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Abstract. Soil erosion models are essential tools for soil conservation planning. Although these models are 10 

generally well-tested against plot and field data for in-field soil management, challenges arise when scaling up to 11 

the landscape level, where sediment trapping along landscape features becomes increasingly critical. At this scale, 12 

a separate analysis of model performance in representing erosion, sediment transport, and deposition processes 13 

is both challenging and often lacking. In this study, we assessed the capacity of the spatially distributed erosion 14 

and sediment transport model WaTEM/SEDEM to simulate sediment yields in six micro-scale watersheds ranging 15 

from 0.8 to 7.8 ha, monitored over eight years from 1994 to 2001. The watersheds were comprised of two groups: 16 

four field-dominated watersheds characterised by arable land with minimal landscape structures, and two 17 

structure-dominated watersheds featuring a combination of arable land and linear landscape structures (mainly 18 

grassed waterways along thalwegs) that minimise sediment connectivity. This setup enabled a separate analysis 19 

of model performance for both watershed groups. A Generalised Likelihood Uncertainty Estimation (GLUE) 20 

framework was employed to account for measurement and model uncertainties across multiple spatiotemporal 21 

scales. Our results show that while WaTEM/SEDEM generally captured the magnitude of the very low measured 22 

sediment yields in the monitored watersheds, the model did not meet our pre-defined limits of acceptability 23 

when operating on annual timesteps. However, the WaTEM/SEDEM´s performance improved substantially when 24 

model realisations were aggregated across the eight-year monitoring period and over the two watershed groups, 25 

with mean absolute errors of 0.11 t ha⁻¹ yr⁻¹ for field-dominated and 0.18 t ha⁻¹ yr⁻¹ for structure-dominated 26 

watersheds. Our findings demonstrate that the model can represent the influence of soil conservation measures 27 

on reducing soil erosion and sediment delivery but performs better for long-term conservation planning at larger 28 

scales than for precise annual predictions in individual micro-scale watersheds with specific conservation 29 

practices. 30 

 31 
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1. Introduction 32 

Soil erosion by water is a major threat to global soil health and associated ecosystem functions and services, 33 

endangering agricultural sustainability and food security (Rickson et al., 2015; Montanarella et al., 2016; Quinton 34 

and Fiener, 2024). Although the problem of accelerated soil erosion has been known for a long time and a wide 35 

variety of soil conservation practices have been tested and implemented locally for many decades, adoption 36 

remains limited due to economic constraints, lack of technical knowledge, and insufficient policy support 37 

(Quinton and Fiener, 2024; Aghabeygi et al., 2024). This is particularly problematic in regions where the 38 

intensification of agriculture, exemplified by the historical increase in the size and weight of agricultural 39 

machinery that has led to increased soil compaction levels (Brus and Van Den Akker, 2018; Keller et al., 2019), 40 

and the increase in frequency and intensity of extreme precipitation events due to climate change (Auerswald 41 

and Fiener, 2024; Hosseinzadehtalaei et al., 2020; Myhre et al., 2019) is likely exacerbating the erosion risk. 42 

Effective soil conservation relies on two complementary strategies: (i) In-field control measures that increase soil 43 

surface cover by vegetation and hence prevent soil detachment by raindrop impact and sheet flow. Such 44 

measures include optimised crop rotations, using cover crops, and soil residue management (Andersson and 45 

D'souza, 2014). (ii) Off-site sediment transport control structures along the runoff pathway that increase 46 

infiltration and foster sediment trapping and minimise sediment connectivity. Typical structures are vegetative 47 

filter strips (Gumiere et al., 2011), grassed waterways (Fiener and Auerswald, 2003), retention ponds (Fiener et 48 

al., 2005), or a generally optimised layout of fields along slopes (Van Oost et al., 2000). 49 

Soil erosion models are potentially valuable tools for identifying high erosion risk areas and evaluating 50 

intervention needs, enabling stakeholders to effectively implement soil conservation strategies. Diverse models 51 

have been developed and applied for this purpose, ranging from empirical and conceptual to process-oriented 52 

model types (e.g. Eekhout et al., 2018; Smith et al., 2018; Nearing, 2013; Dymond et al., 2010; Hessel and Tenge, 53 

2008). The most widely used model for soil conservation planning is the Universal Soil Loss Equation (USLE) 54 

(Wischmeier and Smith, 1978) and its revisions and regional adaptations, like the revised USLE (RUSLE) (Renard, 55 

1997) and the German ABAG (Allgemeine Bodenabtragsgleichung, German for Universal Soil Loss Equation; Din-56 

Normenausschuss, 2022; Schwertmann et al., 1987). 57 

While these USLE-type models have been adapted to calculate spatially distributed erosion rates, they are limited 58 

to calculating potential soil loss without considering sediment transport processes and downslope deposition. To 59 

overcome this limitation, the Water and Tillage Erosion Model and the Sediment Delivery Model 60 

(WaTEM/SEDEM) (Van Oost et al., 2000; Van Rompaey et al., 2001; Verstraeten et al., 2002) was developed. 61 

WaTEM/SEDEM combines the RUSLE (Renard, 1997) with spatially distributed sediment transport and deposition 62 

modelling. The performance of the model has been tested using sediment trapping in reservoirs (e.g. Hlavčová 63 

et al., 2018), sediment delivery in small rivers of mesoscale catchments (e.g. Batista et al., 2022; Rehm and Fiener, 64 

2024), or long-term erosion and deposition patterns derived from radionuclides (e.g. Van Oost et al., 2000; Wilken 65 

et al., 2020). However, to the best of our knowledge, the suitability of WaTEM/SEDEM for representing soil 66 

erosion, transport, and deposition processes within soil conservation settings combined with measures to reduce 67 

sediment connectivity, which can minimize sediment redistribution, has not been thoroughly tested. 68 
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Testing the ability of spatially distributed erosion models to simulate the combined effects of in-field soil 69 

conservation and landscape features trapping sediments is inherently challenging. Observational data for model 70 

calibration and validation are typically restricted to measurements of sediment yields at the outlet of a system 71 

(Batista et al., 2019), which typically consist of small erosion plots, meso-scale watersheds, or large-scale 72 

catchments. Such outlet-based measurements do not allow for testing a model's representation of internal 73 

erosion and deposition patterns, as they provide little information on the spatial distribution of sediment sources 74 

and sinks within the landscape. This exacerbates the equifinality problem (Beven, 2006), and models may achieve 75 

accurate outputs while incorrectly representing the spatial patterns of erosion and deposition processes within 76 

watersheds. 77 

Micro-scale watersheds (1-10 ha) are ideal for evaluating soil conservation measures typically implemented from 78 

the field to the landscape level (Choudhury et al., 2022; Fiener and Auerswald, 2018). This is because soil erosion 79 

and sediment connectivity processes that are distinguishable at the micro-scale watershed are not represented 80 

in small plots or get diluted in large-catchment sediment yield observations. Moreover, important input data for 81 

erosion modelling, e.g. rainfall, soil management, and land cover, can be monitored and measured with higher 82 

detail at the micro-scale, compared to larger areas (Fiener et al., 2019a). Nevertheless, there is limited research 83 

on modelling the combined effects of in-field soil conservation and landscape structures on soil redistribution 84 

and sediment delivery at this scale. 85 

Notwithstanding the spatial extent of (long-term) soil erosion monitoring, measurement uncertainties arise from 86 

instrumental precision and temporal instrument malfunctioning, data handling and processing. The uncertainties 87 

in observational data have important implications for erosion modelling, as models cannot be expected to be 88 

better than the observational data (Beven and Lane, 2022; Beven, 2019). 89 

The Generalized Likelihood Uncertainty Estimation (GLUE) framework (Beven and Binley, 1992) allows for testing 90 

environmental models while accounting for the uncertainty in both models and the observational data. In light 91 

of inherent measurement uncertainties, GLUE acknowledges that it is not possible to identify a single parameter 92 

set as “correct”. Rather, all parameter combinations that produce results within the observational uncertainty 93 

cannot be rejected. Within the GLUE framework, limits of acceptability are defined to identify which model runs 94 

fall within the uncertainty bounds of the measurements (Beven and Lane, 2022). These behavioural models are 95 

retained, while non-behavioural models are rejected. This limits-of-acceptability GLUE approach thus provides a 96 

systematic methodology to evaluate model performance with uncertain testing data. 97 

In this study we employ this limit-of-acceptability approach based on the GLUE framework, focusing on three 98 

main objectives: (i) testing WaTEM/SEDEM's capability to simulate sediment yields in micro-scale watersheds 99 

either characterised by in-field soil conservation or by in-field soil conservation plus linear landscape features 100 

designed to trap sediments, (ii) analysing the behaviour of model parameters that control erosion and sediment 101 

transport processes, and (iii) assessing the model's performance across different spatiotemporal resolutions 102 

through data aggregation. We accomplish these objectives using a comprehensive dataset from a long-term, 103 

farm-scale monitoring in Southern Germany, which provides continuous precipitation, surface runoff and 104 
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sediment flux data from six micro-scale watersheds under optimised soil conservation (Auerswald et al., 2001; 105 

Auerswald and Fiener, 2019). 106 

2. Material and methods 107 

2.1 Test site 108 

The test site is part of an experimental farm located in Scheyern, southern Germany (48°29'45.1"N, 11°26'23.6"E; 109 

about 470 m above sea level). It is part of Bavaria's tertiary hill region, an important and productive agricultural 110 

landscape in Central Europe. The rolling topography is characterised by predominantly east-facing slopes ranging 111 

from 0.4° to 11.5° (Wilken et al., 2019a). Climate conditions include a mean annual temperature of 8.4 °C and 112 

mean annual precipitation of 834 mm (1994-2001), with the highest precipitation occurring between May and 113 

July (Fiener et al., 2019a). Management practices at the farm follow a comprehensive soil conservation 114 

philosophy based on two main principles: (i) keeping arable soils covered as long as possible and (ii) reducing 115 

hydrological and sedimentological connectivity as far as possible (Fiener et al., 2019a). Within the watersheds, 116 

soils consist predominantly of loamy or silty loamy Cambisols (World Reference Base for Soil Resources (WRB), 117 

Schad et al., 2022). 118 

The research area comprises six micro-scale watersheds (W01-W06) with a total area of 24 ha and four 119 

agricultural fields (F15-F18, Fig. 1). The six watersheds exhibit different landscape connectivity characteristics: 120 

W01-W04 (0.8 to 4.2 ha) are classified in this study as field-dominated systems due to their structure, with most 121 

of their area covered by agricultural fields and minimal landscape structures along sediment flux pathways. In 122 

contrast, W05 and W06 are classified as structure-dominated systems due to their configuration, featuring more 123 

complex landscapes. The Watershed W06 (5.7 ha) constitutes the upper part of the larger watershed W05 (7.8 124 

ha) (Fiener et al., 2019a).  125 

Three key conservation measures were implemented to minimise hydrological and sedimentological connectivity: 126 

(i) optimised field layout with fields arranged parallel to contour lines, (ii) retention ponds at field borders, and 127 

(iii) a grassed waterway along the main thalweg of W05 and W06. The retention ponds were located at the outlets 128 

of watersheds W01, W02, W05, and W06 (Fig. 1). Sediment trapping efficiency measurements were conducted 129 

for these ponds, revealing an average of 70 ± 14 % (Fiener et al., 2005). Additionally, continuous monitoring 130 

systems were installed at the outlet of each micro-scale watershed to measure runoff and sediment delivery. The 131 

distinction between field-dominated and structure-dominated watersheds will be used consistently throughout 132 

this study.  133 

All fields within the watersheds were managed using no-till practices with a crop rotation of winter wheat, maize, 134 

winter wheat, potatoes, whereas the rotation was shifted between the fields (F15-F18, Fig. 1). After winter wheat, 135 

mustard was sown as a cover crop. In the case of potatoes, the mustard was sown into the potato dams built in 136 

autumn, while direct seeding into the down-frozen mustard was performed in the following year. 137 
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 138 

Figure 1: Land use and topography of the experimental farm in Scheyern, Bavaria, with flow direction from west to east. 139 

Note: watershed W05 (thick line) includes the upslope watershed W06.  140 

2.2 Data 141 

The study utilised a unique erosion monitoring dataset acquired between 1994 and 2001. This comprehensive 142 

dataset, as well as metadata, are provided by Fiener et al. (2019a). All spatial data were resampled to a consistent 143 

5 m by 5 m grid resolution, matching the digital elevation model (DEM) provided in the dataset (Wilken et al., 144 

2019a). The temporally dynamic input data included daily soil cover measurements and high-resolution 145 

precipitation data recorded at 1-minute intervals from up to 11 monitoring sites (Wilken et al., 2019b). Additional 146 

details regarding these input parameters are provided in section 2.4 below. 147 

For model testing, we used continuous sediment delivery data from the six micro-scale watersheds between 1994 148 

and 2001. Runoff and suspended-sediment loads were monitored with a measuring system based on a 149 

Coshocton-type wheel sampler (precision ± 10%; Carter and Parsons, 1967; Fiener and Auerswald, 2003). The 150 

device continuously diverted an aliquot of approximately 0.5 % from the total flow that left the watersheds 151 

through underground-tile outlets with a diameter of 15.6 cm and 29 cm (Fig. 1). At lower rates (< 0.5 L s⁻¹) the 152 

system slightly over-estimated runoff, but these small events contributed negligibly to the cumulative water and 153 

sediment budgets. Under sampling during very high flows was avoided by (i) employing large wheels (Ø 61 cm) 154 

and (ii) the flow-dampening effect of the retention ponds situated immediately upstream of each outlet (Fiener 155 

and Auerswald, 2003). 156 

2.3 Soil erosion modelling 157 

The WaTEM/ SEDEM version used in this study consists of two main components: (i) WaTEM, which implements 158 

a spatially distributed German adaption of the USLE , and (ii) SEDEM, which incorporates a transport capacity (TC) 159 

equation (Eq. 3) and a routing algorithm for sediment re-distribution based on a DEM (Verstraeten et al., 2002; 160 

Van Rompaey et al., 2001; Van Oost et al., 2000). To implement WaTEM/ SEDEM within the GLUE-framework, the 161 

original Delphi code-based model was translated to Python 3.12 and was run in PyCharm 2024.1 (Community 162 

Edition), which substantially improved computational speed through parallel processing and allowed for easier 163 
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data handling. Although the Python implementation includes tillage erosion calculations, this component was not 164 

utilised in the present study.  165 

The model was applied for the period from April to October of each year from 1994 to 2001, excluding periods 166 

potentially affected by snowmelt erosion and prolonged surface runoff from return flow (Fiener et al., 2019a). 167 

While these months contributed 10.7 % of the total measured sediment delivery (Fiener et al., 2019b), our 168 

analysis focused on the dominant water erosion period during heavy rainfall months. Each micro-scale watershed 169 

was separately modelled. 170 

2.4 Potential Erosion 171 

In contrast to the original WaTEM/ SEDEM (Verstraeten et al., 2002; Van Rompaey et al., 2001; Van Oost et al., 172 

2000), in which the USLE factors are derived according to the RUSLE approach (Renard, 1997), we calculated the 173 

USLE factors as calculated according to their German adaptation (Eq. 1) (Schwertmann et al., 1987; Din-174 

Normenausschuss, 2022): 175 

𝐴 = 𝑅 ∗ 𝐾 ∗ 𝐿𝑆 ∗ 𝐶 ∗ 𝑃,          (1) 176 

Where 𝐴 is the potential erosion (t ha-1 yr-1), 𝑅 the rainfall erosivity factor in (N h-1 yr-1), 𝐾 the soil erodibility 177 

factor (t ha-1 h N-1), 𝐿𝑆 the slope length and steepness factor (dimensionless), 𝐶 the cover management factor 178 

(dimensionless), and 𝑃 the agricultural practices factor (dimensionless). 179 

The high-resolution rainfall data from eleven (1994–1997) and two (1998–2001) precipitation monitoring stations 180 

located in the research area were used to calculate the rain erosivity factor (R-factor) (Wilken et al., 2019b). 181 

According to the German adaptation of the USLE, rainfall events were considered erosive if they met at least one 182 

of two criteria: (i) total rainfall amount ≥ 10 mm or (ii) maximum 30-minute intensity ≥ 10 mm h-1. Individual 183 

events were separated by at least 6 hours without rainfall (Schwertmann et al., 1987; Din-Normenausschuss, 184 

2022). The calculated rainfall erosivities per monitoring station were interpolated to 5 m by 5 m resolution maps 185 

using inverse distance weighting, and the spatially distributed values ranged between 65.90 and 155.10 N h-1 yr-186 

1 across the eight-year study period. 187 

Soil erodibility (K factor) values were computed following Auerswald et al. (2014) and already provided in the 188 

monitoring data set (Auerswald et al., 2019a). The values, originating from a 50 by 50 m sampling grid, were 189 

spatially interpolated using ordinary kriging to generate a continuous surface with a 5 m by 5 m resolution grid. 190 

The resulting K factor values across the study area ranged from 1.8 to 4.6 t ha-1 h N-1. 191 

The slope length and slope steepness factor (LS factor) was calculated based on the DEM using the approach by 192 

Desmet and Govers (1996). When calculating the LS factor for W01, the shrubbed area (Fig. 1) was excluded due 193 

to its negligible runoff contribution. Additionally, we calculated the LS factors for W02 and W03 separately from 194 

their upslope catchments (i.e. W01 and W02), since their runoff was directed via underground pipes to the 195 

monitoring stations (see Fig. 1). 196 

The annual crop factor (C factor) was calculated by combining seasonal rainfall erosivity with temporal changes 197 

in soil coverage (Schwertmann et al., 1987). The soil loss ratio (SLR) quantifies the protective effect of soil 198 
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coverage by comparing potential soil loss under a given vegetation condition to that under standardised fallow 199 

conditions (Schwertmann et al., 1987; Wischmeier and Smith, 1978). While the SLR traditionally considers five 200 

crop growth stages, from bare soil (0% cover) to full canopy coverage (75-100% cover), we also considered crop 201 

residue cover. 202 

From 1994 to April 1997, direct bi-weekly measurements during growing seasons and monthly measurements 203 

during autumn and spring were conducted, with additional observations before and after soil management 204 

operations. These field measurements included both crop and residue cover. From these field measurements, 205 

standardised daily crop development and residue cover were established and used for the subsequent period 206 

from April 1997 onwards (Auerswald et al., 2019b; Fiener et al., 2019a). 207 

Total soil cover was calculated with residues protecting portions of the otherwise exposed soil according to: 208 

𝐶𝑜𝑡𝑜𝑡 =  𝐶𝑜𝑐𝑟𝑜𝑝 + (100 − 𝐶𝑜𝑐𝑟𝑜𝑝) ∗
𝐶𝑜𝑟𝑒𝑠

100
,        (2) 209 

With 𝐶𝑜𝑡𝑜𝑡 is the total soil cover (%), 𝐶𝑜𝑐𝑟𝑜𝑝 the cover of the growing crop on the respective field (%), and 𝐶𝑜𝑟𝑒𝑠 210 

the measured soil cover of the residues (%). 211 

Figure 2 illustrates the total soil cover on the respective fields with monthly rainfall erosivity. Determining field-212 

specific SLR values involved categorising soil cover into the five growth stages and assigning corresponding SLR 213 

values. As no-till was applied at the research farm, lower SLR values were assigned than in conventional systems 214 

due to increased soil surface protection. These SLR values were obtained from Schwertmann et al. (1987) and 215 

adapted based our expert knowledge regarding the soil conservation practices in the Scheyern experimental farm 216 

(Fiener and Auerswald, 2007; Fiener et al., 2019a). 217 
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 218 

Figure 2: Each field's total soil cover (Residues and crops). Blue bar plots (monthly sum) show monthly R-factors. 219 

The support practices factor (P factor) was not specifically parametrised for contour-seeding because of field 220 

heterogeneity, i.e. not all parts of a single field were contour-seeded, and/or the absence of specific P factor 221 

values for structures such as the potato dams. However, we accounted for the uncertainty stemming from this 222 

lack of parameter representation as part of the model conditioning process (see section 2.4 below). 223 

2.5 Sediment Transport and Deposition 224 

The Transport Capacity (TC) quantifies the maximum amount of sediment transported through a grid cell without 225 

deposition. When the incoming sediment load into a raster cell exceeds TC, the excess material is deposited within 226 

the cell, whilst the remaining portion continues its downstream movement. TC was calculated with the approach 227 

proposed by Van Rompaey et al. (2001): 228 

𝑇𝐶 = 𝑘𝑇𝐶 ∗ 𝑅 ∗ 𝐾 ∗ (𝐿𝑆 − 𝑆𝐼𝑅),         (3) 229 

with: 230 

𝑆𝐼𝑅 = 4.12 ∗ 𝑆𝑚
0.8           (4) 231 

where 𝑇𝐶 is the transport capacity (t ha-1), 𝑘𝑇𝐶  the transport capacity coefficient (m) described below, 𝑅 the 232 

rainfall erosivity factor in (N h-1 yr-1), 𝐾 is the soil erodibility factor (t ha-1 h N-1), 𝐿𝑆 the slope length and steepness 233 

factor (dimensionless), 𝑆𝐼𝑅  the interrill slope gradient factor (dimensionless) and 𝑆𝑚 the slope (m m-1). 234 

The transport capacity coefficient (kTC) represents the theoretical upslope distance required for sediment 235 

generation to reach maximum TC at a given raster cell under the assumption of uniform slope and erosion 236 

conditions (Van Rompaey et al., 2001). The transport capacity coefficient depends on surface roughness and 237 
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therefore differs according to land use and management. In our model parameterisation, we distinguish between 238 

higher values for arable (kTC/A) land and lower values for grassland (kTC/G; along field borders and in grassed 239 

waterways). 240 

WaTEM/SEDEM’s hillslope sediment transport module employs a multiple flow routing algorithm, which 241 

distributes sediment from individual cells to their downslope neighbours based on Quinn et al. (1991). The 242 

algorithm calculates local slopes to eight neighbouring cells and applies specific weighting factors: 0.50 for 243 

orthogonal neighbours and 0.35 for diagonal neighbours. The sediment flux is distributed proportionally to the 244 

weighted slope values of all cells at equal or lower elevations. 245 

In this study, we implemented the Parcel Connectivity (pcon) parameter specifically at field boundaries. pcon 246 

reduces the contributing upstream area by a value [%] at these transitions (Notebaert et al., 2006). This reduction 247 

has a dual effect: (i) it directly lowers the slope length part of the LS factor, thereby decreasing the potential 248 

erosion for subsequent downstream cells, and (ii) it affects the TC, which is calculated using the LS factor (Eq. 3). 249 

Unlike the original WaTEM/SEDEM version (Notebaert et al., 2006), we implemented pcon within the multiple flow 250 

routing algorithm loop calculating the contributing upstream area, ensuring its effects propagate downstream 251 

through the flow network. Consequently, the reduction in sediment transport influences the downstream cells 252 

and extends to subsequent agricultural fields and vegetated areas. Moreover, we introduced a border deposition 253 

(bdep) parameter, which represents a forced deposition mechanism activated when agricultural field cells 254 

contribute sediment to adjacent vegetated areas. Under these conditions, a defined percentage of the 255 

transported sediment is deposited directly at the field border within the field. 256 

Retention ponds were implemented within the 5 m by 5 m land use raster map. The locations of the four retention 257 

ponds at the outlets of the micro-scale watersheds were mapped, with assigned trapping efficiencies of 54 %, 82 258 

%, 59 %, and 85 % for watersheds W01, W02, W05, and W06, respectively, as measured in Fiener et al. (2005). 259 

The standard deviation across all watersheds (± 13.7 %) was applied to account for measurement error in the 260 

trapping efficiency values. 261 

2.6 Generalised Likelihood Uncertainty Estimation (GLUE) framework 262 

We employed the GLUE methodology (Beven and Binley, 1992) to represent model and measurement 263 

uncertainties and to identify and analyse behavioural parameter sets. The GLUE approach recognises that 264 

multiple parameter sets may provide equally acceptable simulations of a system within the limitations of a given 265 

model structure and observational errors (Beven, 2006). 266 

We established limits of acceptability for the simulated sediment yields by considering multiple sources of 267 

uncertainty in the event-based measurements of runoff and sediment concentrations used for calculating annual 268 

and median annual sediment yields. These included Coshocton wheel measurement errors (± 10%, Fiener and 269 

Auerswald, 2003), runoff collector barrel sampling errors (estimated ± 10 %), and retention pond uncertainties (± 270 

14 %). For events with data collection issues (flagged in the data set), we assigned an additional ± 50 % error 271 

margin. However, for events flagged as "barrels overflown", we introduced only an upper error boundary since 272 

the measurement taken from the barrel represents a minimum possible sediment yield during a rainfall event. 273 
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Finally, we propagated the measurement errors using a Monte Carlo simulation with 1,000 realisations and 274 

sampling from normal distributions that represented the range of potential errors. The 2.5th and 97.5th percentiles 275 

of the resulting aggregated (annual and median annual) sediment yields were used as the limits of acceptability 276 

for simulated values. These uncertainty bounds served as criterion for behavioural model realisations. Hence, 277 

only simulations producing outputs within these error margins were classified as behavioural and retained for 278 

subsequent analysis. 279 

2.7 Model evaluation 280 

The model results were evaluated using R-Studio (R 4.4.2; R-Studio 2024.12.1 Build 563) in two phases to account 281 

for the different sediment transport processes in field-dominated and structure-dominated watersheds. 282 

Phase 1 - Field-dominated watersheds: 283 

We performed a Monte Carlo simulation with 25,000 realisations for the field-dominated watersheds, sampling 284 

parameters from uniform distributions across a priori selected ranges (Tab. 1). To consider the inherent potential 285 

errors in USLE calculations, including uncertainties associated with the parameterisation of the P factor, we 286 

modified the potential erosion in individual raster cells through an error surface (esur) before routing the 287 

sediment. This error surface was sampled from a uniform distribution for each realisation, modifying the USLE-288 

calculated potential erosion (Eq. 1) within a range of 0 to ± 0.5: 289 

𝐴𝑛𝑒𝑤,𝑖 = 𝐴𝑖 + 𝐴𝑖  ∗ 𝑒𝑠𝑢𝑟,          (5) 290 

Where 𝐴𝑖  is the potential soil erosion (t ha-1 yr-1) calculated by the USLE (Eq. 1) at raster cell 𝑖, 𝐴𝑛𝑒𝑤,𝑖 is the 291 

potential soil erosion (t ha-1 yr-1) with incorporated uncertainty at raster cell 𝑖, and 𝑒𝑠𝑢𝑟 the error surface 292 

(dimensionless). 293 

To ensure that kTC/G is consistently lower than kTC/A, both were sampled with a constrained relationship, where 294 

kTC/A values were required to be at least 1.5 but no more than 5 times higher than kTC/G values. Model runs were 295 

classified as behavioural if the simulated sediment yield values fell within the established limits of acceptability 296 

for the observed data. For these behavioural simulations, we calculated likelihoods by rescaling the mean 297 

absolute error (MAE) (Brazier et al., 2000): 298 

𝐿𝑖 =
1

𝑀𝐴𝐸𝑖
/ ∑

1

𝑀𝐴𝐸𝑖
,          (6) 299 

with: 300 

𝑀𝐴𝐸𝑖 = |𝑆𝑖𝑚𝑖 − 𝑂𝑏𝑠𝑖|,          (7) 301 

where 𝐿𝑖  is the likelihood of one realisation 𝑖 (dimensionless), 𝑀𝐴𝐸𝑖  is the mean absolute error of realisation 𝑖 (t 302 

ha-1 yr-1), 𝑆𝑖𝑚𝑖  is the simulated values for behavioural runs of realisation 𝑖 (t ha-1 yr-1), and 𝑂𝑏𝑠𝑖  is the observed 303 

sediment value for realisation 𝑖 (t ha-1 yr-1). 304 
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Table 1: Parameter ranges used for MC simulation in the WaTEM/SEDEM model. These ranges were selected based on the 305 

literature on previous model applications. kTC/A and kTC/G are the transport capacity coefficients for arable land and 306 

grassland, pcon is the parcel connectivity, esur is the error surface and bdep the border deposition.  307 

Range kTC/A [m] kTC/G [m] pcon [%] esur  bdep [%] 

low 1 1 50 -0.5 0 

high 300 100 90 0.5 20 

Phase 2 - Structure-dominated watersheds: 308 

For the structure-dominated watersheds, we used the likelihoods associated with behavioural parameter values 309 

conditioned in Phase 1 to represent in-field processes (kTC/A and esur) in order to generate another model 25,000 310 

realisations. In this second phase, the model conditioning was focused on the parameters controlling sediment 311 

redistribution through landscape structures (kTC/G, bdep and pcon). The same limits of acceptability approach as in 312 

phase one was applied to identify behavioural simulations. We calculated new likelihood values for these 313 

simulations to analyse their performance in representing structural erosion control measures. 314 

2.8 Spatiotemporal model evaluation 315 

Model outputs were analysed at multiple spatiotemporal scales through sequential aggregation steps: First, we 316 

calculated an eight-year median of the sediment yield for each individual watershed. Second, we spatially 317 

aggregated the watersheds based on their dominant erosion characteristics (field- and structure-dominated) 318 

while maintaining an annual resolution. Third, we aggregated the median values over the eight-year monitoring 319 

period for these spatially aggregated groups. 320 

To further analyse relative errors, the percent bias (𝑃𝐵𝐼𝐴𝑆) was calculated by: 321 

𝑃𝐵𝐼𝐴𝑆 = (
𝑆𝑖𝑚𝑖−𝑂𝑏𝑠𝑖

𝑂𝑏𝑠𝑖
) ∗ 100,         (8) 322 

Where 𝑆𝑖𝑚𝑖  is the simulated values for behavioural realisation 𝑖 (t ha-1 yr-1), and 𝑂𝑏𝑠𝑖  is the observed sediment 323 

value for realisation 𝑖 (t ha-1 yr-1). 324 

3. Results 325 

3.1 Model Performance Across Scales 326 

The annual model results for field-dominated watersheds (W01-W04) were within the same order of magnitude 327 

of the measured sediment yields. However, the model was not considered behavioural for predicting annual 328 

sediment yields according to our pre-established acceptability criterion. The simulated annual sediment yields 329 

were predominantly overestimated (22 out of 32 cases; Fig. 3a-d), occasionally underestimated (3 out of 32 cases, 330 

i.e. in the year 2000 in W01; 1994 in W02; 1994 in W04; Fig. 3a, b and d), with only a small portion of simulations 331 

meeting our acceptability criterion (7 out of 32 cases; Fig. 3a-d). The tendency to overestimate sediment yield is 332 

more pronounced in watersheds W05 and W06. Only in 1994 the model underestimated measured sediment 333 
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yields in watershed W05 (Fig. 4b). In W06, measured sediment yields were the lowest among all watersheds 334 

(maximum of 0.02 t ha⁻¹ yr⁻¹ in 2000), with zero sediment yield measurements in 1995, 1997, and 2001, yet the 335 

model consistently overestimated sediment yield across all years in this watershed. 336 

 337 

Figure 3: Annual and eight-years median sediment yields in field-dominated watersheds. (a-d) Box plots display the median, 338 
1. and 3. quartile and the full range of simulated sediment yields from 25,000 model realisations with different parameter 339 
sets (black whiskers), while median sediment yield measurements are shown as blue dots with computed error ranges 340 
(cyan whiskers). (f-i) The watershed-specific 8-year median measured yield with error ranges and simulated yields. (e) 341 
Annual spatially combined watershed sediment yields. (j) 8-year median of spatially aggregated watersheds. 342 

When evaluated using eight-year median values, model performance showed better agreement with 343 

observations. The eight-year median modelled sediment yield across field-dominated watersheds (W01-W04) 344 

was 0.24 t ha⁻¹ yr⁻¹, closely aligning with the measured eight-year median of 0.21 t ha⁻¹ yr⁻¹. For structure-345 

dominated watersheds W05 and W06, we simulated an eight-year median of 0.15 t ha⁻¹ yr⁻¹ (Fig. 4c, d), against a 346 

measured median of 0.13 t ha⁻¹ yr⁻¹. The 1994 sediment yield peak in W05 strongly influenced the system's overall 347 

performance, ultimately leading to an increased number of behavioural model realisations when evaluated across 348 

the entire period (Fig. 4d). 349 
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 350 

Figure 4: Annual and eight-years median sediment yields in structure-dominated watersheds. (a-b) Box plots display the 351 
median, 1. and 3. quartile and the full range of simulated sediment yields from 25,000 model realisations with different 352 
parameter sets (black whiskers), while median sediment yield measurements are shown as blue dots with computed error 353 
ranges (cyan whiskers). (c-d) The watershed-specific 8-year median measured yield with error ranges and simulated yields.  354 

The eight-year temporal aggregation revealed varying proportions of behavioural model realisations across 355 

individual watersheds. W04 had the highest amount with 57 % of all realisations, while other watersheds 356 

exhibited lower proportions (W01: 13 %, W02: 21 %, W03: 23 %). W05 exhibited minimal behavioural realisations 357 

of 1 %. Although the range of our simulated values overlapped with the error margins for the measured sediment 358 

yields in W06 (Fig. 4c), none of the actual model realisations matched the observational data including 359 

measurement errors. Furthermore, no common behavioural realisations were found across all watersheds, 360 

indicating that each watershed had a different behavioural parameter space. 361 

The analysis of the spatially aggregated watersheds (field-dominated vs. structure-dominated), while maintaining 362 

annual temporal resolution, revealed behavioural model realisations in some years but not consistently 363 

throughout the entire eight-year period for each watershed group (Fig. 3e, 4b). When combining both spatial and 364 

temporal aggregation, behavioural realisations were generated for each watershed group (Fig. 3j, 4d). Across the 365 

entire set of 25,000 realisations, the median MAE values were 0.12 t ha-1 yr-1 for field-dominated watersheds and 366 

0.16 t ha-1 yr-1 for structure-dominated watersheds, with maximum MAE values of 0.34 t ha-1 yr-1 and 0.39 t ha-1 367 

yr-1, respectively. Table 4 presents the model performance metrics specifically for the subset of behavioural model 368 

realisations within the watershed groups. 369 

 370 

 371 

 372 

 373 
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Table 2: Comparison of model performance metrics between micro-scale watershed groups based on eight-year median of 374 

behavioural realisations, including median sediment yield (SY) as well as error statistics (MAE, PBIAS) with maximum 375 

(Max.), median (Med.) and minimum (Min.) values. 376 

Unit of measure 
 

 Field-
dominated 

Structure- 
dominated 

Behavioural realisations 
[%] 

 30.04 1.33 

Measured SY  
[t ha-1 yr-1] 

Med. 0.21 0.13 

Simulated SY  
[t ha-1 yr-1] 

Med. 0.24 0.15 

MAE  
[t ha-1 yr-1] 

Min. 4.21*10-6 5.76*10-5 
Med. 0.03 0.03 
Max. 0.07 0.05 

PBIAS  
[%] 

Min. -10.79 -17.70 
Med. 15.35 20.15 
Max. 35.38 42.64 

3.2 Behavioural parameter space 377 

We analysed the behavioural parameter space for the spatially and temporally aggregated watershed groups, as 378 

only this aggregation level yielded behavioural realisations for both field-dominated and structure-dominated 379 

watershed groups. 380 

For field-dominated watersheds, the analysis focused on the error surface and in-field parameter esur and kTC/A. 381 

While behavioural realisations were identified across the entire ranges of all parameters, higher likelihood values 382 

concentrated in specific regions. Specifically, esur values closer to -0.5 exhibited higher likelihood values than lower 383 

esur values (Fig. 5b). In contrast, kTC/A showed no discernible pattern across the response surface (Fig. 5c). The 384 

relationship between these parameters revealed a clear compensation mechanism, where lower kTC/A values 385 

required higher scor values to produce behavioural realisations (Fig. 5a). 386 

https://doi.org/10.5194/egusphere-2025-3391
Preprint. Discussion started: 5 September 2025
c© Author(s) 2025. CC BY 4.0 License.



15 
 

 387 

Figure 5: Parameter likelihoods across field-dominated micro-scale watersheds, showing only behavioural model 388 

realisations. (a) The relationship between esur and kTC/A parameters. Circle size and shade intensity indicate the likelihood 389 

of each parameter combination, with larger and darker circles representing higher likelihood values. (b) The relationship 390 

between likelihood and esur. (c) The relationship between likelihood and kTC/A.  391 

In structure-dominated watersheds, the analysis focused on parameters controlling sediment transportation and 392 

deposition in grassland (kTC/G, bdep, and pcon). The kTC/G parameter exhibited a distinct likelihood peak between 393 

approximately 9 and 11 m, with behavioural values ranging from approximately 7.5 m to 15 m (Fig. 6a), which is 394 

notably narrower than the sampled range of up to 150 (Tab. 1). In contrast, bdep and pcon showed no sensitivity, 395 

displaying relatively uniform likelihood distributions across their entire ranges (Fig. 6b, c). When plotting bdep 396 

against pcon, homogeneous likelihood distributions emerged with no apparent dependencies (Fig. 6f). 397 

Examinations of bdep and pcon against kTC/G revealed a horizontal band of high likelihood values at specific kTC/G 398 

values, without any directional trends (Fig. 6d, e). 399 
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 400 

Figure 6: Parameter likelihoods across structure-dominated micro-scale watersheds, showing only behavioural model 401 
realisations. (a) The relationship between likelihood and kTC/G. (b) The relationship between likelihood and bdep. (c) The 402 
relationship between likelihood and pcon. (d) The relationship between bdep and kTC/G. Circle size and colour intensity indicate 403 
the likelihood of each parameter combination, with larger and darker circles representing higher likelihood values. (e) The 404 
relationship between pcon and kTC/G. (f) The relationship between bdep and kTC/G. 405 

3.3 Spatial analysis 406 

In field-dominated watersheds, substantial deposition was primarily confined to retention ponds, while other 407 

areas outside arable lands showed relatively minimal deposition, as shown in the 50th percentile (median) of 408 

behavioural model realisations (Fig. 7a). In W04, negligible to no deposition was observed. Conversely, structure-409 

dominated watersheds exhibited considerably more intense erosion-deposition dynamics. The grassed waterway 410 
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showed a clear deposition pattern, with W06 exhibiting the most pronounced deposition patterns leading toward 411 

the retention pond at the outlet of W06. 412 

 413 

Figure 7: (a) The median of simulated potential erosion and deposition of behavioural model realisations over the eight-414 

year period. (b) An aerial photograph of the study area shows the land use patterns and field boundaries on the Scheyern 415 

experimental farm in 2002. 416 

4. Discussion 417 

4.1 GLUE Framework and Uncertainties 418 

We tested WaTEM/SEDEM using a limits of acceptability approach within the GLUE framework. For this, we 419 

implemented a two-phase approach, first conditioning and evaluating field-dominated watersheds, and then 420 

using the behavioural parameter space of these watersheds to condition and evaluate structure-dominated 421 

systems. Alatorre et al. (2010) demonstrated that soil erosion models often exhibit parameter compensation 422 

effects, where different parameter combinations produce similar outputs at the catchment scale - a manifestation 423 

of the equifinality concept (Beven, 2006). Our sequential approach helped to minimise these effects by first 424 

constraining the simulated erosion (kTC/A and esur) in field-dominated watersheds and then conditioning the 425 

transport parameters (kTC/G, pcon and bdep) in more complex systems. 426 

The limits of acceptability approach incorporated multiple sources of measurement uncertainty. Nearing (2000) 427 

demonstrated through replicated plot studies that natural variability in erosion measurements is particularly 428 

pronounced for low-magnitude erosion events, such as the ones observed in this study. While Nearing (2000) 429 

proposed a quantitative method for estimating the expected variability of erosion measurements, his approach 430 

is specifically developed for plot-scale studies and cannot be extrapolated to watersheds or more complex 431 

landscape systems. Given the (to the best of our knowledge) current absence of methodologies for determining 432 

error boundaries for low sediment yield measurements at larger scales, we necessarily relied on relative error 433 

estimates. An implementation of proper measurement variability-derived error ranges would likely result in a 434 

substantially higher number of behavioural model realisations, particularly for low sediment yield measurements 435 

where the variability is the highest (Nearing, 2000). This reveals the need for developing robust approaches for 436 
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defining limits-of-acceptability criteria for sediment yield estimates that account for the full range of 437 

uncertainties, e.g. instrument precision, sampling errors, data processing, or site-specific variations. 438 

Erosion models typically exhibit systematic biases, overpredicting low sediment yields while underpredicting high 439 

sediment yields (Nearing, 1998; Risse et al., 1993; Kinnell, 2007). This is particularly relevant for our study area, 440 

where the median measured sediment yield of 0.16 t ha-1 yr-1 was substantially lower than erosion rates which 441 

can exceed 10 t ha-1 yr-1 in the Bavarian Tertiary hill region (Auerswald et al., 2009). To investigate the modelling 442 

under/over prediction issue, we used an error surface (esur) multiplied with the erosion calculated by the USLE 443 

(Eq. 5). The esur parameter served three purposes: (i) adjusting potential erosion to investigate the USLE's inherent 444 

biases, (ii) analysing the biases by looking at the behaviour of esur, and (iii) representing the uncertainty stemming 445 

from measurement errors for the USLE factors and the lack of parameterisation for the P factor. The analysis of 446 

behavioural model realisations revealed a concentration of likelihood values near small esur values, reducing 447 

sediment by up to 50 % (Fig. 5b). This indicates that in our study WaTEM/SEDEM overestimates soil erosion in 448 

landscapes with implemented conservation measures. This is also evident looking at figure 3a-d and 4a-b, which 449 

illustrate a general tendency for overestimation of modelled sediment yields in all watersheds. 450 

4.2 Model Performance and Limitations 451 

WaTEM/SEDEM correctly simulated the magnitude of the very low sediment yields in micro-scale watersheds 452 

under optimized soil conservation, with annual values closely aligning with measured data (Fig. 3a-d, 4a-b). 453 

Despite this achievement, the model did not consistently meet our strict limits of acceptability for annual 454 

realisations and therefore was rejected for making precise annual simulations. However, the model’s performance 455 

improved notably when applied to longer-term medians and larger spatial units, where more behavioural model 456 

realisations were identified. 457 

Field-dominated watersheds 458 

The model simulated the very low sediment yields resulting from well-established in-field soil conservation 459 

practices in field-dominated watersheds, comparable to the measured data. In general, observed sediment yields 460 

were overestimated, which can be attributed primarily to difficulties in accurately representing the specific C 461 

factors of this conservation system, particularly unique practices such as mustard sown onto autumn-built dams 462 

where potatoes were later directly planted (Fiener and Auerswald, 2003). Such unconventional approaches are 463 

not adequately captured in the SLR values for no-till systems as evaluated in the German adaptation of the USLE 464 

(ABAG; Schwertmann et al., 1987; Naw, 2022), even with the use of very low soil loss ratios in the 465 

parameterisation of the C factor, which represent the continuous soil cover through the crop rotation in the 466 

experimental farm (Fig. 2). 467 

Conversely, the model underestimated sediment yields in some years because even optimally managed 468 

conservation systems experience short time windows with weak protection. During these short windows with 469 

reduced soil protection (Fig. 2), substantial erosion events may occur, like in systems not under soil conservation. 470 

In general, erosion processes are typically dominated by extreme events (Gonzalez-Hidalgo et al., 2012; Steegen 471 

et al., 2000), as exemplified in our study by an April 1994 rainfall event of 114 mm within 66 hours coinciding with 472 
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low soil coverage in W02 (Fig. 2), accounting for approximately 58 % of that year's total sediment yield (see year 473 

1994 in Fig. 3b). The model's annual time step fails to capture these critical temporal coincidences, a limitation 474 

that becomes more pronounced when such events are infrequent. This temporal limitation aligns with findings 475 

by Risse et al. (1993), who demonstrated that USLE's model efficiency diminishes at the annual scale. When 476 

averaging over the eight-year study period, these extreme events are smoothed out, which explains the model's 477 

improved performance at longer timescales (Tab. 2). This observation supports the basic assertion that the USLE 478 

was designed to compute long-term soil losses (Wischmeier and Smith 1978). 479 

For the temporally aggregated eight-year medians, there was no single parameter set that produced behavioural 480 

model realisations across all field-dominated watersheds simultaneously when applying our limits of acceptability 481 

criterion. This indicates a limitation in parameter transferability within our study context. While Van Rompaey et 482 

al. (2001) recognized technical limitations of WaTEM/ SEDEM in model transferability related to grid size and 483 

routing methods, our findings suggest additional challenges in accurately representing processes within micro-484 

scale conservation landscapes. The need for watershed-specific calibration, even within relatively homogeneous 485 

landscapes with similar crop and soil properties, indicates that parameter calibration compensates for inherent 486 

model or data limitations. At such fine scales, WaTEM/SEDEM may struggle to accurately represent the complex 487 

interactions between soil conservation measures and erosion processes. 488 

Similar calibration challenges seem to exist more broadly in WaTEM/SEDEM applications across different 489 

landscape types and research questions, as evidenced by a wide range of calibrated kTC values reported across 490 

different studies (Tab. 3), with kTC/A values varying from 10 to 174.4 m. As Beven (2006) argues, such calibration 491 

approaches may achieve mathematical fitting while concealing fundamental model inadequacies. 492 

Structure-dominated watersheds 493 

Unlike field-dominated watersheds, structure-dominated systems demonstrated different response patterns to 494 

extreme erosion events. In these watersheds, sediment generated during individual large erosion events (as 495 

observed in the field-dominated watersheds), is predominantly captured by grassed waterways and retention 496 

ponds (Fiener and Auerswald, 2003, 2005), thus reducing the variability of event sediment yields. This buffering 497 

effect explains why the model consistently overestimates sediment yield across all years for structure-dominated 498 

watersheds (Fig. 4a-b), in contrast to the occasional underestimation observed in field-dominated systems (Fig. 499 

3a-d). 500 

Only one exception to this pattern was observed: the model underestimated sediment yield in W05 during 1994, 501 

when the lower part of the grassed waterway required reseeding after losing its initial grass cover along the 502 

thalweg during a spring erosion event (Fiener and Auerswald, 2003). This exceptional case quantitatively 503 

demonstrates the role of functional grassed waterways, as the measured sediment yield in 1994 for W06 was 504 

substantially higher (0.78 t ha-1 yr-1) than in subsequent years when the grassed waterway was fully established 505 

(averaging only 0.03 t ha-1 yr-1 from 1995-2001), representing an approximately 96 % reduction in sediment yield 506 

(Fig. 4b). 507 
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The model's systematic overestimation of sediment yields in structure-dominated watersheds reveals limitations 508 

in representing the sediment trapping mechanisms of grassed waterways. The primary limitation is the model's 509 

inability to capture re-infiltration processes within the grassed waterway, which is not accounted for in 510 

WaTEM/SEDEM's transport capacity formulation. Fiener and Auerswald (2005) demonstrated that grassed 511 

waterway effectiveness depends strongly on morphological characteristics, particularly the cross-sectional shape, 512 

with flat-bottomed waterways showing substantially higher runoff reduction. The infiltration increases with 513 

length and flatter cross-section of grassed waterways, which provide larger runoff widths and consequently 514 

greater infiltration areas. A previous study showed that in the upper part of the grassed waterway (W06), where 515 

WaTEM/SEDEM more substantially underestimates the sediment trapping, the long-term runoff and sediment 516 

yield reduction was about 90% and 97%, while it was about 10% and 77% in the lower part of the grassed 517 

waterway (W05) with a ditch-like cross-section (Fiener & Auerswald, 2003). 518 

4.3 Distribution of behavioural model parameter values 519 

The TC within agricultural fields is primarily controlled by a high transport coefficient kTC/A (Van Rompaey et al., 520 

2001). Lower kTC/A values reduce TC, promoting in-field deposition and consequently decreasing sediment yield 521 

at the watershed outlet. Our analysis revealed behavioural model realisations across the full a priori selected 522 

range of kTC/A values, with no clear pattern for field-dominated watersheds, demonstrating no sensitivity even at 523 

very low kTC/A values near 1 or very high esur values of 0.5 (Fig. 5a). This lack of sensitivity may be attributed to the 524 

implementation of retention ponds in W01 and W02 and by the very low simulated erosion values, as TC 525 

remained sufficiently high to transport the generally low sediment fluxes even with very low kTC/A values. 526 

The low transport capacity coefficient for rougher surfaces, in case of this study for grassland kTC/G, usually triggers 527 

deposition in these areas (Van Rompaey et al., 2001). Our analysis identified behavioural values for kTC/G between 528 

approximately 7.5 m to 15 m with a notable likelihood spike between approximately 9 m and 11 m, relatively low 529 

values compared to other studies (Tab. 3). While Onnen et al. (2019) reported similarly low values for Danish 530 

landscapes, they explicitly attributed this to sandy soils in Denmark. However, our study area features 531 

predominantly silt loam and loamy soils, which are much more comparable to the Belgian soils (Tab. 3) where 532 

low kTC values for rough surfaces were implemented (Peeters et al., 2008; Verstraeten et al., 2002; Van Rompaey 533 

et al., 2001). 534 

Table 3: Comparison of kTC parameter values of behavioural model realisations used in different studies with 535 

WaTEM/ SEDEM. 536 

High kTC values mostly 
used for arable land [m] 

Low kTC values mostly used for 
non-arable land [m] 

Country Source 

150 not used Germany Wilken et al. (2020) 
10 to 24 1 to 12 Denmark Onnen et al. (2019) 

100 & 150 25 Belgium Peeters et al. (2008) 
75 42 Belgium Verstraeten et al. (2002) 
75 42 Belgium Van Rompaey et al. (2001) 

174.4 not used Belgium Van Oost et al. (2000) 

 537 
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These low kTC/G values can have some possible interpretations: (i) most likely, the model is compensating for its 538 

inability to represent re-infiltration processes in grassed waterways, and/or (ii) the model may partly compensate 539 

for an overestimation of erosion rates in the draining fields. However, although the model outputs are fully 540 

spatially distributed (Fig. 7a), it is not possible to compare the simulated patterns with spatially distributed 541 

observational data (e.g. aerial images, field surveys), because, except for some rare larger events, the effective 542 

soil conservation established prevents visible erosion features like rills.  543 

In our study, WaTEM/SEDEM showed no sensitivity to parameters bdep and pcon that represent the influence of 544 

linear landscape features. These parameters displayed homogenous likelihood distributions across the sampled 545 

parameter space (Fig. 6b-c). This lack of sensitivity could stem from several factors: (i) sampling an overly narrow 546 

parameter space, (ii) limited influence of field borders in the studied watersheds due to the layout of the fields 547 

and watersheds with a small number of border situations, and/or (iii) a dominance of kTC/G implemented over a 548 

long grass structure, which may nullify the influence of bdep and pcon in the model outputs, especially in watershed 549 

W05 and W06. 550 

An additional limitation of the current parameterisation approach is its static nature. The effectiveness of grassed 551 

waterways and retention structures varies throughout the year due to seasonal vegetation changes (Fiener and 552 

Auerswald, 2003). Additionally, there is an important interaction between sediment influx and trapping 553 

efficiency—as influx increases, the relative trapping efficiency typically decreases (Dermisis et al., 2010; Fiener 554 

and Auerswald, 2018). Dermisis et al. (2010) demonstrated this inverse relationship, showing that grassed 555 

waterway trapping efficiency decreases as peak runoff discharge increases, with notable breakpoints in efficiency 556 

between different flow rates. The current static connectivity and transport capacity parameters (pcon, bdep and 557 

kTC/G) cannot adequately capture these temporal variations and flux-dependent relationships, suggesting the need 558 

for a more dynamic parameterisation approach that accounts for both seasonal changes and influx response. 559 

5. Conclusion 560 

We evaluated WaTEM/SEDEM's capability to simulate sediment yields in micro-scale watersheds under optimised 561 

soil conservation practices using a limits-of-acceptability approach within the GLUE framework. Our investigation 562 

examined model performance across different levels of spatiotemporal data aggregation and analysed the 563 

sensitivity of the model's response surface to the variability in the behavioural parameter space. Moreover, we 564 

used a two-step conditioning process, in which model parameters linked to in-field erosion processes were 565 

conditioned in field-dominated watersheds and later applied in structure-dominated watersheds, for which a 566 

separate set of connectivity parameters was also conditioned. 567 

The model was unable to produce behavioural realisations at annual timesteps based on our strict limits of 568 

acceptability criterion despite the small absolute prediction errors (eight-year MAE = 0.12 t ha⁻¹ yr⁻¹ for field-569 

dominated and eight-year MAE = 0.16 t ha⁻¹ yr⁻¹ for structure-dominated watersheds). For the field-dominated 570 

watersheds, the model particularly struggled with the simulation of annual sediment yields when individual 571 

extreme events dominated the annual sediment production. 572 
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Aggregating model outputs in time and space worked best for field-dominated systems, which compensated for 573 

the underestimation of soil conservation in controlling soil erosion and the model's inability to capture extreme 574 

events within an annual time step. This finding confirms that WaTEM/SEDEM is better suited for long-term 575 

conservation planning than for making precise annual sediment yield predictions in areas with soil conservation 576 

practices. 577 

The GLUE framework revealed specific patterns in the sampled parameter space, particularly the compensation 578 

mechanism between kTC/A and esur values for field-dominated watersheds, and the narrow behavioural parameter 579 

range of kTC/G values (7.5-15 m) for structure-dominated watersheds. The likelihood distributions of kTC/A and 580 

especially esur enabled the pre-conditioning of structure-dominated watersheds, reducing parameter 581 

compensation effects that typically mask model structural deficiencies.  582 

Ultimately, our study demonstrates that WaTEM/SEDEM can simulate the very low sediment yields observed 583 

from soil conservation agricultural systems, provided that high spatiotemporal resolution input data and locally 584 

adapted USLE factors (e.g., the ABAG for Southern Germany) are available. However, capturing the effects of 585 

linear landscape features like grassed waterways where concentrated runoff occurs remains challenging for 586 

WaTEM/SEDEM, primarily due to the model's inability to represent re-infiltrating processes that are critical for 587 

sediment trapping in such structures. Additionally, our model evaluation approach revealed that model 588 

performance strongly depends on the spatiotemporal scale of analysis. While the model produced behavioural 589 

realisations for the aggregated eight-year monitoring period, it did not reliably simulate annual sediment yields.  590 

For long-term, large-scale soil conservation planning in which the effects of single erosive events on individual 591 

fields are less relevant for representing the system behaviour, WaTEM/SEDEM is fit for purpose. 592 
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