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Abstract. Landscape fires emit climate-influencing greenhouse gases and aerosols. The vast majority of landscape fire emis-

sions originate from tropical savannas, especially in Africa. During the fire season climatic conditions change, and fires burning

later consume drier vegetation and occur in drier weather conditions than earlier fires. Previous studies have shown that it is

possible to reduce emissions of some greenhouse gases (CH4 and N2O) by using ‘prescribed’ fires, i.e. deliberate burning in

the early dry season. In this study we examine the climate effect of (deliberately) changing fire regimes beyond CH4 and N2O,5

including aerosols and other short-lived species, CO2, and changes to surface albedo. We find that in general shifting burning

earlier in a single fire season results in global negative climate forcing (cooling) of around –0.001 to –0.002 Wm−2 (long-term)

or –0.006 (short-term) Wm−2, compared to less than -0.0005 Wm−2 if only considering CH4 and N2O. Forcing from shifting

burning later in contrast is negligible in the long term. CO2 emissions reduction through emission factor changes and burned

area reduction is the largest contributing factor, though especially in the short term albedo effects are also substantial. Shifting10

fire activity towards the late fire season generally produces a positive climate forcing (warming) of a smaller magnitude. We

find too that some localities within our study area have a potentially disproportionately large impact on our results, such that

the efficacy of any fire regime change with respect to climate forcing must be carefully considered on a local scale.

1 Introduction

Global emissions from landscape fires, colloquially referred to as ‘forest’ or ‘wild’ fires, total at least 2 Pg carbon annually (van15

der Werf et al., 2017). This is substantial when compared to total carbon emissions from fossil fuel, currently around 10 Pg

carbon (Friedlingstein et al., 2023), though the vast majority of carbon emissions from biomass burning (BB) is re-sequestered

provided there is post-fire vegetation re-growth (Landry and Matthews, 2016). Two thirds of global BB emissions come from

the tropical savanna biome, of which most are from sub-saharan Africa (van der Werf et al., 2017), driven by a frequent burn-

growth cycle typical of this region (Archibald et al., 2010).20

Landscape fire emissions in this part of the tropical savanna consist mostly of greenhouse gases (GHGs) such as carbon dioxide
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(CO2), methane (CH4) and nitrous oxide (N2O), short-lived gases such as carbon monoxide (CO) as well as other non-methane

volatile organic compounds (NMVOCs) (Andreae, 2019; Urbanski, 2014; Yokelson et al., 2013). Aerosols emitted from BB

are typically categorised into organic carbon (OC), black carbon (BC) and brown carbon (BrC) (Andreae, 2019; Bond et al.,25

2013; Feng et al., 2013) due to their differing optical properties; OC aerosols are generally light-scattering (Charlson et al.,

1992), whereas BC and BrC are light-absorbing (Laskin et al., 2015).

Aerosol-radiation interactions (ARI; Carter et al., 2021; Canut et al., 1996), aerosol-cloud interactions (ACI; Tosca et al.,

2014; Logan et al., 2024), climate warming effect from (pyrogenic) GHGs (IPCC, 2023; Etminan et al., 2016; Meinshausen et30

al., 2017), mean that BB emissions can affect the global climate in complex ways. Additionally, aerosol-climate interactions

are less certain than those attributable to GHGs (Carslaw et al., 2010; Forster et al., 2021). Uncertainty in ARI is driven by

several factors, including uncertainty in the underlying mechanisms, but also by a large spread in multi-model ensembles used

to quantify it (Peace et al., 2020). ACI uncertainty is contained mostly in the uncertainty of the ’susceptibility’ of cloud droplet

number to aerosol load (Gryspeerdt et al., 2023).35

GHGs drive long-term climate warming - CH4 is the shortest lived with a lifetime of around a decade (Prather et al., 2012;

Stevenson et al., 2020), N2O over 110 years (Chipperfield et al., 2014; Prather et al., 2015) and CO2 can remain in the atmo-

sphere from months to millennia depending on the removal process (Ciais et al., 2013). Aerosol lifetimes are far shorter, on the

order of days to weeks (Kristiansen et al., 2016; Myhre et al., 2013). BC and BrC induce warming, contributing directly 70%40

and 20% respectively to aerosol-related absorption of sunlight, with the remaining 10% attributed largely to non-absorbing

aerosols (e.g. sulfates) coating BC or BrC (Feng et al., 2013). OC by contrast has a net cooling influence, by direct light scat-

tering but also via secondary processes such as assisting in cloud formation (Lu et al., 2015). The overall effect of pyrogenic

aerosols is cooling (Tian et al., 2022; Xu et al., 2021) due to relatively higher quantities of OC in fire plumes than BC or BrC

(Andreae, 2019; Bond et al., 2013).45

The proportion of each of these climate-influencing species within a given fire plume depends on a number of factors in-

cluding the type of vegetation being burned, the condition of that vegetation (e.g. moisture content), local weather at the time

of the fire and longer-term weather conditions (Vernooij et al., 2023) as well as fire intensity (i.e. flaming vs smouldering

fires; Laris et al., 2021). For example, wetter and/or coarser fuel combusts less efficiently and produces proportionally more50

CH4, N2O, CO and OC and less CO2 than comparatively drier or finer fuel (Laris et al., 2021, 2023; Vernooij et al., 2022). In

sub-saharan Africa fuel conditions are largely dictated by the timing of a particular fire. The fire season is concentrated in a 5-7

month dry season where little to no precipitation occurs (Archibald et al., 2019), such that fuel has several months to dry out

and fires in the earlier part of the season burn wetter fuel. Fires in the early dry season can therefore emit a higher proportion

of CH4, CO and/or aerosols when compared to similar fires later in the season. However, later on in the dry season the type of55

fuel burning may shift from grasses and other light material which cures (dries out) quickly to heavier material such as coarse

woody debris and leaf litter which has fallen during the season, which also tend to emit a higher proportion of CH4 and/or N2O
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(Vernooij et al., 2023).

With this in mind, it is conceivable that altering burning patterns within a single fire season could by extension alter the60

amount and/or proportion of climate influencing pyrogenic species. Previous studies indicate that deliberately setting fires ear-

lier in the dry season, a practice known as prescribed burning, can reduce burned area (BA) by creating a mosaic of smaller

burned patches (Price et al., 2012; Russell-Smith et al., 2013; Laris, 2002). In this way, prescribed burning can also reduce ‘net’

GHG emissions (i.e. CH4 and N2O, but not CO2 due to the assumed re-uptake of this gas through photosynthesis) by reducing

total emissions, despite the seasonal emission factor (EF) dynamics of these species (Russell-Smith et al., 2021; Lipsett-Moore65

et al., 2018). The effect of tropical savanna fires on climate via surface albedo changes has been the subject of some study (Din-

twe et al., 2017; Jin and Roy, 2005), though not yet in the context of climate change mitigation. Aerosols in sub-Saharan Africa

are substantially pyrogenic in origin (Andersson et al., 2020), but to our knowledge the influence of changing fire regimes or

prescribed burning on aerosol emissions has not yet been studied.

70

The goal of this study is to take a comprehensive view of the climate influence of prescribed fire, and changes to burning

patterns more generally, in southern Africa. We examine a series of burning scenarios and their influence on radiative forcing

(RF) when compared to a pre-defined baseline burning scenario. We include long-term forcing from key GHGs (including

CO2, often absent from the literature due to an assumed re-uptake in post-fire re-growth) via simplified parameterisations (Et-

minan et al., 2016; Moubarak et al., 2023), RF from aerosols and other short-lived climate forcers (SLCF) modeled using the75

Weather Research and Forecasting model with coupled chemistry (WRF-Chem, Grell et al., 2005), and RF from changes to

surface albedo. In doing so our main aim is to offer perspective on emissions mitigation programmes involving savanna burn-

ing currently operating in e.g. Australia (CER Australia, 2015) and being expanded into the African continent (Russell-Smith

et al., 2021), but we also consider scenarios with alternative burning patterns.

While the success of the Australian project is the motivating factor for this southern African study, it is also important to ac-80

knowledge that there are different considerations for the African continent. These considerations (including biodiversity goals

and impacts on ecosystems and livelihoods) are detailed in Knowles et al. (2025), where the authors conclude that more evi-

dence is required to show that a shift in fire timing will reduce greenhouse gas emissions. This work is an attempt rectify this,

focusing on the climate impacts of such fire regime change to add to the discussion on whether such burning is desirable in the

larger social, ecological and financial contexts of southern Africa.85

We begin first with an introduction to the area of study, followed by an explanation of the burning scenarios, methodology

and data we use to generate savanna emissions for a single fire year. We then describe in more detail the WRF-Chem model,

including our experimental set-up, associated internal model choices and other data chosen to validate model runs for the cho-

sen region. After this we present the methodology for albedo and longer-lived GHG forcing, and end the methods section with90

some of the ways we have mitigated uncertainty in this project. In the following sections we present first the results, a detailed

discussion of these, and finally some concluding remarks.
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2 Methods

In the following section we describe the steps we took to quantify the influence of a change in fire patterns on global RF. We

first establish the boundaries of the study area, then elaborate on how we constructed each burning scenario within this domain.95

Following this, we set out the methodology used to calculate RF from each of the three forcing components (SLCF, long-term

GHG forcing and forcing due to surface albedo changes).

All RF figures we report are global and cumulative in time. RF from changes in GHG concentrations are calculated in the

global context directly (see section 2.5), but we must scale forcing from SLCF and albedo with the fraction of Earth’s surface

covered by our domain, approximately 6%. For albedo effects this is a straightforward scaling, but for SLCF effects we must100

consider ‘leakage’ from e.g. aerosols from the WRF-Chem domain to the outside. We describe how we estimate this leakage

in the SLCF section.

2.1 Area of study

This study defines ‘southern Africa’ as the region of the African continent south of the equator, excluding Madagascar, and

we focus on fire patterns in the tropical savanna within this domain. Southern Africa is largely (sub)tropical (0oS to ∼ 37oS),105

with a matching tropical climate. This involves two main seasons: a prolonged annual ‘dry’ season with little to no precipita-

tion (April - October), and a ‘wet’ season during which the majority of the annual precipitation occurs (November - March).

Following the biome classification system proposed by Olson et al. (2001), southern Africa can be split into several biomes

(Figure 1). Dominant across the region is the tropical and subtropical grasslands, savannas and shrublands biome, hereafter

simply ‘savanna’. This biome is typically characterised by open woodland containing a mixture of trees and grasses (Beerling110

and Osborne, 2006), and has a strong relationship with fire; southern African savannas are frequently burnt, on average every

five years and in some areas annually (Archibald et al., 2010; Giglio et al., 2018).

Our domain is shown in Figure 1, and we concern ourselves primarily with fire patterns in the savannas south of the equa-

tor. This area contains several sparsely populated and protected areas, where fires tend to be more spatially extensive and occur115

later in the dry season (Eames et al., 2023; Archibald et al., 2010). In this paper we only address changes to global RF as a result

of shifts in southern African fire patterns, and all numbers presented should be interpreted in this context. We do not concern

ourselves with the absolute forcing as a result of tropical fires as a whole, but rather the difference relative to a pre-defined

baseline scenario.

2.2 Scenarios120

We created six scenarios in total. We examine effects of shifting fire activity to either earlier or later periods in the fire season

than a baseline ‘average’ fire year, keeping total BA constant. Additional scenarios were based on the same intra-seasonal

shifts, but including additional changes in total BA. Full details are given in the following subsection.

4



Figure 1. Map of the study area which makes up the entire WRF-Chem domain. The WRF-Chem domain includes the ’ground’ domain

where emissions inputs are varied, corresponding to the yellow ’Tropical and Subtropical Grasslands, Savannas and Shrublands’ region

south of the equator. Also displayed for the region is the World Wildlife Fund terrestrial ecoregion classification (Olson et al., 2001). We

include fixed emissions for areas north of the equator (red dotted line) and Madagascar, though these are unchanging across all scenarios.

Our analysis is based on these scenarios in a single fire season, and longer-term results represent the cumulative effect of

changing fire dynamics in that single season. We do not account for future fire seasons in this experimental set-up.125

2.2.1 Scenario design & burned area

We designed each scenario using BA data developed for use in the newest Global Fire Emissions Database (GFED5) from

Chen et al. (2023). We defined the baseline scenario as the mean monthly BA over the period 2003-2020, in order to best

represent an average fire year.

We based our other scenarios on idealised gaussian distributions with BA peaks in different parts of the dry season: the early130
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dry season (EDS) distribution peaks in mid June, while the late dry season (LDS) distribution peaks in mid August (Figure 2a).

The relative widths of the EDS and LDS distributions reflect fire weather conditions throughout any given season: fire weather

in the EDS is generally less conducive to spatially extensive burning than in the LDS (Williams et al., 2003; Perry et al., 2019).

The opposite is true in the LDS. This means that large areas can burn quickly in the LDS, but not in the EDS. A realistic shift

to more EDS burning is therefore spread more evenly across the season than an LDS shift.135

These distributions defined how BA could be shifted from the baseline (mean) scenario to a new simulated fire regime, in

combination with a grid cell specific transition date from EDS to LDS. This transition date was determined by the proportion

of night-time fires in total active fire detections (see Eames et al., 2023 for details on this). To determine how much BA can be

shifted, we take the percentage of that BA which falls on the opposite side of the transition date (i.e. after for EDS scenarios

and before for LDS scenarios), and redistribute this over the relevant gaussian. A summary of all six scenarios is given in Table140

1.

Table 1. Summary table of the scenarios used in this paper. The degree of change is dependent on the proportion of burning already taking

place before the cut-off date (EDS or LDS) in the grid cell, up to a maximum of 15% for the scenarios where there is a change in total BA.

Scenario Change in BA Summary

Mean (baseline) – The monthly mean of all BA from 2003-2020 from

GFED5 BA data

EDS None LDS BA shifted towards the EDS

LDS None EDS BA shifted towards the LDS

EDS reduction Up to -15% LDS BA shifted towards the EDS and reduced by up to

15%

LDS increased Up to +15% EDS BA shifted towards the LDS and increased by up

to 15%

EDS suppressed Up to -15% EDS BA reduced by up to 15%

To illustrate the process of shifting BA towards the EDS, we use a grid cell located in central Zambia as an example (Fig-

ure 2b). To shift BA earlier in this grid cell, there must be burning in the LDS available to shift. 37% of the BA in this particular

grid cell occurs after the transition date (based on Eames et al., 2023). We thus create an EDS gaussian containing 37% of the145

BA, and reduce the total BA by that 37% (EDS remainder). By summing these two BA distributions a new BA distribution is

created, with the same total BA but shifted towards the EDS. This is expressed in equation 1:

BAscenario,i = βi ×BAgaussian,i +(1−βi)×BAi (1)

where βs,i is the fraction of BA in the LDS or EDS (depending in the scenario) in the ith grid cell. This equation represents

scenarios where there is no change in total BA.150
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Figure 2. Conceptual representation of scenarios (a) of BA in the EDS (blue) and LDS (red) along with mean BA from 2003-2020 (black).

All areas under the curve are identical, i.e. total BA does not change A value of 1 on the y axis corresponds to the maximum monthly BA in

the Mean scenario. (b) shows the process of shifting burned towards the EDS in a grid cell in central Zambia (-13.6°N, 29.1°E). For this grid

cell only 37% of total BA is in the LDS and can be shifted to the EDS gaussian. The remainder is not shifted, but reduced by 37%. The BA

distribution in this grid cell in the EDS scenario is given by the sum of the gaussian and reduced components. In this particular example, the

total BA also remains consistent.
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For scenarios with a change in BA, each grid cell is scaled with the late season burn index (LSBI) for that grid cell. The LSBI

is a quantity related to both how much BA there is in a particular grid cell, and what fraction of that occurs in the LDS (Eames

et al., 2023). An LSBI close to 1 indicates a relatively large BA very late in the season, and close to 0 indicates small BA much

earlier. Areas with a higher LSBI see a greater reduction of BA due to the shift to EDS fires. The three scenarios with change155

to total BA are:

– EDS reduction: in some areas where the introduction of more EDS fire has been studied, total BA reductions can be

around 15% (Edwards et al., 2021; Price et al., 2012). We therefore also include a scenario where total BA is reduced as

a consequence of a shift towards EDS burning, whereby the level of reduction per grid cell is scaled by the LSBI up to a

maximum of 15%.160

– LDS increase: prescribed EDS burning is already practiced in many parts of southern Africa. Were this activity to be

stopped, in line with the previous scenario we may imagine a shift of fire activity in the direction of the LDS. Additionally,

if we assume that EDS burning may reduce BA, we may also assume that BA may increase in an LDS-shifted scenario

by a similar amount. In this scenario fire-activity is LDS-shifted and BA increases by up to 15% in certain areas. In this

instance, areas with a high LSBI see a small BA increase, and vice versa.165

– EDS suppression: we imagine a scenario in which resources typically dedicated to EDS burning are instead channeled

towards the suppression of fires. Suppression is more achievable in the EDS when fires are cooler and less extensive, and

as such the reduction in BA occurs predominantly in the EDS. The result is that fire activity is effectively LDS-shifted

(less burning in EDS, relatively unchanged burning in LDS). BA reduction is achieved in areas with high EDS burning,

again up to 15%.170

It is important to note that we use the terms ’EDS’ and ’LDS’ to indicate relative change, and in our scenarios these should

not be understood to refer to specific times of the year. It is possible for example that an ’EDS shift’ for a grid cell with a very

late-skewed fire season may still result in burning being shifted to e.g. August. The spatial distribution of BA changes in the

three scenarios itemised above is shown in Figures S2, S3 &S4 in the supplementary material.

2.2.2 Scenario emissions175

Pyrogenic emissions from tropical savannas in each scenario were calculated following Seiler and Crutzen (1980):

Emissionsspecies = FL × BA × CC × EFspecies (2)

where FL is total available fuel load, BA is the scenario-specific burned area as described in the previous subsection, CC is

the fraction of the fuel combusted (combustion completeness) and EF is the emission factor of the emitted species.
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Fuel consumption180

FL and CC input for surface fuel classes (grass, litter, coarse woody debris) and shrubs savanna emissions data was created

by building a Sentinel-2 scale fuel map from in-situ measurements. We performed Unmanned Aerial Vehicle (UAV) surveys

over plots where FL measurements were taken for the different fuel classes. By combining these surveys with meteorological

data we created a set of surface fuel map ‘samples’ (Eames et al., 2021). Using these samples, we scaled the FL map up to

Sentinel-2 tiles by building a machine learning model, and these tiles could then be stitched together to create regional and185

continental scale fuel maps (Eames et al., 2025).

Tree biomass data was generated using high resolution synthetic aperture radar (SAR) data (Bouvet et al., 2018). Monthly FL

and CC maps were generated for the entire study region for the year 2019 on a 500m pixel scale. FL varies somewhat over

the fire season, in particular with the accumulation of nitrogen-rich leaf litter and more woody fuel as a result of litterfall and

tree/shrub mortality in the dry season. CC generally scales with moisture content and will increase from a minimum at the start190

of the dry season to a maximum after sufficient time without rainfall, though the drying rate depends on the type of fuel (for

example, grasses dry out faster than shrubs and thus burn more completely earlier in the season). More details can be found in

Eames et al. (2025).

To match the FL maps to the GFED5 BA resolution, we averaged FL across all 500m pixels contained within a single

0.25°×0.25° GFED5 grid cell.195

BA

BA data was taken from the GFED5 dataset (Chen et al., 2023). This dataset is derived from the MODerate Resolution Imaging

Spectroradiometer (MODIS) but includes ‘small fires’ (in general less than 100ha) on a statistical basis. These small fires are

crucial to accurate BA estimates in all sub-Saharan Africa, as they could account for up to half of total BA (Ramo et al., 2021).

Emission factors200

EFs were generated using a combination of measurements from a UAV-mounted smoke sampling system (Vernooij et al., 2022),

and other existing EF measurements globally (e.g. Akagi et al., 2011; Andreae, 2019). For tropical savannas this database was

coupled with climate reanalysis data and vegetation data from MODIS products to generate an EF product which is both tem-

porally and spatially dynamic, and is able to distinguish between areas of high grass density or more closed canopy cover

(Vernooij et al., 2023). To match the BA data, we used the aggregated monthly dataset on a 0.25°×0.25° resolution (Vernooij,205

2023). We accounted for three primary pyrogenic GHG EFs: CO2, CH4 and N2O. We also included CO, which despite not

being a GHG itself impacts global OH and ozone (O3) concentrations (Lelieveld et al., 2016), and ultimately contributes to

total CO2 concentrations via oxidation (Crutzen, 1973).

CO2 EFs increase later into the fire season as the fuel gets drier, and the opposite is usually true for CO and CH4. For N2O210

the type of fuel itself is a key determining factor (Vernooij et al., 2023). OC aerosol EFs are linearly related to the modified
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combustion efficiency (MCE), itself calculated from the ratio of CO2 to CO + CO2 emissions (Vernooij et al., 2022). More

efficient burning is less conducive to OC production than inefficient combustion, and combustion efficiency generally increases

as the dry season progresses (Vernooij et al., 2021, 2023), though can also be affected by fuel composition (Ward et al., 1996).

We calculated EFOC from the following equation (Vernooij et al., 2022):215

EFOC =−116×MCE+116 (3)

BC aerosol EFs are not linearly related to the MCE (Andreae et al., 1998; Vernooij et al., 2022), and accounting for the EFBC

variability is not straightforward. At the time of writing the authors are unaware of good data regarding seasonal changes in

EFBC in southern African savanna fires. We therefore retained the fixed EFBC value for tropical savannas as in van der Werf

et al. (2017). All other pyrogenic species are based on similar fixed values for the tropical savanna biome from Akagi et al.220

(2011), also consistent with GFED4.1s.

2.3 SLCF

We define SLCFs as those forcing agents directly and indirectly generated by pyrogenic emissions and limited in lifetime

on the order of weeks to months, such that the effects do not extend far beyond the fire season itself. This includes forcings

from aerosol effects, and some short-lived gas species. Aerosols in particular can influence the climate in many and sometimes225

opposing ways by scattering (cooling), enhancing cloud production (mostly cooling), or absorbing incoming solar radiation

(warming). The ‘aerosol effect’ should be understood hereafter to refer to the sum total of all of these processes.

The total forcing from these species is calculated on-line within each WRF-Chem scenario simulation, itself then compared to a

baseline model run to calculate the total RF for that particular scenario in a single fire year. Long-lived GHGs also affect forcing

within the WRF-Chem simulation, and to avoid double-counting we subtract this RF component from the total WRF-Chem230

RF to obtain RF solely from short-lived species (forcing from long-lived GHGs is separate to the WRF-Chem simulation and

outlined in section 2.5). The contribution from SLCFs on the longer term represents the cumulative RF from the WRF-Chem

simulation period, and the contribution from that specific fire season over the following period (which is zero).

2.3.1 WRF-Chem model

The Weather Research and Forecasting model with coupled chemistry (WRF-Chem, Grell et al., 2005) is a regional mesoscale235

atmospheric model capable of simulating aerosol concentrations, optical properties and the effect thereof on cloud formation,

and also RF more broadly (e.g. Fast et al., 2006; Ahmadov et al., 2012; Ntelekos et al., 2009; Ha, 2022).

In our scenario runs with WRF-Chem, gas-phase chemistry was parameterised using an updated version of the Regional Atmo-

spheric Chemistry Mechanism (RACM, Stockwell et al., 1997), allowing for inclusion of an extensive list of NMVOCs as well

as key well-mixed GHGs and their precursors. The Modal Aerosol Dynamics Model for Europe (MADE, Ackermann et al.,240

1998) was used to parameterise inorganic aerosols, and organic aerosols were treated with the volatility basis set (VBS) model

with simplified aqueous chemistry (Ahmadov et al., 2012; Tuccella et al., 2015) allowing for the on-line inclusion of both

the direct and indirect effect of aerosols on RF. Aerosol optical properties were calculated on-line using Mie theory following
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Tuccella et al. (2015). We used a single domain with grid resolution set to 30km×30km.

245

We ran the WRF-Chem model for a single seven-month period within each scenario using meteorology, initial and bound-

ary conditions from the year 2019. These periods began on April 1st and ended on November 1st, including a two week

spin-up period (1-14 April). This time period encompasses the vast majority of the southern African savanna fire season, in-

cluding both very early and very late dry season fire activity (Archibald et al., 2010). The model was run separately for each

burning scenario as in Section 2.2, as well as a validation run (see Section 2.3.4). RF from WRF-Chem was calculated from the250

difference in the total all-atmosphere up- and down-welling radiative flux (long-wave and short-wave) between each scenario

and the baseline.

We based our validation run on observational data for the 2019 fire season, as much of the field data was collected in this

period. Input data for all runs such as meteorology and anthropogenic emissions also corresponded to the 2019 fire season, and

were kept constant in all scenarios. Input data sources are described in the following subsection.255

2.3.2 WRF-Chem input data

Meteorology input

We sourced the 2019 meteorological data from the National Center for Environmental Prediction’s (NCEP) final (FNL) Op-

erational Global Analysis (NCEP, 2000), available on a 1°×1° grid for the study period in 2019. WRF can resolve its own

meteorology from initial and boundary conditions, but in order to keep our simulations close to the FNL reanalysis data we260

nudged the WRF meteorology with FNL data every six hours. Nudging improves estimations of temperature and moisture

variables only if not applied too strongly (Alexandru et al., 2009), so appropriate nudging coefficients were calculated (x and y

wavenumbers of 7 and 6 respectively) for our model resolution and domain size using methods described in Spero et al. (2018).

This approach ensures that WRF internal meteorology remains as close to observed conditions as possible. We confirmed this

with two shorter test runs with identical input data, in which differences between meteorology were negligible. Using the same265

reanalysis data and nudging in other model runs also ensures consistency between scenarios, though any feedback from the

fires on the meteorology are outside the scope of this study.

Anthropogenic and biogenic emissions

Biogenic and anthropogenic emissions (excluding BB emissions) were sourced from the Copernicus Atmosphere Monitoring

Service (CAMS) version 3.0 and 5.3 respectively (Granier et al., 2019; Soulie et al., 2024). These emissions inventories are270

based on the EDGAR repository up to 2018 (Crippa et al., 2021) and extrapolated for later years based on emissions trends

from O’Rourke et al. (2021). These are available globally on a 0.1°× 0.1° grid for a range of key GHGs, NMVOCs and

aerosol species. We interpolated these data onto the WRF domain grid using bilinear interpolation, ensuring minimal (<0.1%

on average) losses in the process.
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Biomass burning emissions excluding southern African savannas275

For fire emissions in our domain that were not savanna fires, we used global biomass burning emissions data from GFED4.1s

(van der Werf et al., 2017). This fire emissions database uses fuel data based on the CASA biosphere model (Potter et al.,

1993) and BA data from MODIS imagery (MCD64A1 C5, Giglio et al., 2015) in concert with active fire detections to sta-

tistically account for relatively small fires, which are often missed by the 500m MODIS product (Randerson et al., 2012).

In the tropics and particularly in savanna regions this emissions dataset is likely to underestimate biomass burning emissions280

(van der Velde et al., 2024). Nonetheless, for spatially and temporally explicit emissions GFED4.1s is advantageous over other

biomass burning emissions products which use fixed fuel load values (e.g. FINN, Wiedinmyer et al., 2023), as fuel load can

vary substantially across the rainfall gradient in this biome. GFED4.1s separates biomass burning into six categories: Savanna,

Boreal Forest, Temperate Forest, Tropical Forest, Peat and Agriculture. Below the equator in our domain, GFED4.1s savanna

emissions were not included to avoid double-counting with the separate scenario emissions data (Section 2.2.2).285

Initial and boundary concentrations

Gas, NMVOC and aerosol initial and boundary conditions were adapted from the Community Atmosphere Model with Chem-

istry (CAM-Chem, Buchholz et al., 2019), itself a component of the Community Earth System Model version 2.1 (CESM2.1).

The CESM2.1 model is based on the MOZART chemistry scheme (Emmons et al., 2020), and includes (secondary organic)

aerosols using a VBS parameterisation (Tilmes et al., 2019) similar to that in Ahmadov et al. (2012) as used in our WRF-Chem290

runs. Spatially explicit CO2 data is not available from this source, and as such atmospheric concentration for this species at the

boundaries was fixed to an appropriate global mean value (413 ppm) following Masarie and Tans (1995).

2.3.3 Domain leakage

Transport of aerosols and other short-lived species out of the domain represents a ‘loss’ of possible RF in each scenario. These

species will affect global RF, but are not captured by the WRF-Chem simulations as this forcing occurs outside of the domain295

boundary. To estimate the size of this deficit, we used aerosol optical depth (AOD) as an indicator variable. For each scenario

we fitted a gaussian curve to the tail ends of both zonal and meridionally-averaged AOD to roughly follow the decay of AOD as

it passes outside of the domain. This enabled us to estimate a fractional ‘loss’ of RF-influencing species due to transport out of

the domain (Figure 3). The total SLCF forcing component (RFSLCF ) from within the domain was adjusted by the percentage

loss calculated. By using the ratio of the model domain area to total global surface area we may scale WRF-Chem regional300

forcing up to a global RF estimate, accounting for outflow across the model boundary.

Aerosols are only one component of forcing within the WRF-Chem scenarios, so this method does not directly represent RF

leakage. However, we are largely estimating a transport effect, one which will affect other SLCF species in a similar manner.
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Figure 3. Zonal and meridional domain leakage in the EDS scenario. Transport patterns in the simulations mean that leakage occurs more

or less exclusively at the western and northern boundaries.

2.3.4 WRF-Chem validation

To assess the performance of WRF-Chem as pertains to biomass burning emissions, we used a combination of satellite-based305

CO and both satellite and ground-based aerosol observations for the year 2019.

TROPOMI

The TROPOspheric Monitoring Instrument (TROPOMI) is mounted on the Sentinel 5 Precursor (5P) satellite, itself in a sun-

synchronous orbit such that it passes overhead at 13.30 local time. Measurements are taken on a nominal 7km×7km grid of

various (climate-affecting) species including O3, CH4, and CO. CO in (southern) Africa is substantially pyrogenic in origin310

(van der Velde et al., 2024), which along with a relatively short lifetime of about 1 month (Khalil and Rasmussen, 1990) makes

it an appropriate species to base this part of our validation on. CO retrievals from TROPOMI are derived from short-wave in-

frared radiance via the Shortwave Infrared Carbon Monoxide Retrieval (SICOR) algorithm (Vidot et al., 2012; Landgraf et al.,

2016).

We compared atmospheric column CO from high-quality TROPOMI observations, filtered to be cloud free or limited to con-315

taining low-level cloud up to 5km, to WRF column CO. Column retrievals from WRF were adjusted for layer sensitivity

changes within the TROPOMI product using the column averaging kernel (Borsdorff et al., 2014). The mean WRF CO column

between 12:00 and 15:00 was used to most closely align with the TROPOMI overpass times. We aggregated both WRF and

TROPOMI datasets to a 0.5°×0.5° grid for ease of comparison.
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AERONET320

The AErosol RObotic NETwork (AERONET) is a network of over 600 sun photometers placed in various locations around the

globe. These passive sensors measure column AOD at a number of wavelengths using the Beer-Lambert-Bouguer extinction

law (Holben et al., 1998) at high temporal resolution. Raw data from these stations is screened for anomalies, clouds and

other possible issues which may affect the data quality, and is available for download on the AERONET website (https:

//aeronet.gsfc.nasa.gov/new_web/aerosols.html, accessed 2024-06-16).325

We used Level 2.0 AOD data from the version 3 AERONET database (Giles et al., 2019) from all stations within our domain

which have data available for the 2019 southern hemisphere fire season (a total of 22 stations) AERONET data does not cover

the exact wavelengths on which WRF outputs AOD (in this case 550nm), but as wavelength and AOD are approximately

linearly related on a logarithmic scale (Tan et al., 2016) it is straightforward to apply a correction for this. In this case, we used

observations at 500nm and 675nm to calculate AOD at 550nm.330

We compared this 550nm AOD with the WRF-Chem column AOD at grid cells spatially and temporally co-located with

valid AERONET data. WRF column AOD was calculated by summing the extinction coefficient at each vertical layer (bext)

multiplied by the vertical thickness of that layer (δz):

AOD550,WRF =

N∑
n=1

bext,n,550 δzn (4)

where N is the total number of model layers. We then calculated an average daily AERONET AOD over the study domain335

(Figure 1), and an analogous average WRF AOD using output which corresponds only to locations and times where AERONET

stations had valid data.

MODIS AOD

MODIS-derived AOD from MCD19A2, or the Multi-Angle Implementation of Atmospheric Correction (MAIAC, Lyapustin

and Wang, 2022) at 550nm is available on a daily basis on a 1km×1km grid. We chose this AOD retrieval algorithm over other340

algorithms (Dark Target or Deep Blue) as it has been shown to perform better over vegetated areas and, in particular, for smoke

AOD (Mhawish et al., 2019). Measurements are taken of blue-band (470nm) AOD and converted to 550nm using the spectral

properties of a regional aerosol model (Lyapustin and Wang, 2022). We aggregate this output to the WRF domain grid. The

WRF data is then spatio-temporally collocated with the MODIS data to validate domain-scale AOD.

2.4 Changes in surface albedo345

The surface albedo of the savanna is changed by fire in the short to medium term - in most cases the surface darkens as a result

of charcoal and ash deposited from the smoke plume (Smith et al., 2005; Jin and Roy, 2005). The outcome of this is generally a

reduction in the surface albedo, in particular in the near-infrared portion of the spectrum (Giglio et al., 2018; Roy et al., 2005).

A decreasing surface albedo leads to less incoming short-wave solar radiation being reflected from the surface, resulting in an

increase in RF (López-Saldaña et al., 2015).350
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Dintwe et al. (2017) determined that in southern hemisphere Africa, average regional RF over the fire season due to fire-

induced albedo changes is around +0.33 Wm−2. They use the ratio of total burned area to global land surface area to scale

this regional forcing to a global one. Doing the same using the total BA in the Mean (baseline) scenario, we arrive at a global

forcing of +0.046 Wm−2. This influence is short-lived as vegetation recovers relatively quickly. These short-term albedo

changes diminish by the start of the next wet season (assumed to be October) due to the onset of persistent cloud cover, or355

when vegetation recovers sufficiently after approximately three months on average (Dintwe et al., 2017). We used a simple

parameterisation scaled by fire activity (BA) on a monthly basis to account for RF due to surface albedo changes in each

scenario. When a pixel burns earlier than the co-located pixel in the baseline scenario, this provides more land surface warming

due to earlier darkening (via ash and charcoal deposition) resulting in positive RF. For pixels that burn later, the opposite is

true. We calculate this RF component by using a monthly cumulative sum of BA per scenario, and we maintain the assumption360

that savanna vegetation recovers within about 3 months as in Dintwe et al. (2017):

DAm =

m∑
i=1

BAm −
m−3∑
m=1

BAm if m < 9

= 0 if m≥ 9

(5)

where DA is darkened area, i.e. the total area currently contributing to surface albedo related forcing in any given month m.

DA is then used to scale the total RF per month:

RFα,m,s = 0.046×

(
DAm,s −DAm,base∑12

i=1DAi,base

)
(6)365

where RFα is the albedo-induced RF per month m in scenario s.

It is important to note that this approach is effectively a per-month scaling of an annual average RFα. It does not take into

account local cloud cover, smoke plume presence, or relative change in surface albedo from e.g. brighter or less densely

vegetated patches compared to more dense cover.

2.5 Long-term forcing from well-mixed GHGs370

Well-mixed GHGs emitted from fires (such as CH4 and N2O) are much longer lived than surface albedo changes or aerosols

(IPCC, 2023). These long lifetimes mean that GHG species exert RF for much longer periods than surface albedo changes or

forcing from SLCFs.

To include long-term GHG forcing in our analysis of possible fire regime changes, we adapted the methods outlined in375

Moubarak et al. (2023) for the savanna biome, using emissions from the different fire scenarios as described in section 2.3.2.

For ambient GHG concentrations, we assumed the Earth to be following a moderate climate mitigation trajectory as in the

‘middle of the road’ Shared Socio-economic Pathway (SSP) 2-4.5 (IPCC, 2023; Meinshausen et al., 2020) in our RF calcula-

tion. We include relevant long-lived pyrogenic species: CH4, N2O, and NMVOCs.

380
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CO2 from non-deforestation vegetation fires may be viewed as having a shorter ‘lifetime’ than CO2 from fossil fuel sources

due to post-fire regrowth of vegetation (Landry and Matthews, 2016), and in previous savanna fire emissions abatement studies

it has not been included as a net contributor to RF (Lipsett-Moore et al., 2018; Russell-Smith et al., 2009; Russell-Smith et al.,

2021). This is perhaps valid for substantially longer-term projections, but on a relatively shorter time scale this CO2 enters the

atmosphere and can contribute to global RF. Positive CO2 anomalies are indeed observed over southern Africa during peak fire385

months (Hakkarainen et al., 2019). We therefore include CO2 in our forcing estimates, but tune the lifetime such that almost

all pyrogenic CO2 has been re-sequestered within the time frame of 1 year. We must also account for potential changes to

respiration of CO2 due to shifting fire patterns (i.e. if fuel does not burn in a scenario, it can still be respired as CO2). Details of

how we quantify this are presented in section 2.6, but we effectively calculate two extremes: one with no change in respiration,

and one with an estimated maximum potential change in respiration. The reported RFCO2 is the mean of these two extremes,390

and the extremes themselves represent a large part of the RFCO2 uncertainty.

Using the projected concentration increase as a result of the total emissions of each species in a fire season, we calculate

changes in RF after the season has ended using the simplified expressions described in Etminan et al. (2016). We exclude CO

from this portion of the analysis, as it has a short lifetime of around 1-3 months (Zheng et al., 2019) and (as with aerosols) RF395

effects thereof are captured within the WRF-chem scenario run. We also exclude O3 as it was found to have negligible impact

after the fire season (Moubarak et al., 2023). For the remaining relevant species, we calculated the annual RF in the 20 years

following the fire season.

2.6 Uncertainty mitigation

For uncertainties in RFα and RFGHG excluding CO2, we adopt the uncertainties reported in the respective publications; around400

96% for RFα (Dintwe et al., 2017) and 2.7% for RFGHG (Etminan et al., 2016). We also adopt the 3.6% uncertainty in RFCO2

reported by Etminan et al. (2016), but add this to the additional uncertainty generated by respiration effects (see below). For

uncertainty in RFSLCF , we quantify the internal variability component of our WRF-Chem model runs.

Internal model variability

A complex model such as WRF-Chem has many potential sources of uncertainty. Uncertainties for RF stemming from emis-405

sions input uncertainty and errors in internal model processes and parameterisation (cloud formation processes, aerosol size

distribution, vertical transport speeds etc) manifest as biases (Zhong et al., 2023; Lohmann and Ferrachat, 2010). This should

not affect differences between two model runs with the same biases, as in our experimental set-up. The same is true of differing

hardware options on which it is possible to run WRF-Chem (Li et al., 2016). These types of uncertainty should cancel out in

the final RF calculation.410

Internal model variability (IMV) within WRF-Chem may affect the RF uncertainty, however. We cannot neglect IMV in the

same way as the model or input errors, as this constitutes a more chaotic element within WRF-Chem (Bassett et al., 2020;

Laux et al., 2017). We tested IMV in our setup by performing an additional simulation with a delayed start date, and compared
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average RF between the two runs to calculate an internal variability factor, fIMV :

fIMV =

∣∣∣RF(t0,s)−RF(t0 + dt,s)
∣∣∣

RF(t0,s)
(7)415

where RF is the mean RF for the scenario s starting at time t0. In our test case, t0 was April 1st and dt was one week.

We calculated fIMV to be around 1%, small compared to that found in e.g. Bassett et al. (2020), though their study directly

compared single runs whereas we are comparing the differences between two runs, a fact which seems to substantially reduce

uncertainty from the WRF simulations in general.

Respiration420

We account for the photosynthetic re-sequestration of CO2 from vegetation re-growth by tuning the atmospheric lifetime of

this species, but changes in fire patterns also have the potential to affect heterotrophic respiration patterns. CO2 emissions

avoided by reducing BA in a given scenario may be compensated by the respiration of excess unburned organic material. There

are potentially substantial differences in wet season respiration depending on whether an area has burned, and what type of

vegetation is present. During the wet season, an area unburned in the preceding fire season may respire up to four times more425

CO2 than a similar area affected by fire, though the respiration rate declines exponentially with the loss of biomass (Richards

et al., 2012). We also assume that all unburned areas contain substantial amounts of leaf litter, an unrealistic assumption but

one which gives us the largest change in respiration rate, from ‘dry season burned’ respiration rate to ‘wet season unburned’.

For a simple expression, we assume that the respiration rate halves over the course of half of the wet season. Additionally, we

also include ash deposition, which encourages a post-fire CO2 respiration pulse (Sánchez-García et al., 2021).430

Seasonal respiration change in a given scenario is calculated as

∆Rtotal =

(
181∑
d=1

rs e
−τ/d − ps

)
×∆BAs (8)

where rs is the average respiration rate of 22 g CO2 m−2 day−1 (Richards et al., 2012), d is the day over the course of the

wet season, the exponential term (τ = 60) represents the reduction in respiration as material is consumed, ps is the average

cumulative post-fire respiration pulse of 40 gCO2 m−2 burned (Sánchez-García et al., 2021), and ∆BAscenario is the differ-435

ence in total BA between the scenario and the baseline. ∆Rtotal can take both positive and negative values, depending on the

sign of ∆BAscenario. RFCO2
can then be calculated as the average of RF only due to CO2 changes RF (EmissionsCO2

)

and RF including respiration RF (EmissionsCO2
+∆Rtotal). These two ‘versions’ of RFCO2

, in combination with the 3.6%

uncertainty from Etminan et al. (2016), represent the upper and lower bounds of RF due to CO2.

440

This parameterisation of respiration effects relies on there being a change in BA in a scenario - that is, we assume that res-

piration does not change based on when a patch of land burns, only if it burns. There may well be intra-seasonal changes in

respiration from timing of fire and we do not account for these in this study. However, Richards et al. (2012) suggest that this
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Figure 4. Temporally-averaged model column carbon monoxide (XCO) from (a) TROPOMI and (b) WRF-Chem from mid-April to the end

of October.

effect is minimal, especially given that heterotrophic respiration is substantially lower in the dry (fire) season compared to the

wet season (Fan et al., 2015).445

3 Results

3.1 Model validation

CO

Model column CO (XCO) corresponds reasonably well with TROPOMI measured XCO. Both show peak mean XCO con-

centrations above western D.R.C/Eastern Congo and Northern Angola of around 200 ppb (Figure 4). The temporal correlation450

coefficient (r2, excluding model spin-up) for spatially averaged WRF and TROPOMI XCO is 0.76 (RMSE = 23.4, see Figure

5). Over the full domain WRF generally underestimates XCO (though peak WRF XCO is higher than that of TROPOMI),

especially in the mid-late dry season (June - August) where fire activity is at its highest (Figure 5). This underestimate could be

due to fires being missed in the dataset, such as smaller fires or sub-canopy fires which can remain undetected by BA products

(Ramo et al., 2021). Smouldering fires which produce proportionally higher CO emissions (Vernooij et al., 2023; Johnston455

et al., 2018) are especially prone to remaining undetected as they are relatively cooler, and far less spatially extensive. Ad-

ditionally, van der Velde et al. (2024) showed that part of the CO column over Africa originates from fires in Indonesia and

the Amazon. Underestimation of the inflow from this CO could be why XCO is underestimated by WRF in the southern and

eastern parts of the domain.
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Figure 5. Spatially averaged XCO for both TROPOMI and WRF output over the study area. The blue highlighted area is the model spin-up

period.

Another possible explanation for the XCO peak values in WRF being higher than the observations is a reduced lateral transport460

in the model, allowing for a CO build up in one place (notable in the northwest). This may also partially cause underestimations

elsewhere in the domain - although it is possible that regional under- or overestimates in the emissions input variables (BA,

FL, CC or EF) are also playing a role.

AOD

AOD differences between satellite (MODIS) observations and WRF output are similar to those between TROPOMI and WRF465

XCO. The spatial agreement between observational data and model output is generally strong, with both showing a peak

in AOD in similar locations. However, the MODIS data show aerosols as being more widely distributed across the domain,

whereas WRF indicates aerosols are spatially more densely packed around the peak AOD area (in red in Figure 6). Notably,

some drier regions have a higher observed AOD than found in WRF, such as the Etosha pan (Namibia) and the eastern parts

of Kenya and Ethiopia, indicating that perhaps aerosols originating from dust or sand over more arid landscapes are underesti-470

mated. Cities such as Gaborone (Botswana) and Antananarivo (Madagascar) are also observed as stronger aerosol sources than

simulated in WRF. This too is indicative of an underestimate of anthropogenic emissions for these locations.
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Figure 6. 550nm AOD for the study area from (a) MODIS MCD19A2 product and (b) WRF-Chem from mid-April to the end of October.

The WRF-Chem output has been temporally and spatially co-located with the MCD19A2 product to best represent the comparison between

the two. White areas indicate regions of no data in the MCD19A2 product.

In the early part of the fire season WRF AOD matches well with both MODIS and AERONET data (Figure 7). In June

WRF tends to over-predict AOD (sometimes by as much as 50%), and from August onwards WRF can under-predict AOD to a475

somewhat lesser degree (about 40% in extreme cases). In particular for the AERONET data, this is an average across multiple

stations which do not necessarily all overlap temporally. Large discrepancies between observed and modelled AOD could thus

be driven by a single station. Another possible (partial) explanation may be the use of static EFs for aerosol species other than

OC, limiting the accurate representation of temporal trends in aerosol emissions. Early in the season, mostly light surface fuels

are being burnt, resulting in less smouldering and lower aerosol production. As the season advances, this situation is reversed,480

leading to more smouldering and higher aerosol production. Nonetheless, we find overall reasonable agreement with AOD

throughout the fire season (r2 = 0.54 and RMSE = 0.05, see Figure 7a), showing that WRF captures pyrogenic aerosol trends

reasonably well. While not perfect, we have found WRF to replicate the broad spatiotemporal patterns in the observations.

3.2 RF

For each scenario we quantified cumulative RFSLCF , RFα, RFCO2
and RFGHG annually over a 20 year period post-fire sea-485

son. Results are shown in Figure 8.

Both EDS and EDS reduced scenarios (Figure 8a & b) have a negative overall RF, both in the short-term and the long-term.

On shorter time scales RF in these two scenarios could be as low as –0.006 to –0.007 Wm−2, and in the long-term between

–0.001 and –0.002 Wm−2. In magnitude terms, this is equivalent to roughly 2-10% of RF due to global aviation emissions in490
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Figure 7. Spatially averaged AOD timeseries over the study area for (a) MODIS and (b) AERONET are shown in comparison to spatially

and temporally co-located WRF AOD. The specific times and dates which are averaged over are dependent on data availability, different

between MODIS and AERONET, such that the mean WRF AOD in panel (a) is averaged over a different temporal and spatial subset than

panel (b) and these may therefore diverge. The blue highlighted area indicates the model spin-up. The insert in the top right of (b) shows

the locations of each AERONET station. Their colour indicates the proportion of the study period for which data was available from each

station, as shown in the colourbar. Times and locations where observations were unavailable in the respective observational datasets were

masked in the WRF-Chem output for this figure.

2018 (Lee et al., 2021).

SLCF and total GHG RF contributions in these scenarios are negative, and the reduction in CO2 emissions is the largest single

factor generating negative RF, despite the shortened lifetime. EFCO2
is lower in the EDS, so proportionally less CO2 will be

emitted in EDS burning scenarios. Similarly, RFSLCF being negative aligns with the intra-seasonal OC emissions pattern:

higher OC EFs in the EDS result in proportionally more aerosols being emitted, resulting an overall cooling effect. This also495

explains why the magnitude of RFSLCF is lower in the EDS reduced scenario; reducing the total BA will reduce OC emissions,

and with it the magnitude of RFSLCF , though it will remain negative.

RFα in these two scenarios is substantial and positive (+0.002 to +0.003 Wm−2 in the short-term). It is the only positive com-

ponent in these two EDS scenarios. Shifting burning earlier in turn causes ground to darken earlier in the season, providing

more time for this lower surface albedo to contribute to the cumulative RF effect. This effect diminishes relatively quickly post500

fire season, however, as the vegetation will re-grow and cloud cover will persist during the wet season, effectively negating

surface cover changes.

RFGHG makes a relatively small but persistent negative contribution to total RF in these scenarios, around 10% of the total

at the start but climbing to almost 40% after 20 years due to the longer lifetime of species involved in this component. Lower

total BA reduces emissions of GHG in the EDS reduced scenario. In the EDS scenario some strong localised CH4 emissions505
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Figure 8. Cumulative RF in each scenario, split into four components: Albedo (purple), SLCF (blue), CO2 (red) and other GHGs (yellow).

The thick black dotted line is the sum of all the forcing components, and the thinner black dotted lines represent the upper and lower

uncertainty limits. Panel (a) shows results for the EDS scenario, (b) EDS reduced, (c) LDS, (d) LDS increased and (e) EDS suppressed, over

a 20-year time period. Year 0 is the year containing the fire season. Note the difference in scales between panels (a) - (d) and (e).
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dynamics result in the negative RFGHG, despite slightly higher EFCH4
in the EDS (discussed further in section 4.1).

In the LDS and LDS increased scenario (Figure 8c & d), RFSLCF is positive and ranges from +0.002 to almost +0.004

Wm−2. On the longer term RF from the LDS scenario is negligible, and a little under +0.001 Wm−2 in the LDS increased

scenario. RFα is negative but smaller in magnitude than in the EDS or EDS reduced scenarios, around –0.001 Wm−2. Later510

burning results in a darker land surface for a shorter period of time than EDS scenarios; the onset of the wet season means that

this effect has a fairly sharp cut-off point and is thus smaller in magnitude than the EDS scenarios mentioned above.

RFCO2
and RFGHG are relatively small contributors in the LDS scenario - slightly negative, but other components dominate.

This is likely due to a change in EFs towards those more similar to the EDS values in the very late dry season as the wet season

draws closer (and thus humidity levels rise and/or fuel composition changes), as observed by Vernooij et al. (2023). In contrast515

RFCO2
and RFGHG are positive in the LDS increased scenario, mostly due to the overall increase in BA.

RFSLCF is the largest single factor in both LDS scenarios, starting at just under +0.004 Wm−2 one year post-fire season. This

is the opposite effect to that described in for OC emissions in the previous two scenarios; later fires mean lower OC emissions,

and thus a reduced aerosol load with associated warming.

520

The EDS suppressed scenario has the highest uncertainty range of any scenario thanks mostly to a substantial reduction in

BA and associated respiration, but also a comparatively large contribution from RFα. It is also the only scenario where the

long-term RF could be both positive or negative, as 0 falls within the uncertainty range. Short-term RF could be as high as

+0.015 Wm−2 thanks to significantly lower OC emissions - both a reduction in BA and a shift to LDS burning contributing to

this. However, this effect could be almost entirely compensated for by a combination of high RFα and possibly elevated CO2525

respiration in the wet season, as shown by the lower uncertainty limit which is negative from one year post-fire season onward.

Additionally, EDS suppressed is conspicuous with the highest magnitude RFSLCF in any scenario. This is likely due to the

double-effect of reducing the relative amount of EDS burning (which will reduce the aerosol emissions, as seen in the LDS

scenario) as well as reducing total BA (further reducing overall emissions including aerosol), making this the scenario with the

lowest overall aerosol emissions and thus this RF component is strongly positive.530

4 Discussion

Our results show that a domain-wide shift towards the EDS is generally climate-cooling, even in the long-term, while a shift

towards the LDS is warming on the short-term but may not have a substantial effect after 10+ years. Reducing or increasing

BA has the effect of cooling or warming respectively, in both the long and short-term. Shifting burning later but reducing BA

have opposing effects on climate, as in the EDS suppressed scenario, such that the sign of RF changes from positive (warming)535

to negative (cooling), though the uncertainty in this case is substantial.

In the next subsection we discuss what contribution each RF component makes in each scenario. Following this, we discuss
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some more localised dynamics, as well as some possible implications of this work on fire management choices in southern

Africa.

4.1 RF540

In some scenarios one component is clearly dominant (e.g RFCO2
in EDS reduced or RFSLCF in EDS suppressed, Figure 8b

& e) whereas in others the picture is more balanced. RFGHG magnitudes do not change substantially over the 20-year time

period due to long lifetimes of the species involved (Prather et al., 2012, 2015), and RF components which only act until the

end of the fire season or shortly after (RFα, and RFSLCF ) diminish far quicker. RFCO2
decreases at a rate somewhere between

these two components, as it lasts longer than a few weeks after the fire season but still has a much shorter lifetime compared to545

the GHG component. These lifetime dynamics mean that is possible for short-term RF to be positive while long-term RF may

be negative as in the EDS suppressed scenario (Figure 8e), though this is the only scenario where this sign flip is observed.

SLCF

Within the (relatively short) time frame of WRF-Chem simulations, aerosol cooling effects appear to be the dominant contrib-

utor to RFSLCF , in line with results from Moubarak et al. (2023). It seems likely that from the cooling effects direct scattering550

is the more dominant, as cloud formation in the fire season is very limited over land. With more fire activity RF drops, and

with less fire activity RF rises again. With the current assumption that the EFs of absorptive BC and BrC are constant across

the fire season, the key determinant is then emissions of scattering OC aerosols. During the earlier part of the dry season OC

emissions are proportionally higher. If burning is shifted towards the EDS then more incoming light is scattered, leading to

more negative RFSLCF . The assumption that EFBC is constant, however, is less certain. It does not appear to change with555

combustion efficiency as EFOC does (Vernooij et al., 2022), and we currently have no clear evidence to link changes in EFBC

to seasonality. This is not to say it does not vary however, as EFBC can change from fire to fire (Andreae et al., 1998), but in

the absence of data we must rely on a constant average value for EFBC .

While this represents an important caveat in our work, the ratio of BC emissions to scattering aerosol emissions ranges typi-

cally from 1:10 to 1:5, except under extremely efficient combustion conditions (Vernooij et al., 2022) and a typical fire plume560

contains more OC than BC (Andreae, 2019; Bond et al., 2013). It has not been possible in this study to quantify the exact

contributions of changes in fire patterns to absorptive aerosol emissions, but it seems unlikely to us that these changes would

be large enough to drastically alter the conclusions presented in this paper.

These conclusions should be viewed in the context of Figure 7, which shows that WRF-Chem overestimates AOD in the565

early part of the fire season (around June), does reasonably well in the mid fire season, and then underestimates AOD some-

what in September. This suggests that WRF is likely to have overestimated EDS AOD and thus the cooling effect that RFSLCF

has in EDS scenarios. The same may be said, albeit to a lesser extent, of the warming effect RFSLCF exhibits in LDS scenarios.

This implies that, in all cases, we would expect the blue SLCF patch in Figure 8 to be smaller in magnitude. In the EDS &

LDS cases (panels a-d) this is unlikely to change the long-term outcome given the dominance of GHGs or lack of appreciable570
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long-term impact (LDS, panel c). It is possible that for the EDS suppressed scenario, where BA is reduced exclusively in the

EDS, the long-term RF may be more likely to be negative as a result of this reduction in RFSLCF magnitude.

Albedo

Direct albedo effects are relatively straightforward to model - earlier burning provides a longer period with a darker surface, and

a positive RFα. Later burning reverses this effect, but RFα in these scenarios will be negated by the onset of cloud cover/green575

flushes at the onset of the wet season. It is therefore likely that RFα from scenarios with later burning will have RFα lower in

magnitude than the EDS counterparts (as well as a sign change), as albedo changes in LDS scenarios are shorter in duration,

and this is indeed what we observe.

RFα and RFSLCF are the only two components with consistently opposite signs, though relative magnitudes do vary. These

components are intrinsically linked through aerosol emissions; more BA results in more land surface with lower albedo and580

thus positive RF, but also in higher aerosol emissions with associated negative RF. There may be more complex interactions

between albedo and scattering or possibly cloud formation that we miss in our simplified albedo parameterisation. It matters, for

example, above which surface the scattering aerosols or clouds are present. If aerosols are transported above unburned surfaces

then RFα could potentially be enhanced, and if they remain above the source region (i.e. BA) then RFα is similarly diminished.

The type of pre-fire vegetation cover burned also affects RFα in a similar way. Our lack of explicit spatial analysis on RFα is585

reflected in the relatively high uncertainty on this parameter. Further examination of these spatial interactions between aerosols,

vegetation cover and BA could help constrain this RF component better.

CO2

In the context of RF from savanna burning emissions, CO2 inclusion has a few complicating factors and has been excluded

from much of the previous literature. This primarily on the basis that photosynthesis quickly removes such pyrogenic CO2 from590

the atmosphere (Lipsett-Moore et al., 2018; Landry and Matthews, 2016; Russell-Smith et al., 2021), but also from respiration

dynamics (Section 2.6). Our results show that despite assumed rapid cycling from emission to sequestration via photosynthesis

on the timescale of about one full year, CO2 from BB is still an important component of total RF in many scenarios, and in

some cases the single largest component (EDS reduced). In this scenario RFCO2
is largely driven by a reduction in total BA,

but a lower EF in the EDS due to less efficient combustion also plays a part. The cause of the relative magnitude of RFCO2
595

may be a simple matter of quantity; CH4 is 80 times stronger as a GHG than CO2 on a 20-year time horizon (IPCC, 2023),

but EFCO2 in the tropical savanna is usually 500-1000 times higher than EFCH4 (Akagi et al., 2011; Andreae, 2019; Vernooij

et al., 2023). As an aside, the EFCO2
to EFBC or EFOC ratio is on a similar order of magnitude, though comparing the climate

effects of a similar quantity of CO2 and aerosol species is far less straightforward than for CH4.

600

Fire-induced CO2 respiration pulses augment pyrogenic CO2 emissions in burned landscapes (Sánchez-García et al., 2021).

A reduction in BA and associated reduction in pyrogenic CO2 also leaves more vegetation at the end of the dry season to be

respired, which could compensate to some extent for this CO2 reduction. These two effects are opposing in our context: more
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BA in a scenario means more CO2 from post-fire pulses, but less organic material in the wet season for further respiration and

vice versa. Additionally, wet season respiration rates are strongly influenced by the type of vegetation cover (Richards et al.,605

2012) so effects could vary substantially depending on where BA is ‘lost’ or ‘gained’ in each scenario. We have attempted to

account for both of these effects in a simplified way that assumes maximum effect, manifesting in a substantial error margin

for RFCO2 in scenarios where there is a change in BA.

We must also consider the fact that respiration in tropical savannas can respond strongly to precipitation (Fan et al., 2015).610

We can imagine a situation, for example, where a prescribed burning policy is applied in a given fire year resulting in EDS

shift, and the following wet season has particularly high rainfall. There is potential for RFCO2
to become positive due to EDS

burning if a precipitation threshold is reached, in combination with extensive litterfall in unburned areas. We already assume

this litterfall to be more extensive than can be reasonably considered realistic, so we expect this rainfall threshold to be sub-

stantial for RFCO2
to change sign. However, we cannot be certain, and there is likely to be spatial and temporal variability615

in post-fire season respiration in any burn scenario. Given that RFCO2
is such a substantial contributor to total RF in some

scenarios, this uncertainty warrants further study to better understand the relationship of CO2 with RF from changes to the

tropical savanna fire regime.

If we exclude CO2 from our analysis our long-term conclusions do not change, albeit with an RF reduced in magnitude in620

all cases (see Figure S7 in the supplementary material). Short-term RF does change though, most notably in the EDS reduced

scenario; where it was strongly negative before, with the exclusion of CO2 it becomes weakly positive (albeit with high uncer-

tainty, and remaining negative in the long-term). In the EDS scenario the effect is similar, and we must wait at least 8 years

after the fire season until we can be confident that RF in this scenario is negative, if small. For the LDS scenarios there is no

such change, only the aforementioned reduction in RF magnitude. How important we consider the inclusion/exclusion of CO2625

may therefore depend (unsurprisingly) on the time scale of interest, and also the scenario in question. On the long-term the

differences are only in magnitude, whereas the short-term the overall effect can be entirely opposite in some cases.

Other GHGs

Interestingly, in our simulations the changes in forcing due to CH4 and N2O consistently share the same sign as that from CO2.

This was somewhat unexpected, given that EFCH4 and EFN2O are relatively higher in the EDS and lower in the LDS, opposite630

to EFCO2
(Vernooij et al., 2023). We had therefore anticipated that especially CH4 would have had a net positive (warming)

effect in the EDS-shifted scenarios and net negative (cooling) effect in the LDS-shifted scenarios. The explanation for this not

being the case lies in where and how we applied our BA shifts in each case. In some grid cells with high BA in the northwestern

part of the study area (e.g. border regions between Angola, D. R. Congo and northwestern Zambia), the transition date from

early to late dry season occurs early in the season. Shifting BA in these regions therefore changes little, though CH4 emissions635

here do increase slightly with an earlier fire regime (Figure 9a). In the eastern part of the domain (northeastern Zambia and

Mozambique) the transition dates are far later, and in fact EFCH4
around this time is more likely to be higher than during the

26



Figure 9. Difference in total fire season CH4 emissions between the baseline and (a) EDS, (b) EDS reduced, (c) LDS, (d) LDS increased and

(e) EDS suppressed scenarios, in tonnes per 30km grid cell. Positive values indicate areas that produce comparatively more CH4 over the fire

season, and negative values indicate areas where CH4 emissions are reduced.

peak fire season (Vernooij et al., 2023). Shifting burning earlier in these regions means that less burning occurs under these

conditions which is conducive to higher CH4 emissions. This effect is fairly local, but still strong enough to dominate RFCH4

when averaged over the entire domain.640
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4.2 Implications for fire regime changes

This paper focuses on the impacts of fire regime change on RF, but we must acknowledge that there are many other factors to

consider when deliberately using fire in a landscape. Other established uses of fire can both be complementary or detrimental

to reducing RF (Butz, 2009; Huffman, 2013; Garde et al., 2009; Russell-Smith et al., 2021). We do not discuss these many

other uses of fire here, but our conclusions on the subject of fire regime change should be taken together with other relevant645

aspects of burning in a given locality, especially if being used to inform decisions on when and where burning is desirable.

Transition dates

We have chosen to use spatially variable transition dates based on the relative increase of night-time burning (Eames et al.,

2023). As explained in section 2.2, these transition dates determine how much BA is available for shifting, and choosing them

differently could impact the BA distribution in our scenarios. We believe this choice is justified for our purpose as prescribed650

fires are ideally not permitted to continue into the night, and the resulting BA distribution from each scenario represents

perhaps an extreme, albeit not unrealistic (see supplementary material). We have made efforts to ensure that BA shifts only

occur in areas with sufficient fire activity, and align with the part of the season that is feasible for such burning. We recognise

that alternative methods of defining a transition date may be possible, though we do not expect this to alter our conclusions

significantly. This is because a more extreme shift than currently modeled in EDS and LDS scenarios would be unfeasible.655

A smaller BA shift may reduce the magnitude of our various RFs, but is unlikely to change their sign or the relative sizes.

Furthermore, the use of these spatially dynamic transition dates is far more representative of seasonal fire dynamics in southern

African savannas compared to using a fixed transition date. Other methods such as using the driest month of the year (Lipsett-

Moore et al., 2018) also may miss some of the local fuel dynamics which determine suitability for prescribed fire.

Location matters660

One key implication (illustrated in Figure 9) is that the location of burning may be just as critical as the timing when consid-

ering changes to the fire regime. Negative RFGHG in the EDS scenario, for example, is largely achieved by CH4 emissions

reduction in two areas in the eastern part of the domain (northeastern Zambia and the northern half of Mozambique). Else-

where, an EDS burning shift generally leads to less pronounced changes, or even increases in CH4 emissions. If a reduction

in BA can be achieved along with the timing shift (i.e. the EDS reduced scenario) then CH4 emissions decrease in a larger665

portion of the domain, further contributing to the RF reduction. Still, even with reduced BA some grid cells still show higher

CH4 emissions in the EDS reduced scenario (northwestern corner of Figure 9b) . This is important for local land management

organisations to take into consideration when opting for changes in fire regimes. This is also not limited to CH4, as N2O and

NMVOC emissions follow a similar dynamic, and for similar reasons, as discussed in the previous section.

Aerosols are an important contributor to RFSLCF , such that the fuel type and condition must also be taken into consideration670

when assessing if a given location is suitable for fire regime changes. Aerosols are more readily produced from smouldering

combustion and/or less efficient burning (Andreae et al., 1998), which tends to be the case in areas with a higher proportion

28



of woody fuel available. However, smouldering also produces more CH4 (Vernooij et al., 2022). Aerosol emission may be

counterbalanced by the emission of warming GHGs, especially in the longer term (as seen in Figure 8e). If the aim is to change

the fire regime in a given location to reduce overall forcing, attention must be paid to the local EFOC in comparison to GHGs675

such as CH4.

Other impacts related to fire regime change

Aerosols are linked to detrimental health issues in humans (Reid et al., 2016; Chen et al., 2021) and in animals (Sanderfoot

et al., 2021). In an ecosystem which has such a strong relationship with fire (Beerling and Osborne, 2006), changes to fire680

patterns may also have consequences for flora in the region. Positive impacts may include increased biodiversity (e.g. Evans

and Russell-Smith, 2020), while impacts such as bush encroachment may be less desirable (e.g. Case and Staver, 2017).

Whether a change in fire regime is suitable for a given location may depend on these and other local factors, all of which

should be given due consideration.

Social aspects are affected too, as burning is deeply rooted in culture and tradition in the savanna (Sluyter and Duvall, 2016).685

Here, there is a potential income stream for indigenous populations via the use of prescribed fire for climate cooling and/or

carbon offsetting. This has already been achieved to a certain extent in Australian tropical savannas (Russell-Smith et al.,

2013; Russell-Smith et al., 2021). If done thoughtfully, these projects can represent a win-win-win for the climate in terms of

(slightly) negative RF, for the ecological health of landscapes in relation to desirable burning, and for local people on what

is often (and given the outcomes of this study perhaps unjustly) thought of as ‘unproductive’ land. However, clearly a RF690

reduction equivalent of about 10% of global aviation emissions is no magic bullet in climate change terms, and we especially

want to avoid encouraging offset activity in the global south to justify a ‘business as usual’ future emissions scenario.

Outlook for future burning projects

As shown in Figure 9, some few key locations may drive a substantial proportion of RF, such that widespread alterations to

a fire regime are not necessary to achieve maximum effect. It is difficult to pin down exactly where these locations might695

be as (unlike GHGs) aerosol forcing can vary substantially depending on e.g. cloud cover, land cover type and/or atmospheric

transport patterns (Bellouin et al., 2020). We therefore urge caution in interpreting this paper as grounds to advocate for general

fire regime change in southern Africa. The core message we wish to convey is that once all major RF factors are taken into

account, overall the GHG emissions outweigh the climate effects of surface albedo changes and SLCF contributions.

This message should be viewed within the context of other fire management challenges and outcomes. Our scenarios represent700

an idealised case, where all burning in the southern African savannas is conducted with a view to affecting RF. We find that

there may be some locations where this is justified in this narrow perspective, but do not attempt to reconcile this with other

management goals or take into account practical limitations. There is more work necessary to better understand how burning

for climate benefit may fit into the wider fire management landscape in southern Africa (Knowles et al., 2025). Future burning

projects should be delivered hand-in-hand with ecological and socially positive outcomes to be fully justified.705
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5 Conclusions

We expanded on previous studies focused on net GHG emissions from landscape fires to include effects of aerosols and other

SLCFs, surface albedo changes, and CO2. The inclusion of CO2 in particular is important, as we showed that despite assuming

a short lifetime and enhanced respiration effects RFCO2
can be substantial contributor to net cooling or warming. Notwith-

standing the complexities and associated uncertainty CO2 brings, it is clearly a major factor in the climate effects of biomass710

burning, and we strongly advocate for its inclusion in any future studies. We also believe that the availability of better data

on the seasonality of absorptive aerosol (BC and BrC) EFs would improve this and any future work on this subject, and this

currently represents a key caveat in our conclusions.

Though our study includes several additional components, we find ourselves agreeing with previous studies limited to net GHG

emissions (e.g. Lipsett-Moore et al., 2018; Russell-Smith et al., 2021) that a shift to earlier burning patterns generally results715

in a climate cooling effect.

We have demonstrated that changing the timing of fires in the southern African savanna can impact global climate via several

key RF components. Short-lived effects (surface albedo changes and SLCF) dominate in the short term, but longer-term the

longer-lived species of GHG are more important. The magnitude of RF is always greater in the short term than in the long720

term, e.g. –0.004 Wm−2 goes to –0.002 Wm−2 in the EDS reduced scenario or +0.003 Wm−2 goes to +0.001 Wm−2 in the

LDS increased scenario. However, we can be confident that RF from most scenarios is consistently either positive (LDS shift)

or negative (EDS shift) on any time scale. Exceptions to this are the EDS suppressed scenario, or if the effects of CO2 are

excluded from the EDS reduced scenario. In magnitude terms, both EDS and LDS shifts are comparable to around 2-10% of

RF from commercial aviation in 2018.725

This study has taken a broad view of a single fire season across the southern African savanna region. However, location of

BB matters as well as timing, and careful choices in where to burn and when to burn could enhance the cooling or warming

effects of our scenarios. We showed that shifting burning patterns earlier in areas with a heavily late-skewed fire season can

substantially reduce e.g. CH4 emissions from these areas. Being more selective in where the timing of fire is altered in this way730

could be a more efficient method to achieve a climate cooling effect. With our holistic view of the southern African savanna

fire system and despite an occasionally large uncertainty in the magnitude of the effect, we conclude that on a continental scale,

shifting to more early season burning is climate cooling, and more later burning is climate warming. At the last, we repeat our

note of caution on using this study to justify broad changes to southern African fire regimes; aside from wariness of specific

local feedback, such as a damping of RF due to surface albedo changes as well as more pyrogenic aerosol scattering above a735

burn scar. We must also consider whether such fire regime change is to the benefit of the local ecosystem and population, else

risk creating more problems in our pursuit of the solution of another.
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Data availability. GFED5 burned area data is available at https://doi.org/10.5281/zenodo.7668423

Tree biomass data is available on request from Alexandre Bouvet (alexandre.bouvet@cesbio.cnes.fr)

Other fuel load data is available on request.740

Data used to build the EF model output used is available from https://doi.org/10.5281/zenodo.7689032. The EF data itself is available on

request to Roland Vernooij (roland.vernooij@wur.nl)

Meteorological data used to drive the WRF-Chem model runs is available from the NCAR repository: https://rda.ucar.edu/datasets/d083002/

dataaccess/#

Tailored scenario burned area and emissions data used to drive WRF-Chem simulations are available at https://zenodo.org/records/15578063745

CAMS anthropogenic and biogenic emissions data is available from the ECMWF atmosphere data store: https://doi.org/10.24381/d58bbf47

Biomass burning emissions from GFED4.1s used in biomes outside the southern African savanna can be found at https://www.geo.vu.nl/

~gwerf/GFED/GFED4/

CAM-chem model output for WRF-chem initial and boundary conditions can be found at https://www.acom.ucar.edu/cam-chem/cam-chem.

shtml750

TROPOMI Sentinel-5P data are available on the Copernicus data store: https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/

sentinel-5p

AERONET version 3 station data can be downloaded from https://aeronet.gsfc.nasa.gov/new_web/webtool_aod_v3.html

MODIS MAIAC AOD data can be downloaded from https://lpdaac.usgs.gov/products/mcd19a2v061/
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