| was invited to review the manuscript by Mohamed et al. (2025), which presents an integrated deep
learning (DL) framework trained on outputs from a physics-based morphodynamic model to efficiently
accelerate spatiotemporal predictions of river—floodplain evolution. While the framework does not
aim to introduce new physical concepts or process understanding, it effectively leverages deep
learning to reproduce the behavior of the reference physics-based model in a computationally efficient
manner. Consequently, the primary contribution of the manuscript lies in methodological
advancement and workflow efficiency rather than in the development of new morphodynamic theory.
Overall, the study is interesting and promising. Nevertheless, several points would benefit from
clarification or further refinement. Addressing these comments to the satisfaction of the editor and
reviewers would, in my view, strengthen the manuscript, and | would be happy to recommend it for
publication.

1. The main focus of this study is to demonstrate that deep learning (DL), trained on outputs from the
physics-based model, can reproduce comparable results at a substantially higher computational speed.
It does not explore the broader potential of DL for simulating hydrodynamic and morphodynamic
processes in river or floodplain systems. Therefore, the main contribution lies in computational

efficiency rather than providing new physical insights. In addition, numerous studies have applied deep

learning to achieve higher computational speeds; for example, Synthetic in Bentivoglio et al. (2022,
Deep learning methods for flood mapping: a review of existing applications and future research
directions) and Karim et al. (2023, A review of hydrodynamic and machine learning approaches for
flood inundation modeling). Consequently, the statement in the abstract (line 34) claiming that this
study represents “pioneering new frontiers in fluvial morphodynamic modelling” is misleading and
should be revised.

2. The abstract reports good performance metrics (e.g., RMSE, R?), which is encouraging. However, it
should explicitly clarify that the DL model is trained on outputs from the physics-based model rather
than observed data, as its performance reflects replication of the physics-based model rather than
independent validation against real-world measurements.

3. Regarding the 2D geomorphological simulation using the physics-based HEC-RAS model, which
serves as the reference for the DL model, the physical representation appears relatively simplified, and
many key parameters are missing. For example, the Manning’s n values, the sediment transport
formulations employed (e.g., bedload: van Rijn, 1984; Engelund and Fredsge, 1976; Meyer-Peter and
Miller, 1948) are not specified. It is also unclear how sediment input at the upstream boundary
(bedload and/or suspended load) is specified, and how the time steps are configured during the
simulation. Furthermore, calibration and validation of the physics-based model appear to be missing.
Without these essential steps, it is difficult to assess the reliability of the HEC-RAS model for simulating
morphodynamic processes in the study area, which raises concerns about the robustness of the DL
model that relies on it as reference data.

4. Similarly, in lines 113-115, the authors state: “The resulting framework predicts the dynamics of
essential hydrodynamic outputs: water depth and flow velocity, which are fundamental inputs to the
morphodynamic target, represented in bed change maps.” and the bed change results appear to rely
solely on these two hydrodynamic outputs. This is insufficient for morphodynamic modelling. In
addition to hydrodynamic variables, morphodynamic processes also depend on sediment-related



variables, such as sediment concentration (suspended load, which plays an important role in
sedimentation within the floodplain), total sediment transport and transport rates (bedload and/or
suspended load), and sediment properties (e.g., grain size and settling velocity).

However, | acknowledge that addressing these points (3 and 4) would require considerable time,

access to observed data, and expert knowledge in morphodynamic modelling, particularly with a
thorough understanding of the study area. Given that the main aim of this study is to demonstrate the

ability of the DL model to achieve substantially higher computational efficiency, | leave it to the editor

to decide whether these concerns need to be addressed for publication.

5. Data training (lines 144—-145): Approximately 11 flood events were used for training, 3 for validation,
and 6 for testing, with this information presented only visually in Figure 1b. This approach is rather
simple, and it is unclear how this selection was justified. It would therefore be helpful if the authors
could include a sentence explaining the rationale for this choice—for example, whether the 11 training
events cover the full range of flood magnitudes (from small to extreme events) in terms of probability,
total water volume, or peak discharge over the period of record, or at least whether the validation and
testing events fall within the range of the training data (quantified). Providing such quantitative
information would help readers better understand the representativeness of the training dataset

6. Line 297-300. In physics-based models, error accumulation is a major concern, as small errors at
early stages can grow and propagate over time. Here, the CB-trained framework demonstrates rapid
recovery after the first testing event and shows no apparent accumulation of relative errors in
subsequent events (Fig.6), the reasons for the initially high relative errors are not discussed. Further
clarification on the mechanisms underlying this recovery would help readers better understand the
robustness and stability of the framework in continuous simulations.

7. Section 3.4: The authors test a range of time steps for the DL model, from 0.25 hr to 16 hr. However,
a key detail is missing: the time step used in the physics-based reference model is not provided. This
information is important because the physics-based model serves as the baseline for training and
evaluating the DL model. For example, if the physics-based model uses a 30-minute or 5-hour time
step, it could strongly influence which DL model time step is most appropriate. Once the time step of
the physics-based model is provided, it would be useful to discuss the optimal DL time step in relation
to the physics-based model, as well as the trade-offs between computational efficiency and prediction
accuracy.

8. Lines 420-421 mention Manning’s n, grain-size distributions, and cohesive properties, which as
come out of nowhere (see point 3).

9. Given the complexity of geomorphological processes, more discussion on the limitations and
broader applications of DL is needed, especially since it is purely simulation-based. The DL model is
evaluated only against the physics-based HEC-RAS model, not observed field data, meaning any errors
in HEC-RAS are inherited. It should be noted that the DL model reflects its ability to replicate HEC-RAS
rather than providing independent validation of real-world morphodynamics. The study focuses on a
relatively simple domain, a single reach with one boundary condition. It would be valuable for the
authors to discuss applying DL models to more complex river systems, such as large-scale river—
floodplain networks with multiple boundaries. Additionally, the discussion could address the model’s
handling of internal morphological changes (e.g., dredging, dam construction, or localized sediment



management) and the lack of explicit incorporation of expert knowledge or physical constraints.
Outlining strategies to address these limitations would guide applications of DL models to more

realistic, actively managed river systems

Minor comments: The use of the Morphological Acceleration Factor (Mf) requires careful
consideration as it can affect flood-wave propagation and sediment dynamics. In this study, for
example, the duration of discharge exceeding 600 m3s for event Tr-1 is ~10 hours when Mf = 1, but
reduces to ~2 hours when Mf = 5 (Figure 1b). With Mf = 1, high discharge persists long enough to
propagate downstream and spread onto the floodplain. In contrast, Mf = 5 shortens the high-flow
duration, potentially reducing downstream peak discharge due to increased floodplain storage and
attenuation. Since sediment transport is strongly non-linear with discharge, these changes in flood-
wave dynamics may introduce systematic errors in sediment transport and bed-change simulations.
The authors should also highlight the importance of expert knowledge in morphological modelling,

not only for physics-based models but also for DL models.




