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Referee #2 

Comment B1 

This manuscript presents a new implementation of a dynamic grassland density scheme 
within the ORCHIDEE land surface model. The proposed approach allows grass density to 

vary in response to physiological carbon reserves, enabling a more flexible and ecologically 

realistic representation of vegetation cover, particularly under semi-arid conditions. The 
overall scheme is well justified. The authors evaluate this scheme using multiple lines of 

evidence, including relationships between precipitation and grass density, frequency of 
grassland mortality events, and comparisons with satellite-derived LAI products. The 

proposed dynamic density scheme effectively mitigates key limitations of the original model 

in simulating grassland dynamics under semi-arid conditions, thereby offering substantial 
value for model development and holding considerable potential for broader scientific 

impact. The manuscript is well written. However, the current version of the manuscript 

requires some improvements in the rigor and comprehensiveness of the model evaluation. 

Response 

We thank the reviewer for the positive assessment of our work and for the constructive 
feedback regarding the need to enhance the rigor and comprehensiveness of the model 

evaluation. We appreciate the constructive criticism as it will strengthen this aspect of the 
manuscript. In the revised version, we have carefully addressed this point, as detailed in our 

point-by-point responses below. 

Comment B2 

(1) The evaluation relies primarily on indirect indicators (e.g., LAI, mortality frequency) 

without sufficient direct evidence that the model accurately reproduces observed spatial 
patterns of grass density or vegetation coverage. Comparison against datasets such as 

vegetation coverage (e.g., vegetation fractional coverage data) may provide insights in the 

model improvements? 

Response 

We thank the reviewer for this constructive suggestion. As recommended, we sought a direct 
comparison against a fractional vegetation cover dataset to test for the model’s ability to 

represent spatial patterns. 

Following this recommendation, we have performed a rigorous evaluation for the simulated 
fractional vegetation cover (FVC) against the Copernicus Land Monitoring Service FCOVER 

dataset (Copernicus Land Monitoring Service, 2020). We selected the year 2004 for this 
comparison, as it matches the static global land cover map used throughout this study. The 

FCOVER product (originally at ~0.003° resolution) was regridded to our model’s 2°×2° 

resolution. To ensure a fair comparison, we: 

1. Calculated the corresponding fractional vegetation cover (FVC) specifically from the 

targeted grassland PFTs within ORCHIDEE using the equation: 

FVC= Dtemp C3×Vfra,temp C3+DC4×Vfra,C4+Dtrop C3×Vfra,trop C3  
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where Dtemp C3, DC4, and Dtrop C3 are the simulated grassland density (1.0 for the fixed density 
approach, 0.05–1.0 for our new dynamic density approach) and Vfra,temp C3, Vfra,C4, and Vfra,trop 

C3 are the fractional area of each grassland PFT (temperate C3, C4, tropical C3) in one grid 

cell. 

2. Applied a (semi-)arid region mask (based on Zomer et al., 2022) to focus the analysis on 
our target ecosystems where grasslands dominate and exclude the canopy cover from other 

vegetation as much as possible. 

The results of this direct comparison (Fig. S7) illustrated the improvements brought by the 

new dynamic approach. Regarding the spatial patterns, the spatial correlation (Pearson’s r) 

between the model and the FCOVER dataset increased from a r=0.11 with the old approach 
to r=0.24 with our new (dynamic) approach. The new approach also achieved a lower RMSE 

(0.22) compared to the old approach (0.26). 

This improvement was obvious over the western United States, Asia, southern Africa, and 

Australia (Fig. S7), where the new dynamic scheme simulated a lower and more realistic 

FVC, in closer agreement with the dataset, compared to the fixed density approach. 
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Figure S7. Fraction of vegetation cover from FCOVER product (a), simulations with fixed density approach (b) and 

dynamic density approach (c) in 2004. 

It should be noted that two main caveats apply to this comparison, which can explain the 
remaining deviation from observations: (1) In (semi-)arid regions, the FCOVER product 

includes all green vegetation (e.g., shrubs, crops), whereas our calculation here includes only 
the grassland PFTs that we improved. (2) The current model version does not yet account for 

disturbances like grazing or fire (Chang et al., 2016; Chang et al., 2021), which are known to 

reduce FVC and are implicitly included in the satellite observations. 
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However, the fact that our new approach achieved a clear relative improvement: the spatial 
correlation (Pearson’s r) with the FCOVER data increased from 0.11 (with the old approach) 

to 0.24 (with our new dynamic approach), alongside a 15% reduction in RMSE, despite these 
known model and data differences. It thus provides the evidence that our new dynamic 

density scheme is a substantial step toward greater ecological realism. 

The corresponding revisions regarding the direct comparison of FVC were implemented in 

the Methods (lines 204–216): 

“Furthermore, the simulated fractional vegetation cover was compared against the 
Copernicus Land Monitoring Service FCOVER product (Copernicus Land Monitoring 

Service, 2020). We selected the year 2004 for this comparison, as it matches the static global 

land cover map used throughout this study. The FCOVER product (originally at ~0.003° 
resolution) was regridded to our model’s 2°×2° resolution using RemapCon (Jones, 1998; 

Goudiaby et al., 2024) in the Climate Data Operators library for Linux. To ensure a fair 
comparison, we calculated the corresponding fractional vegetation cover (FVC) specifically 

from the targeted grassland PFTs within ORCHIDEE using the equation: 

FVC= Dtemp C3×Vfra,temp C3+DC4×Vfra,C4+Dtrop C3×Vfra,trop C3                                                            (6)                                                                                       

where Dtemp C3, DC4, and Dtrop C3 are the simulated grassland density (1.0 for the fixed density 
approach, 0.05–1.0 for our new dynamic density approach) and Vfra,temp C3, Vfra,C4, and Vfra,trop 

C3 are the fractional area of each grassland PFT (temperate C3, C4, tropical C3) within one 

grid cell. 

Given that this study aims to improve grassland density simulation, the comparison of FVC 

focused specifically on grasslands. To isolate the target ecosystems where grasslands 
dominate and exclude the canopy cover from other vegetation as much as possible, we 

applied a (semi-)arid region mask based on the aridity index map by Zomer et al. (2022).” 

Results (lines 376–383): 

“The dynamic density approach was further evaluated against a comparison of FVC with a 

global satellite-based FCOVER product (Copernicus Land Monitoring Service, 2020) (Fig. 
S7). The spatial correlation (Pearson’s r) between the model and the FCOVER data increased 

from r = 0.11 with the fixed density approach to r = 0.24 with the dynamic density approach. 
The dynamic density approach also exhibited a lower RMSE (0.22) compared to the fixed 

density approach (0.26). This improvement was particularly evident in western United States, 
Asia, southern Africa, and Australia, where the dynamic scheme simulated a lower and more 

realistic FVC (Fig. S7c), in better agreement with the FCOVER dataset, compared to the 

fixed density approach (Fig. S7b). Such regional-scale improvement is consistent with the 
findings from the regional field-based comparisons.” 

Discussion (lines 530–537): 

“As shown in the results (Sect. 3.2), the direct FVC comparison against the FCOVER satellite 

product (Copernicus Land Monitoring Service, 2020) also supported the new dynamic 

approach, which improved both spatial correlation (r) and RMSE. There are two main caveats 
in this comparison, which likely explain the deviation from observations: (1) In (semi-)arid 

regions, the FCOVER product includes all green vegetation (e.g., shrubs, crops), whereas our 
calculation was focused only on the grassland PFTs we improved. (2) The current model does 

not yet account for key disturbances like grazing or fire, which are known to affect FVC and 
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are implicitly included in the satellite observations (Chang et al., 2016; Chang et al., 2021). 
Nevertheless, the fact that our new scheme showed a clear improvement despite these known 

mismatches underscores the robustness of the new dynamic density approach.” 

In addition, to further enhance the rigor and comprehensiveness of our evaluation, we have 

also added five new regional case studies comparing the model against field-based 

observations, covering diverse ecosystems, including a temperate European grassland 
(France), the Eurasian steppes (Mongolia), a North American meadow (USA), a Sahelian 

rangeland (Senegal), and a semi-arid grass–shrub community (Australia). 

Although the metrics from the field-based observation are not identical to the grassland 

density defined in our study, to mitigate this gap, we have selected the five case studies 

(Booth et al., 2005; Dusseux et al., 2014; John et al., 2018; Melville et al., 2019; Diatta et al., 
2023) that provide metrics conceptually similar to our definition of density: the fractional 

area occupied by conceptual individuals. 

The results from this comparison are summarized in Table 1. The simulated annual mean 

grass densities show an overall good agreement with field observations, supporting the 

ecological realism of the model. For example, in France, observed value for grassland density 
range from 0.91 to 0.99, while the model simulated 0.95; similar consistency was found in 

the United States (0.68 observed vs 0.63 simulated) and Australia (0.10–0.60 observed vs 
0.15 and 0.50 simulated). In Senegal, the simulated value of 0.18 remains near the lower 

bound of the observed range (0.06 to 0.79). In Mongolia, the different steppe types (typical, 

meadow, and desert) represent plot-based locations. This presents a scale mismatch when 
comparing them to the coarse spatial resolution in ORCHIDEE, but the results are still in 

agreement. 

Details of this new evaluation and its rationale have been added (lines 183–197) to the new 

section “2.3 Model evaluation against regional field observations and global dataset” in 

Methods, as: 

“In order to directly assess the ecological realism of the simulated grassland density, we 

compared model outputs with field-based estimates from five published regional case studies. 

These studies span a range of grassland ecosystems: a temperate European grassland in 

France (Dusseux et al., 2014), the Eurasian steppe on the Mongolian Plateau (John et al., 

2018), a meadow in the USA (Booth et al., 2005), a Sahelian rangeland in Senegal (Diatta et 

al., 2023), and a grass-shrub community in Australia (Melville et al., 2019), as listed in Table 

1. 

We acknowledge that the metrics from field-based observation are not identical to the 

grassland density defined in our study. However, the five case studies provide metrics that are 

thought to be sufficiently similar to be compared to the metric in ORCHIDEE, i.e., the 

fractional area occupied by conceptual individuals (Fig. 1a–b). The case-studies provide the 

area-based geometric estimates—either by counting points classified as vegetation within 

quadrats (John et al., 2018; Diatta et al., 2023), along transects (Booth et al., 2005; Melville 

et al., 2019), or from downward-facing hemispherical photographs to estimate green 

vegetation cover (Dusseux et al., 2014). Detailed descriptions of each dataset, including 

observed and corresponding simulated values, measurement methods, and caveats of the 

selected methods, are provided in Table 1. The hemispherical photography method may be 
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influenced by plant height and leaf area (Dusseux et al., 2014); the effects of grazing were 

controlled by selecting fenced sites (Diatta et al., 2023); and the observational sites included 

not only grasses but also forbs and shrubs, although grasses were dominant (Melville et al., 

2019).” 

The full results interpretation has been added to the Results subsection in section “3.2 

Evaluation of simulated grassland density” (lines 366–375), as: 

“The simulated grassland density was compared against direct field-based estimates for five 

regional case studies (Table 1). Over temperate grassland in France, the simulated density of 
0.95 was within the observed range of 0.91 to 0.99 (Dusseux et al., 2014). This consistency 

extended to the Upper Beaver Meadows site in North America, with a simulated density of 
0.63 that approached the observed mean of 0.68 (Booth et al., 2005). For the desert steppe 

(with the cold desert climate) of the Mongolian Plateau, the simulated value of 0.27 was just 

outside the observed range of 0.10–0.26 (John et al., 2018). Furthermore, simulated average 
densities for typical steppes characterized by the semi-arid climate (0.40) and meadow 

steppes characterized by the subarctic climate (0.63) fell within their respective observed 
ranges of 0.34–0.50 and 0.45–0.78 (John et al., 2018). In the Sahelian fenced rangeland of 

Senegal, the simulated density of 0.18 was in the low range of the large observed range of 
0.06 to 0.79. Finally, for the mixed grass-shrub community in Australia, both the simulated 

C4 (0.15) and tropical C3 (0.50) grass densities were consistent with the field-based range of 

0.1 to 0.6 (Melville et al., 2019).” 

The discussion of strengths and limitations was included in the section “4.1 The 

implementation of dynamic grassland density” (lines 515–529), as: 

“The evaluation against five case studies (Table 1) gives confidence in the model’s ability to 
represent grassland density across different grass PFTs and locations. The close agreement at all 

the five sites suggests our model accurately captures the central tendency of grassland density. 
Despite these encouraging results, this evaluation should be interpreted with caution due to 

several key uncertainties. The primary challenge is the conceptual mismatch between our 
simulated “density” and the observational metrics. The mismatch was mitigated by selecting the 

closest available conceptual analogues (Sect. 2.3). However, the discrepancies cannot be fully 
eliminated. For example, in the Australian grass-shrub community (Melville et al., 2019), the 

field-based metric unavoidably includes shrubs, thus resulting in higher values compared to a 
pure grassland ecosystem. While the close agreement (Table 1) suggests the dynamic density 

approach captured the dominant grass trend, the shrublands in Australia might also be 
misclassified as grasslands in the PFT maps in ORCHIDEE, which woul d lead to our model 
simulating grasslands in the shrub-contaminated areas. This alignment may therefore stem partly 

from this PFT misclassification. In addition, the scale mismatch between plot-level field data and 
the model’s coarse grid-cell resolution is another source of uncertainty, particularly in 

heterogeneous landscapes like the Mongolian Plateau. Despite this spatial discrepancy, the result 
that our simulated value range aligned with the observed range suggests the new approach 

captures the ecological gradient across different steppes: with higher values in meadow steppe, 
medium values in typical steppe, and lower values in desert steppe (Booth et al., 2005; Dusseux 

et al., 2014; John et al., 2018; Melville et al., 2019; Diatta et al., 2023).” 

Below is the new Table 1 added in the manuscript: 

Table 1. Evaluation of simulated grassland density from ORCHIDEE against field-based estimates from various grassland 

sites (all values in m2 m-2). 
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Site/Region Observed Value Simulated Value Observational Method and Caveats Model Value Extraction 

Yar 

Watershed, 

France 

0.91–0.99 0.95 Fraction of vegetation cover from 

downward-facing hemispherical 

photographs taken approximately 1 m 
above the canopy (Dusseux et al., 2014). 

Caveat: The observed value is affected 

by plant height and leaf area, which 

might influence the consistency with 
grassland density.  

Temperate C3 grassland density 

extracted at 3° W, 47° N. 

Mongolian 

Plateau 
(meadow 

steppe) 

0.45–0.78 0.63±0.35 Canopy cover from grid-square 

counting, measured by counting the 
number of 10×10 grid mesh filled with 

vegetation within a 0.5×0.5m quadrat 

(John et al., 2018). 

Temperate C3 grassland density 

extracted for each steppe type. 
See Note* for coordinates. 

Mongolian 
Plateau 

(typical 

steppe) 

0.34–0.5 0.40±0.24 

Mongolian 
Plateau 

(desert 

steppe) 

0.1–0.26 0.27±0.06 

The Upper 

Beaver 

Meadows, 
USA 

0.68 (0.52–0.86) 0.63 Green cover from point-intercept 

transects, classifying a functional group 

(green vegetation or bare ground) at 
points spaced every 30 cm along two 

parallel 50-meter transects (for a total of 

166 points per transect) by a two-

member crew (Booth et al., 2005). 

Temperate C3 grassland density 

extracted at 105° W, 39° N. 

Ferlo, 

Senegal 

0.06–0.79 0.18 Visual estimation of vegetation 

coverage in 1 m2 quadrats. Selected the 

ungrazed, fenced site (Diatta et al., 
2023). 

Caveat: Data is from a fenced, ungrazed 

site to exclude grazing effects. 

The C4 grassland density 

extracted at 15° W, 15° N. 

Fowlers 

Gap, 

Australia 

0.1–0.6 0.15 (C4); 

0.50 (tropical C3) 

Photosynthetic vegetation fraction from 

star transects, by recording every meter 

along three 100-meter tapes laid out in a 

star pattern (Melville et al., 2019). 

Caveat: The field site is a mixed 

community of grasses, forbs and shrubs, 

not pure grassland. 

The C4 and tropical C3 grassland 

densities extracted at 141° E, 

31° S. 

*Note: According to Figure 1 in John et al. (2018), we delineated three types of steppe on the Mongolian Plateau in 

ORCHIDEE: 97° E–103° E, 45° N–47° N in the meadow steppe, excluding other steppe types within this rectangle; 111° E–

117° E, 39°N–47°N in the typical steppe, excluding forest meadow and meadow steppe within this range; 89°E–111°E, 39°N–

45°N in the desert steppe, excluding desert and typical steppe areas. 

 

References: 

Booth, D. T., Cox, S. E., Fifield, C., et al.: Image analysis compared with other methods for 

measuring ground cover, Arid Land Res. Manag., 19, 91–100, 

https://doi.org/10.1080/15324980590916486, 2005. 

Chang, J., Ciais, P., Gasser, T., et al.: Climate warming from managed grasslands cancels the 

cooling effect of carbon sinks in sparsely grazed and natural grasslands, Nat. Commun., 12, 

118, https://doi.org/10.1038/s41467-020-20406-7, 2021. 

Chang, J., Ciais, P., Herrero, M., et al.: Combining livestock production information in a 
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(raster 300 m), global, 10-daily–version 1. Copernicus Land Monitoring Service [Data set]. 

https://doi.org/10.2909/09578c73-4f5d-4d2c-90ff-4e17fb7dbf69, 2020 (last access: 

01/11/2025). 
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Dusseux, P., Vertès, F., Corpetti, T., et al.: Agricultural practices in grasslands detected by 
spatial remote sensing, Environ. Monit. Assess., 186, 8249–8265, 

https://doi.org/10.1007/s10661-014-4001-5, 2014. 

John, R., Chen, J., Giannico, V., et al.: Grassland canopy cover and aboveground biomass in 
Mongolia and Inner Mongolia: Spatiotemporal estimates and controlling factors, Remote 

Sens. Environ., 213, 34-48, https://dx.doi.org/10.1016/j.rse.2018.05.002, 2018. 

Melville, B., Fisher, A., and Lucieer, A.: Ultra-high spatial resolution fractional vegetation 

cover from unmanned aerial multispectral imagery, Int. J. Appl. Earth Obs. Geoinf., 78, 14–

24, https://doi.org/10.1016/j.jag.2019.01.013, 2019. 

Zomer, R. J., Xu, J., and Trabucco, A.: Version 3 of the Global Aridity Index and Potential 
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2022. 

Comment B3 

(2) The simulated LAI was compared with MODIS and Sentinel-2 LAI. However, it does not 
convincingly show how the dynamic density scheme improves the LAI simulation. The 

differences in LAI between the dynamic and fixed approaches are illustrated (e.g., Fig. 8), 
while there is little quantitative assessment of the improvement. The figures do not clearly 

highlight regions where the new scheme reduces model–data mismatches. Without clearer 

metrics or spatial diagnostics, the added value of the new scheme remains ambiguous. 
Furthermore, it is not clear whether the seasonality of LAI is improved due to the new 

scheme. 

Response 

We thank the reviewer for this critical and constructive feedback. We agree that a 

comprehensive and clear quantitative assessment of LAI is essential to demonstrate the added 
value of the new scheme. We have conducted a new, three-part quantitative analysis 

specifically designed to evaluate the improvements in LAI simulation against MODIS 
dataset. To more accurately assess the model’s improvement in critical areas, all subsequent 

analyses applied a mask for (semi-)arid regions based on the aridity index map (Zomer et al., 

2022). This allows us to focus on the scheme’s performance in these key water-stressed 

environments. 

First, we conducted a global-scale comparison of the mean annual grassland LAI simulated 
from both the old (fixed density) and new (dynamic density) approaches against the MODIS 

dataset. The statistics confirm a consistent, albeit modest, improvement with the new scheme: 

the Pearson’s correlation (r) increased from 0.51 to 0.56, and the RMSE decreased from 0.60 
to 0.59. This demonstrates a statistically better performance for the new approach at the 

global scale. 

https://doi.org/10.2909/09578c73-4f5d-4d2c-90ff-4e17fb7dbf69
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Regarding spatial diagnostics, we focused on the four representative semi-arid regions: 
Australia, southern Africa, Central Asia, and South America (Fig. S11a). These sites were 

chosen as they represent the large contiguous grassland ecosystems within the semi-arid 
domain on their respective continents. We found that the new dynamic scheme shows clear 

and consistent advantages in capturing the spatial patterns of LAI. Compared to the MODIS 

dataset, the coefficient of determination (R2) increased or remained unchanged in all four 
regions with the new approach (Fig. S11b–e, Table 2). The RMSE decreased in three of the 

four regions (Australia, Central Asia, and southern Africa). 

Finally, we assessed the model’s ability to simulate the mean seasonal cycle. The 

improvement is most dramatic in southern Africa (Fig. S12b). The old approach failed to 

capture the dry-season LAI minimum (August–October), whereas the new approach mitigates 
this major bias. The new dynamic density approach increased the seasonal correlation (r) with 

MODIS from 0.77 to 0.93, compared to the fixed density approach. However, seasonality in 
Australia (Fig. S12a) and South America (Fig. S12d) did not show improvements (Table 2). 

This suggests that other factors (e.g., processes not yet included or parameters needing 

optimization) may be dominant drivers of LAI seasonality in those specific regions, which 

helps identify clear pathways for future model development. 

In summary, this quantitative assessment confirms the value of the dynamic scheme while 
also illuminating its limitations. The scheme’s strengths are the clear, measurable 

improvements in global and regional spatial patterns of LAI (Fig. S11, Table 2), and the 

pronounced improvement in seasonal dynamics in key regions like Southern Africa (Fig. 
S12). Its limitations are that the global-scale improvements were modest, and the seasonal 

improvements were not equally significant in all regions (e.g., Australia, South America). It 
thus serves a crucial diagnostic purpose: it validates the new approach’s effectiveness while 

simultaneously helping us target other key phenological processes and specific regions for 

further improvement. These new analyses have been added to the revised manuscript in the 

Results (lines 473–484): 

“To refine the LAI analysis, a mask was applied to (semi-)arid regions identified by Zomer et 
al. (2022), focusing on water-stressed environments. Globally, compared with the MODIS 

dataset (Fig. 8a), the Pearson correlation coefficient (r) increased from 0.51 to 0.56, and the 

RMSE decreased from 0.60 to 0.59 when transitioning from the fixed density to the dynamic 
density approach. Spatially, statistical analysis was conducted for the four representative 

semi-arid regions: Australia, southern Africa, Central Asia, and South America (Fig. S11a), 
which were chosen as they represent the large contiguous grassland ecosystems within the 

semi-arid domain on their respective continents. In all four regions, the coefficient of 

determination (R2) improved or remained unchanged under the dynamic density approach 
(Fig. S11b–e, Table 2), while RMSE decreased in three regions (Australia, Central Asia, and 

southern Africa). Moreover, the dynamic density approach enhanced the seasonal dynamics 
in southern Africa (Fig. S12b, Table 2), successfully capturing the dry-season LAI minimum 

(August–October) that the fixed density approach failed to reproduce. The new dynamic 

density approach increased the seasonal correlation (r) with MODIS from 0.77 to 0.93, 
compared to the fixed density approach. In contrast, seasonality in Australia (Fig. S12a) and 

South America (Fig. S12d) did not show improvements (Table 2).” 

Discussion (lines 652–657): 
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“The global and regional quantitative assessment against the MODIS dataset demonstrates 
that the dynamic density approach yields consistent, albeit modest improvements in grassland 

LAI (Figs. S11, S12). However, this analysis also reveals that the overall global improvement 
is minor, and that the issue of LAI seasonality persists. It is important to note that LAI 

seasonality is driven by the phenology subroutine in ORCHIDEE, which was not modified by 

our new dynamic density approach. Improving this phenology remains a separate, long-
standing challenge in Earth System Models. This underlying issue is relevant, though, as 

these persistent phenological issues likely contribute to the remaining mortality events in our 
simulations.” 

The newly added Table 2, Figure S11 and Figure S12 are shown below. 

Table 2. Statistical comparison of simulated grassland LAI (from this study) against MODIS LAI across four regions: 
Australia, southern Africa, Central Asia, and South America. Statistics include the coefficient of determination (R2) and 

RMSE for mean annual LAI, and Pearson’s r and RMSE for LAI seasonality.  

Mean annual grasslands LAI 

Regions R2 RMSE 

 Fixed density 

approach 

Dynamic density approach Fixed density 

approach 

Dynamic density 

approach 

Australia 0.58 0.72 0.39 0.36 

Southern 

Africa 

0.13 0.21 0.58 0.55 

Central Asia 0.38 0.40 0.28 0.27 

South America 0.45 0.45 0.79 0.81 

LAI seasonality 

Regions r RMSE 

 Fixed density 

approach 

Dynamic density approach Fixed density 

approach 

Dynamic density 

approach 

Australia -0.60 -0.67 0.47 0.54 

Southern 
Africa 

0.77 0.93 0.14 0.14 

Central Asia 0.30 0.31 0.62 0.62 

South America 0.62 0.60 0.63 0.67 
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Figure S11. Comparison of simulated mean annual LAI from the fixed density and dynamic density approaches against 

MODIS LAI. (a) Global map of the mean annual LAI difference (Dynamic density approach − Fixed density approach). Purple 

boxes highlight the four representative regions: (b) Australia (113° E–155° E, 45° S–11° S), (c) southern Africa (13° E–35° E, 
23° S–15° S), (d) Central Asia (41° E–119° E, 33° N–55° N), and (e) South America (75° W–45° W, 55° S–15° S). (b–e) 

Scatter plots comparing modelled LAI (ORCHIDEE) against observed LAI (MODIS) for each region. Red points and text 

correspond to the fixed density approach, while blue points and text correspond to the dynamic density approach. Statistical 
metrics (R2, RMSE, and sample size n) are shown for each approach. The dashed black line is the 1:1 line. All values represent 

mean annual averages for the 2004–2020 period. The analysis for (b-e) was restricted to semi-arid and arid regions (based on 

the aridity index from Zomer et al., 2022) to ensure the comparison focused on grassland-dominated ecosystems. Both the 

“Observed LAI (MODIS)” (x-axis) and the “Modeled LAI (ORCHIDEE)” (y-axis) represent grassland LAI. 
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Figure S12. Average seasonal cycle of LAI, comparing MODIS observations with simulations from the fixed density (red 
line) and dynamic density (blue line) approaches. The comparison is shown for four representative regions: (a) Australia, (b) 

southern Africa, (c) Central Asia, and (d) South America. All data represent the mean monthly values, averaged over the 

2004–2020 period. The analysis was restricted to semi-arid and arid regions (based on the aridity index from Zomer et al., 
2022) to ensure the comparison focused on grassland-dominated ecosystems, where both MODIS and simulated LAI 

represent grassland LAI. Statistical metrics (Pearson’s r and RMSE) for each approach against MODIS are shown in the 

corresponding colours.  

References: 

Zomer, R. J., Xu, J., and Trabucco, A.: Version 3 of the Global Aridity Index and Potential 

Evapotranspiration Database, Sci. Data, 9, 409, https://doi.org/10.1038/s41597-022-01493-1, 

2022. 

Comment B4 

Minor remarks: 

Figure 2 is unnecessary. The processes are quite simple and can be well understand with text 

only. 

Response 

Thank you for this comment. We agree that Figure 2 is unnecessary, accordingly, and we 

have removed this figure in the revised manuscript. 

 


