
I was invited to review the manuscript by Mohamed et al. (2025), which presents an integrated deep 
learning (DL) framework trained on outputs from a physics-based morphodynamic model to efficiently 
accelerate spaƟotemporal predicƟons of river–floodplain evoluƟon. While the framework does not 
aim to introduce new physical concepts or process understanding, it effecƟvely leverages deep 
learning to reproduce the behavior of the reference physics-based model in a computaƟonally efficient 
manner. Consequently, the primary contribuƟon of the manuscript lies in methodological 
advancement and workflow efficiency rather than in the development of new morphodynamic theory. 
Overall, the study is interesƟng and promising. Nevertheless, several points would benefit from 
clarificaƟon or further refinement. Addressing these comments to the saƟsfacƟon of the editor and 
reviewers would, in my view, strengthen the manuscript, and I would be happy to recommend it for 
publicaƟon. 

1. The main focus of this study is to demonstrate that deep learning (DL), trained on outputs from the 
physics-based model, can reproduce comparable results at a substanƟally higher computaƟonal speed. 
It does not explore the broader potenƟal of DL for simulaƟng hydrodynamic and morphodynamic 
processes in river or floodplain systems. Therefore, the main contribuƟon lies in computaƟonal 
efficiency rather than providing new physical insights. In addiƟon, numerous studies have applied deep 
learning to achieve higher computaƟonal speeds; for example, SyntheƟc in BenƟvoglio et al. (2022, 
Deep learning methods for flood mapping: a review of exisƟng applicaƟons and future research 
direcƟons) and Karim et al. (2023, A review of hydrodynamic and machine learning approaches for 
flood inundaƟon modeling). Consequently, the statement in the abstract (line 34) claiming that this 
study represents “pioneering new fronƟers in fluvial morphodynamic modelling” is misleading and 
should be revised. 

2. The abstract reports good performance metrics (e.g., RMSE, R²), which is encouraging. However, it 
should explicitly clarify that the DL model is trained on outputs from the physics-based model rather 
than observed data, as its performance reflects replicaƟon of the physics-based model rather than 
independent validaƟon against real-world measurements. 

3. Regarding the 2D geomorphological simulaƟon using the physics-based HEC-RAS model, which 
serves as the reference for the DL model, the physical representaƟon appears relaƟvely simplified, and 
many key parameters are missing. For example, the Manning’s n values, the sediment transport 
formulaƟons employed (e.g., bedload: van Rijn, 1984; Engelund and Fredsøe, 1976; Meyer-Peter and 
Müller, 1948) are not specified. It is also unclear how sediment input at the upstream boundary 
(bedload and/or suspended load) is specified, and how the Ɵme steps are configured during the 
simulaƟon. Furthermore, calibraƟon and validaƟon of the physics-based model appear to be missing. 
Without these essenƟal steps, it is difficult to assess the reliability of the HEC-RAS model for simulaƟng 
morphodynamic processes in the study area, which raises concerns about the robustness of the DL 
model that relies on it as reference data. 

4. Similarly, in lines 113–115, the authors state: “The resulƟng framework predicts the dynamics of 
essenƟal hydrodynamic outputs: water depth and flow velocity, which are fundamental inputs to the 
morphodynamic target, represented in bed change maps.” and the bed change results appear to rely 
solely on these two hydrodynamic outputs. This is insufficient for morphodynamic modelling. In 
addiƟon to hydrodynamic variables, morphodynamic processes also depend on sediment-related 



variables, such as sediment concentraƟon (suspended load, which plays an important role in 
sedimentaƟon within the floodplain), total sediment transport and transport rates (bedload and/or 
suspended load), and sediment properƟes (e.g., grain size and seƩling velocity). 

However, I acknowledge that addressing these points (3 and 4) would require considerable Ɵme, 
access to observed data, and expert knowledge in morphodynamic modelling, parƟcularly with a 
thorough understanding of the study area. Given that the main aim of this study is to demonstrate the 
ability of the DL model to achieve substanƟally higher computaƟonal efficiency, I leave it to the editor 
to decide whether these concerns need to be addressed for publicaƟon. 

5. Data training (lines 144–145): Approximately 11 flood events were used for training, 3 for validaƟon, 
and 6 for tesƟng, with this informaƟon presented only visually in Figure 1b. This approach is rather 
simple, and it is unclear how this selecƟon was jusƟfied. It would therefore be helpful if the authors 
could include a sentence explaining the raƟonale for this choice—for example, whether the 11 training 
events cover the full range of flood magnitudes (from small to extreme events) in terms of probability, 
total water volume, or peak discharge over the period of record, or at least whether the validaƟon and 
tesƟng events fall within the range of the training data (quanƟfied). Providing such quanƟtaƟve 
informaƟon would help readers beƩer understand the representaƟveness of the training dataset 

6. Line 297-300. In physics-based models, error accumulaƟon is a major concern, as small errors at 
early stages can grow and propagate over Ɵme. Here, the CB-trained framework demonstrates rapid 
recovery aŌer the first tesƟng event and shows no apparent accumulaƟon of relaƟve errors in 
subsequent events (Fig.6), the reasons for the iniƟally high relaƟve errors are not discussed. Further 
clarificaƟon on the mechanisms underlying this recovery would help readers beƩer understand the 
robustness and stability of the framework in conƟnuous simulaƟons. 

7. SecƟon 3.4: The authors test a range of Ɵme steps for the DL model, from 0.25 hr to 16 hr. However, 
a key detail is missing: the Ɵme step used in the physics-based reference model is not provided. This 
informaƟon is important because the physics-based model serves as the baseline for training and 
evaluaƟng the DL model. For example, if the physics-based model uses a 30-minute or 5-hour Ɵme 
step, it could strongly influence which DL model Ɵme step is most appropriate. Once the Ɵme step of 
the physics-based model is provided, it would be useful to discuss the opƟmal DL Ɵme step in relaƟon 
to the physics-based model, as well as the trade-offs between computaƟonal efficiency and predicƟon 
accuracy. 

8. Lines 420–421 menƟon Manning’s n, grain-size distribuƟons, and cohesive properƟes, which as 
come out of nowhere (see point 3). 

9. Given the complexity of geomorphological processes, more discussion on the limitaƟons and 
broader applicaƟons of DL is needed, especially since it is purely simulaƟon-based. The DL model is 
evaluated only against the physics-based HEC-RAS model, not observed field data, meaning any errors 
in HEC-RAS are inherited. It should be noted that the DL model reflects its ability to replicate HEC-RAS 
rather than providing independent validaƟon of real-world morphodynamics. The study focuses on a 
relaƟvely simple domain, a single reach with one boundary condiƟon. It would be valuable for the 
authors to discuss applying DL models to more complex river systems, such as large-scale river–
floodplain networks with mulƟple boundaries. AddiƟonally, the discussion could address the model’s 
handling of internal morphological changes (e.g., dredging, dam construcƟon, or localized sediment 



management) and the lack of explicit incorporaƟon of expert knowledge or physical constraints. 
Outlining strategies to address these limitaƟons would guide applicaƟons of DL models to more 
realisƟc, acƟvely managed river systems 

Minor comments: The use of the Morphological AcceleraƟon Factor (Mf) requires careful 
consideraƟon as it can affect flood-wave propagaƟon and sediment dynamics. In this study, for 
example, the duraƟon of discharge exceeding 600 m³s-1 for event Tr-1 is ~10 hours when Mf = 1, but 
reduces to ~2 hours when Mf = 5 (Figure 1b). With Mf = 1, high discharge persists long enough to 
propagate downstream and spread onto the floodplain. In contrast, Mf = 5 shortens the high-flow 
duraƟon, potenƟally reducing downstream peak discharge due to increased floodplain storage and 
aƩenuaƟon. Since sediment transport is strongly non-linear with discharge, these changes in flood-
wave dynamics may introduce systemaƟc errors in sediment transport and bed-change simulaƟons. 
The authors should also highlight the importance of expert knowledge in morphological modelling, 
not only for physics-based models but also for DL models. 

  

 

 


