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Abstract. The growing availability of glacier observations poses a challenge for models to integrate this heterogeneous infor-

mation in a dynamically consistent way. At the same time, estimates of current glacier volume and area remain uncertain, as

many global inventories and thickness datasets date back to the early 2000s. We present the Open Global Glacier Data Assim-

ilation Framework (AGILE), a time-dependent variational method inspired by 4D-Var data assimilation. AGILE is built on a

reimplementation of the OGGM flowline glacier evolution model in PyTorch, enabling full differentiability through automatic5

differentiation (AD). We test AGILE v0.1 in a series of idealized experiments designed to reflect common initialization and

calibration scenarios in global glacier modeling. The goal is to recover glacier bed topography and distributed ice volume in

2020 through transient calibration, based on dynamical simulations starting in 1980. In these experiments, we assume a per-

fectly known mass balance and fixed ice dynamics parameters. While this setup simplifies real-world complexity, it allows us

to isolate and evaluate the core functionality of the approach. Our results show that AGILE efficiently optimizes multiple con-10

trol variables by leveraging AD-derived gradients, requiring only a few iterations to substantially improve upon initial guesses.

We also examine the potential to reconstruct earlier glacier states (e.g., in 1980) without direct observations and find that this

is fundamentally limited by the diffusive nature of glacier dynamics, even in an idealized setting. Overall, our experiments

demonstrate AGILE’s potential as a flexible and efficient data assimilation framework. Its ability to integrate diverse datasets

in a dynamically consistent manner makes it a promising tool for future real-world glacier modeling applications.15

1 Introduction

Mountain glaciers are retreating globally (The GlaMBIE Team, 2025; Hugonnet et al., 2021; Zemp et al., 2015), causing

significant impacts on sea level rise (e.g., Marzeion et al., 2020; Rounce et al., 2023; Slangen et al., 2022; Zemp et al.,

2019), freshwater resources (e.g., Aguayo et al., 2024; Huss and Hock, 2018; Ultee et al., 2022; Wimberly et al., 2024), and

ecosystems (e.g., Bosson et al., 2023; Cannone et al., 2008; Gobbi et al., 2021). Predicting these impacts requires dynamic20

glacier evolution models that rely on past observations to simulate glacier behaviour into the future. However, many glaciers

are located in remote and hard-to-access regions, making direct measurements difficult to obtain and scarce. As a result, global

models are highly dependent on Earth observation (EO) data from satellites.
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Early EO datasets mainly included glacier outlines (e.g., RGI 6. Consortium, 2017; RGI 7 Consortium, 2023) and digital

elevation models (e.g., COP-DEM, 2022; NASA JPL, 2020). Recently, more glacier-specific datasets have become available25

(e.g., Hugonnet et al., 2021; Millan et al., 2022), allowing global glacier models to shift towards using glacier-specific obser-

vations for calibration rather than relying on regional averages or data from a few well-studied glaciers (Zekollari et al., 2024;

Marzeion et al., 2012). This shift is reflected in the design choices of the eight large-scale glacier models participating in the

recent Glacier Model Intercomparison Project 3 (GlacierMIP3; Zekollari et al., 2025).

The GlacierMIP3 models adopt different calibration and initialization strategies, but share many common features and rely30

on the same datasets. The initial glacier surface geometry and corresponding start date are defined using RGI version 6 outlines

(RGI 6. Consortium, 2017) and their associated timestamps. Mass balance is calibrated separately by matching to a geodetic

mass balance observation over a period of approximately 20 years, using data from Hugonnet et al. (2021) (seven models) or

Shean et al. (2020) (one model), while assuming a fixed glacier geometry during this period. All models rely on the consensus

ice thickness estimates from Farinotti et al. (2019), either by directly using the distributed fields or by matching total glacier35

volumes on a glacier-specific or regional basis.

Three models include a spin-up during initialization to account for glacier evolution prior to the outline date. In these

cases, a past glacier state is defined, and the model is run forward in time to match specific targets. The Community Ice

Sheet Model v2.1 (CISM2; Lipscomb et al., 2019) matches the ice thickness field, the Global Glacier Evolution Model ice flow

(GloGEMflow; Zekollari et al., 2019) targets the glacier-specific total volume and glacier length from the outline, and the Open40

Global Glacier Model (OGGM; Maussion et al., 2019) uses the glacier total area, total volume and geodetic mass balance to

additionally refine its previously calibrated mass balance by accounting for evolving surface geometry (Aguayo et al., 2024).

Outside GlacierMIP3, an adapted version of OGGM’s dynamic spin-up was extended to incorporate a second glacier outline

in a small region of the Alps, enabling the model to simultaneously match observed area and volume changes at regional scale

for the first time (Hartl et al., 2024). This enhancement allowed performance improvements when tested against additional45

validation data and increased confidence in the model’s projections through 2100 compared to the setup relying solely on

globally available datasets.

Another recent approach in the Alps is presented by Cook et al. (2023), who use the Instructed Glacier Model (IGM; Jouvet,

2022), a deep learning based 3D ice flow model. IGM assimilates various observations such as distributed thickness data

(GlaThiDa; Welty et al., 2020) and surface velocity fields (Millan et al., 2022) to initialize glaciers in a dynamically consistent50

state. The transient simulation then begins from this point, removing the need for a spin up. However, all inputs must correspond

to the same timestamp, such as the outline date, since the method is limited to snapshot inversions. IGM also focuses only on

ice dynamics and bed reconstruction and does not include a dedicated mass balance model.

Despite these efforts, current approaches face several limitations. Most models neglect past glacier evolution during initial-

ization and do not account for surface geometry changes during calibration. They are tailored to currently available global55

datasets and struggle to incorporate new observation types or repeated measurements in a seamless way, limiting their flex-

ibility to use all available data on a glacier-specific scale. It is also often implicitly assumed that all observations apply at

the outline timestamp. Furthermore, many methods rely on computationally intensive optimization schemes where only one
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parameter is adjusted at a time, or they apply steady state assumptions to manage the general problem of overparameterization

in global glacier modelling (e.g., Rounce et al., 2020).60

To overcome these limitations, an ideal calibration method should ensure dynamic consistency, be able to use temporally

distributed observations, avoid assumptions about the glacier’s dynamic state, and allow the simultaneous optimization of

multiple model parameters. It must also remain computationally efficient to be applicable at regional and global scales.

To move closer to the transient calibration of large scale glacier models, we present a proof-of-concept for the Open Global

Glacier Data Assimilation Framework (AGILE). AGILE is based on a time-dependent variational assimilation approach, in-65

spired by 4DVar methods (Lorenc, 1997). It iteratively adjusts all control variables of a dynamic glacier evolution model during

a transient (forward) simulation to minimize a cost function that quantifies the mismatch between model output and available

observations. To ensure computational efficiency, AGILE is implemented in PyTorch, a machine learning framework (Paszke

et al., 2019), which enables the use of automatic differentiation (AD). AD-based methods have previously been applied to snap-

shot inversions in regional glacier modeling (Cook et al., 2023) and in ice sheet modeling (Brinkerhoff and Johnson, 2013), as70

well as to transient assimilation in ice sheet modeling (Goldberg and Heimbach, 2013; Recinos et al., 2023). To our knowledge,

AGILE represents the first application of a transient AD-based assimilation approach in the context of global glacier modeling.

In this study, we introduce AGILE v0.1, which reimplements the dynamic flowline model of OGGM in PyTorch to make it

fully differentiable through AD (Sect. 2). We evaluate the implementation using idealized experiments with synthetic glaciers

and observations designed to reflect globally available datasets (Sect. 3). The objective is to initialize a dynamically consistent75

glacier by optimizing bed topography and ice volume distribution as control variables, assuming a perfectly known mass

balance and fixed dynamic parameters. While these assumptions simplify real-world complexity, they allow us to isolate and

assess how effectively AD guides the optimization of control variables during a transient model run (Sect. 4). We conclude by

discussing the broader implications of our results and outlining future directions for real-world applications (Sect. 5).

2 Methods80

AGILE is developed as an open-source extension of the Open Global Glacier Model (OGGM) framework (Maussion et al.,

2019), with the code publicly available at github.com/OGGM/AGILE, and version 0.1 archived on Zenodo (Schmitt et al.,

2025). The following sections provide a detailed description of the underlying methodology and its individual components.

2.1 General principles

The general approach of AGILE is illustrated in Figure 1. A set of initial control variables, referred to as the first guess85

and which may represent model parameters, boundary conditions, or both, is iteratively adjusted to minimize the mismatch

between the output of a glacier evolution model and available observations. This mismatch is quantified by a cost function,

which combines the discrepancies across all observational targets into a single value, with each contribution normalized by its

associated uncertainty. In addition, regularization terms are included in the cost function to address the ill-posed nature of the
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problem and to reduce the risk of overfitting. The optimization aims to minimize this cost function by systematically adjusting90

the control variables.

To support this process efficiently, AGILE leverages automatic differentiation (AD) through PyTorch. This enables flexible

definition of control variables while still allowing the calculation of their gradients with respect to the cost function. These

gradients guide the optimization and allow for efficient and simultaneous updates of all variables. More technical details about

the AD implementation in PyTorch are provided in Appendix A1.95

2.2 Glacier representation and forward model

AGILE re-implements the glacier evolution model from OGGM (Maussion et al., 2019) in PyTorch, making it fully differ-

entiable. The model is based on the shallow ice approximation to compute depth-integrated ice velocity (equation A3) and a

mass conservation equation, where changes in ice thickness at a point equal the mass balance input minus the divergence of

the ice flux (equation A4). Since version 1.6.0, OGGM uses a semi-implicit numerical scheme instead of the scheme described100

in Maussion et al. (2019). Details on this scheme are provided in Appendix A2.

AGILE uses the same 1.5D flowline representation as OGGM. In this approach, glacier dynamics are computed along a

flowline with variable surface widths. The flowlines are derived from geographical input data, including glacier outlines and

a digital elevation model (DEM), using the ’elevation band flowlines’ method (e.g. Huss and Farinotti, 2012; Huss and Hock,

2015; Werder et al., 2019), which preserves the glacier’s area-height distribution. Each grid point along the flowline is assigned105

a trapezoidal bed shape with a 45° wall-slope, and the bottom width depends on the glacier bed height (see Sect. 2.3.1 for more

details). The 1.5D flowline setup reduces spatial complexity compared to full 2D or 3D models, making it computationally

feasible to track the full computational graph during model runs to be used for AD, without running into memory limitations

(see Appendix A1 for details about AD in PyTorch).

To integrate height-dependent Mass Balance (MB) forcing into the computation of gradients, AGILE includes a PyTorch110

wrapper (see Appendix A3 for details). This accounts for changes in MB forcing caused by dynamically evolving glacier

surface heights. The wrapper allows the use of any OGGM-compatible MB model for dynamic simulations without re-

implementing it in PyTorch. However, this approach does not support gradient computation for MB model parameters (e.g.,

the melt factor in temperature index models), but this can be added in the future.

2.3 Cost function115

The cost function is defined as

J (Θ) = Jobs(Θ) +λJreg(Θ), (1)

where J obs represents the target observational component (see Sect. 2.3.1), and J reg is the regularization component (see

Sect. 2.3.2). The control variables are denoted with Θ (see Sect. 2.4), and λ determines the weight of the regularization term

relative to the observational term.120
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Figure 1. Principle workflow of AGILE: Starting with a First Guess at the top, an initial glacier evolution model run is performed (blue line).

The mismatch between the model output and observations, in particular one total volume, one volume change and one total area, is calculated

using a cost function. If the cost function has not reached a minimum, all control variables are updated simultaneously using AD, and a new

glacier evolution model run is conducted (orange line).
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2.3.1 Target observational cost component

The target observational component, Jobs, measures the alignment of the model with the target observations using squared

differences. For a single observed quantity x, it is defined as

Jobs,x =
(xmdl−xobs)2

σ2
x

, (2)

where xmdl is the modeled quantity, xobs is the corresponding target observation, and σx represents the uncertainty of the125

target observation. This ensures that discrepancies within the uncertainty bounds have values smaller than one and also scales

different types of target observations. For multiple observations, Jobs is averaged over all normalized discrepancies.

Jobs =
1

nobs

nobs∑

j

Jobs,j , (3)

where nobs equals the number of considered target observations.

In this study, we focus on target observations that are readily available from global datasets. Specifically, a single area–height130

distribution, one geodetic mass balance value (∆M ), and one total glacier volume estimate (V ). The choice of these variables

and the implications for real-world applications are discussed in Sect. 1.

The area–height distribution is derived from a glacier outline and a DEM, and is also used to define the elevation-band

flowlines (see Sect. 2.2). As a result, we aim to match the surface heights (sfc) at each grid point along the flowline at the

outline year. By doing so, we also match the area–height distribution, since it was used to construct the flowlines. To maintain135

this relationship during minimisation, the bottom width of the trapezoidal bed shape is adjusted at each iteration based on

the current bed height estimate (see control variables in Sect. 2.4). This preserves the link between surface height and the

corresponding elevation-band area at each grid point.

As an example, the target observational cost for volume is given by

Jobs,V =
(Vmdl−Vobs)2

σ2
V

, (4)140

while for surface height along the flowline it is

Jobs,s =
∑nx

i=1(sfci
mdl− sfci

obs)
2

σ2
sfcnx

, (5)

where, nx is the number of grid points and sfci is the surface height at grid point i. Here, the volume represents a glacier-

integrated observation, while the surface heights are an observation along the flowline, incorporating the observed area-height

distribution. AGILE’s flexible cost function design allows for expanding the range of supported target observations as long as145

corresponding model counterparts exist.
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2.3.2 Regularization cost component

While J obs ensures alignment with target observations, the problem can remain ill-posed or prone to overfitting to observa-

tions. Regularization, Jreg, introduces constraints to address these issues, typically focusing on smoothness (e.g. Goldberg and

Heimbach, 2013; Fürst et al., 2017; Jouvet, 2022). The regularization term is scaled to ensure compatibility with Jobs, similar150

to the observation uncertainties.

In this study, we apply regularization solely to enforce a smooth glacier bed. This is defined as

Jreg,bed =
1

γbed

nx−1∑

i=0

(
bi+1− bi

∆x

)2

, (6)

where bi is the glacier bed height at grid point i, ∆x is the grid spacing, and γbed is the scaling factor based on the smoothness

of the first guess bed height bfg (γbed =
∑nx−1

i=0

(
bi+1

fg −bi
fg

∆x

)2

). The summation in this equation starts at i = 0, because at the155

start of the flowline (the highest point), an additional grid point is introduced to preserve the bed slope. Without this extra grid

point, the algorithm would lower the bed height at the highest point to match the height of the second-highest point, minimizing

the smoothness term. This effect gets stronger with larger values of λ. The extra grid point acts as an additional regularization

to counteract this effect, regardless of the value of λ.

For our experiments we definedJreg = Jreg,bed. However, this regularization framework could be extended in future studies,160

for instance, to include smoothness constraints on the initial flux. Such extensions will become increasingly important when

working with real-world target observations, which are subject to measurement uncertainties. In these cases, regularization

plays a crucial role in preventing the model from overfitting to noisy data.

2.4 Control variables

Control variables, denoted as Θ = [Θ1,Θ2, ...,Θn], are adjusted at each iteration to minimize the cost function (see Sect. 2.3).165

They represent the unknown parameters or variables to be estimated or optimised. In theory, these can include any unknown

aspect of the system, such as flowline-geometry parameters (e.g. glacier bed height), dynamic parameters (e.g. the deformation-

sliding parameter A of Equation A3), MB model parameters (e.g. melt factor), or a combination of these. The flexibility of

AD enables the simultaneous calculation of gradients for multiple control variables, providing essential information to guide

the minimization algorithm (see Sect. 2.5). However, this is constrained by observational data availability and the risk of170

overfitting.

In this study, we set the control variables to be the glacier bed elevation and the distributed ice volume in 1980 at each

grid point. This choice reflects our primary goal: to demonstrate, as a proof-of-concept, that variables with different types,

meanings, and magnitudes can be optimized simultaneously within each iteration. We also aim to explore whether AGILE can

(i) improve upon the current OGGM bed inversion, which assumes equilibrium and may introduce biases for non-steady-state175

glaciers, and (ii) reconstruct glacier conditions in 1980. The second objective is of secondary importance and mainly serves to

enable transient simulations from 1980 to 2020. This allows us to incorporate target observations at their respective timestamps,
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such as the area-hight distribution and the total volume both in 2000, as well as the geodetic mass balance from 2000 to 2020.

The goal is to obtain a dynamically consistent glacier state in 2020, which is not part of the optimization but is important for

initializing future projections.180

To handle control variables with varying magnitudes, we apply min-max normalization. For a given control variable Θx, this

scaling is defined as

Θx,scaled =
Θx−Θx,min

Θx,max−Θx,min
, (7)

where Θx,min and Θx,max represent the defined minimum and maximum bounds, respectively. This ensures all scaled variables

are within the range [0, 1], making changes proposed by the minimization algorithm approximately proportional across all185

variables. The minimum and maximum values for the bed heights are defined such that the resulting ice thickness at the time

of the observed outline and DEM remains within ±60% of the first-guess estimate. Similarly, the 1980 ice volume at each grid

point is constrained within±40% of the first guess. Additionally, ten extra grid points are added beyond the terminus for the ice

volume, allowing the glacier to be initialized with a larger extent than observed. For these extra points, the scaling boundaries

are set to 0 and the maximum value at the terminus grid point (140% of the first guess volume).190

We also must account for the non-uniform grid used in the 1.5D flowline representation (see Sect. 2.2), where grid-cell areas

vary along the flowline. These variations influence glacier-wide properties when control variables are changed. For example, a

change in the bed height affects the glacier area-height distribution more in a larger grid cell than in a smaller one. To account

for this, we multiply the glacier bed height by the initial surface width at each grid point and use the resulting values as our

control variables. The initial surface width is set during flowline initialization to preserve the observed area-height distribution195

and remains constant throughout minimization (see Sect. 2.2). We use width instead of grid-cell area because the spacing along

the flowline is the same for all grid cells, making it a constant factor. The 1980 glacier volume at each grid point naturally

accounts for varying grid-cell sizes. For the actual control variables, we divide the volume by the constant grid-cell spacing

along the flowline and use the resulting volume per unit length as the control. This corresponds to the cross section area at each

grid point.200

2.5 First guess and minimization

To initiate the algorithm, an initial estimate of the control variables, specifically the glacier bed height and the 1980 volume

distribution, is required. In our experiments, we used two methods to generate these estimates, allowing us to assess AGILE’s

sensitivity to the first guess. The first method relies on the default OGGM bed inversion, a mass-conserving approach based

on an equilibrium assumption and an apparent mass balance, as described in Maussion et al. (2019). The second uses the205

shear-stress-based GlabTop method (Linsbauer et al., 2012), which depends solely on surface geometry.

In both cases, the estimated bed geometry directly provides the initial values for both the bed height and the 1980 volume

distribution. However, it is important to note that the volume estimates from both methods correspond to the outline year

(2000), and we introduce a temporal mismatch by using them as the first guess 1980 volume distribution.
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The minimization process is conducted using the L-BFGS-B algorithm (Byrd et al., 1995; Zhu et al., 1997; Morales and210

Nocedal, 2011), as implemented in the Python package SciPy (Virtanen et al., 2020, https://www.scipy.org/). This algorithm,

commonly used in similar applications (e.g., Goldberg and Heimbach, 2013; Fürst et al., 2017), supports bounded constraints

for the control variables. We set the bounds for the control variables to our defined minimum and maximum values as described

in Sect. 2.4.

3 Experiments215

The goal of these experiments is to demonstrate that AGILE can recover both the glacier bed heights along the flowline and

the dynamic glacier state in 2020 by performing a transient simulation from 1980 to 2020. A key objective is to show that

AGILE improves upon OGGM’s bed inversion, which assumes glacier equilibrium and may introduce errors for retreating or

advancing glaciers, while at the same time producing a dynamically consistent glacier state in 2020 that could serve as the

initial condition for future projections. To achieve this, we define the control variables as the glacier bed height and the 1980220

ice volume at each grid point (see Sect. 2.4).

The target observations are based on globally available datasets, used here in an idealized setting. Specifically, we use an

area–height distribution and a total volume estimate for the year 2000, along with a geodetic mass balance between 2000 and

2020. This setup is considered idealized because we exclude uncertainties in both mass balance forcing and ice dynamics.

While this simplification does not reflect real-world complexity, it serves as a proof of concept, demonstrating that AGILE is225

correctly implemented and that gradients obtained with AD can be used to optimize multiple control variables simultaneously.

To create a controlled test environment, we generate synthetic glaciers using OGGM and treat the model output as obser-

vations. This gives us complete knowledge of the system, allowing us to directly assess the accuracy of our methodology.

This type of setup, often referred to as an "inverse crime" (Colton and Kress, 2013), offers an optimistically favourable testing

environment. However, demonstrating robust and reliable performance under such idealized conditions is an essential first step230

for validating a new inversion method (Goldberg and Heimbach, 2013).

3.1 Creation of synthetic glaciers and measurements

The idealized experiments are designed to replicate realistic glacier geometries. We selected the glaciers Aletsch, Artesonraju,

Baltoro, and Peyto because they represent a range of different climates and glacier area size. For each glacier, a flowline is

constructed using the RGI v6 outline (RGI 6. Consortium, 2017), DEM data from NASADEM (NASA JPL, 2020), and the235

consensus ice thickness estimate (Farinotti et al., 2019). Based on these flowlines, we generate dynamic glacier simulations

from 1980 to 2020 for three different dynamic states: retreating, advancing, and equilibrium.

In particular, the retreating and advancing cases allow us to evaluate whether AGILE can improve upon OGGM’s bed

inversion, which assumes a glacier is in equilibrium. The resulting glacier geometries, shown in Figure 2 panels a and b for

Aletsch, and in Figure S1 panels a and b for Artesonraju, panels e and f for Baltoro, and panels i and j for Peyto, serve as the240

ground truth we aim to invert for.
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The driving mass balance is defined using a simple degree-day model (see Equation 1 in Schuster et al., 2023), with pre-

cipitation and temperature inputs taken from the W5E5 dataset (Lange, 2019) for each glacier’s location. Precipitation factors

(ranging from 1.4 to 5.2), degree-day factors (3.1 to 6.5 kg m−2 °C−1 day−1), and temperature biases (-5.6 to 0.9 °C) follow

the calibration values from OGGM v1.6. The deformation-sliding parameter A (ranging from 0.1 to 7.9 * 10−24 s−1 Pa−3) is245

also taken from OGGM v1.6, leading to different dynamic behaviors for each synthetic glacier.

An additional temperature bias is applied on top to create either retreating or advancing glaciers. Equilibrium glaciers are

generated using a mean mass balance profile calculated over a specific time period from the W5E5 data. Figure 2 panels c and

d show the resulting mass balance and volume evolution for the different dynamic states of the Aletsch glacier. For the other

glaciers, see Figure S1 panels c and d for Artesonraju, panels g and h for Baltoro, and panels k and l for Peyto.250

During the creation of the synthetic glaciers, we "measure" the target observations used in our experiments. Specifically, we

record the surface elevation at each grid point in the year 2000 (sfc2000) for capturing the area height distribution (for details

see Sect. 2.3.1), the total glacier volume in 2000 (V2000), and the geodetic mass balance from 2000 to 2020 (∆M2000/2020). We

define the associated measurement uncertainties as σsfc = 10 m, σ∆M = 100 kg m−2 yr−1 and σV = 10% of V2000. These

target observations are designed to reflect the type of readily available global datasets and represent the only inputs provided255

to both the first-guess methods and AGILE in our experiments.

3.2 Performance measurements

To evaluate how well AGILE can reconstruct the glacier bed and the dynamic glacier state in 2020, we track the mean absolute

difference (MAD) of key variables throughout the optimization process. Specifically, we compute the MAD of the glacier bed

elevation (MAD_BED) and the distributed ice volume in 2020 (MAD_V_2020). Since the simulation runs dynamically from260

1980 to 2020 and the distributed volume in 1980 is one of the control variables, we also calculate the MAD of the distributed

ice volume in 1980 (MAD_V_1980). Although we do not expect to accurately reconstruct the 1980 glacier state, given the lack

of target observations before 2000 and the inherently diffusive nature of glacier dynamics, tracking MAD_V_1980 still offers

valuable insight into how strongly diffusion limits the ability to recover past glacier states.

4 Results and Discussion265

We begin by evaluating the performance of the two first guess methods in Sect. 4.1, with a particular focus on the glacier bed.

As noted in Sect. 2.5, a temporal mismatch is introduced in the first guess of the 1980 volume distribution, which limits the

interpretability at this stage.

This is followed by an in-depth analysis of the synthetic Aletsch glacier geometry in a retreating dynamic state (Sect. 4.2).

This includes an evaluation of AGILE’s core functionality (Sect. 4.2.1), the impact of different cost function settings (Sect.270

4.2.2), and the influence of various first-guess methods (Sect. 4.2.3).

Finally, we generalize our findings across the different dynamic states and glacier geometries used in the experiments (Sect.

4.3). In Sect. 4.3.1, we assess AGILE’s core performance using a fixed λ value of 0.01. Sect. 4.3.2 investigates the recovery of
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Figure 2. Synthetic glacier geometry inspired by Aletsch, shown for retreating, equilibrium, and advancing glacier states. Panel (a) displays

the defined glacier bed, ice thickness along the flowline, and area-height distribution for the year 2000. Panel (b) presents the volume

distribution along the flowline for the year 2000. Panel (c) illustrates the driving mass balance used during the simulation from 1980 to 2020,

and panel (d) shows the corresponding total glacier volume over the same period.

control variables along the flowline. Lastly, in Sect. 4.3.3, we analyze the impact of various cost function settings, including

different λ values and varying numbers of target observations, across all glacier geometries for both retreating and advancing275

cases.

4.1 First guess performance

Using our synthetic glacier measurements, we evaluated the two first guess methods described in Sect. 2.5. At this stage,

we focus only on the glacier bed, as the use of a 2000-based distributed volume estimate to represent the 1980 distribution

introduces a temporal mismatch (see Sect. 2.5). In later analyses, however, we return to the 1980 volume distribution to assess280

AGILE’s ability to reconstruct past glacier states prior to the first available observation.

Starting from OGGM’s first guess glacier bed, Figure 3 shows the best performance in the equilibrium state, with a maximum

absolute difference of 39.5 m and a MAD of 1.5 m. This is expected, as OGGM’s inversion assumes the glacier is in equilibrium.

In contrast, bed elevations are systematically underestimated in the retreating state and overestimated in the advancing state,

especially near the terminus. These states show maximum absolute differences of 56.1 m (retreating) and 70.5 m (advancing),285
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Figure 3. Difference between the synthetic glacier bed for Altesch and the first guess glacier bed for the two first guess methods, OGGM

and GlabTop (see Sect. 4.1), shown for all three dynamic states: retreating, equilibrium, and advancing.

with MAD values of 8.7 m and 12.7 m, respectively. This pattern holds across all glacier geometries and reflects previous

findings (e.g., Figure 5, panel d in Maussion et al., 2019), highlighting the importance of assessing performance under varying

dynamic conditions.

In contrast, the first guess glacier bed of the GlabTop method shows similar behavior across all dynamic states, as it relies

solely on surface geometry and does not incorporate any mass balance forcing. The maximum absolute differences for Aletsch290

in Figure 3 are 96.0 m (retreating), 100.9 m (equilibrium), and 162.2 m (advancing). This behavior is consistent across all

tested geometries.

For all other glacier geometries and dynamic states the performance metrics of the two first guess methods are summarized

in Table S1, using mean absolute differences for bed height (MAD_BED), distributed volume in 1980 (MAD_V_1980), and

in 2020 (MAD_V_2020). The MAD_V_2020 metric is computed after running the glacier evolution model from 1980 to295

2020 with the prescribed mass balance. The OGGM values listed in the table are later used to normalize performance metrics,

allowing for easier assessment of whether AGILE improves upon the OGGM first-guess results.

Across all cases, Table S1 shows that OGGM generally performs as well as or better than GlabTop, with the most accurate

results seen in equilibrium states. This trend is particularly pronounced for the Baltoro glacier, where OGGM outperforms

GlabTop by nearly an order of magnitude. Consequently, Baltoro represents an especially relevant case for evaluating AGILE’s300

ability to improve upon poor initial guesses that deviate strongly from the synthetic truth.
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4.2 Aletsch retreating

4.2.1 Proof of concept for AGILE functionality

The first experiment showcases the proper functionality of AGILE and illustrates that gradient calculations are working as

expected. For this we selected our synthetic Aletsch-retreating case and set λ to 0.01 (see equation 1). Further we use all three305

target observations we took during the glacier creation, as defined in Sect. 3.1 (sfc2000, V2000 and ∆M2000/2020) and our first

guess is coming from OGGM. Our control variables consist of the distributed volume in 1980 as well as the bed height at each

grid point, which gives in total 120 control variables.

Figure 4 panel a shows the evolution of the cost function over 20 iterations, with the largest decrease occurring in the first

two iterations, reducing the cost from 2.3 to 0.2. This demonstrates that the gradient-informed updates to the 120 control310

variables are working as intended. The correctness of the gradient calculations, along with the simultaneous updating of all

control variables, is further highlighted by AGILE requiring only 21 forward model runs for 20 iterations (see Figure 4 panel

c), with most iterations needing just one run to find a smaller cost value. This indicates that the minimization algorithm rarely

performs ’search’ runs, where updates to control variables fail to reduce the cost.

Examining individual cost components (Figure 4, panels a and b), the largest initial contributor is the mismatch to observed315

surface heights along the flowline sfc2000, followed by the volume V2000 and the geodetic mass balance ∆M2000/2020 terms.

The sfc2000 mismatch significantly decreased after two iterations, becoming smaller than ∆M2000/2020, but later increasing

slightly again. This highlights that not all observation mismatches decrease monotonically and may temporarily increase as the

total cost continues to decrease. The regularization term, starting at 0.005, remained almost constant throughout the iterations.

However, as the total cost decreases, its relative importance grows, eventually becoming the dominant cost component after 13320

iterations (Figure 4, panel b).

Analyzing the performance metrics (MAD_BED, MAD_V_1980, and MAD_V_2020) over iterations (Figure 4 panel c)

confirms that reductions in the cost function led to improved agreement with the synthetic truth. Significant improvements

were observed for both the bed height and the distributed volume in 2020 compared to the first guess. While the distributed

volume for 1980 initially worsened during the early iterations, it began improving relative to the first guess after the sixth325

iteration.

Figure 5 shows how differences between the modeled and synthetic truth evolved along the flowline, in particular panel a

difference of the bed height, panel b difference of the distributed volume 1980 and panel c difference of the distributed volume

2020. Improvements are evident across most of the flowline, except near the highest points (start of the flowline, at 0 distance).

At these points, a persistent noisy pattern is observed. However, this pattern is confined to the initial few grid points, with the330

majority of the flowline showing substantial improvements.

This experiment demonstrates AGILE’s ability to adapt 120 control variables in just a few iterations, achieving significant

improvements over the OGGM-provided first guess. Additionally, the computational demand is minimal, with each iteration

(forward model run and gradient calculation) taking approximately 1.3 seconds for the Aletsch geometry on a laptop equipped

with an 11th Gen Intel(R) Core(TM) i7-1165G7 CPU (2.8 GHz) and 16 GB RAM (see Table S2 for other computing times of335
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other dynamic states and geometries). The gradient calculation, specifically the backward propagation through the computing

graph (see Appendix A1), requires only around 0.1 seconds, or roughly ten percent of the total iteration. This efficiency makes

the method highly promising for regional to global-scale applications.

4.2.2 Different cost function settings

Since the cost function is central to AGILE, we tested various configurations to evaluate its performance. Specifically, we340

explored 30 different values of λ, including 0 (no regularization) and 29 values ranging logarithmically from 10−4 to 103.

Additionally, we varied the number of provided target observations (sfc2000, V2000 and ∆M2000/2020) across seven config-

urations: using only one of the three target observations, all combinations of two target observations, and all three target

observations together. The performance metrics (MAD_BED and MAD_V_2020) for Aletsch retreating and advancing, using

OGGM for the first guess, after 20 iterations are shown in Figure 6.345

When varying λ, we observed small improvements when transitioning from no regularization (λ = 0) to small values of λ.

However, as λ increased further, performance worsened. This indicates that overly large regularization weights cause AGILE

to prioritize smoothing the bed over matching target observations. It is important to note that in this experiment, we used

perfectly accurate target observations. With real, imperfect data, regularization becomes more crucial to prevent overfitting,

which explains why λ = 0 performed well under these idealized conditions.350

When using only a single target observation type, sfc2000 yielded the best results across the widest range of λ values. This

is expected, as surface height provides distributed information about the glacier’s slope along the flowline, while V2000 and

∆M2000/2020 are integrated over the entire glacier. Interestingly, even with only providing V2000, small λ values improved

MAD_V_2020.

Combining two target observations consistently outperformed single target observations, especially when sfc2000 were355

included. Notably, combining V2000 and ∆M2000/2020 produced significant improvements compared to using either target

observation alone. Furthermore, using two target observations broadened the range of λ values that yielded improvements over

the first guess.

Using all three target observations simultaneously did not provide substantial benefits compared to configurations that in-

cluded two target observations, particularly when sfc2000 was one of them. This suggests that two target observations may360

already provide sufficient information for the control variables for this particular experiment.

4.2.3 Influence of first guess

This section compares AGILE’s performance when starting from the OGGM first guess versus the GlabTop first guess. As

shown in Figure 4 panels a and d, the initial cost value at iteration 0 is significantly higher for GlabTop (10.1) than for OGGM

(2.3), due to larger mismatches with the target observations (sfc2000, V2000, and ∆M2000/2020). Despite this, AGILE effectively365

minimizes the cost function, reaching a comparable value to OGGM’s initial cost after three iterations and continuing to

decrease thereafter.
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Figure 4. Evolution of the cost function and performance metrics for Aletsch retreating, starting from the OGGM first guess (panels a to c)

and GlabTop first guess (panels d to f), with a λ value of 0.01. Panels a and d shows the evolution of the cost function over minimization

iterations, with individual cost terms represented in different colors. The relative contribution of the cost terms to the total cost is shown in

panels b and e. Panels c and f illustrates the evolution of performance metrics over the same iterations. The numbers in boxes along the x-axis

indicate the total number of forward model runs required for each corresponding iteration.
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Figure 5. Differences between the synthetic truth and AGILE guess after 10 and 20 iterations along the flowline for Aletsch retreating (panels

a to c) and Baltoro advancing (panels d to f), starting from the OGGM first guess (0 Iteration) with a λ value of 0.01. Panels a and d shows

the differences in bed height, panels b and e shows the differences in volume for 1980, and panels c and f shows the differences in volume

for 2020. All differences are displayed for every grid point along the flowline.

Examining the performance metrics (Figure 4 panels g), we find that at Iteration 0, GlabTop has a slightly better MAD_BED

compared to OGGM, while MAD_V_1980 and MAD_V_2020 are approximately twice as large. With further iterations, all

three metrics improve. After three iterations, MAD_V_2020 improves enough to outperform the OGGM first guess (value <370

1). However, MAD_V_1980 shows only minor improvement after 20 iterations and remains roughly twice as large as the value

achieved with OGGM.

These results highlight that starting from a worse first guess, such as GlabTop, can reduce the accuracy of reconstructing the

glacier state in 1980. This limitation is partly due to the diffusive nature of glacier dynamics, which leads to a gradual loss of

information over time during dynamic simulations. Nonetheless, AGILE demonstrates its ability to improve even a poor first375

guess, successfully refining the glacier bed and simultaneously initialize the model with the 2020 dynamic glacier state.

4.3 Influence of glacier geometry and dynamic state

To evaluate the impact of glacier geometry and the dynamic state, we generated 12 synthetic glaciers representing four ge-

ometries (Aletsch, Artesonraju, Baltoro, and Peyto) in three dynamic states: retreating, equilibrium, and advancing, as outlined
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Figure 6. MAD_BED and MAD_V_2020, normalized by the OGGM first guess values, for Aletsch retreating (dot and solid line) and

advancing (cross and dotted line) after 20 iterations, starting from the OGGM first guess. The y-axis shows the number of provided target

observations, and the x-axis shows different values of λ (λ = 0 is shown with a dot or a cross to the left of the axis). The gray shaded are

indicates the region where the OGGM first guess could be improved after 20. Iterations.

in Sect. 3.1. First, we examine the core functionality of minimizing the cost across these 12 settings in Sect. 4.3.1. Next, we380

analyze how the differences between the synthetic truth and the estimates of AGILE along the flowline evolve with iterations

in Sect. 4.3.2. Finally, we investigate the effects of different cost function settings in Sect. 4.3.3.

4.3.1 Functionality of minimizing the cost

In the equilibrium experiments, the OGGM first guess performs very well, which is expected given its underlying equilibrium

assumption. The only exception is Baltoro, where the first guess for the equilibrium case closely resembles that of the retreating385

case. As a result, the minimization process also mirrors the retreating scenario.

As an example of typical behavior in the equilibrium case, Figure 7 panels a–c show the results for the Aletsch geometry

starting from the OGGM first guess. The strong performance of the OGGM first guess is evident in the low initial total cost of

just 0.18 (panel a), indicating that mismatches for all observations fall within their defined uncertainty ranges, suggesting that

further optimization is not strictly necessary. Nonetheless, AGILE is able to refine the solution and improve upon this already390

strong first guess, as shown by the decreasing values of the performance metrics in panel c.

To assess AGILE’s performance when starting from a first guess that significantly deviates from the synthetic truth, Figure

7, panels d–e, shows the results for the Baltoro geometry initialized with the GlabTop first guess. The poor initial performance
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is evident from the high total cost of 82.5 (panel d) and large values of the performance metrics, around 10, which means they

are approximately ten times higher than those for the OGGM first guess.395

Despite this challenging starting point, AGILE is able to substantially improve the solution. After 20 iterations, it reaches

performance levels close to those of the OGGM first guess, with values around 1.4 (where 1 indicates equal performance to the

OGGM first guess). When AGILE is allowed to continue beyond 20 iterations, it further improves the results, achieving values

around 0.5 for both MAD_BED and MAD_V_2020 after 40 iterations (not shown in panel e). However, MAD_V_1980 does

not improve further beyond 20 iterations, highlighting the limited recoverability of the 1980 glacier state.400

This pattern, where MAD_BED and MAD_V_2020 improve more significantly than MAD_V_1980, is observed in many

experiments. For example, Figure 8, panel c (Artesonraju, advancing) and panel g (Peyto, retreating), both starting from the

OGGM first guess, show similar behavior. This highlights the broader challenge of reconstructing past glacier states in the

absence of direct observations, regardless of glacier geometry or dynamic state. As discussed earlier, this limitation stems from

the diffusive nature of glacier dynamics and the resulting loss of information over time.405

For all glacier geometries and dynamic states, AGILE required 21 to 27 model runs over 20 iterations, demonstrating

its ability to efficiently inform the minimization algorithm with accurate gradients. An exception was the retreating Peyto

experiment (Figure 8, panel g), where the number of model runs increase a lot from Iteration 14 ongoing. This hints that the

minimisation algorithm has difficulties in further minimising the cost as probably a local minimum is reached. For real-world

applications, AGILE includes an option to limit the number of forward model runs (default: 100) to reduce computational effort.410

Forward model run times varied between 0.7 and 2.5 seconds (see Table S2), depending on the maximum glacier velocity and

corresponding time-step constraints imposed by the stability criterion (Equation A19).

4.3.2 Distributed differences along the flowline

Examining differences along the flowline for bed height (DIF_BED), and distributed volumes in 1980 (DIF_V_1980) and

2020 (DIF_V_2020) reveals improvements at most grid points, regardless of dynamic state or first-guess method. However,415

one notable exception occurs in the Baltoro advancing case (Figure 5, panels d–f), where AGILE was unable to correct an

overly high glacier bed at the terminus. Despite this limitation, clear improvements are observed between 5–25 km along the

flowline. As a large portion of the glacier’s total volume is located within this section (Figure S1, panel f), the distributed

volume is still significantly improved.

Noisy patterns in flowline differences appear in several cases, such as Aletsch retreating and Baltoro advancing (Figure420

5). With increasing iterations, these patterns seen in DIF_BED, are either dampened or remain stable in DIF_V_2020, and

occasionally are amplified in DIF_V_1980. The variability depends on the corresponding glacier volume along the flowline

(Figure 2, panel b; Figure S1, panels b, f, and j). These patterns likely reflect the diffusive nature of glacier dynamics and the

inherent limitations in accurately inverting for distributed glacier volume when relying on glacier-integrated observations.
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Figure 7. Same as Figure 4, for Aletsch (a, b and c) equilibrium using OGGM first guess, and Baltoro (d, e and f) equilibrium using GlabTop

first guess.
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Figure 8. Same as Figure 4, for Artesonraju advancing (a, b and c) and Peyto retreating (d, e and f) starting from the OGGM first guess.
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4.3.3 Performance Across Cost Function Settings425

We analyze here the impact of different cost function settings (λ values and number of provided target observations) for

retreating and advancing cases, focusing on individual glacier geometries. All experiments analysed start from the OGGM

first guess and we evaluate the performance depending if the first guess can be improved by looking at MAD_BED and

MAD_V_2020. Additionally, we consider the range of λ values that result in improved performance. In general, larger λ values

increase the regularization term, favouring a smoother glacier bed. When λ becomes too large, the cost function prioritizes bed430

smoothing over matching the target observations, leading to worse performance.

For Aletsch, in both the retreating and advancing cases, surface height observations (sfc2000) had the strongest influence

in improving MAD_BED and MAD_V_2020 compared to the OGGM first guess (Figure 6). Among the two-observation

combinations, the pairing of sfc2000 and ∆M2000/2020 yielded the best performance. In the advancing case, this was followed

by ∆M2000/2020 and V2000, while in the retreating case, sfc2000 and V2000 was the next best pair. The largest improvements435

overall were achieved when all three observations were used together.

For Artesonraju (Figure 9, panels a to g), sfc2000 was by far the most important target observation. Even when used alone,

it achieved results comparable to using two or all three observations. Combining V2000 and ∆M2000/2020 did not outperform

using these observations individually.

For Baltoro (Figure 9, panels h to n), in the retreating case (solid lines) single observations alone were insufficient to improve440

upon the first guess, with V2000 showing the best performance. Combining V2000 with either sfc2000 or ∆M2000/2020 resulted

in substantial improvements, with the best performance achieved using all three target observations. For the advancing case

(dotted lines), sfc2000 alone was sufficient to improve MAD_BED and MAD_V_2020, with further gains observed when

combining target observations.

In the retreating case for Peyto (solid lines in Figure 9, panels o to u), simultaneous improvement of MAD_BED and445

MAD_V_2020 was only achieved by using all three target observations. For other configurations, improving one metric often

led to no improvement or degradation in the other. In the advancing case (dotted lines), sfc2000 alone improved both metrics,

with further improvements observed when combining target observations, though using all three added little additional value.

The importance of specific target observations varies with glacier geometry and dynamic state. While it is challenging to

disentangle the roles of geometry and state, increasing the number of target observations consistently improves performance.450

All cases benefit from using all three target observations, though in some instances, performance with one or two target

observations is nearly equivalent.

Further, the results demonstrate that the range of effective λ values is relatively broad, with many retreating and advancing

cases performing well for λ values between 10−4 and 10−1. The use of λ = 0 also performs effectively in our experiments

with perfectly accurate measurements, as overfitting is not a concern. However, in real-world applications where observations455

contain uncertainties, the regularization term becomes critical for preventing such an overfitting.
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Figure 9. Same as Figure 6 for Artesonraju (panels a to g), Baltoro (panels h to n), and Peyto (panels o to u).
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5 Conclusion and future work

Our experiments show that AGILE can adjust many control variables in just a few iterations, proving that the gradient calcula-

tions using AD work well. Adding more target observations makes the inversion more reliable, but in some cases, good results

can be achieved with fewer target observations. Reconstructing the glacier volume in 1980 was harder than in 2020 because no460

direct target observations were used before 2000, and the diffusive nature of glacier dynamics, which leads to a gradual loss of

information over time during dynamic simulations.

These results are promising, but AGILE has not yet been tested on real-world data. Its flexibility offers many possibilities,

but these need careful exploration. For example, with new glacier bed estimates becoming available (e.g., Cook et al., 2023;

van Pelt and Frank, 2025), AGILE could focus on other aspects, like combining the calibration of glacier dynamics and mass465

balance models. Setting up test cases with plenty of observations for validation will be key to understanding what AGILE can

do in practical applications.

In our idealized experiments, we assumed the target observations were perfect, so regularization was less important. In real-

world cases, where observations are uncertain, regularization will be critical to avoid overfitting. Finding the right balance for

the regularization weight (λ) will be necessary. Techniques like L-curves (see, e.g., Hansen, 1992; Gillet-Chaulet et al., 2012;470

Recinos et al., 2023; Wolovick et al., 2023), could help in deciding this balance.

The next step for applying AGILE to real-world problems would be to include a differentiable mass balance model. A simple

temperature index model (e.g., Marzeion et al., 2012) could be a good starting point. For more complex mass balance models

(e.g. PyGEM Rounce et al., 2020) it will be important to check if their equations work with AD. Similarly, adding dynamic

processes like calving or debris cover will require compatibility with AGILE’s AD framework. Therefore, AD may limit how475

complex the models can get, which is further restricted by the availability of target observations. On the other hand, AGILE’s

ability to work with diverse datasets could support more complex models as more target observations become useable in a

consistent way.

AGILE provides a promising way to integrate new datasets as they become available or to use all available glacier-specific

observations in a consistent way. This could help address the issue of equifinality in global glacier modeling (e.g. Rounce et al.,480

2020) by combining all available information. Additionally, AGILE could generate consistent glacier histories, filling in data

gaps from the past (e.g., creating a reanalysis dataset for glaciers) or providing a solid starting point for future projections.

Code availability. AGILE is written in Python and openly available on GitHub (https://github.com/OGGM/AGILE, last access: 14 July

2025) under a BSD 3-Clause License. Version 0.1 is also archived on Zenodo with a permanent DOI (Schmitt et al., 2025). To ensure

full reproducibility, all scripts used to run the experiments and generate the figures in this study are included in the same repository under485

https://github.com/OGGM/AGILE/tree/v0.1.1/agile1d/sandbox/paper_v01_code (last access: 14 July 2025). In addition, we provide Docker

images of the computing environment used, publicly accessible via GitHub Packages (https://github.com/OGGM/AGILE/pkgs/container/agile,

last access: 14 July 2025). All results presented in this work were produced using the Docker image tagged agile:20230525.
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Appendix A: Model implementations using PyTorch

A1 Automatic Differentiation in PyTorch490

PyTorch implements automatic differentiation (AD) using a system called Autograd, which is designed for deep learning

optimization tasks. This system enables the construction of a dynamic computation graph and efficient gradient computation.

We use this system in our forward model by replacing NumPy arrays with PyTorch tensors.

During a forward pass, PyTorch constructs a dynamic computational graph that keeps track of all operations on tensors

requiring gradients, in our case the control variables. For those, all operations involving this tensor are tracked for later differ-495

entiation.

After the forward pass, we call PyTorch’s .backward() function on the cost function tensor. This triggers PyTorch to compute

the gradient of that tensor with respect to all tensors requiring gradients, in our case the partial derivatives of our control

variables with respect to the cost function. This computation is done by propagating the computational graph backward and

applying the chain rule500

dy

dz
=

dy

dx

dx

dz
(A1)

for each operation applied during the forward pass. To achieve this, PyTorch stores the derivatives of all standard operations.

PyTorch also allows users to add custom operations by defining both a forward computation and a corresponding back-

ward computation (the derivative of the forward computation). This can be useful for optimizing parts of the code where the

derivatives are known. We applied this approach in our Semi-Implicit solver (see Sect. A2).505

A2 Semi-Implicit Solver including AD

With the idea of a global application in mind, AGILE uses the same 1.5D flowline representation as OGGM. In particular,

AGILE uses one flowline with changing widths. The bed shape is trapezoidal, with a constant wall angle of 45°. The flowlines

are generated from the geographical input date using the ’elevation band flowlines’ method (e.g. Huss and Farinotti, 2012;

Huss and Hock, 2015; Werder et al., 2019).510

The glacier evolution model from OGGM (originally introduced by Oerlemans, 1997)

∂C

∂t
= wṁ−∇ · q (A2)

is adapted in AGILE and re-implemented with PyTorch. This advection equation for the cross-section area C (m2) provides

flexibility for varying surface widths w (m) and allows the use of mixed bed shapes with the same equation. Further ṁ is the

mass balance (kg m−2 s−1), q = Cu is the ice flux (m3 s−1) and u is the depth-integrated shallow-ice velocity (m s−1). This515

velocity is defined as
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u =
(

2A

n + 2
h + fs

1
h

)(
−ρgh

∂s

∂x

)n

(A3)

where A is the ice creep parameter (s−1 Pa−3), n is the exponent of Glen’s flow law (n = 3), h is the ice thickness (m), fs is

a sliding parameter (s−1 Pa−3), ρ is the ice density (900 kg m−3), g is the gravitational acceleration (9.81 m s−2) and ∂s
∂x is

the surface slope, where s is the surface height (m). By default, the sliding parameter fs is set to 0 s−1 Pa−3 because there are520

currently no methods/observations available on a global scale to distinguish the contributions of ice deformation (defined by

A) and sliding to the total velocity.

Besides the explicit forward finite difference approximation scheme of OGGM also a semi-implicit scheme is included in

AGILE. The reason for this is that numeric instabilities can occur (a known problem, see e.g. https://oggm.org/2020/01/18/

stability-analysis/ and https://oggm.org/2020/07/08/numerics/) which cause problems when using AD. In particular, during the525

backward pass for the gradient calculation, these instabilities are amplified and dominate the resulting gradients. The semi-

implicit scheme was derived by starting from equation A2 and rearranging it from an advection equation into a diffusion

equation

∂C

∂t
= wṁ +∇ · (D ∂s

∂x
) (A4)

with Diffusivity D530

D =
(

2A

n + 2
h + fs

1
h

)
(ρgh)n| ∂s

∂x
|n−1C. (A5)

In the following the derivation of the semi-implicit scheme using a rectangular cross-section C = wh is shown. This sim-

plifies the problem because for a rectangular bed shape the surface width is not changing over time (∂C
∂t = ∂wh

∂t = w ∂h
∂t ).

Afterwards, this solution is generalised for a trapezoidal cross-section. First, we modify equation A4 by using the rectangular

cross-section area535

∂h

∂t
= ṁ +

1
w
∇ · (D ∂s

∂x
) (A6)

with Diffusivity D

D =
(

2A

n + 2
h2 + fs

)
(ρgh)n| ∂s

∂x
|n−1w. (A7)

For the discretization, the ice flux q is defined on a staggered grid denoted with indices i± 1/2. Further using (∇q)i =
qi+1/2−qi−1/2

∆x ,
(

∂s
∂x

)
i+1/2

= si+1−si

∆x and qt = Dt
(

∂s
∂x

)t+1
we get540
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ht+1
i −ht

i

∆t
= ṁ +

1
wi

Dt
i+1/2

(
st+1

i+1−st+1
i

∆x

)
−Dt

i−1/2

(
st+1

i −st+1
i−1

∆x

)

∆x
. (A8)

For spatial interpolation of variables from the unstaggered to the staggered grid an arithmetic mean value is used. This is

needed in the calculation of D for h and w (e.g. hi+1/2 = hi+hi+1
2 ).

Next, we rearrange the equation to put all terms involving the future time-step t + 1 on the left side

ht+1
i − ∆t

∆x2wi

(
Dt

i−1/2s
t+1
i−1− (Dt

i+1/2 + Dt
i−1/2)s

t+1
i + Dt

i+1/2s
t+1
i+1

)
= ht

i + ∆tṁ. (A9)545

and use the definition of the surface height s = b + h (where the glacier bed height b is constant over time) together with a

vector notation

[
− ∆t

∆x2wi
Dt

i−1/2 1 + ∆t
∆x2wi

(Dt
i+1/2 + Dt

i−1/2) − ∆t
∆x2wi

Dt
i+1/2

]
·




ht+1
i−1

ht+1
i

ht+1
i+1


 =

ht
i + ∆tṁ +

∆t

∆x2wi

[
Dt

i−1/2 −(Dt
i+1/2 + Dt

i−1/2) Dt
i+1/2

]
·




bi−1

bi

bi+1


.

(A10)

Finally, this equation can be used to set up a final linear equation for all grid points. We include the boundary conditions

D−1/2 = Dnx+1/2 = 0 for all time steps, where nx denotes the last grid point of the unstaggered grid and the unstaggered grid550

starts with index 0. With this, we define two nx×nx matrices
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Mh = δi+1,j ·




− ∆t
∆x2w0

D−1/2

− ∆t
∆x2w1

D1/2

...

− ∆t
∆x2wnx

Dnx−1/2




+

+ δi,j ·




1 + ∆t
∆x2w0

(D−1/2 + D1/2)

1 + ∆t
∆x2w1

(D1/2 + D3/2)
...

1 + ∆t
∆x2wnx

(Dnx−1/2 + Dnx+1/2)




+

+ δi,j+1 ·




− ∆t
∆x2w0

D1/2

− ∆t
∆x2w1

D3/2

...

− ∆t
∆x2wnx

Dnx+1/2




(A11)

and

M b = δi+1,j ·




∆t
∆x2w0

D−1/2

∆t
∆x2w1

D1/2

...
∆t

∆x2wnx
Dnx−1/2




+

+ δi,j ·




− ∆t
∆x2w0

(D−1/2 + D1/2)

− ∆t
∆x2w1

(D1/2 + D3/2)
...

− ∆t
∆x2wnx

(Dnx−1/2 + Dnx+1/2)




+

+ δi,j+1 ·




∆t
∆x2w0

D1/2

∆t
∆x2w1

D3/2

...
∆t

∆x2wnx
Dnx+1/2




(A12)

where δ is the Kronecker delta defined as555

δi,j =





0 if i ̸= j

1 if i = j
(A13)
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and

δi+1,j =




0 0 · · · 0 0nx

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0nx




, δi,j+1 =




0 1 0 · · · 0nx

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0nx




.

The final linear equation we solve is defined as

Mh ·




ht+1
0

ht+1
1

...

ht+1
nx




=




ht
0

ht
1

...

ht
nx




+ ∆tṁ + M b ·




b0

b1

...

bnx




(A14)560

which can be solved by using the function scipy.linalg.solve_banded from the Python package SciPy (Virtanen et al., 2020).

This solution for a rectangular cross-section can be generalized to a trapezoidal cross-section by using the definition of the

area

C =
1
2
(w + w0)h, (A15)

where w0 is the bottom width (m) and the surface width w (m) is defined as565

w = w0 + ηh, (A16)

where η defines the angle of the side wall (e.g. η=2 is a 45° wall angle). Now we can use this definition of the cross-section

area in the definition of the diffusivity (equation A5)

D =
(

2A

n + 2
h2 + fs

)
(ρgh)n| ∂s

∂x
|n−1 w0 + w

2
. (A17)

Further we can rewrite ∂C
∂t by inserting the trapezoidal cross-section (equation A15) together with the surface width definition570

(equation A16) to get

1
2

∂

∂t
(h(2w0 + ηh)) =

1
2

∂h

∂t
(2w0 + ηh) +

1
2
hη

∂h

∂t
=

1
2
(2w0 + 2ηh)

∂h

∂t
= w

∂h

∂t
. (A18)
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With this we are able to rewrite equation A4 again into equation A6 and use our solution derived before. The only difference

is that we need to use the diffusivity of the trapezoidal cross-section defined in equation A17.

For the time-stepping the stability criterion575

∆t <= cfl_nr
∆x2

max(Di+1/2/wi+1/2)
(A19)

is used. This criterion derives from a linearised form of equation A6 (assuming D is constant), which will become a heat

equation with diffusivity D/w. Therefore the stability criterion of the heat equation is adapted here. The cfl_nr was set to 0.5

following Hindmarsh (2001) equation 91.

To use this semi-implicit solver now in AGILE we further need a differentiable version of the linear equation solver580

scipy.linalg.solve_banded. Otherwise, the linear solve would need too many operations and the computational graph (see

Sect. A1 more infos about the computational graph) will become very large and hence the memory consumption when using

AD. For this, a new function is defined which uses the original SciPy solver during the forward pass, which solves equation

A14 for ht+1 by

ht+1 = M−1
h · rhs (A20)585

where

ht+1 =




ht+1
0

ht+1
1

...

ht+1
nx




(A21)

and

rhs =




ht
0

ht
1

...

ht
nx




+ ∆tṁ + M b ·




b0

b1

...

bnx




. (A22)

For the backward pass of this newly defined function, the equations 7 and 8 from Goldberg and Heimbach (2013) are used590

to calculate the adjoints δ∗Mh and δ∗rhs with

δ∗rhs = M−T
h ∗ δ∗ht+1 (A23)

and

29

https://doi.org/10.5194/egusphere-2025-3401
Preprint. Discussion started: 11 August 2025
c© Author(s) 2025. CC BY 4.0 License.



δ∗Mh =−δ∗rhs · (ht+1)T ⊙ (δi,j+1 + δi,j + δi+1,j), (A24)

where ⊙ is an element-wise matrix multiplication. This matrix multiplication ensures that we only get gradients of the non-595

zero elements of Mh. The δ∗ notation is used for the adjoints and how they are connected to the gradients is explained in

more detail in Goldberg and Heimbach (2013). The implementation of the gradient calculation of this new function was tested

against a finite-difference approximation using torch.autograd.gradcheck from Pytorch.

A3 Mass-Balance Model wrapper

The idea of the wrapper is to circumvent the need to re-implementing part of the modelling chain with PyTorch, but still600

incorporate its influence on the gradient calculation. The downside is that with this you can not obtain gradients of parameters

used in the wrapped part.

In our case, we decided to put the MB model forcing into a wrapper. The MB model gives us for each year a value for

the climatic MB depending on the height mborig(height). The MB height profile is defined each year by the temperature and

precipitation input.605

The idea is to utilize the differentiable 1d interpolation tool from https://github.com/aliutkus/torchinterp1d. With this, we

define constant height bins hbins which cover the vertical glacier extension. The differentiable MB wrapper finally looks like

mbtorch,i(h) = torchinterp1d(hbins,mborig,i(hbins))(h) (A25)

for a year i.

This method works best if the desired modelling part is smooth and does not change too much depending on the input. The610

spacing of bins (hbins in our case) should be determined by the variability of the output of the wrapped function.
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