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Abstract

Physics-based morphodynamic modeling is essential for advancing river management science

and understanding Earth's geomorphological evolution processes. However, their computational

25  demands and long processing times hinder long-term applications. This paper introduces and tests a
robust Deep Learning (DL) framework that opens the door to overcoming these challenges through
integrating convolutional neural networks (CNNs) with long short-term memory algorithms (LSTM).

This advancement facilitates rapid and continuous spatiotemporal predictions of hydrodynamic
parameters and morphodynamic responses of flood events. Hydrodynamic predictions showed strong

30  performance across the testing dataset, with mean RMSEs of 0.15 m and 0.04 m/s for water depth and
flow velocity, respectively. Bed change predictions also demonstrated promising results, with
normalized RMSE of 27% and R2 of 0.93. This novel approach generates predictions 4700 times faster

than traditional physics-based computational models, representing a paradigm shift in long-term river

evolution simulations and pioneering new frontiers in fluvial morphodynamic modeling.
35
Summary

Understanding and predicting the evolution of river landscapes is critical for effective river
management. Traditional physics-based morphodynamic models, while accurate, are computationally
intensive and often impractical for long-term applications. This study presents a robust deep learning

40  framework, which was designed to overcome the computational limitations by enabling rapid and

reliable predictions of hydrodynamic and sediment transport behaviors.
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1 Introduction

Fluvial landscapes are the nexus of the water cycle, climate, and Earth surface processes. Easy

access to water for domestic and agricultural needs has made river floodplains attractive places to live

45  throughout human history (Fang and Jawitz, 2019). Floodplains are morphodynamically active
environments continuously modified by erosional and depositional processes during floods, coupled

with lateral migration of adjacent river channels. These changes can be accompanied by significant
ecological and socio-economic impacts, including migration or destruction of sensitive habitats, loss of
agricultural lands, changes in navigability, destruction of infrastructure, and loss of life (Mananoma,

50  2009; Vercruysse et al., 2017; Zakipour et al., 2023). Associated risks can only be offset through
effective long-term (multi-century) management planning for reach-scale geomorphic responses to
environmental perturbation (Fathi et al., 2024). This is especially important as we plan for the impacts

of climate change on rivers, floodplains, and the communities they support.

Sediment transport and morphodynamic responses of rivers and floodplains have been

55  recorded and/or studied using remotely sensed data and projected using physics-based numerical
models (Donati et al., 2021). While significantly advancing sediment transport and morphodynamic
theory, each approach is limited. Remote sensing techniques, utilizing satellites, airplanes, and remote
vehicles (e.g., drones), represent the most practical and precise approach for morphodynamic mapping
(Boothroyd et al., 2021). They are limited by coarse spatial resolution in freely available imagery, high

60  costs for high-resolution alternatives, and short decadal record lengths (Grabowski et al., 2014). Further,
while extremely useful in understanding past landscape changes, these techniques are relatively limited

in their applicability to future change projections in assorted synthetic scenarios, e.g., climate change
studies and restoration assessment projects. Numerical models, on the other hand, can be used to
understand and project past and future landscape change, respectively as they include options for

65  synthetically modeling environments with different climatic conditions, sediment properties, and/or
channel geometries (Coulthard and Van De Wiel, 2012). The research community efforts have
developed and advanced multiple physics-based geomorphological models, such as Delft3D (Deltares,
2010), MIKE 21C (DHI, 2017), and HEC-RAS (USACE, 2021). However, these are computationally
expensive models, leaving users with no option but to compromise on accuracy and/or the time scales

70  to which they are applied (Gonzales-Inca et al., 2022).

The computer revolution brought the widespread usage of geomorphologic models to simulate
hydrodynamic and sediment transport in rivers. Models incorporate various levels of complexity,
ranging from the simplest 1D models to the most complex/advanced 3D modeling (Williams et al.,
2016). Choosing among these modeling dimensions requires a trade-off between accuracy,

75  computational resources, and applicability. The 2D approach offers a balanced combination of accuracy
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and computational efficiency, enabling investigations across multiple morphological applications, e.g.,
river restoration (McDonald et al., 2016), the influence of dam presence (Giri et al., 2019) and dam
removal (Gelfenbaum et al., 2015) on river morphology, eco-hydrology of fish habitats (Wheaton et al.,
2018), vegetation dynamics (Best et al., 2018), bedform simulations (Chen et al., 2012), and bar
80  morphology (Kasprak et al., 2019). Despite these wide-ranging applications, the 2D modeling approach
is hampered by relatively long processing time and limitations on spatial and temporal scales of
applicability, e.g., morphological change on relatively short between 10°-10> km river reaches
(Brasington and Richards, 2007) and timescales of just weeks or months (Williams et al., 2016). This
is primarily due to: a) a need for small computational time-steps to ensure model stability (De Goede,
85  2020), and b) limited usage of parallel computing and/or limited capability to incorporate high

computing power capabilities, e.g., graphics processing units (Karim et al., 2023).

To develop more efficient techniques for both flood hydrodynamic and geomorphological
modeling, the scientific community sought solutions in Machine Learning (ML) approaches (Karim et
al., 2023). Recent achievements include the usage of ML algorithms to predict flood extent maps

90  (Avand et al., 2022; Bentivoglio et al., 2022; Ma et al., 2021; Madhuri et al., 2021; Mehedi et al., 2022;
Talukdar et al., 2021). Advances in flood extent mapping spurred the development of more advanced
models to predict water depth maps of flood events, e.g., artificial neural networks (ANNs) and
Convolutional Neural Networks (CNNs) (Chu et al., 2020; Kabir et al., 2020). In the field of sediment
transport, researchers have employed various algorithms, including random forest and support vector

95  regression (Kwon et al., 2022), Long Short-Term Memory (LSTM) (Kaveh et al., 2021), M5 model tree
(Ouellet-Proulx et al., 2016), and gated recurrent units (Huang et al., 2021), to predict suspended
sediment concentrations. The focus has further extended to explore the prediction of specific sediment
transport characteristics such as bed load material in channels (Hosseiny et al., 2023; Kitsikoudis et al.,
2014; Sahraei et al., 2018), sediment yield during monsoon (Ghose, 2018), and sediment transport

100  dynamics within sewer systems (Zounemat-Kermani et al., 2020). Despite these scientific efforts to
advance sediment load simulations, to the best of our knowledge, no prior research has explored the

usage of data-driven approaches in predicting the 2D geomorphological responses within floodplains.

To address this gap, this study aims to leverage the capabilities of Deep Learning (DL)

approaches to efficiently simulate the hydrodynamic and morphodynamic behavior within floodplains.

105  Most recently, Fathi et al. (2025) developed a Hybrid DL framework for Flood Mapping (HDL-FM) to
simulate the 2D flood dynamic characteristics. This framework integrates the spatial advantages of

CNN along the sequential capabilities of LSTM, to predict three essential hydrodynamic features: water

depth, flow velocity, and flow direction maps. The HDL-FM framework demonstrated efficiency and
robustness in capturing the spatiotemporal flood dynamic nature. Here we extend the HDL-FM

110  framework to consider not only the hydrodynamic characteristics but also the geomorphologic behavior
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mapping. The primary objective is to develop an efficient framework capable of capturing the
complexity of morphodynamic processes while avoiding the computational challenges posed by
traditional approaches. The resulting framework predicts the dynamics of essential hydrodynamic
outputs: water depth and flow velocity, which are fundamental inputs to the morphodynamic target,
115  represented in bed change maps. This approach presents a robust and more efficient methodology that
has significant implications in several floodplain engineering applications, including 2D sediment
transport simulations, assessing the impacts of climate change on the rivers’ geomorphology, river

rehabilitation projects, and, notably, in the realm of long-term land evolution studies.

2 Materials and Methods

120 2.1 Study Area and Geomorphologic Model

This study focuses on a 22 km segment of the Ninnescah River in central Kansas, a tributary
of the Arkansas River (Figure 1-a). The Ninnescah River primarily has sandy banks, resulting in
typically wide, shallow, and straight channels, with a bankfull width of approximately 100 m (Costigan
et al., 2014). The selected river segment, with a sinuosity coefficient of two, provides an ideal case

125  study for this research. The hourly discharge data of this segment is monitored by the United States
Geological Survey (USGS) station 07145500, with a mean annual discharge of approximately 15 cms.

A 2D geomorphological simulation for the Ninnescah River segment was generated using

HEC-RAS. The developed model covers a 2D grid area of 66.5 km2 with 520 x 320 cells (each 20 m

by 20 m). Three essential inputs are required for this type of simulation: a Digital Elevation Model

130 (DEM) for the river including the floodplain with a high spatial resolution of 1/3 arc-second

(approximately 10 meters) from USGS (2018), a flow hydrograph at the upstream boundary (USGS

gage 07145500), and riverbed sediment characteristics based on the sediment samples of the riverbed

collected by Costigan et al. (2014). Sediment grain sizes at D10, D50, and D90 measured 0.25 mm,

0.45 mm, and 1.1 mm, respectively. Due to the absence of bathymetry information in the DEM file, a

135  trapezoidal cross-section profile was burned into the DEM file (Choné et al., 2018; Costigan et al.,

2014). Lastly, the hydrograph component represents the driving hydrodynamic power of the flow
through the system, from USGS at station 07145500.

A hydrograph with a broad range of flood events is essential to enhance the capabilities of the

DL framework in capturing hidden patterns in the mapping between inputs and outputs. Unfortunately,

140  generating sufficiently long training and testing datasets is hindered by the long processing time using
the physics-based model. Additionally, significant portions of the observed hydrograph are baseflow,

which corresponds to a period of relatively low flow with minimal sediment transport. To address these

challenges, a constructed hydrograph of 20 events was extracted from the observed hydrograph to avoid
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long periods of baseflow discharge. This hydrograph was split into three portions: training, validation,

145  and testing of 11, 3, and 6 events, respectively (Figure 1-b).
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Figure 1: The case application: a) the location of the Ninnescah River segment, Kansas, USA, and b)
the hourly hydrograph, divided into training, validation, and testing sets for the DL modeling.

150 The Morphological Acceleration Factor (M) technique is used in the HEC-RAS model to
reduce the sediment transport simulation time. My is a scalar quantity that is used to reduce the time-
step values of a hydrograph by My, while multiplying the calculated erosion and deposition rates by the
same factor (Lesser et al., 2004). It is worth noting that there is a trade-off between utilizing a higher
acceleration factor and the accuracy of the morphodynamic outputs. Morgan et al. (2020) explored this

155  trade-off on Nooksack River in Washington through investigating a range of M, from 5 to 50. The
results indicated that the lowest My of 5 reduced the processing time by 80%, with a relatively low

absolute percentage error of 8%. Consequently, each flood event in our study spans a full-scale of 10-
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days, encompassing the typical progression of flood events from initial baseflow, through the peak, and

returning to baseflow, which is reduced to only 2 days using My of 5 (Figure 1-b).
160 2.2 Deep Learning Model

This study aims to extend the capabilities of the Hybrid DL framework for Flood Mapping

(HDL-FM), developed by Fathi et al. (2025), into geomorphology mapping (HDL-GM). This hybrid

DL framework integrates the spatial strengths of Convolutional Neural Networks (CNN) coupled with

the temporal prowess of Long Short-Term Memory (LSTM). CNNs perform automated feature

165  engineering through learnable filters, enabling the detection and extraction of spatial features from the
inputs. Multiple layers of CNNs build a hierarchy of increasingly complex features, ultimately enabling

the recognition of objects within the 2D grids (Bhatt et al., 2021). LSTM is a powerful type of recurrent

neural network designed to handle sequential data (Yu et al., 2019). LSTMs incorporate memory cells

with input, output, and forget gates, allowing the network to selectively remember or forget information

170 over long sequences.

HDL-FM is an integrated DL model combining CNN and LSTM (Figure 2-a), originally
developed to predict the hydrodynamic properties of flood events in 2D grids. This study incorporates
this approach into geomorphologic modeling by using it to capture sediment transport. This framework
encompasses three models, all of which have the same architecture (Figure 2-a), but with different

175  targets: water depth, flow velocity, and bed change. This framework utilizes a uniform 2D shape of 520
x 320 grid (each 20 m by 20 m) for both inputs and targets, ensuring compatibility with the HEC-RAS
model simulation. Each model commences with an encoder block comprised of three CNN layers, each
followed by a rectified linear unit (ReLU) activation function. A 2x2 max-pooling operation was
applied to each layer, balancing the preservation of high-resolution morphology features in narrow river

180  segments with improved computational efficiency through a reduction of grid size by half. It should be
noted that large pool sizes tend to lose important details in the segment meanders, affecting
morphodynamic predictions. In the encoder phase, a flattening process is applied, generating a single
vector suitable for processing by a single LSTM layer. The enhancement in prediction accuracy through
utilizing additional LSTM layers was minimal. An ANN dense layer is introduced as a decoder stage

185  where the LSTM outputs convert back into a long vector possessing the same number of elements as

the physics-based grid, to reconstruct the original grid dimension.

This study explores the applicability of a hybrid DL model to predict the hydrodynamic and

morphodynamic behavior of flood events at 30-min intervals according to three models: water depth,

flow velocity, and bed change. Each model utilizes a distinct set of inputs as described in Figure 2-b.

190  In contrast to the original framework, the geomorphological version, HDL-GM, incorporates a

temporally varying topographic input (Z). To standardize the topography input, a simple normalization

7
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process is applied through subtracting the average elevation value, calculated at the beginning of the
simulation, from the entire topography grid. Additionally, other dynamic inputs are introduced to the
framework, including water depth (D), flow velocity (¥), and discharge value (Q) at the upstream
195  boundary condition. The upstream discharge series is transformed into a grid initialized with zeros,
where the O value is subsequently assigned to a 7x7 cell block at the upstream point of the reach. The
proposed three models employ lagged input variables from the previous time-step to predict the targets
at the subsequent time-step targets, such as the topography and water depth grids (Figure 2-b).
Conversely, other inputs, encompassing the flow velocity and upstream discharge, are utilized from the

200  current time-step.
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Figure 2: An overview of the HDL-FM model, where a) model architecture, b) model inputs and targets,
and c) sequential model integration for the testing procedure.

205 The training process for the proposed framework employs the smooth L, loss function for
enhanced convergence stability and robustness to outliers (Girshick, 2015). Optimization is performed

using the Adam optimizer (Kingma and Ba, 2015), with the learning rate dynamically adjusted
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throughout the training process using the ReduceLROnPlateau technique to ensure efficient and rapid
convergence (Al-Kababji et al., 2022; PyTorch, 2024).

210 2.3 Model Evaluation and Performance Criteria
Testing Mechanism:

The dynamic nature of geomorphic simulations, which continuously evolves over time,
depends on lagged inputs from previous time-steps to predict the system’s behavior at the following
time-steps. Evaluating the capabilities of these models to operate independently, without prior reference

215  inputs, is essential. To address this, a four-step loop was developed to assess the accuracy of the
proposed framework in real-world applications (Figure 2-c). At a typical time-step, the framework starts
with predicting the water depth, which serves as an essential input for the subsequent step of predicting
the flow velocity. In the third step, the bed change of the topography is predicted based on outputs from
the first two steps. Finally, the loop concludes by using the bed change output to update the topography

220  grid, which serves as the primary input of the loop at the next time-step. This loop is applied iteratively
to the testing dataset, allowing the framework to predict its own future inputs without relying on any
reference inputs. This testing technique is introduced to evaluate the framework's robustness for long-

term simulations, to ensure that it can operate without error accumulation issues.
Performance Criteria:

225 To evaluate the accuracy of the proposed model in predicting the hydrodynamic and bed
change variables, Root Mean Square Error (RMSE) is used to quantify the average magnitude of errors
between simulated and reference datasets (Eq. 1) (Stigler, 1990), and assesses the accuracy at a single
time-step or is averaged across the testing period. However, using the total number of cells (including
the cells without any morphodynamic behavior) in estimating the average could lead to misleading

230  accuracy values. To address this challenge, the cells considered in the RMSE are restricted to the active
cells, which represent the locations within the predicted or reference grids where water depth or bed
change exceeds 0.05 m or 0.02 m, respectively. However, because the bed change values increase
progressively over time, RMSE alone can be misleading to track the model performance over time. To
address this, Normalized Root Mean Square Error (NRMSE) is introduced to normalize RMSE into a

235  percentage relative to the root mean square of the target values (Eq. 2), thereby facilitating a more
meaningful and consistent comparison of prediction errors across different time steps (Mentaschi et al.,
2013). Additionally, the coefficient of determination (R?) is employed as a complementary metric (Eq.
3) (Veall and Zimmermann, 1996). R? evaluates how effectively the model captures the underlying
distribution of the data, in this case regarding erosional and depositional activities across the grid

240  domain.
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where R;, S; are the reference and the simulated values, respectively, and R is the average

value of reference grids. N is the number of active cells within the predicted or reference domains.
3 Results and Discussion

Two distinct versions of the HDL-GM framework were tested. These versions are based on

245  the nature of the training dataset: Event-Based (EB) and Continuous-Based (CB) datasets (Figure 1-b).
The EB dataset aggregates discrete events that are simulated independently using the physics-based

model, thereby enhancing computational efficiency in generating the training dataset by allowing
parallel simulations. Conversely, the CB dataset demands significantly longer processing time due to

its continuous simulation of a series of events. To assess the performance and trade-offs of these models,

250  three experimental scenarios were implemented: 1) the EB-trained framework tested on the EB dataset,
2) the EB-trained framework tested on the CB dataset, and 3) the CB-trained framework tested on the

CB dataset. These scenarios were designed to investigate the tradeoff between the computational

efficiency of dataset generation and the accuracy of the framework in both EB and CB applications.
3.1 EB-Trained HDL-GM Framework for Geomorphic Simulation

255 For the EB-trained HDL-GM framework, both water depth and flow velocity models exhibit
strong agreement with reference data from HEC-RAS, where the average RMSE values, across the
entire testing dataset, are 0.19 m and 0.04 m/s, respectively. These low RMSE values not only
underscore the robust hydrodynamic capabilities of this approach but are also essential for accurate

geomorphic predictions.

260 The HDL-GM framework integrated the outputs of both hydrodynamic models, water depth
and flow velocity, as inputs for the bed change model. Figure 3 illustrates the bed change results at the
end of three testing events. The bed change model within the proposed framework exhibited robust
capabilities in accurately predicting the spatial patterning of erosional and depositional processes across
the grid domain, as compared to HEC-RAS results. This is evidenced by the low RMSE values, across

265  the testing six events, ranging from 0.02 to 0.03 m, with a mean of 0.026 m. It should be noted that

most of the high relative errors were concentrated in shallow wetland areas, where the morphodynamic

10
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activities are primarily forced by shallow overbank flow. This may be attributed to the minimal
magnitude of bed changes in these regions, with high uncertainties. Consequently, when the error is

normalized by these small bed changes, it results in high relative errors.
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Figure 3: Comparison of bed change predictions of EB-testing dataset by HEC-RAS and EB-trained
HDL-GM framework for the three testing events, illustrating the spatial distribution of absolute error
and relative error between both models, where Ts denotes a specific flood event in the testing dataset.
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275 The EB-trained framework exhibited robust performance in accurately predicting the bed
change of the EB-testing dataset. However, it is crucial to assess its performance on the CB-testing
dataset, which is characterized by cumulative geomorphic behavior across multiple events. Figure 4
presents the absolute and relative error results at the end of multiple testing events within the CB dataset.
The EB-trained framework maintained acceptable performance during the first couple of events; but

280  after three events, a noticeable accumulation of error values emerged. By the end of the CB simulation,
the relative error exceeded 100% at numerous locations both within the stream channel and shallow
areas. While the EB-trained HDL-GM framework, based on an efficient EB-training dataset,
demonstrated strong predictive capabilities for the EB-testing dataset, its performance on the CB-testing
dataset revealed significant and unacceptable error accumulation. This behavior could potentially be

285  attributed to the nonlinearity of sediment transport over multiple flood events, which may not be fully
represented in the EB dataset. These findings underscore its limitations in capturing the complexities of

continuous morphodynamic processes.

Absolute Error

Relative Error
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Figufe 4: Absolute error and relative error of using EB-trained HDL-GM framework to predict bed
290  change for CB-testing dataset.

3.2 CB-Trained HDL-GM Framework for Geomorphic Simulation

The CB-trained framework exhibited strong performance in predicting hydrodynamic

features, with mean RMSE values of 0.15 m for water depth and 0.04 m/s for flow velocity variables,

295  across the entire testing dataset. These hydrodynamic outputs were subsequently integrated into the
bed change model. Figure 5 presents the absolute and relative error results at the end of multiple testing

events within the CB dataset. Initially, the CB-trained framework maintained relatively high relative

12
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errors at the end of the first testing event. However, it exhibited rapid recovery, yielding substantially
reduced relative errors from the second testing event. This robust performance continued throughout
300 the CB testing dataset, with no accumulation of relative errors. This is further evidenced by an RMSE
value of 0.07 m at the end of the sixth event. These findings highlight the capabilities of the CB-trained
framework to predict morphodynamic behavior across a testing dataset encompassing a series of

continuous events.
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305  Figure 5: Absolute error and relative error of testing CB-trained HDL-GM framework to predict bed
change for CB-testing dataset.

3.3 Statistical Comparison of EB and CB-Trained Frameworks

To evaluate the performance of the EB and CB-trained frameworks, a comprehensive

310  statistical comparison was conducted across three previously defined scenarios. The assessment utilized
four performance criteria: RMSE, NRMSE, 95% error, and R?, as represented in Figure 6. The 95%

error criterion indicates that 95% of the active cells exhibit an error below this value. For the EB-testing
dataset, results are presented separately at the end of each event. In contrast, the results for the CB-

testing dataset are cumulative, extending from the start of the simulation to the end of a given event.

315  The key findings from this comparative analysis are outlined as follows.

e Scenario 1: the EB-trained framework demonstrated robust performance when applied to the
EB-testing dataset. Performance metrics indicated consistent predictive accuracy with mean
NRMSE and R? of 22% and 0.94, respectively; this suggests that the framework effectively

captures event-based dynamics.

13
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320 e Scenario 2: when applied to the CB-testing dataset, the EB-trained framework initially showed
acceptable performance for the first two events. However, subsequent events revealed a
significant degradation in predictive accuracy due to error accumulation. The NRMSE
escalated from an initial value of 21% to 113% by the end of the sixth event, which yielded a

negative R? value. Over time, the error becomes untenable.

325 e Scenario 3: the CB-trained framework exhibited superior adaptability and stability when
applied to the CB-testing dataset. The framework's performance improved markedly after the
first one or two events. The NRMSE decreased from an initial value of 66% to less than 27%,
at the end of the testing dataset. It is worth noting that the RMSE values demonstrated

remarkable stability, within a narrow band of 0.06 to 0.07 m, throughout the simulation.
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Figure 6: Evaluation statistics of the EB and CB-trained frameworks on the EB and CB-testing datasets.
3.4 The Influence of Temporal Resolution on CB-Trained HDL-GM Accuracy

The temporal resolution of a model framework profoundly influences training efficiency,

335  prediction accuracy, and the model's capacity to fulfill specific application requirements, thereby
shaping its overall effectiveness and utility. The CB-trained HDL-GM framework was assessed using
datasets with varying time-steps, ranging from 0.25-hr to 16-hr (Figure 7). The framework trained on
datasets with time-steps of 0.25, 0.5, and 1-hr time-steps demonstrated relatively consistent
performance, maintaining a consistent NRMSE of less than 30%. However, coarser time-steps, of 2, 4,

340  and 8-hr, led to a decline in predictive capabilities, as evidenced by a reduction in R? values from 0.90
to 0.76. This performance deteriorated significantly for the 16-hr time-step configuration, exhibiting an
NRMSE exceeding 100% and a negative R? value. This analysis suggests that beyond the 8-hr threshold,
coarser resolution reduces the model’s ability to accurately capture the hydrodynamic peaks of flood

events, thereby impacting the accuracy of morphodynamic predictions. These findings suggest that

345  there is a potential relationship between the hydrodynamic scale of the system and the optimal temporal

resolution of the modeling framework, warranting further research in this area as a future endeavor.
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Figure 7: Evaluation statistics of the CB-Model for various temporal resolutions at the end of the

simulation.
350

3.5 Comparison of Prediction Runtimes Between Physics-Based and HDL-GM Models

The prediction runtime and computational demands have been critical considerations in the
morphodynamic modeling approach. A comprehensive processing time assessment was conducted by
comparing the HEC-RAS model, executed on an Intel-based laptop, with the HDL-GM framework,

355  trained on both the same laptop system and Augie, Villanova Engineering’s High-Performance
Computing Cluster (HPC), as presented in Table 1. Building upon the previous section's findings, the
HDL-GM framework was trained using a dataset with a 1-hr time-step, due to its proven efficiency and
accuracy. The results of the training stage and the predictions of a 528-hr duration are presented in

Table 1. The key findings from this comparative analysis are outlined as follows.

360 e The processing time of HEC-RAS is considerably long, requiring over 13 days to complete a

528-hr simulation.

e The HDL-GM framework’s training stage exhibited significant efficiency, particularly in the
HPC environment, where parallel training of the three models was completed in about 2.25-hr.
In contrast, training on a standard laptop, which necessitated a series approach, required about
365 11-hr.

e The prediction runtime for the trained framework demonstrated remarkable efficiency. By
executing the loop between the water depth, flow velocity, and bed change models, the HDL-
GM framework operates at a rate that is 4700 times faster than the physics-based model,
regardless of whether the HPC or the laptop was utilized.

370

Table 1: Computational time of HEC-RAS vs HDL-GM at two distinct computational systems. All time
values are in minutes.
Model Machine Target Training Predictions
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N Total Total
Processing time . .
time time
HEC-RAS Laptop 18900
Water depth 213
Laptop Velocity magnitude 142 671 (series) 4
Bed change 316
HDL-GM Water depth 136 136
HPC Velocity magnitude 73 (parallel) 4
Bed change 112 parafie

Laptop: Intel® Core™ i9-13900H + 32 GB LPDDR5 RAM
HPC: 64 AMD EPYC Series CPU Cores

4 Conclusions

Computational morphodynamic models are important for simulating the erosional and

depositional processes associated with moving rivers and changing landscapes. However, the

375  computational demands of these models result in prolonged processing times, thereby limiting their
utility in long-term simulations. To address this shortcoming, many researchers have explored data-

driven algorithms in predicting sediment transport rates with numerous applications. However, to our
knowledge, no prior research has focused on leveraging the capabilities of DL in predicting 2D

geomorphic evolution of river floodplains.

380 This study introduces a novel framework that harnesses DL capabilities to address the
computational challenges inherent in physics-based models, yielding robust, rapid, and reliable 2D
morphodynamic maps. This approach represents a major step in geomorphologic prediction, through a
full-system simulator of the complex interaction of hydrodynamics of flood events and morphodynamic
processes in fluvial areas, through integrating the spatial advantages of CNN with temporal sequences

385  of the LSTM algorithm. The effectiveness of this spatiotemporal framework represents a powerful
extension of most DL implementations, which are either sequentially dynamic point-scale applications
or static spatially distributed simulations (Bennett et al., 2024). The testing technique was developed to
assess the framework’s capabilities in real-world scenarios, where the three models, water depth, flow

velocity, and bed change, operate iteratively in a loop.

390 Additionally, a comprehensive analysis was conducted to evaluate the trade-off between the
efficiency of generating training datasets and their corresponding predictive accuracy. Two
methodologies were compared: EB, representing an efficient dataset generation approach, and CB, a
computationally intensive alternative, through three experimental scenarios: 1) the EB-trained
framework tested on the EB dataset, 2) the EB-trained framework tested on the CB dataset, and 3) the

395  CB-trained framework tested on the CB dataset. Some key findings from this study include the

following.
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e Both EB and CB-trained frameworks exhibited strong performance in predicting both
hydrodynamic features: water depth and flow velocity, whereas the CB-trained framework had

slightly superior performance.

400 e Despite the robust capabilities of the EB-trained framework in predicting the spatiotemporal
bed change activities of the EB-testing dataset, its performance on the CB-testing dataset
exhibited significant limitations, characterized by a pronounced accumulation of errors. As a

result, the model performance significantly decreased after a few flood events.

e The CB-trained framework demonstrated superior performance and strong stability when
405 applied to the CB-testing dataset, with a very narrow range of RMSE of 0.06 to 0.07 m,

throughout the testing evaluation, showing consistent performance over time.

e Consistent accuracy in simulating morphodynamics was achieved across multiple temporal
resolutions: 0.25, 0.5, and 1-hr, demonstrating the framework's versatility in meeting diverse
application requirements. However, as the timesteps became coarser, the model performance

410 became worse.

e The HDL-GM framework achieved a remarkable speedup of over 4700 compared to the HEC-
RAS model. This significant efficiency gain is secured through the transition from a second-
based time-step of physics-based models to an hourly time-step, by leveraging the capabilities

of the DL approach.

415 Ultimately, the proposed framework demonstrates significant potential in enhancing
morphodynamic modeling in fluvial rivers and floodplains, particularly from the long-term perspective,
climate change assessments, river rehabilitation projects, and other investigations requiring long-term
simulations. Despite these promising capabilities, its primary limitation lies in its inability to effectively
simulate unseen topographical conditions. Additionally, the current implementation of the HDL-GM

420  framework is for a particular set of hydrodynamic and sediment transport properties, especially
Manning n, grain-size distributions, and cohesive properties. To address these limitations, future work
is needed to improve the generalizability and performance by integrating essential hydrodynamic and

sediment transport physics into the DL framework (Karniadakis et al., 2021; Mohamad et al., 2021).
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