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1 Summary of main changes 

We first would like to thank the Anonymous Referee #1 for their constructive feedback and 
comments, which helped us further verify and clarify our methodological choices. In response 
to Referee #1’s comments, we made the following main changes: 

• We reduced the length of Section 1.2 (Introduction) and moved the methodological 
details regarding the reconstruction of streamflow at stream temperature stations to a 
new Appendix (Appendix A of the revised manuscript; see our response to Comments 1 
to 4); 

• We justified the exclusion of predictors that explicitly encode time features (see our 
response to Comment 6) and clarified our choices of using catchment-scale potential 
evapotranspiration instead of catchment-scale air temperature (see our response to 
Comment 5); 

• We made additional, computationally expensive experiments with a lower dropout rate 
and a higher learning rate to test new hyperparameter values (number of layers, number 
of hidden cells per layer, batch size). These tests show that model performances are 
weakly sensitive to hyperparameter values and that our choices of hyperparameters 
remain optimal (see our response to Comment 9); and 

• We clarified that the baseline loss functions used in literature are part of the loss functions 
tested in our study, and we enriched the appendices with a replicate of Figure 2 with 
RMSE as a criterion for test performances to show that our setup does not bias the 
results in favour of MAE-based loss functions (see our response to Comments 11 and 
12). 

In the following section, we provide a detailed, point-by-point response to each of Referee #1’s 
comments.  
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2 Detailed response to comments from Referee #1 

General comment: “This manuscript addresses the important question of how to improve the 
performance of LSTM-based models in reproducing extreme stream temperature values. The 
study focuses on the Garonne river catchment and evaluates three strategies: (i) regional multi-
catchment training, (ii) inclusion of static and hydrological variables, and (iii) adaptation of the 
loss function. The topic is timely and relevant, as accurate modelling of high stream 
temperatures is critical for ecological and water-management applications. 

The paper is ambitious in scope, draws on a substantial dataset, and tests multiple modelling 
configurations. It has the potential to contribute meaningfully to the hydrological community by 
clarifying the role of regionalization and input design for extreme value prediction. However, 
the manuscript in its current form requires major revision before it can be considered for 
publication. 

Key limitations include the exclusion of essential predictors (notably catchment air temperature 
and simple temporal features such as day of year or seasonality), an insufficiently clear 
description of how static variables are incorporated into the LSTM setup, and a narrow framing 
of the loss-function evaluation that limits the robustness of the conclusions. Together with 
issues of presentation and readability, these aspects reduce the impact and clarity of the work. 

I therefore recommend major revisions. Addressing these issues—by streamlining 
presentation, clarifying the study’s novelty, incorporating or justifying the omission of key 
predictors, benchmarking against established methods, and refining both methodological detail 
and evaluation metrics—would substantially strengthen the manuscript and increase its value 
for the hydrological community.” 

Authors’ response: We thank the Referee for their encouraging and constructive feedback. 
We did our best to address the key limitations identified by the Referee, specifically: 

• We clarified our choices of predictors. In particular, catchment air temperature is 
linearly dependent on catchment-scale potential evapotranspiration (according to 
Oudin et al., 2005), which means that, in fact, we did not completely omit this predictor 
(see our response to Comment 5). As for temporal features, we intentionally excluded 
them namely for redundancy and their low relevance compared to input features 
already included in our study; Our choice is thoroughly explained in our response to 
Comment 6. 

• We now improved the description of how static attributes are fed to the regionally 
trained LSTM models (see our response to Comment 10). 

• We believe that the framing of the loss function in our study is not that “narrow” as the 
Referee said, and our application includes a comparison against widely applied (or 
“established”) methods; Please see our responses to Comments 11 and 12. 

Our answers to each of the Referee’s comments are provided in the following subsections 2.1 
to 2.5. 

2.1 Presentation and readability 

Comment 1: “The manuscript is currently too long and dense, which makes it difficult to follow 
the main arguments.” 

Authors’ response: We understand that the manuscript could be too long for the Referee’s 
taste, but this is an unavoidable result of our will to be as clear as possible regarding our 
methodological setup. To satisfy the Referee’s request, we merged and reduced two 
paragraphs of the Introduction section (mainly Section 1.2, see our response to Comment 2), 
and moved some methodological details on data pre-processing to Appendix A following the 
Referee’s suggestion (see our response to Comment 3). 
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Comment 2: “The introduction could be reduced substantially (perhaps to a quarter of its 
current length), while clearly highlighting the novelty of this work relative to existing literature.” 

Authors’ response: We would very like to reduce the length of the Introduction section, but 
(unfortunately) the Referee did not provide specific details on which parts of the Introduction 
should be reduced or removed. In the original version, the Introduction section was composed 
of 7 paragraphs:  

• 1 paragraph to highlight the insufficient monitoring of stream temperature despite its 
socio-economic and ecological importance (Section 1.1);  

• 3 paragraphs for a brief overview of process-based and data-driven modelling 
approaches that are proposed and applied to reconstruct stream temperature records 
at ungauged locations (Section 1.2); 

• 1 paragraph to highlight the research gap left by the existing applications of LSTM for 
stream temperature modelling (Section 1.3); 

• 1 paragraph to summarize the paper’s methodology and research questions (Section 
1.3); and 

• 1 paragraph to summarize the structure of the manuscript (Section 1.3). 

To satisfy the Referee’s request, we reduced the length of Section 1.2 to 75% of its original 
length by merging paragraphs 1 and 2 of this section to form one paragraph that briefly reviews 
the applications of process-based approaches for stream temperature modelling. This new 
paragraph now reads: 

“To overcome this monitoring gap, stream temperature models are typically applied to 
extend the existing records beyond their temporal coverage or reconstruct missing 
records at ungauged locations (via model regionalization). These models encode the 
interactions between stream temperature and other atmospheric and hydrological 
variables that are more widely available. A first modelling approach consists in explicitly 
specifying these interactions in the model structure by solving the energy budget at the 
reach scale. This energy budget accounts for heat advection along the watercourse and 
heat fluxes at the free surface and at the streambed interface (Caissie, 2006; Dugdale et 
al., 2017; Leach et al., 2023; Moore et al., 2005). Following this modelling approach, 
model parameters have a physical meaning and this facilitates the projection of 
changes in stream temperature in response to climate and landscape changes. 
Application examples include the characterization of the thermal regimes of large rivers 
using land surface models (Niemeyer et al., 2018; van Vliet et al., 2013; Wanders et al., 
2019), the assessment of the impact of riparian shading at the reach scale (Dugdale et 
al., 2024), and the quantification of heat exchanges at the stream-aquifer interface 
(Caissie et al., 2014; Kurylyk et al., 2015; Rivière et al., 2020). Unfortunately, fully solving 
the heat budget at the regional, catchment scale is computationally demanding and 
requires an expensive characterization of stream network morphology and other 
landscape parameters (such as land-use features). Therefore, process-based 
approaches resort to adopting several simplifying hypotheses, such as combining the 
physically based heat balance equation with a statistical approach (Gallice et al., 2015; 
Toffolon and Piccolroaz, 2015) or using the equilibrium temperature concept to 
parametrize the heat fluxes at the free surface (Edinger et al., 1968). For instance, 
variants of this concept have been compared at the Loire river catchment (~105 km5; 
Bustillo et al., 2014), with advanced model applications that explicitly account for 
hydrological processes, river network topology (e.g., Strahler order), and riparian 
vegetation (Beaufort et al., 2016; Seyedhashemi et al., 2023).” 

We weren’t able to further reduce or remove the remaining paragraphs because (1) the two 
paragraphs of Section 1.2 are important to provide an overview of stream-temperature 
modelling approaches, and (2) the two paragraphs of Section 1.3 highlight the research gap 
and summarize the research questions that are addressed by our study. We remain open to 
any further suggestions that could help optimize the length of the Introduction section. 
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Comment 3: “The description of data collection and preprocessing (e.g. GR6J modelling for 
discharge) is overly detailed and would be better placed in supplementary material.” 

Authors’ response: We substantially reduced the description of data pre-processing by 
moving the details on the reconstruction of streamflow using GR6J to the newly created 
Appendix A. The part describing the use of streamflow time series in our setup now reads: 

“The second set of hydrologically relevant variables is streamflow (𝑸𝒔𝒊𝒎). Since existing 

streamflow gauging stations did not coincide with the set of 𝑻𝒘 stations, we 
reconstructed streamflow records at each 𝑻𝒘 station by feeding the time series of 
precipitation and potential evapotranspiration to the daily hydrological model GR6J 
(Pushpalatha et al., 2011), with a parameter transfer approach based on spatial 
proximity (see Appendix A for details).” 

 

Comment 4: “Results sections 4.2 and 4.3 repeat exhaustive comparisons of all loss functions, 
which add little beyond the conclusion already drawn in section 4.1. This makes the results 
harder to interpret.” 

Authors’ response: Results in Sections 4.2 and 4.3 are not exactly repeating what has been 
shown in Section 4.1; Section 4.1 focuses on the contribution of the choice of the loss function, 
and Sections 4.2 and 4.3 analyze the contribution of regional training and static attributes in 
improving the performances of LSTM in reproducing extremely high stream temperature 
values. 

We decided to keep the comparison of all loss functions in Sections 4.2 and 4.3 because this 
comparison allows for verifying that the conclusions on the choice of the input variable set are 
weakly sensitive to the choice of the loss function. For this reason, we showed the 
performances considering all loss functions, then considering the reference (or baseline) loss 
function (MSE on standardized target), and finally considering the best loss function across all 
sets of input variables. We believe that the interpretation of Figures 3 and 4 is not that difficult 
given that the most important take-away messages are provided in the accompanying text. 

2.2 Input variables and methodological choices 

Comment 5: “A key omission is the absence of catchment-scale air temperature as a predictor. 
Station air temperature is a proxy that may suffice for small basins but is not adequate for 
larger catchments where thermal dynamics evolve along the river. This limitation likely explains 
why models using potential evapotranspiration perform comparatively well, as it implicitly 
represents catchment-scale air temperature.” 

Authors’ response: Catchment-scale air temperature is not completely omitted from our 
setup, because the temperature-based formula that we used to compute the catchment-scale 
potential evapotranspiration (PE) is (almost) linearly dependent on catchment-scale air 
temperature (for values higher than -5°C). The daily PE depth (in mm d-1) is computed as 
follows (Oudin et al., 2005): 

PE(d) = max (
Re

λρ

Ta,bv(d) + 5

100
 ; 0) 

where Re represents the extraterrestrial radiation (MJ m-2 d-1), λ represents the latent heat of 
vaporization (MJ kg-1), ρ represents the water density (kg m-3), and Ta,bv(d) represents the daily 

catchment-scale average of air temperature. So, this formula clearly shows that the catchment-
scale air temperature is not omitted as a predictor (except for situations when this temperature 
is lower than -5°C, which is less relevant for the paper’s main focus of predicting extreme, high 
stream temperature values). 
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We used PE instead of catchment-scale air temperature because we wanted to see whether 
using catchment-scale atmospheric forcing P (precipitation) and PE would lead to comparable 
performances as using station-scale streamflow, which is physically more relevant as it 
controls the evolution of thermal dynamics along the river. In addition, comparing the 
performances between the two options has an important practical application, since P and PE 
are much more accessible than observed discharge (at least in France). We have explained 
this choice in Section 3.2.3 of the revised manuscript as follows: 

“Finally, comparing 𝑻𝒂𝒎𝒏 + 𝑻𝒂𝒎𝒙 + 𝑷 + 𝑷𝑬 and 𝑻𝒂𝒎𝒏 + 𝑻𝒂𝒎𝒙 + 𝑸𝒔𝒊𝒎 will show whether the 
LSTM models are able of maintaining similar (or obtaining better) performances by 
exploiting the catchment-scale forcing (𝑷 and 𝑷𝑬, with 𝑷𝑬 almost linearly dependent on 
catchment-average air temperature according to Oudin et al., 2005) instead of the more 
relevant station-scale streamflow (𝑸𝒔𝒊𝒎).” 

 

Comment 6: “No time-based features (e.g. day of year, seasonality) are included, even though 
prior work (e.g. Feigl et al., 2021, doi.org/10.5194/hess-25-2951-2021) has demonstrated their 
strong predictive value for stream temperature modelling. These features are straightforward 
to compute and do not require any additional external datasets. If the authors choose not to 
include them, it is important to provide a clear justification and to explain why the validity of 
their results and comparisons is not compromised.” 

Authors’ response: We agree with the Referee that these features are easily computable and 
would increase the predictive performance of the LSTM models. However, we intentionally 
avoided the use of these time-based features because they would overshadow the contribution 
of more physically relevant variables (air temperature and hydrological variables), knowing that 
stream temperature has a strong seasonal variability. In addition, since time-based features 
are generally not explicitly used by process-based models, we decided not to use them so that 
the performances of the LSTM models remain comparable to past and future applications of 
process-based stream temperature models. Finally, information on seasonality is already 
contained in the signals of station-scale air temperature and catchment-scale potential 
evapotranspiration, which means that the information content that would be offered by time-
based features is not completely overlooked in our setup. In response to the Referee’s 
comment, we added the following statements at the end of Section 3.2.3 of the revised 
manuscript to clarify our choice: 

“Finally, we avoided using time-based features (month or day of the year; Feigl et al., 
2021) so that the performances of the tested LSTM models remain comparable to 
process-based models that do not benefit from feature engineering. In addition, 
knowing the strong seasonality of 𝑻𝒘 and of some of the input variables (𝑻𝒂, 𝑻𝒂𝒎𝒏, 𝑻𝒂𝒎𝒙, 
and 𝑷𝑬), the use of time-based features would be redundant information-wise and would 
likely lead to gains in predictive performances high enough to overshadow the 
contributions of the more physically relevant variables used in our setup.” 

 

Comment 7: “The rationale for testing so many sets of input variables is unclear, as this is not 
aligned with the stated research questions. Either the scope should be reduced or the research 
questions reframed.” 

Authors’ response: We believe that the choices of the sets of input variables are clearly 
explained in the manuscript, both for the local and for the regional models (please see Section 
3.2.2 of the original manuscript version). To satisfy the Referee’s request, we reframed the 
research questions by emphasizing that the selection of input variables is central to the scope 
of the paper. The research questions now read: 

“[…] We aimed at answering the following scientific questions:  
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• To improve the reproduction of extreme, high stream temperature values, 
what can be gained from increasing the weight of extreme stream 
temperature values in the loss function used for training? 

• How does this strategy compare to a careful selection of the input variables? 
In particular, what is the contribution of hydrologically relevant variables 
(namely streamflow)? 

• What is the added value of combining regional training with static, catchment 
and reach attributes in improving the performances of LSTM-based models 
for high stream temperature values?” 

 

Comment 8: “Why are you predicting daily mean stream temperature values if the stated aim 
is to model extremes? Since extreme ecological and management impacts are often driven by 
peak daily temperatures, it would arguably be more appropriate to predict daily maxima rather 
than means. Please clarify the rationale for focusing on daily mean values, and discuss 
whether modelling daily maxima might be a more suitable target for assessing extreme 
conditions.” 

Authors’ response: We can only agree that daily peak stream temperature values are richer 
in information and more relevant for assessing extreme conditions than daily mean values. 
However, to model peak daily temperature values, we need to extract these peaks from sub-
daily (e.g., hourly) records of stream temperature, which are obviously more challenging to 
collect than daily records, and are not always available with a sufficient quality in the Garonne 
river catchment (to our knowledge). Therefore, we simply focus on daily mean values because 
we do not have access to records of higher temporal resolution at the scale of the Garonne 
catchment. Note that these daily averages are still very relevant for water management and 
ecological applications; For instance, Picard et al. (2022) used daily stream temperature values 
to compute interannual statistics (average, upper 90% quantile and lower 10% quantile) to 
implement species distribution models. 

This comment invites us to further clarify the aim of our study. Our aim is to look for an LSTM 
that performs acceptably not only over the whole range of observed daily (average) stream 
temperature values but also over the range of extreme daily (average) stream temperature 
values. “Extreme” values are defined here as the top 10% values of the records, or equivalently 
exceeded 10% of the time at most. These values are encountered mainly during the summer 
months. We highlighted that this evaluation was absent from applications of LSTM for stream 
temperature modelling (see Section 1.3 of the original manuscript version). Our results show 
that if we focus the training of the LSTM model on extreme values (by further penalizing the 
model errors on the highest temperature values), the LSTM performances are actually worse 
than when the remaining range is accounted for in the training (see Figure 2 of the manuscript). 
This suggests that to learn the thermal behaviour during extreme conditions, the LSTM should 
be first trained on the thermal behaviour frequently observed under “usual” conditions. 

For this reason, we further clarified our aim in the Introduction section as follows: 

“In our implementation, we focused on strategies to improve LSTM performances for 
extreme daily stream temperature values (top 10% of the daily observations), while 
maintaining satisfactory performances for the remaining range of daily records. 
Specifically, we compared 18 loss functions, local vs. regional/multi-catchment training, 
and several combinations of static and dynamic input variables.” 

In the introductory paragraph of Section 3.2, we defined what we mean by “extreme” stream 
temperature values in the context of our study: 

“In this part, we summarize the strategies that we tested to look for the best approach 
to improve the LSTM performances at extreme, high 𝑻𝒘 values. We define these values 
as the daily (average) 𝑻𝒘 values exceeded less than 10% of the time. Our tested 
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strategies include an adaptation of the loss function to increase the weight of extreme 
values in the training phase (Sect. 3.2.1), regional multi-catchment training (Sect. 3.2.2), 
and the inclusion of hydrologically relevant variables and static attributes (Sect. 3.2.3).” 

In the Discussion section (Section 5), we highlighted the importance of learning the overall 
thermal behaviour as a necessary condition to perform well on extreme stream temperature 
values: 

“We tested several loss functions to see whether increasing the weight of high 𝑻𝒘values 
could result in better performances over the top 10% range, following previous works 
in process-based environmental modelling (see e. g. Jadon et al., 2024; Thirel et al., 
2024). Our results indicate that this is actually detrimental not only to the reproduction 
of extreme values, but also to the reproduction of the overall thermal response. This is 
perhaps due to the fact that some of our tested loss functions put too much emphasis 
on errors over large 𝑻𝒘 values, thus limiting the information content that the LSTM 
models were able to extract from the whole range of observations. This suggests that 
in order to satisfactorily perform during extreme thermal conditions, LSTM-based 
models should first learn the overall thermal behaviour observed under “usual” 
conditions.” 

Finally, among the limitations of our study that we cited in the last paragraph of the Discussion 
section, we listed the difficulty of modelling daily maxima due to the scarcity of sub-daily 
records of stream temperature, and discussed their importance in further improving the 
characterization of extreme conditions: 

“Our work can be further improved by addressing some of its limitations. First, our 
catchment set could be enriched by looking at more catchments with contrasting 
regional settings, which would shed more light on the regionalization and spatial 
extrapolation capabilities of LSTM models (see the discussion in Hashemi et al., 2022 
and the more rigorous spatial extrapolation tests in Yu et al., 2024). It could also be 
enriched by collecting records at higher temporal resolutions (e.g., at the hourly 
timescale), which would enable a better characterization of extreme conditions, and 
consequently a more relevant assessment of the predictive performances of LSTM 
models for extreme 𝑻𝒘 events.” 

2.3 LSTM architecture and training details 

Comment 9: “The manuscript states that model performance was insensitive to the number 
of layers, cells, and batch sizes. This may be an artefact of using a very low learning rate (1e-
4) combined with a high dropout rate (0.4). At minimum, additional tests with higher learning 
rates (e.g. 1e-3) and lower dropout values should be provided.” 

Authors’ response: We set the dropout rate to 0.1 and the learning rate to 10-3 and we made 
additional, computationally expensive tests to respond to the Referee’s request. We trained 
and tested up to 576 regionally trained models that consist of a combination of the following 
settings: 

• Two values for the number of layers (NL): 1 and 2; 

• Two values for the number of cells per layer (HDN_SZ): 128 and 256; 

• Two values for the batch size (BTH_SZ): 64 and 256; 

• Four loss functions corresponding to μ = 1, λ = 1, 2, with and without standardization 
of the target variable; 

• Six sets of input variables: Tamn+Tamx, Tamn+Tamx+CatAttrs, Tamn+Tamx+P+PE, Tamn+ 
Tamx+P+PE+CatAttrs, Tamn+Tamx+Qsim, and Tamn+ Tamx+Qsim+CatAttrs. 

• Three values for lookback: 30, 90, and 365. 
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Regarding the lookback, we kept only the model with the lookback value that provided the best 
MSE on the validation set, meaning that only the best 192 models (per lookback) are kept for 
test. Figure R1 shows that, at best, tuning the number of layers improves the median 
performances on the top 10% values of the test period, by lowering the median MAE from 
0.98°C to 0.95°C. In other words, tuning these hyperparameters (number of layers, number of 
cells per layers, batch size) has negligible effect on model performances over both the whole 
test period (R1a to R1c) and the top 10% values (R1d to R1f). 

 

 

Figure R1: Effect of the number of layers (NL), the number of cells per layer (HDN_SZ), and the 
batch size (BTH_SZ) on model performances over (a)-(c) the whole test period, and (d)-(f) the top 
10% values of the test period. Values under each box indicate the median value. Each distribution 
contains 2016 points. Note that these model runs are made with a learning rate at 10-3 and a 
dropout rate at 0.1. 

 

Comment 10: “The description of how static attributes are incorporated into the LSTM is 
insufficient. Is it via concatenation at each timestep, embeddings, or as additional inputs to the 
final dense layer? Without this clarity, it is difficult to interpret results.” 

Authors’ response: We already indicated in the manuscript (last paragraph of Section 3.2.3 
of the revised manuscript) that each static attribute was simply repeated at each time step. In 
other words, we opted for a simple concatenation of static attributes. We rewrote that 
manuscript part for better clarification as follows: 

“Note that to feed the LSTM model with the static attributes, we opted for a simple 
integration strategy (see, e.g., Hashemi et al., 2022) in which we repeated the value of 
each static attribute at each time step to match the length of the dynamic attributes, 
then we concatenated the columns of the static attributes to those of the dynamic 
attributes (for each catchment). This strategy compared well against a separate 
processing of static attributes from dynamic ones using an entity-aware (EA) variant of 
LSTM networks (Kratzert et al., 2019), and better strategies to encode the static 
attributes as well as the dynamic variables as inputs to LSTM models have been recently 
intercompared by Kraft et al. (2025).” 
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2.4 Loss function evaluation 

Comment 11: “The study introduces several “regional” loss functions but does not benchmark 
them against published alternatives (e.g. Kratzert et al., 2019, doi.org/10.5194/hess-23-5089-
2019) or against a standard MSE baseline. Especially the MSE baseline would be interesting, 
as it is not clear how different catchment water temperature ranges, which do not show as 
large differences as runoff, affect regional training. This limits the significance of the results.” 

Authors’ response: The loss function tested by Kratzert et al. (2019) has the following 
expression 

NSE∗ =
1

B
∑ ∑

(yn̂ − yn)2

(s(b) + 0.1)2

N

n=1

B

b=1

 

where B is the number of catchments, yn̂ − yn is the difference between simulated and 

observed values at time step n, and s(b) is the standard-deviation of the observations for the 
catchment b. This loss function is very similar to the MSE loss function 

MSE = ∑(yn̂ − yn)2

 

n

 

except that NSE* decreases the weight of data points belonging to catchments with high 
standard-deviation values (or high variances). Looking at Table 2 of Kratzert et al. (2019), this 
has negligible effect on median performances for regionally trained LSTM models and 
improves mainly the catchments on which the model has already scored bad performances 
(which results in improved mean performances). The general expression of the loss functions 
we tested is 

ℒ(μ, λ, g) =
∑ |g(yn)μ − g(yn̂)μ|λ

n

∑ |g(yn)μ − g(yn)μ̅̅ ̅̅ ̅̅ ̅̅ ̅|
λ

n

 

the minimization of which is equivalent to the minimization of 

ℒ∗(μ, λ, g) = ∑|g(yn)μ − g(yn̂)μ|λ

n

 

with the LSTM parameters acting only on yn̂. Among the values we tested, the configuration 
μ = 1, λ = 2, and g(x) = x gives 

ℒ∗(μ = 1, λ = 2, g(x) = x) = ∑|yn − yn̂|2

n

= MSE 

This means that the baseline MSE is already included within our tests. The performances of 
this baseline compare well with the other loss functions, as can be seen in Figure 2 of the 
manuscript. We did not test the effect of accounting for inter-catchment differences in the 
temperature range in our loss functions, and we added a sentence by the end of the Discussion 
section to underline this limitation: 

“Finally, our tests of the loss functions are still exploratory at this stage, and fully 
analysing the potential of this strategy in improving the learning process of LSTM 
networks for extreme values can include (1) better optimization hyperparameters (e.g., 
scheduling of the learning rate), (2) training the LSTM on the whole range and then 
finetuning it on the target range, and (3) designing a custom loss function that is a 
weighted sum of losses over the whole range and losses over the target range. In the 
case of regional training, our tested loss functions can also be improved by accounting 
for differences in 𝑻𝒘 ranges between catchments, which can improve the model 
performances especially for the cases where the LSTM models perform poorly (Kratzert 
et al., 2019).” 
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Comment 12: “Evaluation relies on MAE, which biases the study towards MAE-based loss 
functions and does not adequately reflect extreme-value performance. Since the research 
objective is specifically focused on extremes, an evaluation metric more sensitive to high 
values (e.g. RMSE, quantile-based metrics, or extreme value scores) would be more 
appropriate.” 

Authors’ response: First, we computed two sets of MAE-based scores: (1) a MAE score over 
the whole test period, which (as pointed out by the Referee) does not adequately reflect 
extreme-value performance, and (2) a MAE score restricted to the highest 10% values of the 
test period, which does reflect extreme-value performance. These performances are shown in 
Figures 2 to 5 and highlight the degradation of model performances over the top 10% range, 
suggesting that it’s difficult for the model to consistently score good performances over the 
whole range of observations. Note that we chose MAE over RMSE because MAE is more 
interpretable (average of absolute errors) than RMSE (square root of the average of quadratic 
errors). 

Second, we also evaluated the test performances (over the whole range and over the top 10%) 
using an evaluation metric that is more sensitive to high values: the RMSE. Appendix B of the 
original manuscript version already shows model performances using RMSE regarding the 
effect of input selection and local vs. regional training, but they may not respond to the 
Referee’s comment regarding the bias of the study towards MAE-based loss functions. For 
this reason, we added a replicate of Figure 2 (Figure R2 of the present answer) to Appendix C 
of the revised manuscript (Figure C1 of the revised manuscript version), which illustrates that 
MAE-based loss functions also rank as the best in terms of RMSE over the test period (see 
Figure R2). 

 

 

Figure R2: Median test performances in terms of RMSE (in °C) of the local models (a) and the 
regional models (b) according to the loss function used for training. Colours indicate the 
proportion of cases for which the use of the loss function yielded better results than the 
reference loss function (MSE with standardization, shown in magenta). Asterisks indicate that 
the custom loss function is significantly better than the reference loss function according to the 
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binomial test: * for a significance threshold of 5%, ** for a threshold of 1%, and *** for a threshold 
of 0.1%. 

In addition, we modified the summary of Appendix B (now Appendix C in the revised version) 
to highlight that conclusions regarding the ranking of loss functions did not significantly change 
with RMSE as a criterion instead of MAE: 

“To compare our results with previous studies (e.g., Rahmani et al., 2021b), we also 
evaluated the test performances using RMSE as a criterion. Figure C1 shows the 
evolution of the test performances with respect to the choice of the loss function, and 
comparing it with Fig. 2 suggests that using MAE as a criterion for test performances 
does not bias our conclusions in favour of MAE-based loss functions. Figures C2 and 
C3 show the performances of the locally trained (Fig. C2) and the regionally trained (Fig. 
C3) LSTM models, which are replicates of Figs. 3 and 4 but with a different performance 
criterion. These figures confirm the importance of regional training with catchment 
attributes in improving the LSTM performances especially for the range of extreme (top 
10%) 𝑻𝒘 values.” 

 

Comment 13: “As currently presented, the main result is that custom loss functions did not 
improve performance. However, this may reflect the design of the evaluation rather than a 
fundamental limitation.” 

Authors’ response: We disagree with the Referee’s comment: This is not the main result of 
the study. The custom loss functions did improve the test performances when compared to the 
baseline, reference loss function; For instance, in Figures 2 and R2, using MAE (with μ = 1, 
with/without standardization) significantly improved the results when compared with MSE. 
However, increasing the weight of high stream temperature values in the training phase 
unexpectedly degraded not only the performances over the top 10% range but also the overall 
test performances. Despite these improvements, a better strategy consists in training the 
LSTM over multiple catchments with the static attributes included in the set of input variables: 
This is the main result of the study. 

Nevertheless, we already stated in the Discussion section that our setup might be held 
responsible for not succeeding in improving the test performances over the (extreme) 10% 
range of the observations, and that possibly alternative optimization hyperparameters and/or 
alternative training procedures should be tried: 

“Finally, our tests of the loss functions are still exploratory at this stage, and fully 
analysing the potential of this strategy in improving the learning process of LSTM 
networks for extreme values can include (1) better optimization hyperparameters (e.g., 
scheduling of the learning rate), (2) training the LSTM on the whole range and then 
finetuning it on the target range, and (3) designing a custom loss function that is a 
weighted sum of losses over the whole range and losses over the target range.” 

We also refer to our response to Comment 12 regarding possible biases of interpretation in 
favour of MAE-based loss functions. 

2.5 Technical corrections 

Comment 14: “Abstract: Key results (1) and (2) appear redundant since regional modelling is 
inherently linked to extended static inputs. Please clarify.” 

Authors’ response: Regional training refers to the use of data from multiple catchments to 
train one LSTM model. These data may or may not include static attributes. One of the added 
values of our study is quantifying the contribution of these static attributes compared to 
information already contained in dynamic attributes (see, for example, Yu et al., 2024). This is 
why we emphasized this result in the Abstract. More precisely, Figure 4 shows results of 
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regionally trained LSTM models with three pairs of sets of input variables that help us quantify 
the added value of static attributes: 

• Tamn+Tamx vs. Tamn+Tamx+CatAttrs; 

• Tamn+Tamx+P+PE vs. Tamn+Tamx+P+PE+CatAttrs; and 

• Tamn+Tamx+Qsim vs. Tamn+Tamx+Qsim+CatAttrs. 

Figure 4 shows that 

• Looking at all loss functions, median MAE values over the whole test period for 
regionally trained LSTM models with only dynamic variables as inputs were at 1.08°C, 
0.98°C, and 1.00°C respectively for Tamn+Tamx, Tamn+Tamx+P+PE, and Tamn+Tamx+Qsim. 
By adding static attributes (CatAttrs), these median performances decreased down to 
0.88°C, 0.69°C, and 0.77°C, respectively. Over the extreme values (top 10%), median 
MAE values decreased from 1.41°C, 1.36°C, and 1.35°C to 1.24°C, 1.05°C and 1.00°C 
thanks to the additional use of static variables. 

• These gains are more important when looking at selected loss functions, namely the 
MSE baseline (“Reference”) and the “best” loss function in the sense of the best median 
MAE across all sets of input variables. Thanks to static attributes, median whole-period 
performances went from 0.89°C with the input variables Tamn+Tamx+P+PE to 0.56°C 
with the input variables Tamn+Tamx+P+PE+CatAttrs with the baseline MSE as a loss 
function. In terms of median performances over the top 10% values, median 
performances went from 1.47°C to 0.74°C. 

• By comparing Figure 4 with Figure 3, which shows the performances of locally trained 
models, we can see that regional training actually deteriorated the overall 
performances of LSTM models that did not use static attributes, highlighting the key 
importance of these attributes in regional training. 

This last result is highlighted in Section 4.3 that comments the performances of regionally 
trained LSTM models: 

“In general, simply training the LSTM at the regional scale led to deteriorated median 
performances, as can be seen by comparing regionally trained models without static 
attributes with their counterparts in Fig. 3 (all loss functions and reference loss 
function).” 

 

Comment 15: “Abstract: The phrase “well-trained LSTM” is vague—better to define relative to 
baseline approaches.” 

Authors’ response: We have reformulated that phrase as follows: 

“This study further confirms the suitability of regionally trained LSTM models that 
exploit static attributes for the reproduction of extreme stream temperature values, 
offering significant advantages for water management at data-sparse regions during 
summer periods.” 

 

Comment 16: “Line 126: Why do you need exactly a minimum of 2434 daily observations for 
1 test year?” 

Authors’ response: The answer to this question is given in the phrase immediately following! 
Reading Line 125-127 of the original manuscript version: 

“Among these stations, only 21 stations have more than 2434 daily observations of 𝑻𝒘, 
which is required to ensure a minimum of one year (365 days) of datapoints for model 
testing (see Sect. 3)” 

In Section 3, we explained that for each station, 70% of the data is dedicated for model training, 
15% for model validation, and 15% for model testing. If we want to guaranty at least 365 
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datapoints for model testing, we need at least 365/0.15 = 2433.33 or 2434 days. We modified 
the sentence in question by adding more details: 

“Among these stations, only 21 stations have more than 2434 daily observations of 𝑻𝒘, 
which is required to ensure a minimum of one year (365 days) of datapoints for model 
testing (see Sect. 3; 15% of the available 𝑻𝒘 datapoints are dedicated to model testing, 
therefore we require a minimum of 365/0.15 = 2433.33 or 2434 datapoints in total). We 
call these 21 stations “test stations” since they are the only stations with enough 
datapoints to allow for robust model testing (see Sect. 3.2.2 for more details).” 

 

Comment 17: “Line 127: “We call these 21 stations test station” – please clarify whether this 
refers to an ML-style train/validation/test split. Overall, it is not entirely clear to me how you 
split the data, especially not in which situations you split the time series or split by stations? 
Please state this more clearly.” 

Authors’ response: We call these test stations because they are the only stations on which 
LSTM models are tested, since they satisfy the requirement of minimum data length. More 
details cannot be provided in this section that is dedicated to present the dataset. Instead, 
these details should be looked for in the methodology section (namely, Section 3). We modified 
this line to refer to Section 3.2.2 of the revised manuscript where all these methodological 
choices are clarified: 

“We call these 21 stations “test stations” since they are the only stations with enough 
datapoints to allow for robust model testing (see Sect. 3.2.2 for more details).” 

In Section 3.2.2 of the revised manuscript, we explain the difference between locally trained 
and regionally trained models, and we provide more details on our methodological setup that 
better clarify the reason why we chose to call these stations “test stations”. Since we have to 
test all models (local or regional) on the same datapoints, we chose only stations that had 
enough datapoints, i.e., a minimum of 2434 datapoints (see our response to Comment 16), for 
model testing, hence the name “test stations”. More precisely, 

1. for each of these 21 stations, a local model was trained on 70% of the data, validated 
on 15% of the data, and tested on the remaining 15% of the data. In total, 21 local 
models were trained (for each configuration of loss function × set of input variables × 
lookback value).  

2. Then, we trained one regional model (again, for each configuration of loss function × 

set of input variables × lookback value) over a collection/concatenation of training data 
from all the 21 stations, to which we added 70% of the data from the remaining non-
test stations (16/37). We validated this regional model over a collection of validation 
data from all the 21 stations, to which we added 30% of the data from each record of 
the remaining non-test stations. In other words, each non-test station contributes with 
70% of its data to the training data collection for the regional model, and with 30% of 
its data to the validation data collection. Finally, the regional model is tested over the 
same datapoints as the local models. 

Section 3.2.2 of the revised manuscript re-states these clarifications as follows: 

“In this regard, for each test station (21 in total), we compared two different sets of 
models:  

1. The set of local models trained using the first 70% of the available 𝑻𝒘 records 
and their corresponding input, dynamic variables only at the station of interest. 
In this case, half of the remaining 𝑻𝒘 observations (i.e., 15% of the available 
records) were used for validation and the remaining records (i.e., 15% of the 
available records) were kept for test. Note that for these stations, 15% of the 
available records span at least one-year worth of daily observations. 
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2. The set of regional models trained using data from all the 37 stations. In this 
case, we constructed the training set by concatenating 70% of the available 𝑻𝒘 
and their corresponding input variables from each station. The validation set was 
constructed using 15% of observations at the test stations (21/37) and the whole 
remaining 30% of observations at the non-test stations (16/37). Finally, the 
remaining 15% of observations at the test stations were used to test the regional 
models, thus enabling a comparison of locally and regionally trained models on 
the same datapoints. Although 30% of the observations at the non-test stations 
are used in the validation set against 15% from the test stations, datapoints from 
the test stations still constitute up to 78% of the validation set due to the low 
availability of 𝑻𝒘 records at non-test stations.” 

 

Comment 18: “Table 1: Consider presenting mean and range (min–max) values per train/test 
group instead of medians only, which are not necessarily more robust here.” 

Authors’ response: Table 1 already includes the range, i.e. min and max values, computed 
using the whole set of 37 stations (except for the stream temperature statistics, for which non-
test stations were excluded because they did not have enough datapoints to provide robust 
statistics). We believe that providing the range + the median values is enough to get a concise 
and informative description of the distribution of the features of our catchment set. Table 1 
already contains a lot of information, and adding more statistics (i.e., mean) per each group of 
train/test data would only burden Table 1 and make its reading unnecessarily more challenging 
without significantly improving the description of the dataset. 

3 Cited References 

Beaufort, A., Moatar, F., Curie, F., Ducharne, A., Bustillo, V., Thiéry, D., 2016. River 
Temperature Modelling by Strahler Order at the Regional Scale in the Loire River 
Basin, France. River Res. Appl. 32, 597–609. https://doi.org/10.1002/rra.2888 

Bustillo, V., Moatar, F., Ducharne, A., Thiéry, D., Poirel, A., 2014. A multimodel comparison for 
assessing water temperatures under changing climate conditions via the equilibrium 
temperature concept: case study of the Middle Loire River, France. Hydrol. Process. 
28, 1507–1524. https://doi.org/10.1002/hyp.9683 

Caissie, D., 2006. The thermal regime of rivers: a review. Freshw. Biol. 51, 1389–1406. 
https://doi.org/10.1111/j.1365-2427.2006.01597.x 

Caissie, D., Kurylyk, B.L., St-Hilaire, A., El-Jabi, N., MacQuarrie, K.T.B., 2014. Streambed 
temperature dynamics and corresponding heat fluxes in small streams experiencing 
seasonal ice cover. J. Hydrol. 519, 1441–1452. 
https://doi.org/10.1016/j.jhydrol.2014.09.034 

Dugdale, S.J., Hannah, D.M., Malcolm, I.A., 2017. River temperature modelling: A review of 
process-based approaches and future directions. Earth-Sci. Rev. 175, 97–113. 
https://doi.org/10.1016/j.earscirev.2017.10.009 

Dugdale, S.J., Malcolm, I.A., Hannah, D.M., 2024. Understanding the effects of spatially 
variable riparian tree planting strategies to target water temperature reductions in 
rivers. J. Hydrol. 635, 131163. https://doi.org/10.1016/j.jhydrol.2024.131163 

Edinger, J.E., Duttweiler, D.W., Geyer, J.C., 1968. The Response of Water Temperatures to 
Meteorological Conditions. Water Resour. Res. 4, 1137–1143. 
https://doi.org/10.1029/WR004i005p01137 



15 

 

Feigl, M., Lebiedzinski, K., Herrnegger, M., Schulz, K., 2021. Machine-learning methods for 
stream water temperature prediction. Hydrol. Earth Syst. Sci. 25, 2951–2977. 
https://doi.org/10.5194/hess-25-2951-2021 

Gallice, A., Schaefli, B., Lehning, M., Parlange, M.B., Huwald, H., 2015. Stream temperature 
prediction in ungauged basins: review of recent approaches and description of a new 
physics-derived statistical model. Hydrol. Earth Syst. Sci. 19, 3727–3753. 
https://doi.org/10.5194/hess-19-3727-2015 

Hashemi, R., Brigode, P., Garambois, P.-A., Javelle, P., 2022. How can we benefit from regime 
information to make more effective use of long short-term memory (LSTM) runoff 
models? Hydrol. Earth Syst. Sci. 26, 5793–5816. https://doi.org/10.5194/hess-26-
5793-2022 

Jadon, A., Patil, A., Jadon, S., 2024. A Comprehensive Survey of Regression-Based Loss 
Functions for Time Series Forecasting, in: Sharma, N., Goje, A.C., Chakrabarti, A., 
Bruckstein, A.M. (Eds.), Data Management, Analytics and Innovation. Springer Nature, 
Singapore, pp. 117–147. https://doi.org/10.1007/978-981-97-3245-6_9 

Kraft, B., Schirmer, M., Aeberhard, W.H., Zappa, M., Seneviratne, S.I., Gudmundsson, L., 
2025. CH-RUN: a deep-learning-based spatially contiguous runoff reconstruction for 
Switzerland. Hydrol. Earth Syst. Sci. 29, 1061–1082. https://doi.org/10.5194/hess-29-
1061-2025 

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., Nearing, G., 2019. Towards 
learning universal, regional, and local hydrological behaviors via machine learning 
applied to large-sample datasets. Hydrol. Earth Syst. Sci. 23, 5089–5110. 
https://doi.org/10.5194/hess-23-5089-2019 

Kurylyk, B.L., MacQuarrie, K.T.B., Caissie, D., McKenzie, J.M., 2015. Shallow groundwater 
thermal sensitivity to climate change and land cover disturbances: derivation of 
analytical expressions and implications for stream temperature modeling. Hydrol. Earth 
Syst. Sci. 19, 2469–2489. https://doi.org/10.5194/hess-19-2469-2015 

Leach, J.A., Kelleher, C., Kurylyk, B.L., Moore, R.D., Neilson, B.T., 2023. A primer on stream 
temperature processes. WIREs Water 10, e1643. https://doi.org/10.1002/wat2.1643 

Moore, R.D., Sutherland, P., Gomi, T., Dhakal, A., 2005. Thermal regime of a headwater 
stream within a clear-cut, coastal British Columbia, Canada. Hydrol. Process. 19, 
2591–2608. https://doi.org/10.1002/hyp.5733 

Niemeyer, R.J., Cheng, Y., Mao, Y., Yearsley, J.R., Nijssen, B., 2018. A Thermally Stratified 
Reservoir Module for Large-Scale Distributed Stream Temperature Models With 
Application in the Tennessee River Basin. Water Resour. Res. 54, 8103–8119. 
https://doi.org/10.1029/2018WR022615 

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., Loumagne, C., 2005. 
Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—
Towards a simple and efficient potential evapotranspiration model for rainfall–runoff 
modelling. J. Hydrol. 303, 290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026 

Picard, C., Floury, M., Seyedhashemi, H., Morel, M., Pella, H., Lamouroux, N., Buisson, L., 
Moatar, F., Maire, A., 2022. Direct habitat descriptors improve the understanding of the 
organization of fish and macroinvertebrate communities across a large catchment. 
PLOS ONE 17, e0274167. https://doi.org/10.1371/journal.pone.0274167 

Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T., Andréassian, V., 2011. A downward 
structural sensitivity analysis of hydrological models to improve low-flow simulation. J. 
Hydrol. 411, 66–76. https://doi.org/10.1016/j.jhydrol.2011.09.034 

Rahmani, F., Lawson, K., Ouyang, W., Appling, A., Oliver, S., Shen, C., 2021. Exploring the 
exceptional performance of a deep learning stream temperature model and the value 



16 

 

of streamflow data. Environ. Res. Lett. 16, 024025. https://doi.org/10.1088/1748-
9326/abd501 

Rivière, A., Flipo, N., Goblet, P., Berrhouma, A., 2020. Thermal reactivity at the stream–aquifer 
interface. Hydrogeol. J. 28, 1735–1753. https://doi.org/10.1007/s10040-020-02154-6 

Seyedhashemi, H., Moatar, F., Vidal, J.-P., Thiéry, D., 2023. Past and future discharge and 
stream temperature at high spatial resolution in a large European basin (Loire basin, 
France). Earth Syst. Sci. Data 15, 2827–2839. https://doi.org/10.5194/essd-15-2827-
2023 

Thirel, G., Santos, L., Delaigue, O., Perrin, C., 2024. On the use of streamflow transformations 
for hydrological model calibration. Hydrol. Earth Syst. Sci. 28, 4837–4860. 
https://doi.org/10.5194/hess-28-4837-2024 

Toffolon, M., Piccolroaz, S., 2015. A hybrid model for river water temperature as a function of 
air temperature and discharge. Environ. Res. Lett. 10, 114011. 
https://doi.org/10.1088/1748-9326/10/11/114011 

van Vliet, M.T.H., Franssen, W.H.P., Yearsley, J.R., Ludwig, F., Haddeland, I., Lettenmaier, 
D.P., Kabat, P., 2013. Global river discharge and water temperature under climate 
change. Glob. Environ. Change 23, 450–464. 
https://doi.org/10.1016/j.gloenvcha.2012.11.002 

Wanders, N., van Vliet, M.T.H., Wada, Y., Bierkens, M.F.P., van Beek, L.P.H. (Rens), 2019. 
High-Resolution Global Water Temperature Modeling. Water Resour. Res. 55, 2760–
2778. https://doi.org/10.1029/2018WR023250 

Yu, Q., Jiang, L., Schneider, R., Zheng, Y., Liu, J., 2024. Deciphering the Mechanism of Better 
Predictions of Regional LSTM Models in Ungauged Basins. Water Resour. Res. 60, 
e2023WR035876. https://doi.org/10.1029/2023WR035876 

 


