough for the chosen frequency bandwidth.
This requires that the number of time standard deviations contained in
the interval satisfies Li/oy > 6, which ensures that the main part of the
source is well contained within the time window and that truncation effects
are negligible.

2. The Nyquist condition At < 7/wmax, and the dual Nyquist condition
Aw < 2w /L are satisfied. These conditions ensure that the temporal
signal is properly sampled in time and frequency, prevent aliasing effects,
and guarantee a consistent discrete Fourier transform between the time
and frequency domains

Since the Fourier transform is computed by direct discretization of the Fourier
integral, no FFT-specific constraint is imposed between the frequency step Aw
and the time step At. In particular, the grid relation At Aw = 27/Npr, which
is characteristic of discrete Fourier transforms based on periodic sampling and
exact discrete orthogonality, is not required here. Instead, the frequency and
time grids are chosen independently, based on the desired frequency band and
time window needed to resolve a source that is localized in both domains. This
provides greater flexibility in selecting the bandwidth, resolution, and window
length.

Imaginary frequency shift

The imaginary frequency shift is determined using a heuristic approach that
combines two criteria: application of the Layerwise Causality (LC) condition at
selected altitude levels, and a Source-Function Reconstruction (SFR) test.

1. LC condition at selected altitude levels. Choose a subset Lo C
{1,2,..., L} of altitude indices, and let N, be the number of elements
of the set Lo, i.e., Nr, = |Lo|. At each altitude level Iy € Ly, start with
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01, = Ostart and increases J;, in steps of Ad, i.e., §;, <— min(d;, + AJ, dstop),
until the LC condition (c.f. Eq. (108))

dig (wr) = Re[Ay;, (wi — joi,)] — Re[Afy, (wr — jd1,)] > evc (288)

is satisfied for all wy = wmin + (K — 1)Aw, &k = 1,2,..., Npr, and some
prescribed tolerance €. If there exists an altitude level for which it is
not possible to satisfy the LC condition for all frequencies wy by increasing
the imaginary frequency shift within the interval from the start value dgart
to the stop value dgstop, then the subset-based LC criterion is said to fail.
Otherwise, the LC frequency shift is computed as

SLo = 5. 289
Lc = max &y, (289)

. SFR. A frequency shift ¢ is considered valid if the relative RMS error
between the source function s(¢) and the inverse Fourier transform applied
to S(w — jd) is below a prescribed tolerance espr = 5 x 1073, In practice,
we compare the normalized functions

o (1) o ss(t)
O ey Y e

where (compare with Eq. (115))
1 [ :
sslt) = ettt L / S (e — §8)e10) dy (290)
™ — 00

and s(t) and . (w) are given by Eqgs. (83) and (91), respectively. The
relative RMS error is computed as

T [5(t) — S5 (te))?
SRt S(tk)?

with tg = tmin + (K — )AL, k =1,2,..., Npr. In the algorithm,

(291)

Ess =

(a) if ess > esFr, the frequency shift is relaxed according to § < max(§—
A(S, 5st0p)a and

(b) if s > espr also holds for & = d4t0p, the SFR test fails.

The algorithm proceeds as follows.

Step 1: Initialization and SFR test at d,;, We choose d,;, = Ad and
Smax = ks AS, where A§ (e.g., Ad = 1076 s71) is the initial discrete step of the
imaginary frequency shift and ks is an integer. We first apply the SFR test to
the input dmin, using dstop = Ad and the step Ad as a decreasing update of 6.
With this choice, the algorithm effectively checks whether d,,;, passes the SFR
test, that is, without invoking a frequency-shift relaxation. If the SFR test fails,
we stop the algorithm. Otherwise, the value d,,;,, is accepted as SFR-admissible.
Based on the monotonic behavior of the SFR error in 4, we assume that any
6 < dmin would also satisfy the SFR test.
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Step 2: SFR test at §,,.x and refinement of §,,,, We apply the SFR test
to the input dmax, USing dstop = Omin and the step AJ again as a decreasing
update of 4. Since the SFR test has already been successful at d.,i,, this second
SFR call is guaranteed to succeed: if necessary, the procedure can always relax
6 down to dpmin. Let dspr = kspr A denote the value returned by the SFR
routine. We then reset dpax < dsFr. By construction, every § € [dmin, Omax)
satisfies the SFR test.

Step 3: Construction and adjustment of an internal -grid The next
steps require an internal grid of discrete values of § between i, and dpax,
with a sufficiently large number of points (e.g., at least five) to reliably apply
the LC procedure. This internal grid uses the spacing AJ, but is independent
of the number N; used later in the final selection step. To avoid a degenerate
interval and to obtain a reasonably fine internal spacing, we adjust dy,in and Ad
according to the following rules: if dimax — Omin < AJ/2 (i-e., dmax & Omin), then
set Omin ¢ Omax — A0/2 and Ad + AH/8; else if Ad/2 < dmax — Omin < 3AH/2
(i-e., dmax — Omin =~ AJ), then set AJ + AJ/4; else if 3A6/2 < dmax — Omin <
5A8/2 (i-e., Omax — Omin = 2A4), then set Ad + 2A§/3. After this adjustment,
the interval [dmin, dmax] contains a suitable number of internal grid points spaced
by Aé. These internal points are used only in the LC procedure described in
the next step.

Step 4: LC procedure and update of §,;, We apply the subset-based
LC procedure to §, starting from the current value d,;, and moving towards
larger values, with an upper bound dstop = Omax — Ad and an increasing step
A§. If there exists an altitude level for which the LC test fails, we stop the
algorithm. Otherwise, let §r,c = krc A denote the LC-based estimate returned
by the procedure. We then update i, < dnc. By construction, for every
0 € [Omin, Omax], both the SFR test and the LC condition at the selected altitude
levels are satisfied.

Step 5: Final selection of the frequency shift The final selection step
is based on a separate set of Njs equidistant values of § in the interval i, <
0 < 6max. Here, Nj is chosen independently of the internal grid used in Steps 3
and 4, and we define 0; = Omin + (j — 1) Adfinar , j = 1,2,..., N5, with Adgna =
(Omax — Omin)/ (N5 — 1). For each d;, we perform the following tasks:

1. Compute the wave parameters corresponding to d;.

2. Evaluate the maximum perturbed horizontal velocity, the maximum per-
turbed vertical velocity, and the maximum perturbed temperature.

3. Check whether the layerwise causality condition is satisfied over the entire
altitude range.

Finally, among all frequency shifts for which the causality condition is satisfied
over the full altitude range, the algorithm determines the center of mass in
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the space spanned by the maximum values of the perturbed horizontal velocity,
vertical velocity, and temperature, and selects the solution whose maximum-
amplitude vector is closest to this center of mass.

Comments:

1. The algorithm determines not a single value but an interval of admissible
imaginary frequency shifts. This is necessary for two reasons.

(a) First, the LC procedure evaluates the layerwise causality condition
only at a selected subset of altitude levels. As a consequence, the
value returned by the LC test guarantees causality only at these
selected levels, but not necessarily across the entire altitude range.
By retaining an interval rather than a single value, we ensure that the
subsequent analysis can identify those values of the frequency shift
that satisfy the LC condition everywhere, not just at the sampled
altitudes.

(b) Second, even when the LC condition is applied across the full altitude
range, it is often the case that more than one frequency shift satisfies
the LC condition over all altitudes. Since these admissible shifts may
lead to solutions with different numerical behaviors, a mechanism is
needed to select an optimal value. For this purpose, the algorithm
evaluates the wave parameters for a discrete set of shifts within the
admissible interval and selects the optimal value based on the dis-
tance to the center of mass.

2. In principle, a Global Causality (CG) test can be applied at selected fre-
quencies. Such a test proceeds as follows. Choose a set of Nk, equidistant
frequencies wy, € {wk}nrT with ko € Ko = {1,2,..., Nk, }. For each test
frequency wyg,, start with dx, = dstart and increases dy, in steps of Ad, i.e.,
Ok < min(dx, + AJ, dsop), until the GC condition (c.f. Eq. (104))

max Re[A (wr, — jok,)] < min Re[Ap (W = ik,))
is satisfied. If there exists a test frequency for which the GC condition
is not satisfied, we say that the subset-based GC criterion fails for dstop.
Otherwise, the GC frequency shift is computed as

§GC = max 5k .
ko€ Ko 0

This test can be applied after the first step to determine 6,.x = dac.
However, our numerical experiments indicate that this test is computa-
tionally very expensive and typically yields an excessively large value of
dcc. In the subsequent step, this large value would be reduced by the
SFR test. Importantly, if one instead prescribes a moderate but still suffi-
ciently large input value for d,.x, the source-function reconstruction test
reduces dax to the same final value as when starting from dgc. Since the
LC test alone is sufficient to ensure causality, we therefore do not employ
the GC test in practice and use a prescribed moderate value of .
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