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Abstract. Accurate carbon emission estimates are essential for guiding climate action toward net zero emissions by 2050. The 

Bayesian inverse method, combined with atmospheric CO2 measurements and the transport model, can serve as an independent 

verification approach to improve accuracy. In this study, we developed a Bayesian inverse modelling framework using ground- 

and space-based measurements and applied it to Seoul to test the framework and constrain its CO2 emissions. By leveraging 10 

the high temporal resolution of ground-based in situ observations and the broad spatial coverage of satellite data, we improved 

the accuracy of emission estimates. Our results indicate a 4.43% increase in posterior emissions compared to prior estimates, 

suggesting that the prior emissions were slightly underestimated. The spatiotemporal variability of posterior emissions 

increased significantly, enabling us to track CO2 fluctuations and assess the impact of carbon reduction policies over time and 

space. Additionally, the mean absolute error was reduced, improving the agreement between simulated and observed CO2 15 

enhancements. We thoroughly investigated the performance of the inverse model through a sensitivity analysis that considered 

different observational network configurations. The most substantial reductions in uncertainties (19.2%) were observed when 

all available observations were used. The extensive coverage of satellite observations enabled further corrections in areas not 

covered by ground observations. Overall, this study highlights the importance of combining multiple observational sources to 

better constrain urban CO2 emissions. The framework also shows strong potential for application in other cities and can support 20 

the development of effective climate mitigation policies. 
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1 Introduction 

Global carbon emissions from fossil fuel combustion and land-use change are redistributed among the atmosphere, ocean, and 

land (Friedlingstein et al., 2022). In the global carbon cycle, these five major components closely interact to maintain balance. 

However, anthropogenic emissions of greenhouse gases (GHGs), particularly carbon dioxide (CO2), have dominated since the 

industrial era, resulting in rising atmospheric CO2 levels and driving climate change (Friedlingstein et al., 2022). Human-30 

caused climate change amplifies global surface temperatures and impacts weather extremes such as heatwaves, tropical 

cyclones, droughts, and heavy precipitation (IPCC, 2023). To mitigate the adverse effects of climate change worldwide, 

international climate agreements like the United Nations Framework Convention on Climate Change, the Kyoto Protocol, and 

the Paris Agreement have been implemented (IPCC, 2023). The IPCC 1.5℃ Special Report declared that achieving global 

net-zero CO2 emissions by 2050 is imperative to limit the increase in global temperature to 1.5 ℃ above pre-industrial levels 35 

(IPCC, 2018). More than 130 countries have signalled an intention to reduce CO2 emissions to near net-zero by around mid-

century (Robinson and Shine, 2018). 

By 2050, 68% of the world's population is projected to reside in urban areas (UN-DESA, 2018). At least 70% of global 

anthropogenic CO2 emissions originate from cities (IEA, 2015). Given the concentration of population and CO2 emissions in 

cities, they bear significant responsibility for emission reduction and are expected to play a major role in meeting their net-40 

zero goals. The C40 Climate Leadership Group, comprising around 100 cities worldwide, has pledged to reduce GHG 
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emissions and developed a science-based approach (40 Cities, 2022). To support urban emission reduction strategies, the 

quality assurance of CO2 emission estimates is required (Gurney et al., 2021; IPCC, 2019). Accurate emission estimates can 

provide detailed guidance to establish a baseline for prioritizing climate action and assessing policy progress over time (Mueller 

et al., 2021). 45 

Various efforts are underway to estimate CO2 emissions through a bottom-up approach. This approach calculates 

anthropogenic CO2 emissions based on socio-economic databases (e.g., energy consumption, housing statistics, and road 

networks) and emission factors. Because of limited access to activity data and unknown emission factors within urban areas, 

detailed CO2 emission estimates with high spatial and temporal resolution have been developed only for certain cities, such as 

Indianapolis (Gurney et al., 2012), Los Angeles (Feng et al., 2016; Gurney et al., 2019b), Salt Lake City (Patarasuk et al., 50 

2016), and New York (Gately et al., 2015). Other types of emission data products, including CDIAC (Carbon Dioxide 

Information and Analysis Center), EDGAR (Emissions Database for Global Atmospheric Research), and ODIAC (Open-Data 

Inventory for Anthropogenic Carbon Dioxide), have been devised to downscale global/national total emission estimates using 

proxies such as nighttime lights and population. Large discrepancies between bottom-up and downscaled CO2 emission 

estimates at the urban scale have been reported, primarily stemming from the large point sources and road traffic (Gurney et 55 

al., 2019a). Such uncertainties limit the establishment of a CO2 emissions baseline and assessing mitigation outcomes at the 

city levels.  

A complementary and independent approach to verify these CO2 emission estimates is deemed necessary (IPCC, 2019). In the 

top-down approach, emission estimates can be constrained via real-time CO2 measurements and atmospheric transport models. 

Consequently, combining bottom-up and top-down estimates has been explored using a Bayesian inversion approach for 60 

accurate CO2 emission estimation. Bayesian inversion approach has been used in recent studies to optimize existing bottom-

up estimates over Salt Lake City (Kunik et al., 2019; Mallia et al., 2020), Paris (Lian et al., 2022; Nalini et al., 2022), Los 

Angeles (Ye et al., 2020), and Tokyo (Ohyama et al., 2023; Pisso et al., 2019). They obtained optimal CO2 emissions with the 

uncertainty reduction of 39.32% (Kunik et al., 2019), 27.7% (Mallia et al., 2020), 8–10% (Lian et al., 2022), 2–10% (Nalini 

et al., 2022), ~50% (Ohyama et al., 2023), and 20.09% (Pisso et al., 2019) compared to prior emissions.  65 

Previous studies that performed inverse modelling for urban areas have primarily relied on a single type of observation to 

constrain emissions, most commonly ground-based in situ CO2 measurements (Breón et al., 2015; Göckede et al., 2010; 

Lauvaux et al., 2016; Lian et al., 2023, 2022; Mallia et al., 2020; McKain et al., 2012; Nalini et al., 2022; Sargent et al., 2018; 

Staufer et al., 2016). Some studies have instead used ground-based Fourier Transform Infrared (FTIR) column-averaged CO2 

(XCO2) observations (Hedelius et al., 2018; Ohyama et al., 2023), airborne observations (Lopez-Coto et al., 2020; Pitt et al., 70 

2022), or satellite observations (Hamilton et al., 2024; Kaminski et al., 2022; Roten et al., 2023; Wu et al., 2018; Ye et al., 

2020). However, studies that combine multiple observation types to leverage their complementary strengths remain rare. 

Although Pisso et al. (2019) integrated in situ airborne and ground-based observations to assess Lagrangian inverse modelling, 

and Che et al. (2024) combined ground-based FTIR and satellite data to estimate CO2 emissions, these studies focused on 

either near-surface CO2 concentrations or vertical CO2 profiles, rather than incorporating both perspectives. In this study, we 75 
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integrate ground-based in situ CO2 observations, which provide detailed information on surface emissions and uptake with 

high temporal resolution, and satellite observations, which offer broad spatial coverage and capture the total atmospheric CO2 

column. By combining these two complementary datasets, we simultaneously account for surface CO2 fluxes and their impact 

on the vertical distribution of atmospheric CO2. To our knowledge, this is the first inverse modelling study to fully utilize 

surface and column-integrated CO2 measurements, providing a more comprehensive constraint on urban CO2 emissions. 80 

Seoul is a megacity with a population of approximately 10 million, which accounts for 18% of South Korea's total population 

in 2022 (KOSIS, 2023). The population and infrastructure in Seoul are densely concentrated, making it more susceptible to 

severe damage from climate change than other regions. It also has one of the highest carbon emissions among the 13,000 cities 

worldwide (Moran et al., 2018). Seoul has participated in the C40 Climate Leadership Group since 2006, and in 2020, it 

announced the ‘2050 GHGs Reduction Promotion Plan’ to achieve a net-zero emissions goal (Seoul Metropolitan Government, 85 

2021). Within Seoul, a comprehensive CO2 monitoring network has been established, encompassing numerous stationary 

monitoring sites and mobile platforms to understand the urban carbon cycle (Park et al., 2020; Sim et al., 2020). Given its 

dense population, concentrated emissions, and extensive measurement networks, Seoul can be an optimal testbed city for 

studies to verify CO2 emission estimates and assess the effectiveness of the CO2 monitoring network. 

In this study, we used a Bayesian inverse model and ground- and space-based measurements to improve the accuracy of CO2 90 

emission estimates over Seoul. We developed a high-resolution Bayesian inverse modelling framework with a spatial 

resolution of 0.01° and a temporal resolution of 1 h, incorporating anthropogenic CO2 emissions, biogenic CO2 fluxes, 

atmospheric CO2 measurements, a Lagrangian transport model, and error covariances of both prior emissions and observations. 

We then estimated the optimal spatiotemporal distribution of CO2 emissions over Seoul for December 2021, verifying existing 

emission data. Additionally, we evaluated the effectiveness of the inversion by comparing observed and simulated CO2 95 

enhancements using prior and posterior emissions. Finally, we conducted sensitivity tests on different observational datasets 

to assess their impact on emission estimates. 

2 Data and methods 

2.1 Bayesian inverse method 

In this study, data assimilation is employed to estimate optimal (posterior) CO2 emissions close to the true emissions. Data 100 

assimilation in CO2 estimation optimally combines information from atmospheric CO2 observations with a transport model 

and prior CO2 emissions to produce accurate posterior estimates of CO2 emissions. Posterior CO2 emissions are derived 

through the minimization of the cost function (Enting, 2002; Tarantola, 1987) defined as follows:   =   ( −  )( − )+   − ( − )                                                 (1) 

Where  is a vector of observed CO2 enhancements,  is the Jacobian matrix of footprint values from the atmospheric transport 105 

model,  is a vector of the unknown true CO2 emissions,  is the covariance of observational errors,  is a state vector of 
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prior CO2 emissions, and Q is the covariance of prior emission errors. The solution obtained by minimizing the cost function 

defined in Eq. (1) yields the optimized posterior CO2 emission estimates (̂), expressed as:  =   + ( )(  + )( − )                                                            (2) 

The posterior uncertainty covariance () can be expressed as: 110   =   − ( )(  + )( )                                                               (3) 

Using the posterior uncertainty covariance obtained from Eq. (3), the reduction in uncertainty resulting from the constraints 

on emissions can be calculated as:    =  _ ×  %                                                            (4) 

Here,   represents the domain- and time-averaged covariance of prior emission errors and _  represents the domain- 115 

and time-averaged covariance of posterior emission errors. 

In this study, we assessed the validity of posterior emissions resulting from the inverse model by calculating the reduced chi-

squared value () following Tarantola (1987). It is computed using the equation:  =  [( − )( − ) + ( − )( − )]                                             (5) 

Where the squared data residual ( − ) and emissions residual ( − ) from the inversion are normalized by their respective 120 

variance matrices,  and Q. The residuals are expected to follow a chi-squared distribution with ν degrees of freedom, which 

in this study corresponds to the number of observations. The closer the reduced chi-squared value is to 1, the more accurately 

the prescribed errors of observations and prior emissions are set, leading to a more reliable estimation of posterior emissions. 

 

2.2 Observations 125 

A set of measurements from ground-based and satellite observations, all collected during December 2021, was selected to 

obtain atmospheric CO2 concentrations in Seoul. Although ground-based observations offer the advantage of real-time 

measurements of atmospheric CO2 concentrations over an extended period, satellite observations provide broader spatial 

coverage.  

For the ground measurements, we used observed CO2 concentrations from five different sites in Seoul (Park et al., 2020): 130 

Namsan Seoul Tower-High (NSTH), Namsan Seoul Tower-Low (NSTL), Olympic Park (OLP), Seoul National University 

(SNU), and Yongsan Building (YSB), as shown in Fig. 1. The instrument inlet heights of NSTH, NSTL, OLP, SNU, and YSB, 

combined with the site altitude, are 420, 265, 27, 173, and 113 m, respectively. The observation instruments installed at NSTL 

and OLP are PICARRO’s G2301, whereas those installed at NSTH, SNU, and YSB are LICOR’s LI-850. We utilized only 

daytime data (10:00–16:00 KST) for the inverse modelling to minimize the impact of model biases in the planetary boundary 135 

layer height. The CO2 concentrations measured at each ground observation site exhibit different patterns of variation because 

of differences in altitudes and surrounding environments (Fig. 2a). The average daytime CO2 concentrations at NSTH, NSTL, 
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OLP, SNU, and YSB were 453.7 ± 19.6, 460.1 ± 27.1, 460.2 ± 26.7, 461.5 ± 26.6, and 466.9 ± 31.4 ppm, respectively. The 

lowest average concentration at NSTH is attributed to its location at the top of the tall tower, whereas the highest average 

concentration at YSB is because of its location in a commercial area with high vehicle traffic. 140 

 

 
Figure 1: Map of Seoul with the locations of CO2 ground observation sites: Namsan Tower-high (NSTH), Namsan Tower-low (NSTL), 
Olympic Park (OLP), Seoul National University (SNU), and Yongsan Building (YSB). Observation sites are denoted with yellow 
points. The background map is sourced from Kakao Map (© Kakao Corp.). 145 

 

We used data from the Orbiting Carbon Observatory-2 (OCO-2) and the Orbiting Carbon Observatory-3 (OCO-3) for satellite 

measurements. OCO-2 and OCO-3, launched on July 2, 2014, and May 4, 2019, respectively, observe the dry-air column-

averaged volume mixing ratio of CO2 (XCO2). On December 4 and 5, 2021, the OCO-2 and OCO-3 satellites passed over 

Seoul at 13:00 and 11:00 KST, respectively, yielding 60 and 167 soundings (Figs. 2b and 2c). Only good-quality data were 150 

considered when processing the XCO2 data for observational input in inverse modelling. In both datasets, the XCO2 values 

were higher in the southern part of Seoul compared to the northern part. 
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Figure 2: Observation data used in the Bayesian inverse modelling framework over Seoul during December 2021. (a) Time series of 155 
daytime-only (10:00–16:00 KST) CO2 concentrations measured at five ground sites and box plot of the daytime CO2 concentrations 
from ground sites. Spatial distributions of XCO2 measured by (b) OCO-2 on December 4, 2021, at 13:00 KST and (c) OCO-3 on 
December 5, 2021, at 11:00 KST. The background maps in (b) and (c) are based on Esri's World Imagery (© Esri, Maxar, Earthstar 
Geographics, and the GIS User Community). 

 160 

The vector of observed CO2 enhancements, denoted as z in Eq. (1), represents the △CO2 affected by nearby emission sources. 

Because we aim to optimize Seoul's CO2 emissions using atmospheric observations, we must calculate △CO2 influenced only 

by anthropogenic emissions within Seoul, excluding the effects of background and biogenic fluxes. To obtain the △CO2, the 

background and vegetation-affected concentrations must be subtracted from the observed CO2 concentrations. We defined the 

background value for ground observations using the 24-h moving 5th percentile values from each site (Chandra et al., 2016; 165 

Gamage et al., 2020). For satellite observations, the background value was calculated from the daily median of measured XCO2 

over non-urban areas within a ~500,000 km2 background box centered among Seoul (Labzovskii et al., 2019; Park et al., 2021). 

The calculation method for the vegetation-affected concentration is described in Sect. 2.4. 
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2.3 Atmospheric Transport 170 

The Weather Research and Forecasting model with the (X-)Stochastic Time-Inverted Lagrangian Transport (WRF-(X)STILT) 

was used to derive the Jacobian matrix of footprint values () at a fine spatial resolution (e.g., 0.01°). We employed the STILT 

model (Fasoli et al., 2018; Lin et al., 2003) for ground-based observations and X-STILT (Wu et al., 2018) for satellite 

observations, both driven by meteorological fields from WRF model version 3.9.1 (Skamarock and Klemp, 2008). WRF-

(X)STILT is an effective tool for simulating realistic atmospheric transport using a Lagrangian particle dispersion model within 175 

the planetary boundary layer (Nehrkorn et al., 2010). Previous studies have widely used WRF-(X)STILT as an atmospheric 

transport model for applying GHG inverse modelling in urban areas (Kunik et al., 2019; McKain et al., 2012; Ohyama et al., 

2023; Sargent et al., 2018; Wu et al., 2018; Zhao et al., 2009).  

The model releases backward 3D virtual air particle trajectories with stochastically turbulent dispersion from the observation 

location (receptor) to potential source regions that influence the receptor. It then counts the dispersed air particles (footprints) 180 

in each grid. Footprints quantify the sensitivity of the observation to upstream source regions. They can be regarded as the 

average contribution of the surface flux at the receptor, as they represent how densely and how long the air particles lingered 

backward in time within each discretized volume of the upwind source regions. In Bayesian inverse modelling, the footprint 

acts as an operator, connecting individual CO2 observations (unit: ppm) and gridded fluxes (unit: μmol/(m2 s)). Using footprints 

representing concentration per unit flux allows direct comparison between CO2 emissions and atmospheric CO2 enhancements.  185 

For WRF-STILT, one thousand air particles were released from each observation site and tracked backward in time for 24 h 

(Fig. 3a). In the case of WRF-XSTILT, one thousand air particles were released from each column level for OCO-2 and OCO-

3 soundings and tracked backward for 24 h (Figs. 3b and 3c). The column receptors consisted of 37 levels at 100 vertical 

spacing up to 3000 m above ground level (a.g.l.) and 500 vertical spacing up to 6000 m a.g.l. thereafter. Details on the WRF 

configuration and footprint calculation for STILT and X-STILT are provided in Texts S1 and S2 of the supplementary material, 190 

respectively. 
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Figure 3: Footprint averages on a log10 scale to upwind source regions of (a) ground observations, (b) OCO-2 satellite data, and (c) 
OCO-3 satellite data across the Seoul domain. The footprints are calculated using only daytime observation (10:00–16:00 KST) for 195 
December 2021. The footprint units are ppm/(μmol/(m2∙s)). Note that the footprint ranges differ in panels (a), (b), and (c) for 
visualization purposes. 

 

2.4 CO2 emissions & biogenic fluxes 

2.4.1 Anthropogenic CO2 emissions 200 

We used anthropogenic CO2 emissions data from ODIAC version 2022 as prior emissions (Oda et al., 2018; Oda and 

Maksyutov, 2011). ODIAC provides global fossil fuel CO2 emission estimates at a high spatial resolution of 1 × 1 km2, using 

power plant profiles and space-based nighttime light data (Oda et al., 2018). ODIAC is based on the CDIAC national emissions 

estimates, which categorize emissions by fuel type—liquid, gas, solid fuel, cement, gas flare, and international bunker. The 

ODIAC dataset has been widely used in various research areas, such as urban emission evaluation, monitoring network design 205 

experiments, and the inverse estimation of CO2 emissions (Che et al., 2024; Crowell et al., 2019; Fasoli et al., 2018; Hedelius 

et al., 2018; Kunik et al., 2019; Lauvaux et al., 2016; Lian et al., 2023, 2022; Mallia et al., 2020; Ohyama et al., 2023; Sim et 

al., 2023; Wu et al., 2018; Ye et al., 2020). 

ODIAC is based on downscaling bottom-up CO2 emission estimates using spatial proxies. Global geolocation information and 

power plant magnitudes are sourced from the Carbon Monitoring and Action database. However, this database occasionally 210 
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misplaces point sources, necessitating manual correction (Kunik et al., 2019; Ohyama et al., 2023). For instance, the Korea 

Central Power Corporation in Seoul, located in the western part of the city, is inaccurately positioned in the ODIAC data. To 

correct this spatial discrepancy, we customized the ODIAC data, as shown in Fig. S3 of the supplementary material. We 

manually relocated the misaligned point source to match the power plant location. Additionally, for the grid cell with 

significantly high CO2 emissions mistakenly identified as a point source, we replaced the emission value with the average of 215 

the surrounding eight grid cells. 

Because the temporal resolution of ODIAC is monthly, it is necessary to refine the data to achieve hourly CO2 emission 

estimates. We applied weekly and diurnal temporal scaling factors (Nassar et al., 2013) specific to Seoul to adjust the monthly 

ODIAC emission data, as shown in Fig. S4 in the supplementary material. The weekly scaling factors for Seoul remain 

consistent on weekdays, with values exceeding 1, but decrease over the weekends (Fig. S4a). The diurnal scaling factors exhibit 220 

typical daily emission patterns, increasing in the morning, peaking in the afternoon, and decreasing in the evening (Fig. S4b). 

Figure S4c shows the hourly CO2 emissions time series after applying these temporal scaling factors. After spatial and temporal 

pre-processing, the daytime (1–7 UTC) emissions for December 2021 serve as the state vector for prior CO2 emissions, denoted 

as ‘’ (Fig. 4a). 

 225 

 
Figure 4: Averaged CO2 fluxes of (a) prior emissions and (b) net biogenic ecosystem exchange over Seoul for daytime (10:00–16:00 
KST) in December 2021. 

 

2.4.2 Biogenic CO2 fluxes 230 

In the urban carbon cycle, atmospheric CO2 is mainly influenced by emissions from fossil fuel combustion and vegetation 

carbon uptake. Given that Seoul has forests covering 25.3% of its total area (Korea Forest Service, 2021), the impact of 

biogenic CO2 fluxes cannot be ignored. To account for the influence of biogenic CO2 on the observed concentration, we 

incorporated biogenic CO2 fluxes estimated by a data-based model known as CASS (Carbon Simulator from Space). CASS 

generates terrestrial carbon flux data from vegetation using information such as air temperature, relative humidity, 235 

photosynthetically active radiation, enhanced vegetation index, and land surface water index. CASS employs the random forest 
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method to determine optimal coefficients for each region and applies them to the estimation of carbon uptake. We utilized 

hourly net ecosystem exchange (NEE) data, which were resampled from a 250-meter resolution to 0.01°, as the biogenic CO2 

flux data within Seoul (Fig. 4b). CO2 uptake can be observed in grids where Seoul's mountains and parks are located during 

the daytime. We obtained the vegetation-affected concentration by multiplying the footprints from the atmospheric transport 240 

model by the gridded biogenic CO2 flux data using Eq. (S2) or (S4). 

 

2.5 Prior error covariance 

The prior error covariance matrix () is derived from both the variance in prior emissions uncertainty () and the temporal 

and spatial covariances ( and ). We construct the prior error covariance matrix as follows: 245  = (⨂)                                                                                 (6) 

Where  is a diagonal matrix whose elements represent the uncertainty of prior emissions. Instead of directly constructing the 

full  matrix, the temporal and spatial error covariance matrices are combined using a Kronecker product (⨂) to reduce 

computational costs, particularly when dealing with large emission state vectors (Yadav and Michalak, 2013). 

In previous studies on urban inverse modelling, three methods for estimating prior emissions uncertainty were mainly 250 

identified. Most studies assumed a relative uncertainty for prior estimates, such as 30% uncertainty for each emission source 

in Central California (Zhao et al., 2009), 15% for large point sources and 85% for the rest in Tokyo (Ohyama et al., 2023), 20% 

for Los Angeles and 40% for Riyadh and Cairo (Ye et al., 2020), 20% (Lian et al., 2022), and 60% (Nalini et al., 2022) for 

Paris. Kunik et al. (2019) and Mallia et al. (2020) defined the uncertainty of prior emissions as the difference between the prior 

and true emission estimates (e.g., Hestia). Another approach to estimating prior emissions uncertainty is inter-comparison with 255 

different inventories (Sargent et al., 2018; Wu et al., 2018). In this study, we assumed a relative uncertainty of 15% for large 

point sources and 100% for the rest of Seoul, similar to the approach used for Tokyo in Ohyama et al. (2023). For grids with 

prior emissions of 0 μmol m-2 s-1, such as rivers, a minimum uncertainty value of 1 μmol m-2 s-1 was assigned, following the 

method of Kunik et al. (2019). 

The temporal and spatial covariance matrices are defined using exponential decay equations: 260  =  −                                                                                   (7)  =  −                                                                                   (8) 

The temporal covariance is computed based on lag-times () between time steps, divided by temporal correlation range 

parameters (), where  represents the time at which errors in the prior emissions are considered uncorrelated. The spatial 

covariance is calculated using separation distances () between grid cells, divided by spatial correlation range parameters 265 

(), where  indicates the distance at which errors in the prior emissions are considered uncorrelated. Previous studies have 

shown that suitable spatiotemporal correlation parameters vary by city. For example, in Salt Lake City, the temporal and spatial 

correlations were determined to be 2 d and 6 km, respectively (Kunik et al., 2019), whereas in Tokyo, the parameters were 0 
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d and 10 km (Ohyama et al., 2023). We performed a lagged autocorrelation function and variogram analysis to determine the 

optimal temporal and spatial correlation lengths for Seoul, respectively (Fig. S5). Based on the results, the optimal temporal 270 

and spatial correlation range parameters for the inversion over Seoul were 9 h and 10 km, respectively. 

 

2.6 Observational error covariance 

We estimated the observational error covariance (  ) using the departure-based diagnostics, commonly known as the 

Hollingsworth/Lönnberg method (Hollingsworth and Lönnberg, 1986; Lönnberg and Hollingsworth, 1986; Rutherford, 1972). 275 

The departure (or innovation) is defined as  − , representing the difference between the observed △CO2 and the values 

simulated by WRF-(X)STILT with prior emissions, following Eqs. (S2) and (S4). Because the standard deviation of departures 

reflects the combined effects of observation and prior emissions errors, we separate their contributions based on certain 

assumptions. The Hollingsworth/Lönnberg method assumes that prior emissions errors exhibit spatial correlation, whereas 

observation errors are spatially uncorrelated (Bormann et al., 2009). Additionally, prior emissions and observation errors are 280 

considered independent. Here, observation error includes uncertainties arising from the instrument, transport model, 

representation, background inflow (boundary conditions), and biogenic fluxes. 

To estimate observation errors, we first compute the covariance of departure pairs as a function of separation distance. A 

function is then fitted to the covariance values at various distances, excluding the value at zero separation, and extrapolated to 

estimate the covariance at zero distance. At zero separation, the total variance is decomposed into a spatially correlated 285 

component (representing prior emissions error) and an uncorrelated component (representing observation error). Based on 

these assumptions, the value of the fit gives the prior emissions error in observation space at zero separation, and the 

observation error is determined by subtracting this value from the total covariance at zero distance. 

In this study, we applied the Hollingsworth/Lönnberg method to estimate the observational error covariance for both ground-

based and satellite observations. We first divided the observation vector into subsets: NSTH, NSTL, OLP, SNU, YSB, OCO-2, 290 

and OCO-3, assuming that error statistics within each subset are homogeneous. Because this method was originally developed 

for satellite data, which has wide spatial coverage but infrequent revisit cycles, we applied it directly for satellite observations. 

We assumed satellite observation errors are spatially uncorrelated and fitted a function (Limited-memory Broyden-Fletcher-

Goldfarb-Shanno with Box constraints in R language) to the covariance as a function of separation distance. For ground-based 

observations, which provide data over a long period, we assumed that observation errors are temporally uncorrelated. Instead 295 

of using spatial distance, we fitted a function to the covariance as a function of time steps. The inferred observation error for 

each dataset was obtained by subtracting the value of the fit at zero separation (distance or time step) from the total covariance. 

The fitting results for each observation type are shown in Fig. S6. The inferred observation error was multiplied by the square 

of the standard deviation of departures, and the square of the mean departure was added to correct for bias. Finally, the 

estimated observation error for each observation was placed on the diagonal of the R matrix. 300 

 

https://doi.org/10.5194/egusphere-2025-3367
Preprint. Discussion started: 6 August 2025
c© Author(s) 2025. CC BY 4.0 License.



13 
 

3 Results and discussion 

In Sect. 3.1, we compare CO2 emissions from prior and posterior estimates to investigate the spatiotemporal differences 

following the inversion run. In Sect. 3.2, we assess CO2 enhancement between observations and simulations using prior and 

posterior emissions to evaluate the effectiveness of the inversion. Further exploration of sensitivity tests for observations using 305 

all data, only ground-based, only OCO-2, and only OCO-3 data, along with uncertainty reduction to estimate constraint effects, 

is presented in Sect. 3.3. A comprehensive discussion accompanies each set of results. 

 

3.1 Comparison between prior and posterior emissions 

We obtained posterior CO2 emissions over Seoul for December 2021 using Bayesian inverse modelling, incorporating ground-310 

based and satellite observations. Figure 5a compares the average CO2 emissions between the prior and posterior estimates. The 

mean daytime prior and posterior emissions were 34.12 and 35.63 μmol m-2 s-1, respectively. The average correction from 

prior to posterior emissions was approximately +4.43%, suggesting a slight increase in posterior emissions, and the prior 

emissions were slightly underestimated. However, the difference between the domain- and time-averaged prior and posterior 

emissions was not statistically significant. Similar findings have been reported in previous studies conducted in Tokyo 315 

(Ohyama et al., 2023). The reduced chi-squared value for the posterior emissions was 1.38. Although this is slightly higher 

than the ideal value of 1.0, it still indicates a reasonable representation of prior emissions error and observation error covariance 

assumptions. Further reducing this value closer to 1 would require assuming larger error metrics. 

 

 320 
Figure 5: (a) Comparison of time- and domain-averaged emissions between prior and posterior estimates for December 2021 in 
Seoul, and (b) time series of domain-averaged daily (daytime average) prior and posterior CO2 emissions, including emission 
uncertainties. 

 

The daily time series of temporally resolved prior and posterior emissions averaged over the Seoul domain is shown in Fig. 325 

5b. For prior emissions, the monthly ODIAC data was pre-processed using temporal scaling factors, resulting in higher 

emissions on weekdays and lower emissions on weekends. In contrast, posterior emissions exhibit greater temporal variability, 
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reflecting a more realistic pattern. Until December 22, posterior emissions fluctuated relative to prior emissions, but they 

showed a significant decrease on December 23, followed by a notable increase from December 27 to 29.  

Figure 6 shows the spatial distribution of posterior CO2 emissions and emission corrections from the inversion using all 330 

observation data over Seoul. Compared to the spatial patterns of prior CO2 emissions in Fig. 4a, the posterior emissions in Fig. 

6a exhibit a similar distribution, with higher emissions concentrated in central Seoul and lower emissions near the city’s 

boundaries. However, the posterior correction map, obtained by subtracting prior emissions from posterior emissions, reveals 

spatial variations in emission adjustments ranging from −23.59 to 13.61 μmol m-2 s-1 (Fig. 6b). Most areas in Seoul experienced 

either increased or decreased emissions through Bayesian inverse modelling. Notably, emissions in the eastern part of Seoul 335 

were strongly corrected in the negative direction, whereas most other regions underwent positive corrections. This suggests 

that prior emissions were overestimated in the eastern part of Seoul and underestimated in the other areas. 

 

 
Figure 6: Averaged CO2 fluxes over Seoul for daytime over December 2021. (a) Posterior emissions and (b) emission corrections 340 
(posterior minus prior) after the inversion run that used five ground sites, OCO-2, and OCO-3 data. 

 

3.2 Comparison of CO2 enhancement between observation and simulation 

A comparison between observed CO2 enhancements (OBS) and simulated CO2 enhancements (MOD) was conducted to 

evaluate the performance of the inversion framework and assess how well atmospheric CO2 data constrained emissions over 345 

Seoul. Figure 7 shows the changes in the relationship between OBS and MOD from prior to posterior emissions. MOD, based 

on prior emissions, was significantly lower than OBS, with a slope of 0.39 in Fig. 7a. However, after the inversion, the 

discrepancies were reduced, and MOD became closer to OBS, with the slope increasing to 0.71. Additionally, the correlation 

coefficient between OBS and MOD improved from 0.46 to 0.85, indicating a better agreement after the inversion. The mean 

absolute error between OBS and MOD also decreased significantly, from 12.18 to 6.64 ppm, when using posterior emissions 350 

data, shown in Fig. 7b. These results indicate that the inversion framework effectively constrained CO2 emissions over Seoul 

by incorporating information from observational data. 
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Figure 7: Comparison of observed CO2 enhancements (OBS) and simulated CO2 enhancements (MOD) using prior (gray) and 355 
posterior (orange) emissions during daytime over December 2021. (a) Scatter plots of OBS vs. MOD, with the slope and correlation 
coefficient (r). (b) Frequency distributions of absolute differences between OBS and MOD (|OBS-MOD|). The dashed lines in (b) 
indicate the mean absolute error between OBS and MOD. 

 

3.3 Sensitivity test for observations used 360 

We evaluated the performance of the inverse model through a sensitivity analysis considering different observational network 

configurations (Fig. 8). The cases included 1) using all observation data, 2) using only five ground sites, 3) using only OCO-

2 data, and 4) using only OCO-3 data. The most substantial reductions in uncertainty were observed when all available 

observations were used, with an average reduction exceeding 19.2% (Fig. 8a). In this case, the spatial distribution of uncertainty 

reduction was similar to that obtained using only ground sites (Fig. 8b), as ground-based observations had a greater influence 365 

on the constraint than satellite data because of their continuous temporal coverage throughout the entire month. When using 

five ground sites, the uncertainty reduction in posterior emissions was 18.7%. The largest reductions occurred where ground 

observation sites were concentrated, particularly around OLP (eastern region), SNU (southern region), and surrounding NSTH, 

NSTL, and YSB. The reduction in uncertainty extended beyond the observation sites, covering the broader footprint influence 

range in Fig. 3a. Notably, a decrease was observed northwest of the observation sites, the upwind region. However, the impact 370 

on uncertainty reduction was minimal in western and northern Seoul, where no ground-based observation sites were present. 
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Figure 8: Daytime percent uncertainty reduction in posterior emissions over Seoul for the inverse analysis using different 
observation datasets: (a) all observation data from December 2021, (b) only five ground sites from December 2021, (b) only OCO-2 375 
data from December 3–5, 2021, and (c) only OCO-3 data from December 3–5, 2021, when the satellite passed over Seoul. Note that 
the percent reduction ranges in panels (a), (b), (c), and (d) vary for visualization purposes. 

 

Because OCO-2 and OCO-3 passed over Seoul on December 4 and 5, 2021, respectively, the uncertainty reduction results for 

satellite data are focused on December 3–5, highlighting the effect of satellite observations. The OCO-2 data significantly 380 

reduced the uncertainty of posterior emissions over western Seoul, with an average reduction of 6% (Fig. 8c). This can be 

attributed to the satellite’s north-to-south overpass, covering the western footprint, an upwind region in Fig. 3b. OCO-2 

contributed to uncertainty reduction in the western parts of Seoul, areas not covered by ground-based observations. Most of 

Seoul experienced uncertainty reduction due to OCO-3, which had 167 soundings across the city (Figure 8d). The domain-

averaged uncertainty reduction from December 3–5 was 8.4%. OCO-3 contributed to uncertainty reduction in the northern 385 

region of Seoul, which was not covered by ground-based or OCO-2 observations. The extensive coverage of satellite 

observations enabled further corrections in areas lacking ground observations, demonstrating the added value of satellite 

constraints in reducing uncertainty. 
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4 Summary and conclusions 390 

This study developed a Bayesian inverse modelling framework (version 1) to optimize CO2 emissions using both ground- and 

space-based observations and applied it to Seoul. By incorporating high-resolution (0.01° spatial, 1 h temporal) anthropogenic 

and biogenic CO2 fluxes, atmospheric CO2 measurements, a Lagrangian transport model, and uncertainty quantification, we 

improved the accuracy of emission estimates. Ground-based (NSTH, NSTL, OLP, SNU, YSB) and satellite (OCO-2, OCO-3) 

observations from December 2021 were used to constrain emissions, with WRF-(X)STILT footprints linking emissions to 395 

observed CO2 enhancements.  

Although the averaged CO2 emissions difference between prior and posterior estimates was relatively small (4.43% increase), 

the inversion revealed significant spatiotemporal variations. Posterior emissions exhibited greater variability, highlighting 

underestimation in most areas and overestimation in eastern Seoul. This information enables us to track when and where CO2 

emissions fluctuate and assess the impact of carbon reduction policies over time and space. Comparing observed and simulated 400 

CO2 enhancements confirmed the effectiveness of the inversion, reducing the mean absolute error by nearly half. Sensitivity 

tests showed that ground- and space-based data achieved the greatest uncertainty reduction (19.2%), with OCO-2 and OCO-3 

providing critical constraints in areas lacking ground-based observations. These results emphasize the complementary role of 

satellite data, particularly OCO-3’s snapshot capability, in enhancing urban CO2 monitoring. 

Despite these improvements, some limitations remain, which future work will address. First, the inversion results depend on 405 

the accuracy of the transport model, introducing uncertainties in simulating atmospheric transport. Future improvements to 

WRF-(X)STILT will incorporate terrain elevation data that more closely represent real-world topography and implement 

observation nudging to enhance transport accuracy. Second, the analysis was limited to a 1-month, which may not fully capture 

seasonal emission variations. Extending the analysis to a full year will enable comparisons with Korea’s national greenhouse 

gas inventory. Third, although the reduced chi-square value has been evaluated, additional validation using independent 410 

datasets such as radiocarbon (Δ14C) and flux tower measurements will be conducted. Finally, expanding the observational 

network will allow this approach to be applied to other cities and eventually to all of Korea, enabling a more comprehensive 

assessment of spatiotemporal CO2 distribution, identifying regional emission hotspots, and improving the accuracy of national-

scale carbon budget estimates to support mitigation policies. 

By integrating high-resolution inverse modelling with multiple observational sources, this study provides a robust framework 415 

for quantifying urban CO2 emissions. The findings refine emission estimates by reducing uncertainties and support data-driven 

policymaking for effective carbon mitigation strategies. Importantly, the proposed framework is designed to be transferable 

and applicable to other cities, contributing to broader efforts in long-term climate change mitigation. 
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Data Availability 420 

The prior emissions data from ODIAC were obtained from the Center for Global Environmental Research 

(https://db.cger.nies.go.jp/dataset/ODIAC). Biogenic CO2 fluxes data from the CASS were downloaded from the Korea 

Carbon Project website (https://korea-carbon-project.org/map). The WRF model is freely distributed to the scientific 

community by the National Center for Atmospheric Research (NCAR) and can be accessed at 

https://www2.mmm.ucar.edu/wrf/users/download/get_source.html. The STILT and X-STILT models available for installation 425 

at https://uataq.github.io/stilt/#/ and https://github.com/uataq/X-STILT, respectively. OCO-2 and OCO-3 satellite data are 

publicly available from https://ocov2.jpl.nasa.gov/science/oco-2-data-center/ and https://ocov3.jpl.nasa.gov/science/oco-3-

data-center/, respectively. 
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