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1 Summary of main changes 

We first would like to thank the Anonymous Referee #2 for their constructive comments, which 
helped us further verify and clarify our methodological choices. In response to the Referee #2’s 
comments, we made the following main changes: 

• We clarified our choice of the potential evapotranspiration as a predictor instead of 
catchment-scale air temperature (see our response to Comment 1); 

• We made additional, computationally expensive tests of new hyperparameter values, 
which did not substantially improve the test performances (see our response to 
Comment 4); 

• We explained in detail the role of parameters μ and λ of the loss function (see our 
response to Comments 8, 9 and 10) and underlined, in the manuscript, their importance 
in emphasizing the weight of extreme stream temperature values in the training phase; 

• Finally, we re-organized the subsections of Section 3.2 in response to Comment 7, and 
updated Figure 5 for clarity.  

In the following section, we provide a detailed, point-by-point response to each of the Referee 
#2’s comments.  
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2 Detailed response to comments from Referee #2 

2.1 General and specific comments 

General comments: “This paper compares the performance of LSTM models to predict daily 
stream water temperature over the whole year, but notably also during the days with the 
highest 10% of observed water temperatures. Different sets of models are tested based on: (i) 
local vs regional models, (ii) different sets of input variables, and (iii) different loss functions. 
Data from several stations in the Garonne River in France are used. The main finding is that 
regional multi-station training including static attributes improves performance, whereas 
customized loss functions do not improve performance. 

Overall, the manuscript is well-written, and the figures are clear. The manuscript could be 
interesting to the readership of HESS. While the knowledge that regional multi-station training 
including static attributes improves LSTM performance is not very novel, its comparison 
against the change in performance for different loss functions is valuable. Nevertheless, some 
important considerations are still needed. Please find below some specific comments and 
suggestions.” 

Authors’ response: We thank the Referee for their constructive feedback!  

Regarding the novelty of our results, we agree that improving the LSTM performances with 
static attributes and regional training is not novel (e.g., Kratzert et al., 2024). However, our 
setup quantifies the contribution of including static attributes in comparison to just training the 
LSTM at many stations, which helps highlight the mechanisms by which LSTM models perform 
better when trained regionally (see for example, Yu et al., 2024). In fact, a simple regional 
training of LSTM models is detrimental in terms of test performances (for instance, compare 
the results shown in Figure 3 with those shown in Figure 4 with only dynamic attributes). Only 
when static attributes are included that regional training becomes more efficient than local 
training. 

Regarding the specific comments and suggestions, below we provide a detailed answer. 

 

Comment 1: “The computation of catchment average potential evapotranspiration (PE) 
according to Oudin et al. (2005) seems unnecessary. Catchment average Ta and information 
on day of the year could be used instead of PE, unless PE is strictly necessary for obtaining 
Qsim.” 

Authors’ response: Catchment-scale potential evapotranspiration (PE) is one of the required 
inputs to the hydrological model GR6J that we used to reconstruct streamflow (Qsim) at the 
location of stream temperature stations. In the PE formula by Oudin et al. (2006), PE is (almost) 
linearly dependent on catchment-average air temperature, meaning that the use of PE as input 
to the LSTM model provides almost the same information content as that of catchment-average 
air temperature. Furthermore, we wanted to compare (1) the option of letting the LSTM model 
decide which information to extract from precipitation (P) and PE that is most relevant to the 
reproduction of stream temperature, against (2) the option of restraining this hydrological input 
to the simulated streamflow Qsim only, which somewhat represents a hydrologically digested 
version of P and PE, and also a more relevant hydrological variable (since it is at the station 
scale) than P and PE (which are at the catchment scale). Figures 3 and 4 show that these two 
options provide comparable or similar performances, highlighting their equivalence for the 
reproduction of daily stream temperature values. 

As for the use of the day of the year, we intentionally excluded any features explicitly based 
on time (day or month of the year), which were used e.g. by Feigl et al. (2021). We fear that 
the inclusion of these time-based features might overshadow the importance of more 
physically relevant variables (namely station-scale air temperature and hydrological variables), 
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knowing that stream temperature is a variable that features a strong seasonal variability. In 
addition, these time-based features are generally not used as forcing by process-based 
models, which would hinder a fair comparison between LSTM-based models and process-
based models, or could suggest that the better performances of LSTM-based models are 
attributable to the “excessive” reliance on feature engineering. We clarified these choices in 
the revised manuscript version, as we stated by the end of Section 3.2.3 of the revised 
manuscript that: 

“Finally, we avoided using time-based features (month or day of the year; Feigl et al., 
2021) so that the performances of the tested LSTM models remain comparable to 
process-based models that do not benefit from feature engineering. In addition, 
knowing the strong seasonality of 𝑻𝒘 and of some of the input variables (𝑻𝒂, 𝑻𝒂𝒎𝒏, 𝑻𝒂𝒎𝒙, 

and 𝑷𝑬), the use of time-based features would be redundant information-wise and would 
likely lead to gains in predictive performances high enough to overshadow the 
contributions of the more physically relevant variables used in our setup.” 

 

Comment 2: “It could be useful to have an additional table showing the values from the 
different input variables for all stations, even if it is in the appendix.” 

Authors’ response: We believe that the Referee’s comment refers to static attributes, as 
including the values of dynamic variables is unpractical. For static attributes, we believe that 
Table 1 provides a concise and fairly informative description of the richness of our dataset 
using the range (min and max values) and the median values of the geographical and climatic 
features of our catchment set. Adding a fourth appendix to show the values for each one of the 
37 stations would only unnecessarily increase the length of the manuscript. Note that these 
data are provided in the Zenodo repository (https://zenodo.org/records/15864784, file 
“data/2024-09-09_ListStationsTw_StaticDesc_v03.TXT”) accompanying the 

manuscript submission that contains all necessary scripts used to run our experiments (Saadi, 
2025). 

 

Comment 3: “It could be useful to include the long-term mean and standard deviation of daily 
water temperature from each station as a static variable, but I understand this might not be 
feasible if it means that all models need to be re-trained.” 

Authors’ response: To test the contribution of an additional static attribute we would have to 
re-run all the 378 (7 × 18 × 3) regional models, which is computationally very expensive (see 
Appendix A of the original manuscript for wall-clock times needed for training). Adding static 
attributes that are computed from the target variable that we want to reproduce by the LSTM 
is, in our sense, would result in an implicit information leakage, thus resulting in (a priori) better 
performing but less robust LSTM models. In addition, this will substantially hinder any 
application of the regionally trained models at ungauged locations, where stream temperature 
records (hence any statistic of stream temperature needed for that kind of model applications) 
is absent. 

 

Comment 4: “L211: It would be useful to do a more detail assessment for choosing the 
hyperparameters of the LSTM models, considering the findings of Feigl et al. (2021). Doing 
hyperparameter optimization as in Kraft et al. (2025) would be a good option.  

Kraft, B., Schirmer, M., Aeberhard, W. H., Zappa, M., Seneviratne, S. I., and Gudmundsson, 
L.: CH-RUN: a deep-learning-based spatially contiguous runoff reconstruction for Switzerland, 
Hydrol. Earth Syst. Sci., 29, 1061–1082, https://doi.org/10.5194/hess-29-1061-2025, 2025.” 

Authors’ response: We agree with the Referee that it would be useful to do a more detailed 
assessment of the effect of hyperparameters (number of layers, number of cells per layer, 

https://zenodo.org/records/15864784
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batch size, etc.), but we already found in our preliminary tests that these have little effect on 
model performances. Thus, we made choices that are in line with previous studies (Hashemi 
et al., 2022; Kratzert et al., 2019; Rahmani et al., 2021a, 2021b). These choices are also in 
line with the best choices found by Kraft et al. (2025). 

In our response to Comment 9 made by Referee #1, we made additional, computationally 
expensive tests using a higher learning rate of 10-3 and a dropout rate at 0.1 with the following 
configurations: 

• Two values for the number of layers (NL): 1 and 2; 

• Two values for the number of cells per layer (HDN_SZ): 128 and 256; 

• Two values for the batch size (BTH_SZ): 64 and 256; 

• Four loss functions corresponding to μ = 1, λ = 1, 2, with and without standardization 
of the target variable; 

• Six input-variable sets: Tamn+Tamx, Tamn+Tamx+CatAttrs, Tamn+Tamx+P+PE, Tamn+ 
Tamx+P+PE+CatAttrs, Tamn+Tamx+Qsim, and Tamn+ Tamx+Qsim+CatAttrs. 

• Three values for lookback: 30, 90, and 365. 

• All models are trained regionally. 

This amounted to training 2 × 2 × 2 × 4 × 6 × 3 = 576 models using the same methodological 
choices as in our main study. Note that we kept only the best lookback value based on the 
MSE of the validation period, hence showing the test performances for only 192 models. Figure 
R1 shows that tuning any of the three hyperparameters (number of layers, number of cells per 
layer or the batch size) has negligible effect on model performances over the whole test period 
(Figures R1a to R1c) and over the top 10% values of the test period (Figures R1d to R1f). 

 

 

 

Figure R1: Effect of the number of layers (NL), the number of cells per layer (HDN_SZ), and the 
batch size (BTH_SZ) on model performances over (a)-(c) the whole test period, and (d)-(f) the top 
10% values of the test period. Values under each box indicate the median value. Each distribution 
is computed from a set of 2016 points. Note that these model runs are made with a learning rate 
at 10-3 and a dropout rate at 0.1. 
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Finally, implementing the hyperparameter tuning experiment by Kraft et al. (2025) is 
computationally challenging in our case, noting that we tested 18 loss functions (compared to 
one loss function in Kraft et al. (2025)), several choices of the input variables, and local vs. 
regional training. 

In the revised manuscript version, we cited the study of Kraft et al. (2025) as part of the very 
recent literature that applied LSTM models, and also to highlight their method in embedding 
static features for regional training, both in Section 1.2: 

“Among these techniques, models based on LSTM (Long Short-Term Memory; 
Hochreiter and Schmidhuber, 1997) have demonstrated excellent performances in 
predicting not only stream temperature but also several other dynamic, environmental 
variables (Arsenault et al., 2023; Kraft et al., 2025; Kratzert et al., 2018; Ma et al., 2021; 
Nearing et al., 2024; Song et al., 2024; Zhi et al., 2021).” 

and in Section 3.2.3 of the revised manuscript to highlight their assessment of different 
strategies of embedding static attributes as inputs to LSTM models: 

“Note that to feed the LSTM model with the static attributes, we opted for a simple 
integration strategy (see, e.g., Hashemi et al., 2022) in which we repeated the value of 
each static attribute at each time step to match the length of the dynamic attributes, 
then we concatenated the columns of the static attributes to those of the dynamic 
attributes (for each catchment). This strategy compared well against a separate 
processing of static attributes from dynamic ones using an entity-aware (EA) variant of 
LSTM networks (Kratzert et al., 2019), and better strategies to encode the static 
attributes as well as the dynamic variables as inputs to LSTM models have been recently 
intercompared by Kraft et al. (2025).” 

 

Comment 5: “An important point when training deep learning models is their inherent 
randomness. It would be useful to assess for each model setup the variability in the 
performance when retraining the model with different random seeds. In this way, the 
differences in performance from the different strategies tested in the paper can be put into 
context with the uncertainty in performance from varying random seeds.” 

Authors’ response: We agree with the Referee’s comment regarding the inherent 
randomness in terms of model performances due to the randomly assigned initial values of 
model parameters prior to training. However, we have several reasons not to make a detailed 
assessment of the effect of this randomness on our conclusions, as requested by the Referee. 

First, there is no reason for this randomness to introduce a bias in favour of one of the options 
that we tested. For example, in Figure 2, for each loss function, median statistics were 
computed from 4 × 21 = 84 locally trained models (Figure 2a) and 7 × 1 = 7 regionally trained 
models (Figure 2b), meaning that the variability in LSTM performances due to random 
initialization is already assessed for each loss function thanks to these repetitions induced by 
several choices of input variables, under the (most likely valid) assumption that the effect of 
model initialization is independent from the choice of the input variables. The same can be said 
for the comparison of the different choices of input variables for locally trained models and 
regionally trained models shown in Figures 3 and 4 of the manuscript. 

Second, we used a binomial test to assess the significance of the differences in performances 
between the different sets of options (Fidal and Kjeldsen, 2020; Saadi et al., 2021). This 
binomial test does not specifically look at the magnitude of improvements, but at the number 
of times an option A (say a loss function or a set of input variables) performs better than another 
option B. When option B performs systematically better than option A (hence a significant 
binomial test), there is strong reason to believe that option B brings significant improvements 
compared to option A. We applied this statistical test to compare all our options, and letters in 
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Figures 3 and 4 for example show that the use of hydrological variables and static attributes 
significantly improves the LSTM performances (in the sense of the binomial test). 

Third, it would take us months to provide, for each model setup, a detailed assessment of the 
variability in terms of model performances due to random initial parameter values (cf. the wall-
clock times needed to train local and regional models in Appendix A of the original manuscript 
version). In a preliminary work, we attempted at getting an order of magnitude of the changes 
in model performances due to this random initialization of model parameters. We retrained 100 
times a regionally trained model on 26 stations with a sequence length of 16 days. Note that 
these choices are way different than the final setup used in our study. Test results for 10 
stations show that the standard-deviation can be up to 0.07°C, with fluctuations (i.e., difference 
between min and max performances) reaching up to 0.35°C in MAE, as can be seen in Figure 
R2. The improvements that the static attributes brought in in terms of median MAE are way 
larger than these values, as can be seen in Figure 4 of the original manuscript. 

 

 

Figure R2: Effect of random parameter initialization on model performances using an ensemble 
of 100 regionally trained models. For each distribution, values in red refer to the standard 
deviation, and values in blue refer to the range (max-min). 

 

Comment 6: “L240–244: I would suggest constructing the validation set using 15% of the 
observations at all stations. Using more data from the non-test stations could bias the models 
to better fit to these stations instead of to the test stations. Please also clarify if this 15% 
corresponds to at least one continuous year of observations.” 

Authors’ response: We believe that our choice of using 30% of the observations from the 
non-test stations instead of 15% adds only to the robustness of our regionally trained models. 
In addition, the total number of datapoints from the 21 test stations is 91705 days, of which 
13755 (15% of 91705) are used for validation. The total number of datapoints from the non-
test stations is 12626, of which 3788 (30% of 12626) are used for validation. This means that 
in our configuration, datapoints from the test stations constitute up to 78% 
(13755/(13755+3788)) of the total number of points on which the regional models are 
validated. Lowering the contribution of the non-test stations from 30% to 15% would only lead 
to increasing the dominance of test stations in the validation data from 78% to 88%, and 
unnecessarily decreasing the total number of points on which the regional models are 
validated. Finally, the length of available records of stream temperature in non-test stations 
ranges from 73 to 2365 days, and these datapoints do not span a continuous year for at least 
half of the non-test stations. 



7 

 

We modified Lines 240-244 of the original manuscript version to emphasize that the test 
stations still dominate the validation set. Now this part of the text reads: 

“[…] The set of regional models trained using data from all the 37 stations. In this case, 
we constructed the training set by concatenating 70% of the available 𝑻𝒘 and their 
corresponding input variables from each station. The validation set was constructed 
using 15% of observations at the test stations (21/37) and the whole remaining 30% of 
observations at the non-test stations (16/37). Finally, the remaining 15% of observations 
at the test stations were used to test the regional models, thus enabling a comparison 
of locally and regionally trained models on the same datapoints. Although 30% of the 
observations at the non-test stations are used in the validation set against 15% from the 
test stations, datapoints from the test stations still constitute up to 78% of the validation 
set due to the low availability of 𝑻𝒘 records at non-test stations.” 

 

Comment 7: “Suggestion to move section 3.2.3 to 3.2.1 to be more consistent with the order 
proposed in the last paragraph of section 1 and in section 4.” 

Authors’ response: Although this is not necessary to follow the methodological setup, we 
moved Section 3.2.3 of the original manuscript to 3.2.1, Section 3.2.1 to 3.2.2, and Section 
3.2.2 to 3.2.3. The introductory paragraph of Section 3.2 now summarizes this part as follows: 

“In this part, we summarize the strategies that we tested to look for the best approach 
to improve the LSTM performances at extreme, high 𝑻𝒘 values. We define these values 

as the daily (average) 𝑻𝒘 values exceeded less than 10% of the time. Our tested 
strategies include an adaptation of the loss function to increase the weight of extreme 
values in the training phase (Sect. 3.2.1), regional multi-catchment training (Sect. 3.2.2), 
and the inclusion of hydrologically relevant variables and static attributes (Sect. 3.2.3).” 

 

Comment 8: “Important: I don’t see the need to have the denominator in Eq. 3, and it seems 
to be counterproductive. When having high Tw and u, the denominator increases faster the 
numerator, thus reducing the loss for higher values of Tw (see Table below with example data). 
If this is the case, then the loss function does not serve its intended purpose to give higher 
weights to errors when Tw values are high. I think only the numerator of Eq. 3 should be used 
as loss function.” 

 

 

Authors’ response: Looking at the “Loss” column, we believe that the Referee is not 
computing exactly the same loss function as ours: Instead of computing the ratio of the sums 

of errors 
∑ |Tw,obs,t

μ
−Tw,sim,t

μ
|
λ

t

∑ |Tw,obs,t
μ

−Tw,obs
μ

|
λ

t

, the Referee computed point-wise fractions of errors at each point, 

i.e., 
|Tw,obs,t

μ
−Tw,sim,t

μ
|
λ

|Tw,obs,t
μ

−Tw,obs
μ

|
λ , and of course these ratios are higher for points closer to the mean of 

observations than points farther from the mean, like the extreme values. An alternative, more 
rigorous way of evaluating the relative importance of datapoints in the training phase is to 
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compute the magnitude (absolute value) of the sensitivity of the loss function to the simulated 
stream temperature value, which gives in our case: 

|
∂ℒ

∂Tw,sim,t
| =

λμTw,sim,t
μ−1

|Tw,sim,t
μ

− Tw,obs,t
μ

|
λ−1

∑ |Tw,obs,t
μ

− Tw,obs
μ

|
λ

t

 

Let us consider the time steps H (for high) and L (for low) where a high, extreme stream 
temperature Tw,obs,H and a low stream temperature Tw,obs,L are observed. The ratio of the 

absolute sensitivity values of the loss function to model simulations at high vs. low stream 
temperature observation time steps can be written as 

rH/L = (
Tw,sim,H

Tw,sim,L
)

μ−1

|
Tw,sim,H

μ
− Tw,obs,H

μ

Tw,sim,L
μ

− Tw,obs,L
μ |

λ−1

 

We can see that the denominator plays only the role of a normalizing constant in the loss 
function, and does not affect the relative importance of model simulations during the training 
phase because it cancels out in rH/L. If we consider the general case, rH/L is proportional to 

the errors of the simulations when λ > 1 (i.e., for MSE and M4E in our case). But to understand 
the weight of extreme vs. usual values (i.e., values closer to the mean), we can consider a 
simple case where we have a constant shift Δ between the observations and the simulations, 
i.e., that Tw,sim,t =  Tw,obs,t + Δ for all time steps t. In this case, normally, if the loss function is 

somewhat “egalitarian”, the ratio should be close to 1; if it emphasizes extreme large values, 
it should be much higher than 1, and if it emphasizes low values, it should be much lower than 
1. The expression of the ratio becomes 

rH/L = (
Tw,obs,H + Δ 

Tw,obs,L + Δ 
)

μ−1

|
(Tw,obs,H + Δ)

μ
− Tw,obs,H

μ

(Tw,obs,L + Δ)
μ

− Tw,obs,L
μ

|

λ−1

 

A numerical application for Δ = 1°C, Tw,obs,L = 15°C and Tw,obs,H = 30°C gives the ratios in 

Table R1. We can see that with μ = 1, there is in this simple case no overweighting of the 
extreme value Tw,obs,H compared to the low value Tw,obs,L.  As λ and especially as μ increases, 

the relative importance of the extreme value compared to the average value skyrockets. 

Table R1: Values for the ratio rH/L with 𝚫 = 𝟏°𝐂, 𝐓𝐰,𝐨𝐛𝐬,𝐋 = 𝟏𝟓°𝐂 and 𝐓𝐰,𝐨𝐛𝐬,𝐇 = 𝟑𝟎°𝐂 computed for 

all combinations of λ and μ values tested in our study. 

 μ = 1 μ = 3 μ = 5 

λ = 1 (MAE) 1 4 14 

λ = 2 (MSE) 1 15 211 

λ = 4 (M4E) 1 218 47269 

 

In summary, the denominator does not theoretically impact the relative importance of the 
extreme values in the loss function and plays only the role of a normalizing constant. In our 
opinion, it’s important to keep this denominator because (1) it helps interpret the loss function, 
and (2) without this denominator the learning rate should be modified to account for the large 
magnitudes of errors with larger values of μ (and λ). We added a sentence in the revised 
manuscript to justify this choice: 

“For an intuitive interpretation of this function, the denominator in the loss function of 
Eq. (1) standardizes the values of the loss function by comparing the performances of 
the LSTM model to a “dummy” model that predicts the average value of the transformed 

observations 𝒈(𝑻𝒘,𝒐𝒃𝒔)
𝝁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 for all the time steps. This denominator plays also the role of a 
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normalizing constant without which the learning rate should be adapted to account for 
the larger error magnitudes in the numerator induced by higher values of 𝝀 and 
especially 𝝁. This last hyperparameter 𝝁 results in magnitudes of 𝒈(𝑻𝒘) that are higher 
at extreme values than at mild values, inducing larger errors at (and thus more emphasis 
on) extremely high values.” 

 

Comment 9: “L282: Explain what u does in Eq. 3, i.e. having higher powers on higher Tw 
values would lead to larger errors, thus emphasizing the weight on high Tw, if I understood it 
correctly.” 

Authors’ response: Exactly! We give more explanations regarding the role of μ (and λ) in our 
answer to Comment 8. 

In the manuscript, we added a sentence to give an interpretation of the role of μ in Equation 3 
as suggested by the Referee: 

“For an intuitive interpretation of this function, the denominator in the loss function of 
Eq. (1) standardizes the values of the loss function by comparing the performances of 
the LSTM model to a “dummy” model that predicts the average value of the transformed 

observations 𝒈(𝑻𝒘,𝒐𝒃𝒔)
𝝁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 for all the time steps. This denominator plays also the role of a 

normalizing constant without which the learning rate should be adapted to account for 
the larger error magnitudes in the numerator induced by higher values of 𝝀 and 
especially 𝝁. This last hyperparameter 𝝁 results in magnitudes of 𝒈(𝑻𝒘) that are higher 
at extreme values than at mild values, inducing larger errors at (and thus more emphasis 
on) extremely high values.” 

 

Comment 10: “L287–289: This is important. It would be useful to add another sentence or 
example to clarify that having higher powers on higher Tw values would lead to larger errors, 
thus emphasizing the weight on high Tw.” 

Authors’ response: In response to Comment 9, we added a sentence that helps understand 
the role of μ in the loss function. Please see our answer to Comment 9 and also Comment 8 
for a numerical illustration of the role of μ (and also λ) in the loss function. 

 

Comment 11: “L324: Report the number of cases out of the 21 for which the performance 
improved. This is more informative than saying it is not statistically significant.” 

Authors’ response: First, the total number of cases is not 21, but 21 times the number of sets 
of input variables, which is 4 for the local models, and 7 for the regional models. This is why in 
Figure 2, we represented the percentage of cases for which the use of a loss function improves 
on the use of the reference loss function (MSE on standardized target). Anyway, we added the 
number of cases when commenting Figure 2 to better understand the results of the statistical 
test. This part now reads: 

“[…] In detail: 

• The best performances over the whole period were systematically obtained 
using MAE (with or without standardization) as a loss function in the training: 
median test MAE reached 0.72°C for the local models (all configurations of input 
variables combined, Fig. 2a) and 0.77°C for the regionally trained models (Fig. 
2b). In comparison to the reference loss function (MSE on standardized target), 
these improvements with MAE as a loss function were statistically significant 
only in the case of locally trained models, for which MAE applied to standardized 
and non-standardized target resulted in better performances than the reference 
loss function for 58/84 and 54/84 cases, respectively (recall that the number of 
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cases is the number of the test stations times the number of sets of input 
variables, see Table 2). For the regional models, MSE without standardization is 
the only loss function that resulted in statistically better performances, with 
better scores than the reference loss function for 85/147 cases, which is higher 
in this case than the 5%-significance threshold (84/147). 

• Compared to the whole-range performances, model performances were 
systematically lower on the top 10% range. For this range, the best median 
performances were obtained using MAE with standardization for the local 
models (1.07°C, Fig. 2a) or using MSE without standardization for the regional 
models (0.98°C, Fig. 2b). However, these improvements were not statistically 
significant at the 5%-level in comparison with the reference loss function (MSE 
with standardized target): For the local models, MAE with standardization 
resulted in better performances compared to the reference loss function for only 
48/84 cases, which is below the 5%-significance threshold (51/84); For the 
regional models, MSE without standardization gave better scores than the 
reference loss function for only 70/147 cases.” 

2.2 Minor comments and technical corrections 

Comment 1: “The study from Padrón et al. (2025) could be useful for section 1.2 and the 
second paragraph of section 5. 

Padrón, R. S., Zappa, M., Bernhard, L., and Bogner, K.: Extended-range forecasting of stream 
water temperature with deep-learning models, Hydrol. Earth Syst. Sci., 29, 1685–1702, 
https://doi.org/10.5194/hess-29-1685-2025, 2025.” 

Authors’ response: We thank the Referee for this relevant and timely suggestion. We added 
a citation of the work of Padrón et al. (2025) by the end of Section 1.2 to cite examples oriented 
towards forecasting tasks: 

“Other studies demonstrated successful applications of LSTM networks for the more 
operational task of stream temperature forecasting (e.g., Padrón et al., 2025; Qiu et al., 
2021; Zwart et al., 2023).” 

 

Comment 2: “Table 1: Please clarify what are the min, median and max values reported. Are 
these average values across all 21 stations? Otherwise, it is not consistent with the value of 
21C reported in L381.” 

Authors’ response: In Line 381 of the manuscript, these values represent the min-max values 
for the station in question (Garonne at Valentine). The values min-max of Table 1 represent 
the min-max of the long-term average of stream temperature. In other words: 

• We computed the long-term average of stream temperature for each station, i.e., the 
average of all records. This provides a sample of 37 values (for 37 stations); 

• Since some stations have a high rate of missing values, the averages may not be 
representative. For this reason, we excluded the 16 non-test stations, which have a 
number of available stream temperature observations lower than 2434 days; 

• We finally calculated the min, max and median values using the remaining 21 values. 

To add these clarifications, we modified the title of Table 1 as follows: 

“Table 2: Summary of dynamic and static variables and their distributions across the 
catchment set. Min, median, and max values were computed from the set of 37 stations, 
except for the long-term averages of daily stream temperature.” 
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Additionally, at the bottom of Table 1, we added the following note regarding the values for 
daily stream temperature: 

“aWe first computed, for each station, the long-term average of stream temperature 
values using the whole time series, which gave 37 values. We then excluded the stations 
with short time series by computing min, median, and max statistics using the 21 test 
stations only.” 

 

Comment 3: “L238–239: Mention here that the 15% of the available records span at least one 
full year.” 

Authors’ response: We now mention in those lines that 15% of the available records 
represent at least one-year worth of observations: 

“[…] The set of local models trained using the first 70% of the available 𝑻𝒘 records and 
their corresponding input, dynamic variables only at the station of interest. In this case, 
half of the remaining 𝑻𝒘 observations (i.e., 15% of the available records) were used for 
validation and the remaining records (i.e., 15% of the available records) were kept for 
test. Note that for these stations, 15% of the available records span at least one-year 
worth of daily observations.” 

 

Comment 4: “Figs. 3 and 4: Clarify if the bottom row corresponds to the best loss function 
averaged over all sets of input variables. If this is not the case, then why is the MAE of the 
“Reference” loss function (1.29) lower than that of the “Best” loss function (1.48) for the model 
with only Ta as input in Fig. 4.” 

Authors’ response: Yes, the bottom row of Figures 3 and 4 corresponds to the best loss 
function defined as the one with the best median value over all sets of input variables. We now 
clarified this in the captions of Figures 3, 4, C2, and C3 of the revised manuscript. For example, 
the caption of Figure 3 now reads: 

“Figure 3: Distributions of the test performances (MAE, in °C) of the local models over 
the whole test period (left column) and the period corresponding to the highest 10% 
observed values (right column). The top row shows the distribution over all the loss 
functions (18 × 21 = 378 points per distribution). The middle row shows the 
performances for the reference loss function (MSE with standardization, 21 points per 
distribution). The bottom row shows the performances for the best loss function over 
all sets of input variables (MAE without standardization for the whole period and MAE 
with standardization for the top 10%, 21 points per distribution). Numerical values under 
the boxes represent the median value for each distribution. Letters under the numerical 
values rank the distributions, and are defined such as distributions that share at least 
one letter are not significantly different according to the binomial test.” 

 

Comment 5: “L381: Should “which” be replaced by “with”.” 

Authors’ response: We thank the Referee for underlining this typo, which we have corrected 
in the revised version. 

 

Comment 6: “Fig. 5: suggestion to reduce the size of the black dots to improve visualization.” 

Authors’ response: We now reduced the size of the black dots to improve the visualization 
of Figure 5 (see Figure R3). 
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Figure R3: Revised Figure 5 of the manuscript, which shows an example of model simulations 
using LSTM models against observations at the station of the Garonne at Valentine (MIGADO). 
All models are regionally trained. The two top figures (a and b) show the model simulations and 
performances (MAE, in °C) over the whole test period, and the two bottom figures (c and d) zoom 
in on the highest 10% of the observations during the test period. Input variables include station-
scale daily minimum and maximum air temperatures (Tamn+Tamx) in addition to catchment-scale 
precipitation and potential evapotranspiration (P+PE). Models that use static attributes among 
input variables are shown on the right (b and d), while models that use only dynamic variables 
are shown on the left (a and c). 

 

Comment 7: “Fig. 5 caption: “(a and c)” should be exchanged with “(b and d)” and vice versa.” 

Authors’ response: We thank the Referee for mentioning this typo, which we have corrected 
in the revised manuscript version. 
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