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Supplementary Material 

Text S1. Details for WRF configuration 

As meteorological initial and lateral boundary conditions for WRF simulations, previous studies related to 

regional-scale inverse modelling have used data from various atmospheric prediction models, including the North 

American Regional Reanalysis data (Kunik et al., 2019; Sargent et al., 2018; Zhao et al., 2009), the Mesoscale 

Forecast Model (Ohyama et al., 2023), the High-Resolution Rapid Refresh model (Fasoli et al., 2018), and FNL 

Operational Global Analysis data from the National Centers for Environmental Prediction (NCEP) (Ohyama et 

al., 2023; Wu et al., 2018; Ye et al., 2020), as well as ERA-Interim reanalysis data (Kaminski et al., 2022) and 

ERA5 (Lian et al., 2022; Nalini et al., 2022) from the European Centre for Medium-Range Weather Forecasts 

(ECMWF). In this study, we applied the Global Forecast System (GFS) produced by the NCEP and ERA5 as 

boundary conditions for the WRF simulation. The GFS provides analysis data with a horizontal resolution of 0.5° 

every 6 h, whereas ERA5 offers atmospheric reanalysis data with a horizontal resolution of 30 km every hour. 

The meteorological input data for the initial and lateral boundary conditions will be determined by comparing 

wind speed and direction between observations and model outputs.  

To prepare input for the WRF simulation, the WRF Preprocessing System (WPS) is required. WPS defines model 

domains, interpolates static geographical data onto the grids (geogrid process), extracts meteorological fields from 

boundary conditions data (ungrib process), and interpolates the meteorological fields horizontally (metgrid 

process). For the geogrid process, one of the required static geographical datasets is land-use category data. The 

default land-use category dataset is the IGBP-Modified MODIS 20-category. However, because this dataset was 

produced for global land-use classification in 2002 (Friedl et al., 2002), it does not reflect the current land-use in 

Seoul. To address this, we reprocessed the land cover map from the Environmental Geographic Information 

Service (EGIS) provided by the Ministry of Environment in Korea, making it suitable for use as geographical 

land-use category data. Significant differences in land cover near Seoul were observed when comparing the IGBP-

Modified MODIS 20-category data and the EGIS data (Fig. S1). In the IGBP-Modified MODIS 20-category data, 

both Seoul and its vicinity were classified under the Urban and Built-Up (UB) category, whereas in the EGIS data, 

area classified as Deciduous Broadleaf Forest (DBF) became distinct near Seoul.  

 

 



Figure S1: Land-use category maps for (a) IGBP-Modified MODIS 20-category data and (b) EGIS data. BSV, 

SI, CLNV, UB, CL, PW, GL, SV, WSV, OS, CS, MF, DBF, DNF, EBF, and ENF represent barren or sparsely 

vegetated regions, snow and ice, cropland/natural vegetation mosaic, croplands, permanent wetlands, grasslands, 

savannas, woody savannas, open shrub lands, closed shrub lands, mixed forests, deciduous broadleaf forest, 

deciduous needle leaf forest, evergreen broadleaf forest, and evergreen needle leaf forest, respectively. 

 

For this study, we used a two-way nested configuration featuring a 9 km outer domain (dimensions: 120 × 150 × 

40) with two nests: one with a 3 km grid spacing (100 × 100 × 40) and another with a 1 km grid spacing (160 × 

160 × 40) (Fig. S2). All domains used the WRF Single-Moment 6-Class (WSM6) microphysics scheme (Hong 

and Lim, 2006), which is a more complex scheme compared to the simple (WSM3) and mixed-phase (WSM5) 

schemes. For the planetary boundary layer, the Yonsei University (YSU) scheme was applied to all domains (Hong 

et al., 2006). Additionally, all model domains incorporated the Rapid Radiative Transfer Model for GCMs 

(RRTMG) shortwave and longwave schemes (Iacono et al., 2008) and the Community Land Model version 4 

(CLM4) (Oleson et al., 2010). The Kain-Fritsch scheme for cumulus parameterization (Kain, 2004) was applied 

only to Domain 1. Grid nudging toward the ERA5 reanalysis data was applied to the wind field (u and v 

components), temperature, and water vapor mixing ratio across all domains with a nudging coefficient of 3.0 × 

10-4 s-1. Table S1 summarizes the WRF configuration, including model settings and physics options. 

 

 

Figure S2: Domain configuration for the WRF simulation. 

 

Table S1: Model settings and physics options for the WRF simulation. Bold text indicates the final data used for 

the WRF simulation. 



Model WRF v3.9.1 (WPS v4.0) 

Meteorological 

input data 
GFS, ERA5 

Land-use 

information 
IGBP-Modified MODIS 20-category, EGIS 

Domain Domain 1 Domain 2 Domain 3 

Horizontal grid 

spacing 
9 km 3 km 1 km 

Dimensions 120×150×40 100×100×40 160×160×40 

Vertical layers 

/Model top 
40 sigma layers/50 hPa 

Microphysics WRF Single–moment 6–class scheme 

Longwave radiation RRTMG scheme 

Shortwave radiation RRTMG scheme 

Land surface CLM4 land-surface model 

Planetary boundary 

layer 
Yonsei University scheme 

Cumulus 

Parameterization 
Kain-Fritsch scheme (only domain 1) 

Grid nudging 
Wind field, Temperature,  

Water vapor mixing ratio 

 

The wind fields from the WRF simulation output were compared with observational data to evaluate the impact 

of different input data on the WRF simulation results. For meteorological observations in Seoul, data from the 

Automated Surface Observing System (ASOS) and Automatic Weather Station (AWS), provided by the Korea 

Meteorological Administration (https://data.kma.go.kr/), were used. The bias and standard deviation in wind fields 

between the model and observations were calculated based on the meteorological input data (GFS or ERA5), land-

use information (MODIS or EGIS), and grid nudging.  

Four cases were compared: 

1. When GFS is used as the initial meteorological data in the default configuration (GFS case). 

2. When ERA5 is used as the initial meteorological data in the default configuration (ERA5 case). 



3. When land-use information is changed from MODIS to EGIS in case 2 (ERA5/EGIS case). 

4. When grid nudging is applied in case 3 (ERA5/EGIS+Nudging case).  

The differences in wind speed between the model and observations at ASOS in Seoul were 2.38, 2.17, 1.91, and 

0.96 m/s for the GFS, ERA5, ERA5/EGIS, and ERA5/EGIS with grid nudging cases, respectively. The wind 

direction biases for GFS, ERA5, ERA5/EGIS, and ERA5/EGIS with grid nudging were 49.68°, 47.79°, 44.12°, 

and 40.49°, respectively. Table S2 shows the mean biases and standard deviations for wind fields between the 

model and observations at 28 AWS stations in Seoul. The configuration using ERA5 reanalysis data with EGIS 

land-use data and grid nudging showed the lowest bias in both wind speed and wind direction. Finally, we used 

the 1 km and 1 h output of the WRF model from the ERA5 with EGIS and grid nudging to simulate optimal 

meteorological fields.  

  



Table S2: Mean differences and standard deviations in wind speed and direction between model and observational 

data at 28 AWS stations in Seoul (model minus observation). 

Case Wind speed (m/s) Wind direction (degree) 

GFS 2.95 ± 0.62 51.86 ± 30.78 

ERA5 2.65 ± 0.58 49.67 ± 29.38 

ERA5/EGIS 2.53 ± 0.55 48.14 ± 29.46 

ERA5/EGIS 

+Nudging 
1.46 ± 0.51 44.71 ± 30.62 

 

  



Text S2. Details for footprint calculation from STILT and X-STILT 

The STILT model (Fasoli et al., 2018; Lin et al., 2003), coupled with meteorological fields from the WRF model, 

was used to quantify the sensitivity of ground observations to upwind emission regions. The footprint for each 

discrete time step 𝐦 at coordinates (𝒙𝒊, 𝒚𝒊), transported backward in time from the receptor located at 𝒙𝒓 at 

time 𝒕𝒓, can be represented as:  

𝐟(𝒙𝒓, 𝒕𝒓|𝒙𝒊, 𝒚𝒋, 𝒕𝒎) =
𝒎𝒂𝒊𝒓

𝒉𝝆̅(𝒙𝒊,𝒚𝒊,𝒕𝒎)
∙

𝟏

𝑵𝒕𝒐𝒕
∑ ∆𝒕𝒑,𝒊,𝒋,𝒛≤𝒉

𝑵𝒕𝒐𝒕
𝒑=𝟏                      (S1) 

Where 𝒎𝒂𝒊𝒓 is the molar mass of dry air, 𝐡 is the atmospheric column height and 𝝆̅(𝒙𝒊, 𝒚𝒊, 𝒕𝒎) is the average 

air density below 𝐡  in an element at (𝐢, 𝐣)  over time step 𝐦 . The term 
𝟏

𝑵𝒕𝒐𝒕
∑ ∆𝒕𝒑,𝒊,𝒋,𝒛

𝑵𝒕𝒐𝒕
𝒑=𝟏   in Equation (S1) 

represents the time- and volume-integrated influence function, summing the total amount of time each particle 𝐩 

spends over grid position (𝐢, 𝐣, 𝐳), normalized by the total number of particles 𝑵𝒕𝒐𝒕. A change in CO2 (∆𝑪𝑶𝟐) at 

the downwind receptor can be obtained by multiplying the footprint ( 𝐟 ) by gridded CO2 flux estimates 

𝑭(𝒙𝒊, 𝒚𝒋, 𝒕𝒎): 

∆𝑪𝑶𝟐(𝒙𝒓, 𝒕𝒓|𝒙𝒊, 𝒚𝒋, 𝒕𝒎) = 𝑭(𝒙𝒊, 𝒚𝒋, 𝒕𝒎)𝐟(𝒙𝒓, 𝒕𝒓|𝒙𝒊, 𝒚𝒋, 𝒕𝒎)                   (S2) 

For satellite measurements, X-STILT (Wu et al., 2018), a modified version of STILT was used to extract XCO2 

signals from OCO-2 and OCO-3 data. X-STILT calculates the weighted column footprint 𝒇𝒘 , considering 

column-averaging kernels and pressure weights. The formulation of 𝒇𝒘 is as follows: 

𝒇𝒘(𝒙𝒏,𝒓, 𝒕𝒏,𝒓|𝒙𝒊, 𝒚𝒋, 𝒕𝒎) =
𝒎𝒂𝒊𝒓

𝒉𝝆̅(𝒙𝒊,𝒚𝒊,𝒕𝒎)
∙

𝟏

𝑵𝒕𝒐𝒕
∑ ∆𝒕𝒑,𝒊,𝒋,𝒛≤𝒉𝑨𝑲𝒏𝒐𝒓𝒎

𝑵𝒕𝒐𝒕
𝒑=𝟏 (𝐧, 𝐫)𝐏𝐖(𝐧, 𝐫)        (S3) 

Where 𝒙𝒏,𝒓, 𝒕𝒏,𝒓 denotes a column receptor, 𝑨𝑲𝒏𝒐𝒓𝒎(𝒏, 𝒓) is the normalized averaging kernel, and 𝐏𝐖(𝐧, 𝐫) 

is the pressure weighting function. Similar to the footprint from WRF-STILT, a change in XCO2 (∆𝑿𝑪𝑶𝟐) at the 

downwind column receptor can be yielded by multiplying 𝒇𝒘 by gridded CO2 flux estimates: 

∆𝑿𝑪𝑶𝟐(𝒙𝒏,𝒓, 𝒕𝒏,𝒓|𝒙𝒊, 𝒚𝒋, 𝒕𝒎) = 𝑭(𝒙𝒊, 𝒚𝒋, 𝒕𝒎)𝒇𝒘(𝒙𝒏,𝒓, 𝒕𝒏,𝒓|𝒙𝒊, 𝒚𝒋, 𝒕𝒎)            (S4) 

  



 

Figure S3: Spatial distribution of CO2 emissions (ODIAC) in Seoul during December 2021, showing (a) the 

emissions before and (b) after the relocation of the misaligned point source. 

 

 

Figure S4: Temporal scaling factors for CO2 emissions in Seoul: (a) weekly scaling factors, (b) diurnal scaling 

factors, and (c) a time series of CO2 emissions before and after applying the temporal scaling factors for December 

2021. 

  



 

Figure S5: Covariance correlation length parameter analysis. (a) Lagged autocorrelation function of prior 

emissions uncertainty for daytime (10:00–16:00 KST) in December 2021, averaged over the Seoul domain. The 

temporal correlation length is approximately 9 h (orange line), where the autocorrelation crosses zero (gray dashed 

line) for the first time, indicating no correlation. (b) Variogram of prior emissions uncertainty for the Seoul domain, 

based on daytime (10:00–16:00 KST) data averaged over December 2021 after removing large outliers (above the 

95th percentile of uncertainty). The spatial correlation length is approximated as 10 km, rounded down from 10.24 

km (orange line), where the empirical variogram reaches the maximum semivariance value (gray dashed line).  



 

Figure S6: Departure covariances as a function of time steps for ground-based observations (NSTH, NSTL, OLP, 

SNU, and YSB) and as a function of separation distance for satellite observations (OCO-2 and OCO-3).  
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