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The authors appreciate the peer review process facilitated by the Editor at ESurf. We extend our sincere thanks to the reviewers for their valuable feedback, which 

has significantly contributed to the enhancement of this manuscript.  

Reviewer #1 

I was invited to review the manuscript by Mohamed et al. (2025), which presents an integrated deep learning (DL) framework trained on outputs from a physics-
based morphodynamic model to efficiently accelerate spatiotemporal predictions of river–floodplain evolution. While the framework does not aim to introduce 
new physical concepts or process understanding, it effectively leverages deep learning to reproduce the behavior of the reference physics-based model in a 
computationally efficient manner. Consequently, the primary contribution of the manuscript lies in methodological advancement and workflow efficiency rather 
than in the development of new morphodynamic theory. Overall, the study is interesting and promising. Nevertheless, several points would benefit from 
clarification or further refinement. Addressing these comments to the satisfaction of the editor and reviewers would, in my view, strengthen the manuscript, 
and I would be happy to recommend it for publication. 

The authors sincerely appreciate the reviewer’s time and effort in reviewing this paper. We value your expertise and thank you for the insightful suggestions, which 

have helped us clarify key methodological details and improve the overall clarity of the paper. 

 

The following table contains the authors’ responses. 

 

Comment Responses (Green) and manuscript modifications (Blue) 

1. The main focus of this study is to demonstrate that 
deep learning (DL), trained on outputs from the 
physics-based model, can reproduce comparable 
results at a substantially higher computational speed. 
It does not explore the broader potential of DL for 
simulating hydrodynamic and morphodynamic 
processes in river or floodplain systems. Therefore, 
the main contribution lies in computational efficiency 
rather than providing new physical insights. In 
addition, numerous studies have applied deep 
learning to achieve higher computational speeds; for 
example, Synthetic in BenTIvoglio et al. (2022, Deep 
learning methods for flood mapping: a review of 
existing applications and future research directions) 

The authors appreciate the reviewer for this thoughtful comment. We agree that computational efficiency is a central 

contribution of this study, specifically achieved through a spatiotemporal hybrid CNN–LSTM framework that 

jointly predicts hydrodynamic variables (water depth and flow velocity) and 2D morphodynamic responses 

(bed‑change maps) on structured grids. 

While numerous studies have leveraged DL to develop hydrodynamic surrogates, especially flood mapping (such 

as the papers mentioned by the reviewer: Bentivoglio et al., 2022; Karim et al., 2023), we are not aware of prior 

work demonstrating an end‑to‑end, 2D morphodynamic map prediction framework that explicitly predicts bed‑level 

change within an updated system state iteratively over multiple flood events to assess long‑horizon stability. In this 

sense, the novelty lies not only in acceleration, but also in the integrated DL framework to deliver hydrodynamic 

and morphodynamic predictions at the spatiotemporal scale. 



and Karim et al. (2023, A review of hydrodynamic and 
machine learning approaches for flood inundation 
modeling). Consequently, the statement in the 
abstract (line 34) claiming that this study represents 
“pioneering new frontiers in fluvial morphodynamic 
modelling” is misleading and should be revised.  

However, we have revised the statement according to the reviewer’s comment, as follows: 

This novel approach generates predictions 4700 times faster than traditional physics-based computational models, 

representing a paradigm shift in long-term river evolution simulations and opening new opportunities for fluvial 

morphodynamic modeling. 

2. The abstract reports good performance metrics 

(e.g., RMSE, R²), which is encouraging. However, it 

should explicitly clarify that the DL model is trained 

on outputs from the physics-based model rather than 

observed data, as its performance reflects replication 

of the physics-based model rather than independent 

validation against real-world measurements. 

The authors thank the reviewer for this comment. We agree on this. The revised sentence reads as follows: 

This paper introduces and tests a robust Deep Learning (DL) framework that opens the door to 

overcoming these challenges through integrating convolutional neural networks (CNNs) with long short-

term memory algorithms (LSTM) architectures, trained using outputs from the physics-based HEC-RAS 

model.  

3. Regarding the 2D geomorphological simulation 
using the physics-based HEC-RAS model, which serves 
as the reference for the DL model, the physical 
representation appears relatively simplified, and 
many key parameters are missing. For example, the 
Manning’s n values, the sediment transport formulae 
employed (e.g., bedload: van Rijn, 1984; Engelund 
and Fredsøe, 1976; Meyer-Peter and Müller, 1948) 
are not specified. It is also unclear how sediment 
input at the upstream boundary (bedload and/or 
suspended load) is specified, and how the time steps 
are configured during the simulation. Furthermore, 
calibration and validation of the physics-based model 
appear to be missing. Without these essential steps, 
it is difficult to assess the reliability of the HEC-RAS 
model for simulating morphodynamic processes in 
the study area, which raises concerns about the 
robustness of the DL model that relies on it as 
reference data. 

The authors thank the reviewer for this detailed and important comment. We agree that, for studies aiming 

at predicting morphodynamic behavior, extensive parameter specification, calibration, and validation of 

the physics-based model are essential. However, the primary objective of this study is fundamentally 

different. Here, we aim to assess the capability of a DL framework to learn, reproduce, and efficiently 

emulate the spatiotemporal behavior of a physics-based morphodynamic model, rather than to optimize 

agreement with field observations, which are unavailable for the Ninnescah River. Accordingly, the 

HEC-RAS model is employed as a synthetic reference generator that produces internally consistent 

morphodynamic dynamics. This simulator-based training strategy is well established in surrogate and 

emulator modeling and aligns with several recent papers, such as “Next-generation deep learning based 

on simulators and synthetic data” by De Melo et al. (2022) who highlighted that synthetic data offer a 

practical solution to data scarcity by providing abundant, noise-free, and fully annotated training samples, 

thereby enabling effective DL training while avoiding many of the logistical challenges associated with 

observational datasets.  

Due to the limited availability and spatial coverage of observational data in the study reach, calibration 

and validation of parameters such as Manning’s roughness coefficient and sediment transport parameters 

were not pursued. Instead, we adopted a consistent model configuration to isolate the DL model’s ability 

to capture nonlinear morphodynamic responses governed by the physics-based solver. Two Manning’s 

roughness coefficient of 0.035 and 0.05 were used within the river reach and surrounding floodplain, 

respectively, which falls well within the commonly accepted range for natural alluvial channels and 

floodplains. 

The authors agreed that the Methodology section would benefit from more information about the 

hydrodynamic and morphodynamic setting used to produce the training dataset. We also wanted to 

highlight that the reported DL performance reflects its capacity to reproduce the morphodynamic 



responses generated from the physics-based model, not its ability to predict real-world morphodynamics 

directly. 

We have clarified this distinction explicitly in the revised manuscript across different locations: 

Methodology: we added a new paragraph 

Due to the limited availability of spatiotemporal observational data within the study reach, full calibration 

and independent validation of the hydraulic and sediment transport parameters were not feasible. To 

maintain consistency in the physics‑based reference, we adopted a physically reasonable and internally 

coherent HEC‑RAS configuration. Uniform Manning’s n values of 0.035 for the main channel and 0.05 

across the floodplain were applied, which fall within commonly reported ranges for alluvial systems. 

HEC‑RAS includes a wide suite of empirical sediment‑transport formulations, and for this study, the Wu 

equation was selected due to its demonstrated robustness in comparative assessments against other 

widely used transport formulas (Wu et al., 2000). The Wu equation is well-suited for channels with the 

grain size distribution of the Ninnescah River, as it explicitly incorporates the effects of nonuniform 

sediment mixtures and gradation (Wu and Lin, 2014). In contrast, classical approaches such as 

Meyer‑Peter–Müller or Engelund–Hansen do not incorporate bed‑material nonuniformity and may 

therefore yield biased transport estimates under conditions similar to those of the study reach (Hunziker 

and Jaeggi, 2002). The developed model ensures that the morphodynamic responses arise from physics-

based background, thereby allowing a more direct evaluation of the DL model’s ability to replicate the 

nonlinear morphodynamic behavior of the physics‑based solver. 

Conclusion: we added a new paragraph 

This study introduces a novel DL framework designed to address the computational challenges of 

physics-based models, enabling robust, rapid, and reliable generation of 2D morphodynamic maps. 

Given the lack of observational data for the Ninnescah River, this study does not aim to optimize 

agreement with field measurements; instead, it evaluates the capacity of the DL model to reproduce the 

spatiotemporal dynamics generated by a physics-based numerical solver. For this purpose, the HEC RAS 

model was used as a synthetic reference generator, providing internally consistent hydrodynamic and 

morphodynamic responses. This learning approach, widely used in surrogate modeling and increasingly 

adopted in Earth‑surface research where observational datasets are sparse, leverages a synthetic, noise-

free, and complete dataset to enable robust DL training while avoiding the practical constraints of field 

data collection (De Melo et al., 2022).  

 4. Similarly, in lines 113–115, the authors state: “The 
resulting framework predicts the dynamics of 
essential hydrodynamic outputs: water depth and 
flow velocity, which are fundamental inputs to the 
morphodynamic target, represented in bed change 

The authors thank the reviewer for this insightful comment and fully agree that classical physics-based 

morphodynamic models explicitly rely on sediment-related variables such as suspended load, bedload 

transport rates, and sediment properties, which govern bed evolution processes. However, the role of 

these variables differs fundamentally between physics-based solvers and data-driven emulation 

frameworks. The objective of this study is to emulate the input–output behavior of a physics-based 

morphodynamic model. In this context, the proposed framework is designed to learn a direct mapping 



maps.” and the bed change results appear to rely 
solely on these two hydrodynamic outputs. This is 
insufficient for morphodynamic modelling. In 
addition to hydrodynamic variables, morphodynamic 
processes also depend on sediment-related variables, 
such as sediment concentration (suspended load, 
which plays an important role in sedimentation 
within the floodplain), total sediment transport and 
transport rates (bedload and/or suspended load), and 
sediment properties (e.g., grain size and settling 
velocity). 
However, I acknowledge that addressing these points 
(3 and 4) would require considerable time, access to 
observed data, and expert knowledge in 
morphodynamic modelling, particularly with a 
thorough understanding of the study area. Given that 
the main aim of this study is to demonstrate the 
ability of the DL model to achieve substantially higher 
computational efficiency, I leave it to the editor to 
decide whether these concerns need to be addressed 
for publication. 

between hydrodynamic forcings and resulting bed elevation changes as produced by the HEC-RAS 

solver, without requiring explicit representation of intermediate sediment transport variables. 

By conditioning the DL framework on key hydrodynamic variables such as water depth and flow 

velocity, which strongly control sediment mobilization and transport capacity, the model is able to learn 

statistical relationships that implicitly reflect the influence of sediment-related processes. In practice, 

variables such as suspended sediment concentration and transport rates are often strongly correlated with 

flow depth, velocity, and hydrograph characteristics, allowing their effects to be captured indirectly 

through these hydrodynamic predictors. 

We have revised the manuscript to clarify this point in the Methodology Section as follows: 

To maximize the efficiency of the HDL framework as a physics‑based emulator, the model was designed 

to learn the final morphodynamic response produced by HEC‑RAS rather than to replicate intermediate 

sediment‑transport processes. Accordingly, the HDL architecture was trained to predict bed‑level change 

directly, using hydrodynamic fields (water depth and flow velocity) together with the upstream 

hydrograph as inputs. This reduced‑input configuration was intentionally adopted to evaluate the model’s 

capacity to infer the morphodynamic patterns from the essential driving variables, while avoiding 

additional complexity associated with explicitly modeling suspended sediment, bedload transport rates, 

or sediment‑property fields.  

5. Data training (lines 144–145): Approximately 11 
flood events were used for training, 3 for validation, 
and 6 for testing, with this information presented 
only visually in Figure 1b. This approach is rather 
simple, and it is unclear how this selection was 
justified. It would therefore be helpful if the authors 
could include a sentence explaining the rationale for 
this choice—for example, whether the 11 training 
events cover the full range of flood magnitudes (from 
small to extreme events) in terms of probability, total 
water volume, or peak discharge over the period of 
record, or at least whether the validation and testing 
events fall within the range of the training data 
(quantified). Providing such quantitative information 
would help readers better understand the 
representativeness of the training dataset  

The authors thank the reviewer for raising this important point regarding the number of events used in the training 

and testing stages. This comment was repeated by the second reviewer, and we agree that it wasn’t clear enough in 

the first version.  

In general, increasing the size of training datasets may have the potential to enhance the ability of DL models to 

learn hidden patterns and improve predictive robustness. However, in the context of morphodynamic modeling, the 

generation of long datasets is constrained by the expensive computational cost of physics‑based models to generate 

training datasets. Furthermore, extending the dataset further would elongate the DL training process, and our main 

aim was to provide an efficient framework. 

In this study, a constructed hydrograph consisting of 20 flood events was selected to span a broad range of flood 

magnitudes and hydrograph shapes. Repetition of similar events was intentionally avoided, as it is unlikely to 

provide additional information to the DL framework while substantially increasing computational cost. The 

partitioning of these 20 events into 11 training, 3 validation, and 6 testing events follows common practice in 

data‑driven modeling, where approximately 50–60% of the data are used for training, with the remainder reserved 

for validation and independent testing. The six testing events were therefore not chosen to represent a predictive 



limit of the framework, but rather to provide a statistically meaningful and computationally feasible basis for 

evaluating error accumulation and long‑term behavior. 

The revised manuscript reads as follows: 

Additionally, significant portions of the observed hydrograph are baseflow, which corresponds to a 

period of relatively low flow with minimal sediment transport. To address these challenges, a constructed 

hydrograph of 20 events was extracted from the observed hydrograph. This event set was designed to 

encompass a broader range of flood magnitudes while avoiding long periods of baseflow discharge. 

Repetition of similar events was intentionally avoided, as such redundancy is unlikely to provide 

additional informative signals for the DL framework. This hydrograph was split into three portions: 

training, validation, and testing of 11, 3, and 6 events, respectively (Figure 1-b), following common 

data‑driven modeling practice to balance model learning and independent evaluation within 

computational constraints. 

6. Line 297-300. In physics-based models, error 
accumulation is a major concern, as small errors at 
early stages can grow and propagate over time. Here, 
the CB-trained framework demonstrates rapid 
recovery after the first testing event and shows no 
apparent accumulation of relative errors in 
subsequent events (Fig.6). The reasons for the 
initially high relative errors are not discussed. Further 
clarification on the mechanisms underlying this 
recovery would help readers better understand the 
robustness and stability of the framework in 
continuous simulations.  

The authors appreciate the reviewer’s comment. We agree that this point requires explanation. The revised 

manuscript reads as follows: 

Figure 5 presents the absolute and relative error results at the end of multiple testing events within the 

CB dataset. Initially, the CB-trained framework maintained relatively high relative errors at the end of 

the first testing event, primarily because the reference bed change magnitudes during this first event are 

small; as a result, even minor absolute deviations from the HDL-GM predictions translate into large 

relative errors. After this first event, it exhibited rapid recovery, yielding substantially reduced relative 

errors from the second testing event. This robust performance continued throughout the CB testing 

dataset, with no accumulation of relative errors.   

7. Section 3.4: The authors test a range of time steps 
for the DL model, from 0.25 hr to 16 hr. However, a 
key detail is missing: the Time step used in the 
physics-based reference model is not provided. This 
information is important because the physics-based 
model serves as the baseline for training and 
evaluating the DL model. For example, if the physics-
based model uses a 30-minute or 5-hour time step, it 
could strongly influence which DL model time step is 
most appropriate. Once the time step of the physics-
based model is provided, it would be useful to discuss 
the optimal DL time step in relation to the physics-

The authors thank the reviewer for this important point. We agree that the reference solver’s time 

stepping should be reported because it allows the comparison between traditional physics-based and DL 

models.  

Physics‑based morphodynamic solvers such as HEC‑RAS require very small computational time steps 

to maintain numerical stability in both the hydrodynamic and sediment‑transport components. In our 

configuration, the HEC‑RAS hydrodynamic time step was 3 seconds, which is a primary reason for the 

long processing times. One advantage of the proposed DL framework is that, unlike the physics‑based 

solver, it does not inherit CFL‑based stability constraints or sediment‑transport time‑step limitations. 

This flexibility allows the DL model to operate at much coarser temporal resolutions (hours) while still 

capturing the essential morphodynamic evolution. The temporal‑resolution analysis in Section 3.4 was 

therefore designed to evaluate how coarse the DL time step can be made before losing fidelity to the 

physics‑based baseline. 



based model, as well as the trade-offs between 
computational efficiency and prediction accuracy.  

The revised manuscript reads as follows: 

The prediction runtime and computational demands have been critical considerations in the 

morphodynamic modeling approach. This section highlights the substantial efficiency gains achieved by 

the proposed HDL‑GM framework relative to the HEC‑RAS simulations. Notably, HEC‑RAS requires 

a 3‑second computational time step to maintain numerical stability in both hydrodynamic and 

sediment‑transport solvers. This constraint is a major source of the long processing times associated with 

physics‑based models. In contrast, the HDL‑GM framework is not limited by such stability limitations 

and can therefore operate at much coarser time steps, allowing evaluations at coarser resolutions, 

enabling the substantial computational speedup demonstrated by the DL‑based approach.  

8. Lines 420–421 mention Manning’s n, grain-size 
distributions, and cohesive properties, which as come 
out of nowhere (see point 3).  

The authors agree with the reviewer's comment, and we revised the manuscript and provided more 

information about the modeling part and the utilized Manning n value. 

Uniform Manning’s n values of 0.035 for the main channel and 0.05 across the floodplain were applied, 

which fall within commonly reported ranges for alluvial systems.  

9. Given the complexity of geomorphological 
processes, more discussion on the limitations and 
broader applications of DL is needed, especially since 
it is purely simulation-based. The DL model is 
evaluated only against the physics-based HEC-RAS 
model, not observed field data, meaning any errors in 
HEC-RAS are inherited. It should be noted that the DL 
model reflects its ability to replicate HEC-RAS rather 
than providing independent validation of real-world 
morphodynamics. The study focuses on a relatively 
simple domain, a single reach with one boundary 
condition. It would be valuable for the authors to 
discuss applying DL models to more complex river 
systems, such as large-scale river– floodplain 
networks with multiple boundaries. Additionally, the 
discussion could address the model’s handling of 
internal morphological changes (e.g., dredging, dam 
construction, or localized sediment management) 
and the lack of explicit incorporation of expert 
knowledge or physical constraints. Outlining 
strategies to address these limitations would guide 
applications of DL models to more realistic, actively 
managed river systems  

The authors thank the reviewer for this thoughtful comment and agree that a clear discussion of 

limitations and broader applicability is essential. We clearly highlighted that the DL framework presented 

here is evaluated exclusively against the physics-based HEC-RAS model, and therefore its performance 

reflects the ability to replicate the numerical solver rather than to provide validation of observed 

morphodynamic behavior.  

Abstract 

This paper introduces and tests a robust Deep Learning (DL) framework that opens the door to 

overcoming these challenges through integrating convolutional neural networks (CNNs) with long short-

term memory algorithms (LSTM) architectures, trained using outputs from the physics-based HEC-RAS 

model.  

Conclusion 

Given the lack of observational data for the Ninnescah River, this study does not aim to optimize 

agreement with field measurements; instead, it evaluates the capacity of the DL model to reproduce the 

spatiotemporal dynamics generated by a physics-based numerical solver. For this purpose, the HEC-RAS 

model was used as a synthetic reference generator, providing internally consistent hydrodynamic and 

morphodynamic responses. 

We also agree that extending the framework to more complex river–floodplain systems represents an 

important direction for future work. We have expanded the conclusion to explicitly outline these 

limitations and potential strategies for applying DL-based emulators to larger and more complex systems. 



Conclusion 

Ultimately, the proposed framework demonstrates significant potential in enhancing morphodynamic 

modeling in fluvial rivers and floodplains, particularly from the long-term perspective, climate change 

assessments, river rehabilitation projects, and other investigations requiring long-term simulations. 

Despite these promising capabilities, its primary limitation lies in its inability to effectively simulate 

unseen topographical conditions. In addition, the current application is limited to a single reach with one 

upstream boundary condition; future work should therefore evaluate the framework’s performance in 

larger and more complex river–floodplain networks with multiple boundary conditions. The current 

implementation is also tailored to a particular set of hydrodynamic and sediment transport properties, 

especially Manning n, grain-size distributions, and cohesive properties, which may limit generalizability. 

Addressing these constraints will require integrating essential hydrodynamic and sediment transport 

physics into the DL framework (Karniadakis et al., 2021; Mohamad et al., 2021).  

Minor comments: The use of the Morphological 
Acceleration Factor (Mf) requires careful 
consideration as it can affect flood-wave propagation 
and sediment dynamics. In this study, for example, 
the duration of discharge exceeding 600 m³s-1 for 
event Tr-1 is ~10 hours when Mf = 1, but reduces to 
~2 hours when Mf = 5 (Figure 1b). With Mf = 1, high 
discharge persists long enough to propagate 
downstream and spread onto the floodplain. In 
contrast, Mf = 5 shortens the high-flow duration, 
potentially reducing downstream peak discharge due 
to increased floodplain storage and attenuation. 
Since sediment transport is strongly non-linear with 
discharge, these changes in floodwave dynamics may 
introduce systematic errors in sediment transport 
and bed-change simulations. The authors should also 
highlight the importance of expert knowledge in 
morphological modelling, not only for physics-based 
models but also for DL models.  

The authors appreciate this important point. We agree that the initial version of the manuscript did not 

sufficiently explain the rationale for selecting an acceleration factor of 5. In the revised manuscript, we 

have expanded this section to clarify both why this value was chosen and how higher values of Mf can 

adversely affect morphodynamic accuracy. The updated manuscript reads as follows: 

It is worth noting that there is a trade-off between utilizing a higher acceleration factor and the accuracy 

of the morphodynamic outputs. Morgan et al. (2020) explored this trade-off on Nooksack River in 

Washington through investigating a range of Mf from 5 to 50. Their results showed that Mf of 5 provided 

a valuable balance, reducing computational time by approximately 80% while maintaining a relatively 

low absolute percentage error of about 8%. In contrast, larger acceleration factors (Mf  over 20) led to 

substantial increases in error, in some cases exceeding 30%, indicating degradation of morphodynamic 

fidelity. Because such nonlinearities affect both the hydrograph and the morphological responses, expert 

judgment remains essential for interpreting morphodynamic outputs. Based on these considerations, Mf 

of 5 was adopted in the present study, where each flood event spans a full-scale of 10-days, encompassing 

the typical progression of flood events from initial baseflow, through the peak, and returning to baseflow, 

which is reduced to only 2 days using Mf of 5 (Figure 1-b).  

 
 


