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Abstract. Landfills are a major anthropogenic source of methane (CH4), contributing up to 20% 10 

of global CH4 emissions. Although CH4 emissions from landfills are highly sensitive to 11 

meteorological conditions, their response to climate variations remains poorly understood, 12 

leading to substantial uncertainty in emission projections under climate change. This study 13 

evaluated the impact of meteorological factors on landfill CH4 generation, using a site-specific 14 

machine-learning-based model optimized for temperature and precipitation. The model 15 

optimized for meteorological conditions performed better than conventional models such as 16 

LandGEM and the IPCC model, with a root mean squared error (RMSE) of 6.57 million m3 17 

CH4, a mean absolute error (MAE) of 4.91 million m3 CH4, and Pearson correlation coefficients 18 

of 0.89, when compared with field measurements. CH4 generation exhibited a linear correlation 19 

with increasing temperature, and a parabolic response to increasing precipitation. 20 

Quantification of the contributions of the meteorological variables, revealed that temperature 21 

accounted for 5.96±3.06 %, and precipitation for 7.38±0.58 % of the total modeled CH4 22 

generation. These results highlight the high importance of incorporating meteorological 23 

variability into landfill CH4 estimation to improve predictive accuracy, and emphasize the need 24 

of stronger and faster CH4 mitigation efforts under climate change. 25 
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1. Introduction1 

Methane (CH4) is a major greenhouse gas (GHG) emitted into the atmosphere from 2 

various natural and anthropogenic sources (Saunois et al., 2024). CH4 has a high global 3 

warming potential (GWP), 28 times greater than that of carbon dioxide (CO2) over a 100-year 4 

period (Myhre et al., 2013). It accounts for approximately 16 % of anthropogenic GHG 5 

emissions (US-EPA, 2012), and has contributed to approximately 30 % of to global warming 6 

since the Industrial Revolution (IEA, 2022; Masson-Delmotte et al., 2021). Owing to its 7 

relatively short atmospheric lifetime (approximately 9–12 years) (IPOC Change, 2007; Prather 8 

et al., 2012) and strong GWP, reducing anthropogenic CH4 emissions is one of the most 9 

effective strategies for mitigating climate change (Montzka et al., 2011). Consequently, the 10 

number of countries participating in the Global Methane Pledge has increased from about 100 11 

to 159, with all committing to a 30 % reduction in CH4 emissions from 2020 levels by 2030 12 

(European Commission and United States of America, 2021). To achieve this goal, it is 13 

essential that a considerable number of countries accurately monitor, estimate and verify their 14 

CH4 emissions. 15 

Approximately 60 % of global CH4 emissions originate from anthropogenic sources, 16 

including natural gas facilities, agriculture and waste management (Saunois et al., 2024). Of 17 

these, landfills represent a significant source, accounting for approximately 19 % of 18 

anthropogenic CH4 emissions, making them the third-largest source after agriculture and the 19 

fossil fuel sector (Saunois et al., 2024). Moreover, rapid population growth, industrialization, 20 

and urbanization have led to the accumulation of large amounts of waste in landfills, and the 21 

contribution is even greater at the urban scale (Kumar et al., 2016). For example, in certain 22 

megacities, including Buenos Aires and Seoul, the contribution of landfills to total CH4 23 

emissions is up to 50 % (Maasakkers et al., 2022; SCNSC, 2024), which is as high as the CH4 24 

emissions from the oil and gas industry (Wang et al., 2024). Furthermore, it has been estimated 25 

that future CH4 emissions from landfills in urban areas will increase considerably due to 26 

ongoing waste generation, rapid urbanization, and population growth (Kaza et al., 2018). 27 

Landfill gas (LFG) is generated via the anaerobic decomposition of organic waste by 28 

microorganisms (Kim & Townsend, 2012; Themelis & Ulloa, 2007). The produced LFG 29 

typically contains 40–60 % CH4, which is used as an energy source or burned in flares 30 
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(Tchobanoglous et al., 1993; Themelis & Ulloa, 2007). However, some gases escape into the 1 

atmosphere through soil pores, contributing CH4 emissions (Fjelsted et al., 2020). Owing to 2 

the low efficiency of LFG collection systems, as well as inadequate landfill site management, 3 

an estimated 12.4 % to 74.1 % of CH4 emissions can be released into the atmosphere (Bian et 4 

al., 2021). Even after landfill closure, the decomposition process continues until the major 5 

organic materials are completely degraded (Mønster et al., 2019). Therefore, an accurate 6 

estimation of LFG generation, collection efficiency, and fugitive CH4 emissions is required for 7 

effective landfill management and GHG regulation (Amini et al., 2013). 8 

Various measurement methods have been used to quantify landfill CH4 emissions, 9 

including the flux chamber method (Jeong et al., 2019; Reinhart et al., 1992; Yilmaz et al., 10 

2021), differential absorption light detection and ranging (LiDAR/DIAL) (Innocenti et al., 11 

2017; Robinson et al., 2011), unmanned aerial vehicles (UAVs/drones) (Daugėla et al., 2020; 12 

Kim et al., 2021), airborne (Cusworth et al., 2024) and satellite technologies (Maasakkers et 13 

al., 2022; Nesser et al., 2023). These methods have been shown to directly measure CH4 14 

emissions from landfills, thereby providing more accurate estimates through measurement-15 

based quantification (Mønster et al., 2019). Recent studies have demonstrated significant 16 

improvements in the quantification of CH4 emissions by using observation-based methods 17 

(Fosco et al., 2024; Tyagi et al., 2025). For example, satellite observations have identified 18 

substantial CH4 emission hotspots at major landfill sites worldwide, contributing to more 19 

comprehensive emission assessments (Maasakkers et al., 2022). Furthermore, the use of 20 

multiple field measurement techniques has proven beneficial, as each method complements 21 

another (Cambaliza et al., 2017). However, accessibility limitations, labor requirements, and 22 

financial constraints make the continuous monitoring of landfill measurements difficult (Kormi 23 

et al., 2018; Mønster et al., 2019). 24 

To address this measurement difficulty, numerous studies have been conducted on 25 

numerical models for estimating CH4 generation. First-order decay (FOD) models have been 26 

developed to estimate LFG and CH4 generated in landfills. These models assume that the 27 

degradable organic matter in waste decays at a slow rate over a few decades. Because of their 28 

easy applicability and user-friendliness, FOD models, including the Intergovernmental Panel 29 

on Climate Change (IPCC) Waste Model, Landfill Gas Emission Model (LandGEM), and 30 

Capturing Landfill Emissions for Energy Needs (CLEEN) models, are the most widely adopted 31 
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(Vu et al., 2017). The IPCC guidelines proposed an IPCC waste model, based on FOD, to 1 

support countries in estimating landfill CH4 emissions. The model’s individual values for the 2 

CH4 generation potential and CH4 generation rate constants are derived from the degradable 3 

organic carbon contained in various waste fractions (Eggleston et al., 2006). The LandGEM 4 

model was developed by the United States Environmental Protection Agency for the estimation 5 

of landfill emissions and is typically applied to the amount of municipal solid waste (MSW), 6 

compositions, and treatment methods. The LandGEM provides an estimation of the evolution 7 

of cumulative LFG emissions over time (Alexander et al., 2005). Meanwhile, the CLEEN 8 

model is an experiment-based model that estimates CH4 generation based on the composition 9 

of waste, the ambient temperature, and landfill precipitation in the landfill. Based on the 10 

microbial degradation reaction observed in a municipal waste experiment, the CLEEN model 11 

proposes an equation that links the rate of waste decomposition in landfills to meteorological 12 

conditions (Karanjekar et al., 2015).  13 

Although previous models have been useful for estimating landfill CH4 emissions, they 14 

are insufficient for predicting future CH4 emissions under changing climate conditions. As 15 

climate change is expected to intensify landfill CH4 emissions, accurately estimating and 16 

quantifying meteorological impacts on CH4 generation is crucial (Fei et al., 2021). However, 17 

the IPCC and LandGEM models are too simplified to consider the climate impacts of landfills 18 

by using default CH4 generation rate constants (k) based on climate zones (Alexander et al., 19 

2005; Eggleston et al., 2006). In contrast, the CLEEN model simulates field measurements 20 

with greater accuracy than those of the LandGEM and IPCC models, owing to its incorporated 21 

temperature and precipitation values in estimations. However, further calibration of these 22 

parameters is required before it can be applied to other regions (Karanjekar et al., 2015).  23 

In this study, we aimed to assess the impacts of meteorological conditions on landfill 24 

CH4 generation and their implications for future climate change projections. Existing models 25 

simplify the application of meteorological factors, thereby limiting their ability to fully reflect 26 

actual landfill emissions. To address this limitation, we propose a machine-learning-based 27 

methodology that optimizes the emission factor by using field measurement data from the 28 

Sudokwon Landfill Site, which is the largest landfill in the world. The optimized model is 29 

applied to quantify the effects of meteorological conditions on landfill CH4 emissions, identify 30 

site-specific features and suggest mitigation strategies. 31 

https://doi.org/10.5194/egusphere-2025-3369
Preprint. Discussion started: 15 September 2025
c© Author(s) 2025. CC BY 4.0 License.



5 

 

 1 

2. Methodology and Data 2 

2.1. Site description 3 

The study area was the SLS, the largest sanitary landfill located on the west coast of 4 

Incheon, Korea (Fig. 1). It is in a temperate climate zone with an average annual temperature 5 

and precipitation of 12.5°C (-18.2°C to 37.2°C) and 1219.7 mm (652 mm to 1777.7 mm), 6 

respectively, during 1991–2023. From February 1992, SLS received about 20,000 tons of solid 7 

waste daily generated by 5.3 million people in the Seoul metropolitan area, representing the 8 

largest amount globally (Owlcation, 2024). The SLS contains two separate closed landfill sites. 9 

The Table 1 provides an overview of these two sites. The first landfill site (SLS 1) received 10 

approximately 64.25 Mt of waste in an area of 2.5 km2 between February 1992 and October 11 

2000, while the second landfill site (SLS 2) received 80.18 Mt of waste in an area of 2.6 km2 12 

from October 2000 to October 2018.  13 

 14 

Fig. 1 The Sudokwon landfill site description. The background map is sourced from 15 

Google Maps © Google Maps 16 

 17 

  18 
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 1 

Table 1. Landfill operational conditions 2 

 3 

2.2. Data 4 

Data on the amount of waste deposited monthly from 1998 to 2021 were acquired from 5 

the Sudokwon Landfill Site Management Corporation (SLC) platform (https://dream-6 

ics.slc.or.kr/, last access: 1 July 2025). According to a long-term monitoring reports, the yearly 7 

composition of waste was examined and collected for the period from 1998 to 2021 (SLC, 8 

2023). The typical MSW composition, along with the mean values, in SLS 1 was: food (34.1±9 

2.8 %), paper (27±2.4 %), plastic (18.7±3 %), textile (4.7±0.4 %), and wood (1.4±0.4 %), 10 

while the composition in SLS 2 was: food (14.5±9.8 %), paper (40.2±7 %), plastic (26.1±11 

4.7 %), textile (5.0±1.1 %), and wood (1.2±0.6 %).  12 

The Biochemical Methane Potential (BMP) values were used to ascertain the CH4 13 

generation potential (L0) of the SLS. The BMP assay is a widely used method for predicting 14 

the CH4 generation rate and potential of MSW (Sil et al., 2014). SLS 1 had 40.2 m3 CH4 Mg-1, 15 

 SLS 1 SLS 2 

Operation Period February 1992–October 2000 October 2000–October 2018 

Landfilled area / Site 

area (m2) 
2,500,000 / 4,088,832 2,620,000 / 3,778,881 

Total waste (tons) 64,250,000 80,180,000 

Average waste intake 

(ton d-1) 
19,560 11,540 

Type of waste 

Combustible (91.3 %); 

food (34.1 %), paper (27 %), 

plastics (18.7 %), textile 

(4.7 %), yard (1.4 %) and 

Others (5.4 %) 

Combustible (93 %); 

food (11.8 %), paper 

(41.4 %), plastics (26.6 %), 

textile (5 %), yard (1.2 %) 

and Others (7 %) 
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median value of 33.7–46.7 m3 CH4 Mg-1 (Park et al., 2019), while SLS 2 had 47.5 m3 CH4 Mg-1 

1, with a median value of 37–58 m3 CH4 Mg-1 (Jeon et al., 2007). 2 

The field measurement data for CH4 generation were provided by the SLC (SLC, 2020; 3 

SLC, 2022). Observations were conducted on a seasonal basis from 2005 to 2021, along the 4 

major LFG emission path: gas recovery, gas flaring, and surface emissions (Fig. S1 and Fig. 5 

S2). The SLS operates an electricity generation plant that captures LFG with a 50-MW steam 6 

turbine, with an average daily collection rate of 501.5 m3 min-1. Some of the gas that was not 7 

injected into the power generation process was transported to a centralized combustion facility 8 

for flaring. The gas incinerator at SLS 1 has not been operational since its final 9 

decommissioning in 2004, and SLS 2 was operated for a short period between 2004 and 2007, 10 

after which it was restarted in 2011. The landfill surface emissions were quantified using the 11 

flux chamber method, which offers the advantages of accuracy, simplicity, and flexibility, 12 

compared to other measurement techniques (Reinhart et al., 1992). The measurements were 13 

conducted using the open-flux chamber method, with 39 measurement points at SLS 1 and 130 14 

measurement points at SLS 2. Quantification of oxidized CH4 is challenging because it is 15 

estimated based on stable carbon isotope ratios. Therefore, this model used the fraction of CH4 16 

oxidized at 10 %, which is the value recommended by the IPCC guidelines (Eggleston et al., 17 

2006).  18 

Meteorological data were obtained from the Korea Meteorological Administration 19 

(https://data.kma.go.kr/, last access: 1 July 2025). To align the temporal resolution of the 20 

weather data with the field measurement period, the monthly temperature and precipitation 21 

values were aggregated into three-month seasonal periods. Specifically, December–February 22 

was defined as winter, March–May as spring, June–August as summer, and September–23 

November as autumn. For each season, the average temperature and precipitation across the 24 

three months were used as representative seasonal values. This seasonal aggregation allowed 25 

for a consistent comparison with the CH4 emission measurements, which were available on a 26 

seasonal basis 27 

 28 

 2.3. Method used to estimate CH4 generation 29 
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The proposed landfill CH4 generation estimation model, CLEENopt, is a locally 1 

optimized model that reflects local landfill environments. The model is based on the FOD 2 

equation, which has two critical factors: L0 and k. L0 depends on the composition and 3 

degradable organic content of the waste, while k depends on the waste composition, waste 4 

particle size, temperature, moisture, and pH (Amini et al., 2012; Amini et al., 2013; Lay et al., 5 

1996; Machado et al., 2009; Tolaymat et al., 2010). The CLEENopt model calibrates the 6 

laboratory-based klab to reflect individual landfill characteristics, including field measurements 7 

and meteorological data. The flowchart in Fig. 2 describes the main steps used to implement 8 

the improved method for calculating landfill emissions. 9 

 10 

 11 

 12 

 13 

2.3.1. Estimating laboratory-based klab  14 

The CLEEN model is a FOD–based model that estimates CH4 generation by using the 15 

waste amount, waste composition, ambient temperature, and annual rainfall (Karanjekar et al., 16 

Fig. 2 The CLEENopt model flow chart 
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2015). According to a statistical experimental design, the model proposed a multiple linear 1 

regression equation relating temperature, precipitation, and waste composition to microbial 2 

waste decomposition, as shown in Eq. (1). 3 

 4 

𝐿𝑜𝑔10𝑘𝑙𝑎𝑏 =  𝑎 + 𝑏𝑅2 + 𝑐(𝑅 × 𝐹𝐷) + 𝑑𝑇 − 𝑒𝐹𝐷 + 𝑓𝑇𝑋 + 𝑔𝑌 (1) 5 

 6 

where klab is the laboratory-scale FOD constant (year-1), R is the average annual rainfall (mm 7 

d-1), T is the ambient temperature (K), TX is the proportion of textiles in the landfilled waste 8 

(%), Y is the proportion of yards in the landfilled waste (%), and FD is the proportion of food 9 

in the landfilled waste (%). The value of a is -3.02658, b is -0.0067282, c is 0.00172807, d is 10 

0.01046, e is -0.01152, f is 0.00418, and g is 0.00598. 11 

 To reflect the relationship between climatic conditions and microbial decomposition, 12 

the CLEENopt model uses the laboratory-based klab. However, the values obtained under 13 

idealized laboratory conditions are generally higher than those in actual landfill sites (Barlaz, 14 

2006; Ress et al., 1998). The CLEEN model presents a correction factor (F) to calibrate klab to 15 

the field k values based on the annual temperature and precipitation. However, the field 16 

measurement data has been used at selected landfills in the United States and Israel, and its 17 

applicability to landfills in other regions is limited. Therefore, we propose the CLEENopt model, 18 

which can be calibrated using landfill-specific field measurements. 19 

  20 

2.3.2. Estimating field-based kactual  21 

The CLEENopt model calibrates klab to kadj, using landfill field measurements. CH4 22 

generation was calculated as the sum of the recovered CH4 and CH4 surface emissions, as 23 

shown in Eq. (2) (Eggleston et al., 2006) 24 

𝐶𝐻4 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 =  𝐶𝐻4 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 +  
𝐶𝐻4 𝑒𝑚𝑖𝑡𝑡𝑒𝑑

𝐶𝐻4 𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑑
 (2) 25 

The amount of CH4 recovered was determined based on flow rate and CH4 26 

concentration data obtained from an LFG recovery system. Sanitary landfills are typically 27 
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equipped with vertical or horizontal wells that collect LFG, which is used as fuel to generate 1 

electricity or combusted and released as CO2. Uncaptured CH4 gas is oxidized to CO2 by soil 2 

microorganisms or emitted directly into the atmosphere through cracks and pores on the landfill 3 

surface. These pathways are referred to as CH4 oxidation and CH4 emission, respectively. 4 

Landfill surface emissions can be measured using various techniques, including remote 5 

methods (e.g., dynamic tracer gas dispersion, differential absorption Lidar [DiAL], and radial 6 

plume mapping) and surface-based methods such as flux chambers (Babilotte et al., 2010; 7 

Fjelsted et al., 2020; Mønster et al., 2019; US-EPA, 2006). In this study, CH4 surface emissions 8 

were quantified using the flux chamber method because of its high spatial resolution, which is 9 

suitable for site-scale monitoring. 10 

To estimate actual CH4 generation, we applied inverse modeling to derive kactual: by 11 

reversing the predictive process of the FOD equation (Eq. [3]). 12 

ln(𝑘𝑎𝑐𝑡𝑢𝑎𝑙) + 𝑘𝑎𝑐𝑡𝑢𝑎𝑙 = ln (
𝑄𝐶𝐻4

𝑀𝑖𝐿0
) (3) 13 

where kactual is the FOD constant that best fits the observed data, QCH4 is the CH4 generation 14 

estimated from field measurements, Mi is the amount of waste disposed of, and L0 is the 15 

methane generation potential. However, kactual can only be determined when field measurement 16 

data are available. For periods without field measurements, we introduced a scale-up factor, 17 

FRF, which calibrates the relationship between klab and kactual, accounting for laboratory-based 18 

microbial degradation and landfill environmental conditions. 19 

 20 

2.3.3. Improvement of factor k 21 

 We selected the random forest RF regression model to estimate the scale-up factors, 22 

FRF. RF provides high accuracy and strong generalization, as it does not assume linearity 23 

between the predictor and response variables and its insensitive to outliers. Additionally, RF is 24 

a non-parametric model, that is it does not estimate distributions based on parameters, allowing 25 

it to capture complex associations between parameters and observations (Breiman, 2001). 26 

Therefore, RF is used in the CLEENopt model to achieve a good performance across various 27 

applications.  28 
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 The establishment of a variable was based on the factors related to the landfill organic–1 

degradation environment. The dependent variable, FRF, indicates the calibrated laboratory–2 

based klab, used to reflect the field characteristics. The explanatory variables consisted of factors 3 

directly related to the landfill field environment. Precipitation and temperature represent the 4 

landfill meteorological conditions that affects microbial degradation. Waste amount is the 5 

amount of waste disposed that entered the landfill over time. Lifespan is the time elapsed from 6 

the start of landfilling to the time of the estimation, reflecting the time required for landfilled 7 

waste to decompose. L0 is the CH4 generation potential, which represents the amount of organic 8 

matter that can be decomposed per landfill. 9 

 The FRF derived from the trained RF model was applied in Eq. (4) to calculate kadj 10 

which reflects the specific landfill environment, as follows: 11 

  12 

𝑘𝑎𝑑𝑗 = 𝐹𝑅𝐹 × 𝑘𝑙𝑎𝑏 (4) 13 

 where FRF is the scale-up factor and klab was calculated using Eq. (1). klab can be used 14 

to calculate an optimized kadj, which reflects the field conditions of the landfill. 15 

 16 

 2.3.4. Estimation of CH4 generation 17 

The FOD equation used to estimate the CH4 generation in the CLEENopt model is as 18 

follows: 19 

𝑄𝐶𝐻4
=  ∑ ∑ 𝑘𝑎𝑑𝑗

𝑀𝑖

𝑎
𝐿0𝑒−𝑘𝑎𝑑𝑗𝑡𝑖𝑗

𝑎

𝑗=0

𝑛

𝑖=0

 (5) 20 

where QCH4 is the amount of CH4 generated (m3 y-1), Mi is the mass of MSW landfilled in 21 

year i within the landfill (Mg), kadj is the calibrated FOD constant (y-1), L0 is the potential CH4 22 

generation per waste (m3 Mg-1), n is the total number of landfilling years, a is 1/ath of the waste 23 

deposited in the year, tij is the age of the jth section of waste mass Mi in the ith year. 24 

To estimate CH4 generation according to the resolution of the field data, we propose 25 

dividing a year into a month and applying the formula. For example, monthly data can be 26 

calculated by applying 12 to a. Unlike the existing CLEEN model, this method uses the value 27 
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calibrated to the landfill by applying kadj by equation (4). 1 

L0 is one of the main factors in the FOD and is defined as the amount of CH4 that can 2 

be produced per unit mass of waste under ideal conditions for CH4 formation (Krause et al., 3 

2016). It can be estimated in various ways, using formulas such as those in the stoichiometric 4 

method, the IPCC method, or experiments such as the BMP test (Eggleston et al., 2006; Symons 5 

& Buswell, 1933). 6 

 7 

 2.3.5. Monte Carlo uncertainty 8 

In this study, the Monte Carlo Simulation method was used to evaluate the model 9 

uncertainty of the output values for each year. The Monte Carlo method is a sampling-based 10 

approach that uses random samples of input parameters to simulate the probabilities of random 11 

variables (Herrador & González, 2004; Kalos & Whitlock, 2009; Papadopoulos & Yeung, 12 

2001). The probability distribution function of the model uncertainty was obtained from 13 

randomly sampled input variables within a range of possible values. The detailed input 14 

variables (xi) and their distributions are summarized in Table S1. A random experiment was 15 

repeated according to the selected number of trials (M), and the output of the corresponding 16 

function (yM) was determined using the estimation model. To obtain a sufficiently precise 17 

sampling distribution, 1,000 random samples were utilized. The calculation for uncertainty is 18 

shown in Eq. S1 and Eq. S2. In addition, to obtain a conservative coverage probability for Y, 19 

which has a discrete distribution, a 95 % confidence interval was chosen (Fig. S3). 20 

 21 

2.4. Model evaluation 22 

 To evaluate the model performance, we compared the simulated seasonal landfill CH4 23 

generation with field measurements. Because seasonal chamber-based CH4 surface emission 24 

data were only available for the period from 2005 to 2021, the model outputs were assessed 25 

over this same period. Three performance metrics were used: the root mean square error 26 

(RMSE), mean absolute error (MAE), and Pearson correlation coefficients (r). Low RMSE and 27 

MAE values indicate better predictive accuracy achieved by capturing underlying emission 28 

patterns, while a high Pearson’s r reflects a stronger correlation between the model predictions 29 
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and observations. In addition, for comparison with conventional models such as the CLEEN, 1 

IPCC, and LandGEM models, which estimate annual CH4 emissions, we aggregated the 2 

seasonal outputs to annual scales. This allowed for a direct comparison between the field 3 

measurements and existing model estimates. 4 

 5 

2.5. Quantifying the impact of meteorological conditions 6 

 To assess the individual and synergistic effects of temperature and precipitation on 7 

CH4 generation in landfills, we designed four input scenarios, while all other model conditions 8 

were kept constant: (a) using observed temperature and precipitation, (b) using a fixed mean 9 

temperature (12.5 ℃) and observed precipitation, (c) using observed temperature and a fixed 10 

mean precipitation (3.2 mm d-1), and (d) using both fixed mean temperature and precipitation. 11 

The influence of each variable was quantified based on the absolute difference in the predicted 12 

CH4 generation between the baseline scenario (a) and each counterfactual scenario (b–d). The 13 

mean absolute difference was then normalized according to the total predicted generation under 14 

the baseline and expressed as a percentage, representing the relative absolute contribution of 15 

the given variable to CH4 generation. 16 

 17 

3. Results  18 

3.1. Optimization of model parameters 19 

 The RF model was developed using landfill field measurement data from the SLS, 20 

with the training dataset including seasonal precipitation, temperature, lifespan, waste amount, 21 

and L0 from 2005 to 2021. A total of 128 data points was used, with 80 % allocated for training 22 

and the remainder allocated for 10-fold cross-validation. The hyperparameters were optimized 23 

using a grid search. The model demonstrated an R2 value of 0.86 when evaluated against the 24 

FRF and landfill conditions. The significance of each feature indicates the statistical importance 25 

of each parameter in the dataset and its impact on the model performance. Among the variables, 26 

L0, precipitation, and temperature were identified as the statistically significant and key 27 

predictors, indicating their substantial influence on CH4 generation. The results demonstrated 28 
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that CH4 generation in landfills was primarily determined by waste composition and 1 

environmental factors, particularly precipitation and temperature, which affect the waste 2 

decomposition process (Krause et al., 2016; Warith & Sharma, 1998). 3 

 The estimated k values for each model were compared with those of kactual, as shown 4 

in Table 2. The value of klab, calculated using Eq. (1), was corrected to kadj using the FRF. 5 

Additionally, the k values for the LandGEM and IPCC models with country-specific emission 6 

factors for South Korea are provided in Table 2. kadj was the closest approximation to the k 7 

value derived from the actual field data, with an average error of 25 %. However, the k values 8 

for the IPCC and LandGEM models showed averages of 84 % and 112 % from kactual, and the 9 

results showed that the overestimation of the laboratory-based klab was effectively addressed 10 

by kadj. 11 

 12 

Table 2. Comparison of actual and modeled k values 13 

 14 

 15 

3.2. Evaluation of model performance 16 

 To evaluate model performance, CH4 generation estimates from the CLEENopt model 17 

were compared with the observed seasonal CH4 generation at two landfill sites (SLS 1 and SLS 18 

2) (Table 3). The model showed strong correlations with field measurements at both sites, with 19 

a particularly high correlation at SLS 1 (RMSE = 2.22 million CH4 m
3, MAE = 1.78 million 20 

CH4 m
3, r = 0.96). In contrast, the model performance for SLS 2 was relatively low (RMSE = 21 

6.48 million CH4 m
3, MAE = 4.81 million CH4 m

3, r = 0.64), likely because of the greater 22 

variability in field measurements caused by ongoing landfilling activities.  23 

 24 

Landfill 
k values (y-1) (% difference from kactual) 

kactual klab kadj LandGEM IPCC 

SLS 1 0.034±0.01 
0.913±0.539 

(+2585 %) 

0.036±0.003 

(+6 %) 

0.04 

(+17 %) 

0.046±0.05 

(+35 %) 

SLS 2 0.016±0.01 
1.179±0.336 

(+7269 %) 

0.023±0.013 

(+43 %) 

0.04 

(+150 %) 

0.046±0.05 

(+188 %) 
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Table 3 The evaluation of the seasonal simulation of the CLEENopt model for SLS 1 and 1 

SLS 2 2 

 3 

 4 

 5 

 6 

 7 

 8 

 To compare the performance with conventional models such as the CLEEN, IPCC, and 9 

LandGEM models, which estimate CH4 emissions on an annual basis, the annual CLEENopt 10 

model CH4 generation values were used. As shown in Fig. 3, the CLEENopt model achieved the 11 

lowest RMSE and MAE (values of 12.7 million CH4 m
3 and 9.8 million CH4 m

3, respectively), 12 

demonstrating superior accuracy in simulating observed data. In terms of predictive error, the 13 

models ranked in ascending order, were IPCC, CLEEN, and LandGEM, with LandGEM 14 

exhibiting the highest RMSE and MAE values.  15 

 16 

 17 

 SLS 1 SLS 2 

RMSE 

(million CH4 m3) 
2.22 6.48 

MAE 

(million CH4 m3) 
1.78 4.81 

Pearson r 0.96 0.63 
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Fig. 3. Comparisons of RMSE and MAE between observed and model estimated CH4 1 

generation. 2 

 3 

3.3. Simulation of model estimates 4 

Fig. 4 shows the simulated seasonal CH4 generation from the CLEENopt and CLEEN 5 

models for SLS 1 and SLS 2. The results indicated that CH4 generation increased during the 6 

active landfilling phase and gradually declined after site closure in both landfills. For SLS 1, 7 

the CLEENopt model estimated the peak CH4 generation in 2002 at 52.7 million m3, followed 8 

by a gradual decline (Fig. 4a). By contrast, the CLEEN model estimated an earlier peak in 1998 9 

at 86.6 million m3. For SLS 2, the CLEENopt model showed a peak in 2007 at 47.5 million m3, 10 

while the CLEEN model estimated a peak in 2005 at 67.5 million m3 (Fig. 4b). The sharp drop 11 

in the SLS 2 model-estimated CH4 generation during the summer of 2011 was likely due to 12 

extreme precipitation events, particularly in July, when the monthly total rainfall reached 864.2 13 

mm, more than twice the climatological average. This anomaly likely caused the model to 14 

underestimate the CH4 generation during this period. 15 

 16 

Fig. 4. Seasonal CH4 generation of CLEENopt, CLEEN and actual field observation for (a) 17 

the SLS 1 and (b) the SLS 2.  18 

 19 
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The CLEEN model showed significant overestimation and variability in the simulated 1 

CH4 generation. This overestimation likely resulted from the use of non-calibrated emission 2 

factors despite the incorporation of identical meteorological inputs. In contrast, the CLEENopt 3 

model demonstrated improved reproducibility and alignment with CH4 generation trends. 4 

These results highlight the importance of the site-specific calibration of model parameters with 5 

meteorological conditions to accurately estimate emissions.  6 

The model uncertainty was assessed using the Monte Carlo method by randomly 7 

sampling input variables within their specified value ranges (Fig. S3). Uncertainty was defined 8 

as the 95 % confidence interval of the average annual CH4 generation calculated from 1,000 9 

simulation runs. The estimated uncertainty in CH4 generation at SLS 1 ranged from 75 to 145 %, 10 

whereas that at the SLS 2 ranged from 51 to 67 %. 11 

 12 

3.4. Model results based on meteorological condition 13 

To examine the response of CH4 generation to meteorological variability, the 14 

CLEENopt model was applied under an idealized landfill scenario, with a fixed waste input of 15 

600,000 tons per month and an L0 of 100 m3 Mg-1. The ambient temperature and precipitation 16 

were varied independently across ranges representative of seasonal conditions in South Korea 17 

(-5 to 39 ℃ and 0 to 16 mm d-1, respectively). For each temperature and precipitation scenario, 18 

the model simulated CH4 generation over a 30-year period, and the total CH4 generation was 19 

compared across all scenarios to assess the relative impact of each variable. The analysis aimed 20 

to reflect conditions similar to those of the Sudokwon landfill, using the same modeling period 21 

for consistency. 22 

As shown in Fig. 5a, the CH4 generation increased with increasing temperature, 23 

particularly at higher temperatures. Previous studies have reported peak CH4 emissions at 24 

subsurface soil temperatures between 25 ℃ and 40 ℃ (Scheutz et al., 2009; Spokas & Bogner, 25 

2011; Whalen et al., 1990), which closely correlate with ambient temperatures (Yesiller & 26 

Hanson, 2003). Elevated ambient temperatures provide a favorable environment for the 27 

bacterial degradation of waste (Rachor et al., 2013; Wang et al., 2012).  28 

 29 
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 1 

Fig. 5. Changes in CH4 generation under (a) temperature and (b) precipitation. Black 2 

lines represent the mean CH4 generation for each condition, shaded areas indicate the 3 

range across all simulated years, and colored shading is the seasonal temperature and 4 

precipitation range of Korea. 5 

 6 

 CH4 generation also increased with precipitation up to approximately 10 mm d-1, but 7 

declined with a further increase in precipitation (Fig. 5b). Precipitation influences CH4 8 

emissions by affecting both soil moisture content and water diffusion within the landfill. 9 

Although moderate moisture levels support microbial activity and enhance CH4 production, 10 

excessive precipitation can saturate landfill pores, thereby gas diffusion and reducing CH4 11 

emissions (Rachor et al., 2013; Scheutz et al., 2009). These results suggested that optimal CH4 12 

generation occurred under high temperatures and moderate precipitation, whereas excessive 13 

rainfall could suppress emissions owing to pore saturation and limited gas transportation. 14 

 15 

3.5. Analysis of meteorological impacts 16 

The absolute contributions of temperature and precipitation variability to the modeled 17 

CH4 emissions across the two landfill sites are shown in Fig. 6. The contrasting sensitivities 18 

observed between the two landfill sites suggested that the landfill operational status played a 19 

key role in mediating climate-driven CH4 generation. SLS 1, which reached the post-closure 20 
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phase and was undergoing stabilization, showed a lower response to both temperature (2.90 %) 1 

and combined variability of temperature and precipitation (4.59 %), although precipitation still 2 

exhibited a strong influence (7.96 %). In contrast, SLS 2, which remained in an active state 3 

with ongoing waste placement, showed greater sensitivity to temperature (9.02 %) and 4 

combined variability (13.11 %). 5 

 6 

Fig. 6. The contribution of temperature and precipitation to CH4 generation in SLS 1 and 7 

SLS 2.  8 

 9 

These differences were likely due to the dynamic microbial and hydrological 10 

conditions present in active landfills. The continuous deposition of waste in SLS 2 maintained 11 

high levels of organic loading and microbial activity. Given the ongoing operation, the surface 12 

has not yet been fully covered, leaving it more exposed to external environmental factors. 13 

Conversely, in closed landfills with stable conditions, such as SLS 1, the application of a final 14 

cover likely reduces environmental variability at the surface, thereby mitigating the impact of 15 

meteorological conditions. 16 

 17 

4. Discussion 18 
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In this study, we demonstrated that incorporating site-specific meteorological 1 

conditions significantly improved the accuracy of CH4 generation estimates at the SLS. As 2 

shown in Fig. 4, although the CLEEN and CLEENopt models used identical temporal inputs, 3 

the CLEEN model tended to overestimate the seasonal variability. This discrepancy was likely 4 

due to the use of emission factors calibrated for other landfills, as well as the limited 5 

representation of the meteorological conditions specific to Korean sites (Karanjekar et al., 6 

2015). Previous studies have also emphasized the importance of optimizing the model 7 

parameters. For example, Wang et al. (2024) showed that calibrating the k value using average 8 

temperature and precipitation produced equal or better accuracy than the IPCC default in 76 % 9 

of 195 landfill sites. Likewise, Saeedi et al. (2025) reported that incorporating precipitation 10 

alone substantially enhanced model performance. Consistent with these findings, the CLEENopt 11 

model, which accounts for seasonal meteorological variability, provided a more accurate 12 

representation of site-specific CH4 generation characteristics at the SLS.  13 

We further evaluated the influence of meteorological conditions on CH4 generation at 14 

the SLS. The results indicated that CH4 generation increased with increasing temperature, 15 

whereas the effect of precipitation increased up to a certain threshold and then decreased. Prior 16 

research has also reported such relationships between meteorological variables and landfill CH4 17 

generation. For instance, Fei et al. (2016) found that higher temperatures were associated with 18 

increased waste decomposition, as reflected by elevated k values based on laboratory and field 19 

monitoring data. Similarly, Jain et al. (2021) examined 114 closed landfills in the US and found 20 

that landfills in regions with adequate annual precipitation emitted more CH4 than those in arid 21 

regions. However, excessive soil moisture has been reported to reduce CH4 emissions by 22 

impeding gas exchange owing to water-filled pore spaces (Rachor et al., 2013). In contrast, 23 

some studies have reported a negative relationship between temperature and CH4 emissions 24 

(Rachor et al., 2013), which was attributed to reduced moisture availability under high-25 

temperature conditions (Sacramento et al., 2024; Visvanathan et al., 1999). In the SLS, the 26 

positive correlation between temperature and CH4 generations was likely due to the availability 27 

of sufficient moisture during the summer months when temperatures were high. 28 

We quantified the relative contributions of temperature and precipitation to CH4 29 

generation in the SLS and highlighted the site-specific differences in climate sensitivity based 30 

on the operational status of the landfill. Climate sensitivity can vary depending on the physical 31 
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and biochemical conditions of landfills, particularly whether active or closed (Barlaz et al., 1 

1990; Karanjekar et al., 2015). Closed landfills are typically capped with cover layers, which 2 

reduce exposure to external environmental influences and stabilize organic waste over time 3 

(Duan et al., 2022). By contrast, active landfills continue to receive degradable organic waste 4 

and remain open to the atmosphere, making them more susceptible to fluctuations in 5 

meteorological conditions (Przydatek et al., 2024). Quantifying the effects of meteorological 6 

factors can contribute to more accurate estimation of future CH4 emissions from landfills. In 7 

regions where the temperature and precipitation are expected to change under future climate 8 

change, the CLEENopt model can be applied to estimate potential CH4 emissions. These 9 

projections can serve as a scientific basis for informed policy decisions, enabling more effective 10 

landfill CH4 measurements that are tailored to the operational status of landfills and site-11 

specific climatic conditions.  12 

The CLEENopt model estimated CH4 generation by accounting for key variables, 13 

including waste input, waste composition, ambient temperature, and precipitation. However, 14 

other environmental and meteorological factors that might influence CH4 generation, such as 15 

soil moisture, atmospheric pressure, wind direction, and pH (Amini et al., 2013; Scheutz et al., 16 

2009), were not incorporated into this study. Furthermore, the CH4 generated in landfills 17 

undergoes microbial oxidation in the soil before being released into the atmosphere (Duan et 18 

al., 2022; Scheutz et al., 2009). Although this study applied a default oxidation rate following 19 

the IPCC guidelines (Eggleston et al., 2006), it is important to note that CH4 oxidation is also 20 

influenced by climatic conditions, particularly temperature and precipitation (Christophersen 21 

et al., 2000). To achieve accurate atmospheric CH4 emission estimates, future studies should 22 

consider more accurate oxidation rates that reflect site-specific environmental variability 23 

(Chanton et al., 2009; Scheutz et al., 2009). It is imperative to emphasize the need for long-24 

term and site-specific field measurements to enhance model calibration and validation. 25 

Expanding field-based monitoring across diverse landfill types and environmental conditions 26 

would improve both the accuracy and generalizability of landfill CH4 emission models 27 

(Mønster et al., 2019). 28 

 29 

5. Conclusion 30 
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This study demonstrated that integrating site-specific meteorological conditions into 1 

landfill CH4 generation modeling significantly improves estimation accuracy. Our results 2 

showed that CH4 generation responded strongly to both temperature and precipitation, 3 

indicating an enhanced accuracy of the CLEENopt model compared to that of conventional 4 

models that do not fully account for meteorological variability. The response of CH4 generation 5 

to meteorological variations showed a linear correlation with temperature and a parabolic 6 

correlation with precipitation. Furthermore, the findings indicated that CH4 generation 7 

increased with precipitation up to approximately 10 mm d-1, but decreased beyond this point, 8 

likely due to excessive soil moisture, which inhibited gas exchange. Using the CLEENopt model, 9 

we quantified the relative contributions of temperature (5.96±3.06 %) and precipitation 10 

(7.38±0.58 %) to CH4 generation at the SLS. These results highlight the importance of climate-11 

sensitive modeling approaches that account for both seasonal variability and site-specific 12 

landfill characteristics. Quantifying the influence of meteorological conditions provides 13 

valuable insights into CH4 mitigation strategies tailored to landfill type, operational phase, and 14 

regional climate. Long-term field observations in diverse landfill environments are essential to 15 

further enhance the reliability and applicability of landfill emission models. 16 

  17 
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