

Polyphase tectonic, thermal and burial history of the Vocontian basin revealed by U-Pb calcite dating

3 Louise Boschetti¹, Malou Pelletier¹, Frédéric Mouthereau^{1,2}, Stéphane Schwartz³, Yann
4 Rolland^{3,4}, Guilhem Hoareau⁵, Thierry Dumont³, Dorian Bienveignant³, Abdeltif Lahfid⁶

1. Géosciences Environnement Toulouse, Université de Toulouse Paul Sabatier, CNRS, IRD, 14 av. Edouard Belin, 31400 Toulouse, France
2. Institut Universitaire de France, F-75005 Paris, France
3. ISTerre, Université Grenoble Alpes, USMB, CNRS, IRD, UGE, 38000 Grenoble, France.
4. EDYTEM, Université Savoie Mont Blanc, CNRS, UMR 5204, Le Bourget du Lac, France.
5. Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, LFCR, UMR5150, Pau, France.
6. BRGM, B.P. 6009, 45060 Orléans Cedex, France

Corresponding author: louise.boschetti@univ-tlse3.fr

Abstract

The Vocontian Basin in southeastern France records a long-lived history of subsidence and polyphase deformation at the junction of Alpine and Pyrenean orogenic systems. This study aims to reconstruct the tectonic, burial and thermal evolution of this basin, based on new U–Pb dating of calcite from veins and faults combined with new RSCM (Raman Spectroscopy of Carbonaceous Material) thermometry and stratigraphy-based burial models. Three main generations of calcite are identified: (1) the Late Cretaceous to Paleocene period related to the Pyrenean-Provençal convergence (~84–50 Ma); (2) the Oligocene period linked to the extension of the West European Rift (~30–24 Ma); and (3) the Miocene period, ascribed to strike-slip and compression associated with the Alpine collision (~12–7 Ma). No older ages related to the Jurassic and Early Cretaceous rifting phase are obtained, despite targeted sampling near normal faults, suggesting highly localized syn-rift fluid circulation or dissolution of early calcite mineralization during subsequent tectonic events. RSCM data highlight a pronounced east–west thermal gradient. Peak temperatures are below 100°C in the west and exceed 250°C in the eastern basin, reflecting greater crustal thinning and/or salt diapirism in the eastern

33 Vocontian Basin with the overlapping Jurassic and Cretaceous rifting phases. These results
34 emphasize the significant impact of the West European Rift in south-eastern France. They
35 further highlight the potential mismatch between large-scale tectonic processes and the tectonic
36 history inferred from calcite U–Pb dating, which is sensitive to the presence of fluids and the
37 physical conditions required for their preservation.

38

39 **1. Introduction**

40 Sedimentary basins in the external part of orogenic belts offer critical insights into the
41 polyphase evolution of plate boundaries. The Vocontian Basin is located at the front of the
42 southern Alpine belt in southeastern France (Fig. 1, 2A). This region recorded a succession of
43 tectonic events from the Mesozoic to the Cenozoic (Roure et al., 1992; Homberg et al., 2013;
44 Mouthereau et al., 2021). They are attributed to Mesozoic rifting in the Alpine Tethys and the
45 Atlantic-Pyrenean systems, Cenozoic inversion during the Pyrenean-Provençal collision, and
46 Eocene-Miocene extension associated with the West European Rift and the opening of the Gulf
47 of Lion (e.g., Stämpfli, 1993; Homberg et al., 2013; Bestani et al., 2016; Espurt et al., 2019;
48 Célini et al., 2023). Details of the tectonic evolution of the Vocontian Basin specifically, at the
49 intersection between the Europe-Iberia and Europe-Adria plate boundaries, are however
50 debated. There has been a long-standing debate on whether the Mid-Cretaceous Vocontian
51 Basin is part of a continuous rift linking the Valaisan Basin and the Alpine Tethys to the
52 Pyrenean Basin and Atlantic Ocean (Trümpy, 1988; Stämpfli, 1993; Stämpfli and Borel, 2002;
53 Turco et al., 2012), or if it belongs to the broader segmented Pyrenean/Atlantic rift system
54 (Debelmas, 2001; Manatschal and Muntener, 2009; Angrand and Mouthereau, 2021; Célini et
55 al., 2023; Boschetti et al., 2025a,b). Despite structural and sedimentary evidence of mid-
56 Cretaceous syn-depositional normal faulting in the basin (e.g., Homberg et al., 2013), brittle
57 deformation lacks precise geochronological data. Establishing this chronology is critical, as the
58 Cretaceous extension often overlaps with the onset of Pyrenean compression (Fig. 2B) and
59 could also be linked to diapirism (Bilau et al., 2023b). It is also unclear whether this part of the
60 Alpine foreland was tectonically affected by the Eo-Oligocene West European Rift extension
61 seen nearby in Valence and Manosque basins (e.g., Ford and Lickorish, 2004), or with the
62 opening of the West Mediterranean well identified in the thermal record of the Maures-Esterel
63 massif, a few tens of kilometers to the south ((Fig. 2B) (Boschetti et al., 2023; 2025a,b). These
64 Cenozoic thinning events may have impacted the thermal evolution of the Vocontian Basin and
65 be confused with Mid-Cretaceous extension or Alpine thickening (Fig. 2B) (e.g., Célini et al.,
66 2023). In addition, two north-south compressional events dated to Eocene and late Miocene are

67 recognized in the fault pattern of Provence (Bergerat et al., 1987; Lacombe and Jolivet, 2005).
68 The role of all these major tectonic phases in the brittle deformation history and in the related
69 thermal regime remains unclear as recent studies in the basin have not yet successfully isolated
70 the effects of each geodynamic event. In particular, the temperatures reconstructed based on
71 Raman Spectroscopy of Carbonaceous Material (RSCM) support two alternative tectonic
72 scenarios. (i) Temperatures from the Digne Nappe reflect crustal thickening below the
73 propagating Alpine nappe stack (Balansa et al., 2023). Alternatively, a model involving two
74 superimposed phases of crustal thinning in the Vocontian basin has been proposed (Célini et
75 al., 2023; Fig. 2B). The first phase, in the Upper Jurassic, coincides with the Alpine Tethys
76 opening, while the second, characterised by temperatures exceeding 300°C in the Lower
77 Cretaceous, is associated with Pyrenean rifting and Valaisan opening (Célini et al., 2023).
78 Basin-scale geochronological and thermal analyses are needed to validate this tectonic
79 interpretations. This study addresses these questions by combining basin-scale U-Pb dating of
80 calcite in faults and veins, which origins are constrained by paleostress inversions, with new
81 RSCM temperatures and the analysis of the burial history of the Vocontian Basin. Our aim is
82 to establish a robust chronological framework for the Vocontian basin in the context of the
83 geodynamics of south-east France, and to clarify the sequence and extent of the successive
84 tectonic phases. These constraints improve our understanding of polyphase deformation at the
85 Europe-Iberia-Adria plate boundary.

86

87 **2. Geological setting**

88 Positioned at the front of the Western Alps, the Vocontian Basin forms part of the Southern
89 Subalpine belt, which developed through the interactions between the Pyrenean-Provençal belt
90 to the south and the Alpine belt to the east (Philippe et al., 1998; Balansa et al., 2022; Célini et
91 al., 2024; Fig. 1). It includes the Diois-Baronnies region, and is bordered by the Rhône Valley
92 and the French Massif Central basement to the west, the External Crystalline Massif of Pelvoux
93 to the east, the Vercors Massif to the north, and the Provençal Platform to the south (Figs. 1,
94 2A). The Vocontian Basin contains a thick Mesozoic sedimentary succession, reaching up to
95 7,000 m in its center and 2,600 m along its margins (Fig. 2B). The base of the folded
96 stratigraphic sequence comprises Upper Triassic evaporites, which have resulted in the
97 formation of salt diapirs (e.g. Suzette and Propiac diapirs) that pierce the overlying sedimentary
98 cover and locally control thickness variations (Fig. 3A) (Célini, 2020 and references therein).
99 Basin subsidence began with the opening of the Alpine Tethys during the Early to Middle
100 Jurassic (e. g. Lemoine et al., 1986). This period is marked by the deposition of alternating

shallow marine limestones and marls, followed by progressive deepening that culminated with the deposition of organic-rich black shales of the “Terres Noires” formation during the Bathonian–Oxfordian (Fig. 2). In the Late Jurassic, the basin underwent NNE–SSW-directed extension, recorded by syn-sedimentary NNW–SSE-trending normal faults (Homberg et al., 2013). This extensional regime, linked to the propagation of the Alpine Tethys, led to the deposition of fine-grained bioclastic Tithonian limestones, which serves as a distinctive morphostructural marker and reflect slower subsidence (Remane, 1970; Joseph et al., 1988). The subsidence continued through the Early Cretaceous (Valanginian–Aptian), with the deposition of alternating layers of marls and limestones that define the deeper marine “Vocontian facies”, contrasting with shallow-water carbonates of the Vercors and Provence platforms, known as the "Urgonian facies" (Fig. 2A).

A major tectonic shift occurred during the Aptian–Albian, characterised by increased subsidence and the deposition of thick marly sequences ("Blue Marls"; Debrand-Passard et al., 1988) (Fig. 2B). This phase is associated with the development of E–W-trending normal faults, suggesting a reorientation of the extensional stress field from NNE–SSW (Late Jurassic) to WNW–ESE (Homberg et al., 2013). This shift likely reflects plate tectonic reorganization, linked to the onset of Europe–Iberia divergence (Bay of Biscay opening) and the closure of the Alpine Tethys through Europe-Adria convergence (Lemoine et al., 1987; Stämpfli, 1993).

During the Late Cretaceous, sandstones deposition dominated in the east of the basin, while limestones prevailed in the west (Fig. 2). In the north-eastern part of the basin, at the current location of the Dévoluy massif, a stratigraphic hiatus spanning the Turonian, Coniacian to the Santonian (Fig. 3B) is documented, regionally referred to as the Turonian unconformity (e. g. Flandrin, 1966). This interval is characterized by the argillaceous to sublithographic lower Cretaceous limestones and E–W-trending folds, which lie in direct contact, below an erosional surface, with Campanian-Maastrichtian bioclastic and terrigenous deposits (Fig. 2-3B; Gidon et al., 1970; Arnaud et al., 1974). Across the Vocontian basin, the main stratigraphic hiatus corresponds to the Paleocene-Early Eocene (Fig. 2B). This late Cretaceous-Paleocene event coincides with the onset of Iberia-Europe convergence, marking the initial stages of the Pyrenean-Provençal orogeny (~84 Ma; Angrand and Moutherau, 2021; Moutherau et al., 2014; Muñoz, 1992; Teixell et al., 2018; Ford et al., 2022) and is consistent with the exhumation of the Pelvoux crystalline basement to the northeast at ~85 Ma (Fig. 2; Boschetti et al., 2025a). Following this tectonic change, marine incursions were limited and localized from the Late Eocene to the Miocene (Fig. 2B). This period corresponds to the early Alpine collision, which affected the internal domains and the eastern parts of the External Crystalline Massifs (e. g.

135 Simon-Labréteau et al., 2009; Boschetti et al., 2025c). Meanwhile, regional-scale extension
136 developed in the European plate, driven by the Western European Rift system and the opening
137 of the Liguro-Provençal back-arc basin in southeastern France (Fig. 1) (Hippolyte et al., 1993;
138 Séranne et al., 2021; Jolivet et al., 2021; Boschetti et al., 2023). In the eastern basin, the latest
139 compressional phase is recorded by N–S to NW–SE-trending structures associated with the
140 Digne thrust (Fig. 1–2) and final Alpine exhumation between ~12 and 6 Ma (Schwartz et al.,
141 2017).

142

143 **3. Sampling and methods**

144 **3.1 Sampling strategy**

145 Sampling sites were carefully selected to characterize both the nature and ages of brittle
146 deformation in the Jurassic and Cretaceous formations of the Vocontian Basin (Fig. 2A). We
147 first targeted sites where normal faults were described as syn-rift faults or veins formed shortly
148 after deposition (Homberg et al., 2013), and where we observed calcite mineralizations. The
149 analysis of these specific sites was expanded to include other types of brittle structures, such as
150 strike-slip and reverse faults, to document the polyphase deformation of the Vocontian Basin.
151 Our sampling targets were further guided using the 1:50.000 scale BRGM geological maps
152 from Die to Sisteron.

153

154 **3.2 Tectonic and paleostress analysis**

155 To reconstruct the tectonic evolution of brittle deformation in the Vocontian Basin, fault-slip
156 data and other stress indicators, including calcite veins, were measured in the field and collected
157 for U–Pb dating. Local stress states were inferred by inverting fault-slip data following the
158 methodology of Angelier (1990) using the Win-Tensor software (Delvaux and Sperner, 2003).
159 This analysis provided the orientation of the three principal stress axes (σ_1 , σ_2 , and σ_3) and the
160 shape of the stress ellipsoids defined by the ratio $\phi = \frac{\sigma_2 - \sigma_3}{\sigma_1 - \sigma_3}$, reflecting the relative magnitudes
161 of the principal stresses. Relative chronology of the reconstructed stress tensors was determined
162 from cross-cutting relationships between successive generations of veins and faults (normal,
163 reverse, or strike-slip faults). Chronology relative to folding was refined by comparing the
164 orientation of faults, veins, and/or associated stress states in their present-day and unfolded
165 configurations. This approach assumes that faults originally formed according to an
166 Andersonian state of stress, with one principal stress axis vertical.

167

168 **3.3 Calcite U-Pb geochronology**

169 Prior to U-Pb analyses, each polished thick section was petrographically characterized at IPRA
170 (Institut Pluridisciplinaire de Recherche Appliquée) in Pau, France. This involved optical
171 microscopy coupled with cathodoluminescence (CL) imaging to identify multiple calcite
172 generations (Supplementary Material Fig. S1). CL images were acquired using an OPEA
173 Cathodyne system coupled with a Nikon BH2 microscope, operating at an acceleration voltage
174 of 12.5 kV and an intensity of 300–500 mA. U-Pb dating of calcite was performed at IPREM
175 laboratory (Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les
176 Matériaux), following the protocol of Hoareau et al. (2021, 2025). This method employs
177 isotopic mapping of U, Pb, and Th via a continuous ablation process, combined with a virtual
178 spot method to construct Tera-Wasserburg (TW) plots (Hoareau et al., 2021, 2024, 2025).
179 Detailed analytical procedure and data processing is provided in the Supplementary Material 1
180 (Tabs. A1-A2). The setup used a 257 nm femtosecond laser ablation system (Lambda3, Nexeya,
181 Bordeaux, France), operating at a frequency of 500 Hz with a spot size of 15 μm . Ablation was
182 conducted in a controlled atmosphere composed of helium (600 mL/min) and nitrogen (10
183 mL/min), mixed with argon in the ICPMS. This system was coupled to an HR-ICPMS Element
184 XR (ThermoFisher Scientific, Bremen, Germany) equipped with a jet interface (Donard et al.,
185 2015).

186

187 **3.4 Burial history**

188 The subsidence history of the Vocontian Basin was reconstructed using stratigraphic sections,
189 including thicknesses and lithologies, from the 1:50.000 scale geological maps of Die, Mens,
190 Dieulefit, Luc-en-Diois, Gap, Nyons, Serres, Laragne-Montéglise, Vaison-la-Romaine, and
191 Séderon, providing basin-wide coverage (Fig. 4). Standard backstripping techniques (Allen and
192 Allen 2013) were applied. The sedimentary units were first decompacted using coefficients
193 appropriate to their dominant lithology (limestone, marl or clay), with stratigraphic ages
194 inferred from the geological maps. To enable comparison between stratigraphic columns, the
195 stratigraphic data were resampled at 1 Myr intervals, grouped into 5 Myr bins, and interpolated
196 using the 2D spline method.

197

198 **3.5 RSCM thermometry approach**

199 To determine the peak temperatures reached by sediments in the Vocontian Basin, RSCM
200 analyses were conducted on an initial set of Middle to Upper Jurassic and Lower Cretaceous
201 carbonates samples collected near U-Pb dated calcites (Fig. 2A, 4). A second set of samples was

202 collected further east, in or near, the Authon-Valavoire thrust nappe, a parautochthonous unit at
203 the front of the Digne nappe, where deeper Lower Jurassic strata of the Vocontian are exposed
204 and diapirism has occurred (e.g., Célini et al., 2024). The RSCM approach constrains thermal
205 processes ranging from advanced diagenesis to high-grade metamorphism, covering
206 temperatures from 100 to 650°C (e.g., Ayoa et al., 2010; Koukestu et al., 2014; Schito et al.,
207 2017). Appropriate calibrations depend on the temperature range and geological context. Here,
208 we applied the calibration of Lahfid et al. (2010) was applied for temperatures between 200 and
209 340°C, and the qualitative approach of Saspiurry et al. (2020) for temperatures between 100
210 and 200°C. Analyses were performed at the Bureau de Recherches Géologiques et Minières
211 (BRGM; Orléans, France) using a Horiba LABRAM HR instrument with a 514.5 nm solid-
212 state laser source. The laser was focused with a BxFM microscope using a x100 objective with
213 a numerical aperture of 0.90 and under 0.1 mW at the sample surface.

214

215 **4. Results**

216 **4.1 Microtectonics and paleostress reconstructions**

217 Veins and striated planes associated with folds (Fig. 5A), reverse faults (Fig. 5B) and normal
218 faults (Fig. 5C) were measured and sampled. Stereograms of beddings, fault-slip data, veins
219 and, when relevant, their associated back-tilting state of stress, are presented in Figure 6. When
220 sufficient fault-slip data were available for inversion (minimum of four), the calculated stress
221 axes are reported (Fig. 6; Table 1). In this section, data from samples VOC-23-09a to VOC-23-
222 16d are presented in numerical order, followed by samples BON-23-01 to 03, and GLAN-23-
223 02, which belong to a second, separate field campaign. No measurements were conducted for
224 samples VOC-23-01a and VOC-23-01b, as the sampling area lies within the diapiric structure
225 of the Dentelles de Montmirail (Figs. 2A and 6), potentially introducing local complexities.
226 The sampling area of sample VOC-23-09b is dominated by strike-slip faults, with paleostress
227 inversion indicating a strike-slip regime under NW-SE compression (Fig. 6). At the VOC-23-
228 11a site, where bedding is flat, paleostress reconstructions also reveal a strike-slip regime,
229 involving NE-SW compression and NW-SE extension (Figs. 5B and 6).

230 Samples VOC-23-12a and VOC-23-12b record distinct deformation patterns. VOC-23-12a
231 comprises calcite veins indicative of WNW-ESE extension, whereas sample VOC-23-12b
232 exhibits similar calcite veins, together with additional strike-slip deformation, consistent with
233 WNW-ESE compression and NNE-SSW extension (Fig. 6). This stress orientation closely
234 matches that of VOC-23-09a and b sites. The geometry of the stress axes relative to bedding
235 dip and orientation suggests that this state of stress postdates folding.

236 At the VOC-23-13 site, strike-slip faults indicate a paleostress regime characterized by N-S-
237 directed compression and E-W-directed extension (Figs. 5C and 6). Sample VOC-23-14a, a
238 calcite vein spatially associated with sample VOC-23-14b, occurs adjacent to a strike-slip fault
239 with a sinistral component. Paleostress reconstruction indicates a WNW-ESE extension
240 coupled with NNE-SSW compression (Fig. 6).

241 Sample VOC-23-16d shows calcite veins affected by strike-slip deformation. In contrast,
242 sample VOC-23-12b shows only post-vein strike-slip deformation. Paleostress analysis
243 indicates NW-SE-directed extension (Fig. 6). Samples BON-23-01a and BON-23-01b consist
244 of striated calcite affected by layer-parallel shortening (LPS), interpreted as flexural slip related
245 to folding (Lacombe et al., 2021) (Figs. 5A and 6). Sample BON-23-01c, a calcite vein formed
246 within the same fold, is interpreted to have formed during fold growth. Paleostress
247 reconstruction at the Bonneval outcrop indicates N20°E-directed compression associated with
248 the formation of the N110°E-trending fold (Figs. 5A and 6). Finally, the GLAN-23-02 outcrop
249 exhibits a normal fault consistent with NE-SW-oriented extension.

250

251 **4.2 Petrography of calcite samples**

252 In total, 15 samples were dated in this study: 6 veins (VOC-23-01a, 01b, 09b, 12a, 14b and
253 BON-23-03) and 9 striated fault planes (VOC-23-9a, 11a, 12b, 13, 14a, 16d, BON-23-01, 02
254 and GLAN-23-02). Most samples contain blocky to elongate-blocky calcite, ranging from
255 millimetres to centimetres (Fig. 5; VOC-23-01, 9a, 12a, 22b, 13a, 14a, BON-23-01, 02, 03 and
256 GLAN-23-02). These calcites are characterized by homogeneous luminescence, indicating a
257 single-phase growth with no evidence of recrystallization (Figs. 7A and 7B; Supplementary.
258 Material Fig. S1). Two samples exhibit distinct calcite morphologies. Sample VOC-23-11a
259 contains a centimetric calcite showing a transitional morphology between syntaxial and
260 stretched crystals (Figs. 7C and 7D), suggesting variable growth orientations and multiple
261 crack-seal events. Similarly, sample VOC-23-16d displays millimetric to centimetric blocky
262 calcite crosscut by a younger generation of more elongated and stretched calcite (Figs. 7C and
263 7D).

264

265 **4.3 Calcite U-Pb geochronology**

266 This study presents 16 new calcite U-Pb ages obtained from eight types of brittle structures
267 (Table 1; Figs. 8, 9 and 10). The Tera-Wasserburg diagrams show data well spread along the
268 discordia line, with Mean Squared Weighted Deviation (MSWD) ranging from 1.1 to 1.9,
269 indicating robust and well-resolved age estimates. Three distinct age groups can be identified

270 within the dataset. The first age group corresponds to the Late Cretaceous to Early Eocene
271 interval, based on veins collected in late Jurassic-Early Cretaceous strata in the western part of
272 the basin. In the Dentelles de Montmirail area, ages of 82.9 ± 3.8 Ma (VOC-23-01b) and 76.5
273 ± 3.4 Ma (VOC-23-01a) were obtained. Further north, in the Die region, fold-related structures
274 associated with N20°E shortening yielded ages of 72.0 ± 3.7 Ma (BON-23-01a), 71.2 ± 8.1 Ma
275 (BON-23-01b), and 50.0 ± 4.3 Ma (BON-23-01c) (Fig. 8).

276 The second age group corresponds to veins and faults formed during the Oligocene. The
277 obtained ages range from 34.3 ± 1.5 Ma (vein VOC.23.14a), 30.3 ± 1.5 Ma (fault
278 VOC.23.14b2), 30.0 ± 2.8 Ma (fault VOC.23.13b), 28.1 ± 1.2 Ma (fault VOC.23.14b1), $25.6 \pm$
279 1.3 Ma (vein VOC.23.12a), 23.2 ± 1.3 Ma (fault VOC.23.12b) and 27.6 ± 5.4 Ma (fault
280 GLAN.23.02) (Fig. 9). Most of these fractures correspond to NW-SE to NE-SW extension (Fig.
281 6). However, sample VOC.23.12b indicates a strike-slip stress regime with NNE-SSW
282 extension and WNW-ESE compression, similar to that inferred from VOC.23.09 (Fig. 6).
283 Calcite veins in VOC.23.12b are of the same type as those in VOC.23.12a.

284 The third age group corresponds to Miocene veins and strike-slip faults hosted in Upper
285 Jurassic-lower Cretaceous carbonates. Two subgroups can be distinguished. The first subgroup,
286 dated to 12.2 ± 3.2 Ma (fault VOC.23.11a) and 12.5 ± 5.2 Ma (fault VOC.23.16d), records a
287 strike-slip regime defined by NE-SW compression and NW-SE extension (Figs. 10 and 6). The
288 second subgroup, with ages of 7.8 ± 0.6 Ma (fault VOC.23.09a) and 7.0 ± 2.2 Ma (vein
289 VOC.23.09b), also reflects a strike-slip regime but with stress orientations indicating NW-SE
290 compression and NE-SW extension (Figs. 10 and 6).

291

292 **4.5 RSCM thermometry**

293 RSCM data from the first set of Upper Jurassic and Lower Cretaceous carbonates in the central
294 and southern parts of the study area indicate maximum temperatures below 100°C (VOC-23-
295 01 and VOC-23-16; Table 2). For the second set, reliable temperatures estimates were obtained
296 for 12 samples using an appropriate calibration (Table 2, Fig. 6), which can be divided in two
297 groups. Temperatures measured in Lower to Upper Jurassic strata near Saint Roman and
298 Montmaure, in the Die area, range between 100 and 180°C (VOC-23-18, VOC-23-17). The
299 lowest temperatures are found near Veynes and close to the Devoluy massif (sample VOC-24-
300 20), in Sigoyer village (samples VOC-23-02, VOC-23-03), and in the upper stratigraphic unit
301 of the Authon-Valavoire nappe (VOC-24-28), and in the eastern part of the basin, below the
302 Digne nappe (sample VOC-24-29). The higher bound of RSCM temperatures, reaching up to
303 170°C, is measured in samples VOC-24-24a and 33, both located near diapiric structures of

304 “Rocher de Hongrie” (Célini et al., 2024). These values align with previously reported
305 temperatures of 140-200°C in the vicinity of the same diapir (Célini et al., 2024). The second
306 group characterized by higher temperatures between 215 and 275°C, includes samples located
307 1 km to the south of Sigoyer (VOC-24-23), within the middle Jurassic strata in the hangingwall
308 of the Authon-Valavoire nappe (VOC-24-25), and in the Lias sequence near the Astoin diapir
309 (VOC-23-31). Temperatures of this second group fall within the temperature range recorded in
310 the Authon-Valavoire nappe, particularly near Astoin, closer to the Digne nappe (Célini et al.,
311 2024). To summarize, our data reveal a thermal contrast between the western and eastern
312 domains of the Vocontian Basin. While the organic matter of upper Jurassic-lower Cretaceous
313 formations remains thermally immature, deeper Early-Middle-Late Jurassic formations
314 exposed in the eastern part of the Vocontian basin, close to the Authon-Valavoire and Digne
315 nappes exhibit significantly higher thermal maturity, with RSCM temperatures exceeding
316 180°C and reaching up to 275°C. A similar increase in RSCM temperatures between the Upper
317 Jurassic-Early Cretaceous and deeper stratigraphic units of the Early-Middle Jurassic has also
318 been documented in stratigraphic sections of the Digne Nappe (Célini et al., 2022; Balansa et
319 al., 2023).

320

321 **4.4 Burial histories and temperatures reached in the basin**

322 Burial histories for the Vocontian Basin are presented in Figure 11. Each curve represents the
323 burial evolution within the basin, reconstructed from stratigraphic thicknesses indicated in
324 explanatory notes of the BRGM 1/50.000 geological maps covering the Vocontian Basin. The
325 data indicate that total sediment accumulation reached a maximum of 6-7 km since the Early
326 Jurassic. This is shown by the decompacted thicknesses estimated at 6800 m in the Die region
327 and 5900 m near Nyons, in the northern and western sectors of the basin, respectively. In
328 contrast, areas lacking exposures of Lower Jurassic series such as Vaison-la-Romaine, show
329 reduced total subsidence of around 2500 m. Despite these differences, most parts of the basin
330 recorded a main phase of burial during the Middle Jurassic (Callovian, ~160 Ma), associated
331 with the widespread deposition of marls and shales of the “Terres Noires”, typical of the
332 External Alps. During this period, about 2 km of “Terres Noires” accumulated with rates of
333 200-400 m/Myr. Following the Middle Jurassic, the burial rates decreased but continued
334 through the Late Jurassic and Early Cretaceous. A second phase of accelerated subsidence took
335 place during the Early Cretaceous, around 130 Ma (Hauterivian), documented in the Mens
336 section by the deposition of about 700 m of marls and limestones (Fig. 4). A third major burial
337 phase, dated to 100-90 Ma (Fig. 11), is recorded in 6 of the 10 stratigraphic sections (Fig. 11).

338 This phase is characterized by increasing siliciclastic influx, revealed by the deposition of 700-
339 800 m alternating sandstones, marls and limestones (e.g., Nyons, Séderon, Vaison-la-Romaine).
340 The Gap, Laragne-Montéglin, and Mens sections, however, show evidence of erosion rather
341 than sedimentation at this time. These contrasting depositional patterns reveal concurrent uplift
342 in the source regions and structural compartmentalization in the Vocontian Basin (Fig. 11). A
343 last episode of subsidence, reaching 350-500 m (e.g., Die, Laragne) is documented during the
344 Eocene-Oligocene (Fig. 11).

345

346 **5. Discussion**

347 The results from this study are put into perspective of the evolution of the Vocontian Basin of
348 south-east France through time. For this, we merge results from structural analysis with
349 corresponding U-Pb calcite ages, and discuss the evolution of the related burial history
350 estimated from the lithological logs, which have been used to infer paleo-thermal gradients.
351 Four main evolutionary stages can be proposed based on these data, which are discussed below.
352

353 **5.1 The Mesozoic rifting: E-W trend in thermal gradients and low Ca-rich fluid 354 circulation (170-90 Ma)**

355 The Vocontian basin recorded a prolonged phase of subsidence throughout the Jurassic and
356 Cretaceous (Fig. 11), which was not associated with a distinct fluid event. This period coincides
357 with the rifting of the European paleomargin as inferred by the thermal evolution of the Pelvoux
358 Variscan crystalline basement to the north (Boschetti et al., 2025a,c), and from the burial history
359 below the Digne Nappe to the east (Célini et al., 2023). This eastern margin of the basin was
360 likely inverted during the late stages of the Alpine collision between 12 and 6 Ma (Schwartz et
361 al., 2017). We distinguish a first major phase of sedimentary burial that occurred during the
362 Callovian-Oxfordian (170-160 Ma), which postdates the necking of the European paleomargin
363 identified in the External Crystalline Massifs (Mohn et al., 2014; Ribes et al., 2020; Dall'Asta
364 et al., 2022) and is synchronous with the opening of the Alpine Tethys (Lemoine et al., 1986;
365 Manatschal and Müntener, 2009). This rifting is recognized in the Vocontian Basin, where it is
366 expressed by WNW-ESE extension (Dardeau et al., 1988; Homberg et al., 2013), but it is not
367 captured in our calcite U-Pb ages. Similar observations can be made for the subsequent
368 Cretaceous extensional phase (~135 Ma), for which no faults of that age are reported. The high
369 temperatures measured in the Digne Nappe at this time are interpreted as reflecting renewed
370 extension on the European margin associated with the opening of the Valaisan domain (Célini
371 et al., 2023), consistent with ongoing burial heating recorded in the Pelvoux massif (Boschetti

372 et al, 2025a,c). This thermal peak coincides with a shift from the Middle Jurassic WNW–ESE
373 extension to NNE–SSW extension during the Barremian-Aptian (Dardeau, 1988; de Graciansky
374 and Lemoine, 1988; Homberg et al., 2010). This later extensional phase is recorded not only
375 throughout the Vocontian Basin (Homberg et al., 2013), but also along its margins. Evidence
376 for this later extensional event includes deformation along the Ventoux–Lure fault zone
377 (Beaudoin et al., 1986; Huang et al., 1988), the formation of large-scale sliding domains on the
378 Vercors platform (Bièvre and Quesne, 2004), and subsidence in east-west-oriented domains
379 along the Ardèche margin during the same period (Cotillon et al., 1979). Our RSCM analyses
380 indicate an increase in peak temperatures toward the east of the Vocontian Basin, where deeper
381 Lower Jurassic stratigraphic strata are exposed (Fig. 6; Table 2). Comparing these temperatures
382 with temperature inferred from burial depths using normal (30°C/km) to high (60°C/km)
383 geothermal gradients suggests that the eastern sector experienced unusually high to extreme
384 gradients, consistent with increasing crustal thinning in the Vocontian-Valaisan rift segment
385 this direction (Fig. 6; Table 2). It should be noted that the sharp increase in the geothermal
386 gradients is not solely due to crustal thinning, but is also largely a result of mantle thinning and
387 asthenosphere uplift. The absence of calcite mineralisation in brittle tectonic features at this
388 time, despite specifically targeting potentially related veins, is intriguing. Indeed, evidence of
389 barite, authigenic quartz and pyrite mineralization in the Callovian-Oxfordian shales in the
390 deeper part of the basin is interpreted as reflecting basal fluid flow during syn-rift peak burial
391 in the Middle Cretaceous, as well as brines related to salt diapirs (Guilhaumou et al., 1996). We
392 suggest that the absence of Middle Cretaceous calcites can be explained either by faulting
393 occurring at a depth too shallow for calcite precipitation, or by subsequent burial to 2-3 km in
394 the eastern basin leading to the dissolution of previous Middle Cretaceous calcites due to
395 changing physical conditions (e.g., pH and temperature). In addition, mechanical decoupling in
396 the Triassic salt layer during extension may have focused fluid flow, so that mineralized fluids
397 of this age are detectable only locally, near the emergence of salt diapirs.

398 A third depositional phase occurred around 100-90 Ma, in agreement with syn-faulting deposits
399 along the Clausis and Glandage fault systems in the Vocontian/Dévoluy basin (Fig. 11, 3)
400 (Gidon et al., 1970; Arnaud et al., 1974) and with strike-slip activity along the Toulourenc faults
401 in the Ventoux-Lure massif (Montenat et al., 2004). Regionally, this tectonic phase coincides
402 with strike-slip movements along the Cévennes, Nîmes and Durance faults (Montenat et al.,
403 2004; Parizot et al., 2022), potentially associated with local compression related to diapiric
404 movement at 95-90 Ma (Bilau et al., 2023b) and normal faulting reported in Provence (Zeboudj
405 et al., 2025). This episode is a response of the continental rifting between Iberia-Ebro and

406 European plates, and the formation of the Pyrenean rift system (Angrand and Moutherau,
407 2021) (Fig. 12A). Strike-slip movements along inherited faults (Cévennes, Nîmes, Durance
408 faults) were associated with oblique extension accommodated by overlapping rift segments in
409 the Pyrenean and Vocontian basins (Fig. 12). This complex tectonic setting likely triggered the
410 emergence of continental blocks that can explain the abundance of sandstone deposits during
411 this period in the Vocontian basin (Fig. 4 and 11). This interpretation aligns with the
412 documented formation of an uplifted structure in Provence during the Albian-Cenomanian,
413 known as the Durancian Isthmus (Combes, 1990; Guyonnet-Benaize et al., 2010; Chanvry et
414 al., 2020, Marchand et al., 2021). Cooling and exhumation in the French Massif Central to the
415 west are also documented from 120-90 Ma (Olivetti et al., 2016), which may have contributed
416 to feeding of the Vocontian basin during this period (Fig. 12A). Although this period is
417 synchronous with the onset of Adria/Europe convergence (e.g., Le Breton et al., 2021; Angrand
418 and Moutherau, 2021; Boschetti et al., 2025a,b,c), the impact of contraction in the Alps on the
419 evolution Vocontian Basin remains to be assessed.

420

421 **5.2 Post-Mid Cretaceous evolution: U-Pb/calcite dating record of multiple Pyrenean- 422 Provençal collision events (90-34 Ma)**

423 The oldest calcite U-Pb ages of 84.6 ± 2.4 Ma and 77.7 ± 2.9 Ma, reported in the Jurassic strata
424 forming the wall of the Suzette diapir (Dentelles de Montmirail) align with the onset of the
425 Pyrenean-Provençal collision around 84 Ma (Angrand and Moutherau, 2021; Moutherau et
426 al., 2014; Muñoz, 1992; Teixell et al., 2018; Ford et al., 2022). These old calcite ages may
427 reflect halokinetic movement of the Suzette diapir in response to far-field stresses that triggered
428 tectonic inversion and exhumation all over Europe (Moutherau et al., 2021). These ages can
429 also be related to a deformation event in the Dévoluy massif affecting the Early Cretaceous
430 units, linked to E-W-directed folding and erosion dated to Coniacian-Santonian (Fig. 3B) (ca.
431 85 Ma) (Flandrin, 1966; Lemoine, 1972; Gidon et al., 1970; Arnaud et al., 1974), or the end of
432 diapiric movement in southern Provence (Wicker and Ford, 2021). Younger U/Pb ages of 72.0 ± 3.7 Ma
433 and 71.2 ± 8.1 Ma associated with N20°E shortening coincides with the intensification
434 of the Pyrenees exhumation at 75-70 Ma (Moutherau et al., 2014), a phase that is regionally
435 recorded across southeastern France by a cooling event documented from the Pelvoux to the
436 Maures-Tanneron massifs (Fig. 12A) (Boschetti et al., 2025a,b). It is also recognized in the
437 region associated with the sinistral reactivation of the Cévennes fault around 76 Ma (Parizot et
438 al., 2021). The Pyrenean-Provençal collision is therefore well represented in the Vocontian
439 Basin.

440 Our data also resolve a younger N20°E-directed contractional stage dated at 50.0 ± 4.3 Ma (Fig.
441 6) that we link to the main Pyrenan-Provençal collision phase. It is recognized in other U/Pb
442 age dataset from Provence (Zeboudj et al., 2025), and corresponds to a north-south compression
443 spanning from 59 to 34 Ma regarded as the culmination of the Pyrenean-Provençal collision
444 caused by plate-scale dynamic changes (Bestani et al., 2016; Balansa et al., 2022; Vacherat et
445 al., 2016; Moutherau et al., 2014; 2021) (Fig. 12B). In northwestern Europe, the Eocene also
446 heralds the onset of the West European Rift (WER), which was active until the Oligocene and
447 just precedes the opening of the Gulf of Lion (e.g. Séranne et al., 1999; Dèzes et al., 2004;
448 Moutherau et al., 2021).

449

450 **5.3 Oligocene rifting related to the West European Rift development (35-23 Ma)**

451 The WER stage is represented in our dataset by eight U/Pb dates ranging from 30.4 ± 2.7 Ma
452 to 24.3 ± 1.3 Ma associated with NW-SE to NE-SW extension (Fig. 12C). They coincide with
453 the extensional phase (35–23 Ma) documented in Provence, Western Alps, Eastern Pyrenees,
454 and Valencia Trough (Merle and Michon, 2001; Ziegler and Dèzes, 2006). The Late Eocene-
455 Early Oligocene period also coincides with the onset of the Alpine foreland (Ford et al., 1999).
456 The flexural bending of the European margin caused by Alpine loading likely increased
457 extensional stresses in the foreland, where the WER formed, however the available data are
458 insufficient to draw definitive conclusions. From Chattian-Aquitian times, at ca. 23 Ma, the
459 opening of the Gulf of Lion and of the Ligurian basin (e.g., Séranne et al., 1999; Jolivet et al.,
460 1999, 2020) initiated following the demise of the WER suggesting a tectonic relationship
461 between these two rifting events (Moutherau et al., 2021) (Fig. 12C). In our study area, the
462 shallow depth of the iso-velocity contour $V_s=4.2 \text{ km.s}^{-1}$, considered to be a proxy for the Moho
463 (Schwartz et al., 2024), and the 3D geological modelling (Bienveignant et al., 2024), confirms
464 a significant crustal thinning in the Valence-Rhône depression, where structures related to the
465 WER are preserved (Fig. S2, Supplementary Material 1). The excellent preservation of the
466 Oligocene-Miocene extensional phase in our dataset suggests a positive feedback between
467 crustal thinning (Fig. S2, Supplementary Material 1) and physical conditions that became
468 favourable for calcite precipitation at shallower depths, as the basin was progressively exhumed
469 following Late Cretaceous shortening.

470

471 **5.4 Alpine collision and fold and thrust belt propagation (<16 Ma)**

472 The youngest calcite U/Pb ages of 12.2 ± 3.2 Ma, 12.5 ± 5.2 Ma, 7.8 ± 0.6 Ma and 7.0 ± 2.2
473 Ma are associated with NE-SW compression. This result agrees with the westward propagation

474 of the Alpine deformation front, which migrated forelandward from 16 to 7 Ma in the Vercors
475 massif (Bilau et al., 2023a; Mai Yung Sen et al., 2025) to the north of the Vocontian Basin (Fig.
476 12D). This timing also coincides with the exhumation of Alpine basement, such as the
477 Belledonne and Pelvoux massifs, which accelerated at ca. 12 Ma (e.g. Beucher et al., 2012;
478 Girault et al., 2022; Boschetti et al., 2025a). This age range is also in agreement with the Digne
479 Nappe emplacement at 13-9 Ma (Schwartz et al., 2017) and folds and thrusts development in
480 the frontal southern Alps between 18.2 ± 1.1 Ma and 3.16 ± 0.47 Ma obtained (Bauer et al.,
481 2025 ; Tigroudja et al., 2025).

482

483 **CONCLUSION**

484 The goal of this study was to provide a refined chronology of deformation in the Vocontian
485 Basin using an approach combining U-Pb calcite geochronology, RSCM thermometry, and
486 subsidence analysis. First, this study highlights the absence of mid-Cretaceous syn-rift calcites
487 associated with the opening of the Vocontian Basin. This is possibly related to dissolution
488 during subsequent burial, or reflect the localization of fluid flow and strain in the basal Triassic
489 salt layer during the mid-Cretaceous extension. The temporal distribution of dated brittle
490 structures reveals three main deformation episodes: (1) Late Cretaceous to Paleocene calcite
491 precipitation associated with Pyrenean-Provençal convergence and diapirism; (2) Oligocene
492 extensional phases tied to the West European Rift opening; and (3) Miocene strike-slip
493 reactivation and contraction linked to the Alpine orogeny. These events are superimposed onto
494 a long-term subsidence history that records major burial phases during the Jurassic and
495 Cretaceous. Thermal data from RSCM analyses delineate a sharp eastward increase in
496 geothermal gradients, suggesting enhanced crustal thinning and/or diapiric activity in the
497 eastern part of the basin. This work highlights a good coherence of the local deformation
498 inferred from calcite U–Pb dating and paleostress analysis, and the regional tectonic evolution.

499

500 **Declaration of Competing Interest**

501 The authors declare that they have no known competing financial interests or personal
502 relationships that could have appeared to influence the work reported in this paper.

503

504 **Availability of data material**

505 The dataset(s) supporting the conclusions of this article is(are) available in Supplementary
506 Material 1.

507

508 **Acknowledgments**

509 Authors would like to thank the reviewers for their valuable comments and BRGM for funding
510 this project.

511

512 **Author's contribution**

513 LB, the corresponding author, led the field investigations, conducted data analysis and
514 interpretation, and prepared the initial manuscript draft. MP contributed to field investigations,
515 performed data analysis, and assisted with manuscript writing. FM participated in field
516 investigations, contributed to data interpretation, and helped with writing. GH carried out the
517 U-Pb data analysis and contributed to the writing. SS and YR both participated in field
518 investigations and writing. DB contributed to data interpretation and discussion,
519 while AL performed the RSCM analysis and took part in writing.

520 **Funding**

521 This study was funded by a scholarship from the Ministry of Higher Education awarded to LB
522 through the SDU2E doctoral school at Toulouse University, and by funding from the BRGM
523 “RGF-Alpes et Bassins du Sud-Est” programme.

524

525 **References**

526 Allen, P. A., & Allen, J. R.: Basin analysis: Principles and application to petroleum play
527 assessment. John Wiley & Sons, 2013.

528 Angelier, J.: Inversion of field data in fault tectonics to obtain the regional stress—III.
529 A new rapid direct inversion method by analytical means. *Geophysical Journal
530 International*, 103(2), 363-376. <https://doi.org/10.1111/j.1365-246X.1990.tb01777.x>,
531 1990.

532 Angrand, P., & Moutherieu, F.: Evolution of the Alpine orogenic belts in the Western
533 Mediterranean region as resolved by the kinematics of the Europe-Africa diffuse plate
534 boundary. *BSGF-Earth Sciences Bulletin*, 192(1), 42.
535 <https://doi.org/10.1051/bsgf/2021031>, 2021.

536 Arnaud H., Charollais J., Delamette M. & Portault B. : Crétacé supérieur. Chaînes
537 subalpines. In: S. Debrand-Passard et al., Eds, *Synthèse géologique du Sud-Est de la
538 France*. – Mém.BRGM, 125, 355-359, 1984.

539 Balansa, J., Espurt, N., Hippolyte, J. C., Philip, J., & Caritg, S.: Structural evolution of

540 the superimposed Provençal and Subalpine fold-thrust belts (SE France). *Earth-Science*
541 *Reviews*, 227, 103972. <https://doi.org/10.1016/j.earscirev.2022.103972>, 2022.

542 Balansa, J., Lahfid, A., Espurt, N., Hippolyte, J. C., Henry, P., Caritg, S., & Fasentieux, B.:
543 Unraveling the eroded units of mountain belts using RSCM thermometry and cross-
544 section balancing: example of the southwestern French Alps. *International Journal of*
545 *Earth Sciences*, 112(2), 443-458. <https://doi.org/10.1007/s00531-022-02257-3>, 2023.

546 Bauer, R., Corsini, M., Matonti, C., Bosch, D., Bruguier, O., & Issautier, B.: The role of
547 Cretaceous tectonics in the present-day architecture of the Nice arc (Western Subalpine
548 foreland, France). *Journal of Structural Geology*, 105538, 2025.

549 Bestani, L., Espurt, N., Lamarche, J., Bellier, O., & Hollender, F.: Reconstruction of the
550 Provence Chain evolution, southeastern France. *Tectonics*, 35(6), 1506-1525-
551 <https://doi.org/10.1002/2016TC004115>, 2016.

552 Beaudoin, B., Friès, G., Joseph, P., Bouchet, R., & Cabrol, C. : Tectonique
553 synsédimentaire crétacée à l'ouest de la Durance (S.-E. France). *Comptes rendus de*
554 *l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers,*
555 *Sciences de la Terre*, 303(8), 713-718, 1986.

556 Beucher, R., van der Beek, P., Braun, J., & Batt, G. E.: Exhumation and relief
557 development in the Pelvoux and Dora-Maira massifs (Western Alps) assessed by
558 spectral analysis and inversion of thermochronological age transects. *Journal of*
559 *Geophysical Research: Earth Surface*, 117(F3). <https://doi.org/10.1029/2011JF002240>,
560 2012.

561 Bièvre, G., & Quesne, D.: Synsedimentary collapse on a carbonate platform margin μ
562 (lower Barremian, southern Vercors, SE France). *Geodiversitas*, 26(2), 169-184, 2004.

563 Bienveignant, D., Nouibat, A., Sue, C., Rolland, Y., Schwartz, S., Bernet, M., Dumont, T.,
564 Nomade, J., Caritg, S., & Walpersdorf, A.: Shaping the crustal structure of the SW-
565 Alpine Foreland : Insight from 3D modeling. *Tectonophysics*, 889, 230471.
566 <https://doi.org/10.1016/j.tecto.2024.230471>, 2024.

567 Bilau, A., Bienveignant, D., Rolland, Y., Schwartz, S., Godeau, N., Guihou, A., et al.: The
568 Tertiary structuration of the Western Subalpine foreland deciphered by calcite-filled
569 faults and veins. *Earth Science Reviews*, 236, 104270, 2023a.

570 Bilau, A., Rolland, Y., Dumont, T., Schwartz, S., Godeau, N., Guihou, A., & Deschamps, P.,
571 2023b. Early onset of Pyrenean collision (97–90 Ma) evidenced by U–Pb dating on
572 calcite (Provence, SE France). *Terra Nova*, 35(5), 413-423.
573 <https://doi.org/10.1111/ter.12665>, 2004

574 Boschetti, L., Schwartz, S., Rolland, Y., Dumont, T., and Nouibat, A.: A new tomographic-
575 petrological model for the Ligurian-Provence back-arc basin (North-Western
576 Mediterranean Sea), *Tectonophysics*, 230111,
577 <https://doi.org/10.1016/j.tecto.2023.230111>, 2023.

578 Boschetti, L., Mouthereau, F., Schwartz, S., Rolland, Y., Bernet, M., Balvay, M., ... & Lahfid,
579 A.: Thermochronology of the western Alps (Pelvoux massif) reveals the longterm
580 multiphase tectonic history of the European paleomargin. *Tectonics*, 44(2),
581 e2024TC008498. <https://doi.org/10.1029/2024TC008498>, 2025a.

582 Boschetti, L., Rolland, Y., Mouthereau, F., Schwartz, S., Milesi, G., Munch, P., Bernet, M.,
583 Balvay, M., Thiéblemont, D., Bonno, M., Martin, C., and Monié, P.: Thermochronology
584 of the Maures-Tanneron crystalline basement: insights for SW Europe Triassic to
585 Miocene tectonic history, *Swiss J. Geosci.*, 118, 14, <https://doi.org/10.1186/s00015-025-00485-8>, 2025b.

587 Boschetti, L., Boulle, C., Rolland, Y., Schwartz, S., Milesi, G., Bienveignant, D., et al. Shear
588 zone memory revealed by in-situ Rb-Sr and 40Ar/39Ar dating of Pyrenean and Alpine
589 tectonic phases in the external Alps. *Lithos*, 108168, 2025c.

590 Célini, N. : Le rôle des évaporites dans l'évolution tectonique du front alpin: le cas de la
591 nappe de Digne (Doctoral dissertation, Université de Pau et des Pays de l'Adour), 2020.

592 Célini, N., Mouthereau, F., Lahfid, A., Gout, C., and Callot, J.-P.: Rift thermal inheritance in
593 the SW Alps (France): insights from RSCM thermometry and 1D thermal numerical
594 modelling, *Solid Earth*, 14, 1–16, <https://doi.org/10.5194/se-14-1-2023>, 2023.

595 Célini, N., Pichat, A., Mouthereau, F., Ringenbach, J. C., & Callot, J. P.: Along-strike
596 variations of structural style in the external Western Alps (France): Review, insights
597 from analogue models and the role of salt. *Journal of Structural Geology*, 179, 105048.
598 <https://doi.org/10.1016/j.jsg.2023.105048>, 2024.

599 Chanvry, E., Marchand, E., Lopez, M., Séranne, M., Le Saout, G., & Vinches, M. :
600 Tectonic and climate control on allochthonous bauxite deposition. Example from the
601 mid-Cretaceous Villeveyrac basin, southern France. *Sedimentary Geology*, 407,
602 105727. <https://doi.org/10.1016/j.sedgeo.2020.105727>, 2020.

603 Combes, P. J. : Typologie, cadre géodynamique et genèse des bauxites françaises.
604 *Geodinamica Acta*, 4(2), 91-109. <https://doi.org/10.1080/09853111.1990.11105202>,
605 1990.

606 Cotillon, P., Ferry, S., Busnardo, R., Lafarge, D., & Renaud, B.: Synthèse

607 stratigraphique et paléogéographique sur les faciès urgoniens du Sud de l'Ardèche et du
608 Nord du Gard (France SE). *Geobios*, 12, 121-139. [https://doi.org/10.1016/S0016-6995\(79\)80055-8](https://doi.org/10.1016/S0016-6995(79)80055-8), 1979.

610 Dall'Asta, N., Hoareau, G., Manatschal, G., Centrella, S., Denèle, Y., Ribes, C., & Kalifi, A. :
611 Structural and petrological characteristics of a Jurassic detachment fault from the Mont-
612 Blanc massif (Col du Bonhomme area, France). *Journal of Structural Geology*, 159,
613 104593. <https://doi.org/10.1016/j.jsg.2022.104593>, 2022.

614 Dardeau, G., Atrops, F., Fortwengler, D., De Graciansky, P. C., & Marchand, D. : Jeux
615 de blocs et tectonique distensive au Callovien et à l'Oxfordien dans le bassin du Sud-Est
616 de la France. *Bulletin de la Société géologique de France*, 4(5), 771-777, 1988.

617 Debemas, J. : La zone subbriançonnaise et la zone valaisanne savoyarde dans le cadre
618 de la tectonique des plaques. *Géologie Alpine*, 77, 3-8, 1988, 2001.

619 Delvaux, D., & Sperner, B. : New aspects of tectonic stress inversion with reference to
620 the TENSOR program. <https://doi.org/10.1144/GSL.SP.2003.212.01.06>, 2003.

621 Debrand-Passard, S. : *Synthèse géologique du Sud-Est de la France* (Vol. 1).
622 Editions BRGM. de Graciansky, P.C., & Lemoine, Marcel., 1988. Early Cretaceous
623 extensional tectonics in the southwestern French Alps; a consequence of North-
624 Atlantic rifting during Tethyan spreading. *Bulletin de la Société géologique de France*,
625 4(5), 733-737, 1984.

626 Dèzes, P., Schmid, S. M., & Ziegler, P. A. : Evolution of the European Cenozoic Rift
627 System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere.
628 *Tectonophysics*, 389(1-2), 1-33. <https://doi.org/10.1016/j.tecto.2004.06.011>, 2004.

629 Donard, A., Pottin, A. C., Pointurier, F., & Pécheyran, C. : Determination of relative rare
630 earth element distributions in very small quantities of uranium ore concentrates using
631 femtosecond UV laser ablation-SF-ICP-MS coupling. *Journal of Analytical Atomic
632 Spectrometry*, 30(12), 2420-2428, 2015.

633 Espurt, N., Angrand, P., Teixell, A., Labaume, P., Ford, M., de Saint Blanquat, M., & Chevrot,
634 S. Crustal-scale balanced cross-section and restorations of the Central Pyrenean belt
635 (Nestes-Cinca transect): Highlighting the structural control of Variscan belt and
636 Permian-Mesozoic rift systems on mountain building. *Tectonophysics*, 764, 25-45.
637 <https://doi.org/10.1016/j.tecto.2019.04.026>, 2019.

638 Flandrin, J. : Sur l'âge des principaux traits structuraux du Diois et des Baronnies.
639 *Bulletin de la Société géologique de France*, 7(3), 376-386.
640 <https://doi.org/10.2113/gssgbull.S7-VIII.3.376>, 1966.

641 Ford, M., Lickorish, W.H. & Kusznir, N.J.: Tertiary foreland sedimentation in the
642 southern Subalpine chains, SE France: a geodynamic analysis. *Basin Research*, 11, 315–
643 336. <https://doi.org/10.1046/j.1365-2117.1999.00103.x>, 1999

644 Ford, M., & Lickorish, W. H.: Foreland basin evolution around the western Alpine Arc.
645 <https://doi.org/10.1144/GSL.SP.2004.221.01.04>, 2004.

646 Ford, M., Masini, E., Vergés, J., Pik, R., Ternois, S., Léger, J., ... & Calassou, S.:
647 Evolution of a low convergence collisional orogen: a review of Pyrenean orogenesis.
648 BSGF-Earth Sciences Bulletin, 193(1), 19. <https://doi.org/10.1051/bsgf/2022018>, 2022.

649 Gidon, M., Arnaud, H., Pairis, J. L., AprAHAMIAN, J., & Uselle, J. P. : Les
650 déformations tectoniques superposées du Dévoluy méridional (Hautes-Alpes). *Géologie*
651 *Alpine*, 46, 87-110, 1970.

652 Girault, J. B., Bellahsen, N., Bernet, M., Pik, R., Loget, N., Lasseur, E., ... & Sonnet, M.:
653 Exhumation of the Western Alpine collisional wedge: New thermochronological data.
654 *Tectonophysics*, 822, 229155. <https://doi.org/10.1016/j.tecto.2021.229155>, 2022.

655 Guilhaumou, N., Touray, J. C., Perthuisot, V., & Roure, F., Palaeocirculation in the
656 basin of southeastern France sub-alpine range: a synthesis from fluid inclusions studies.
657 *Marine and Petroleum Geology*, 13(6), 695-706. [https://doi.org/10.1016/0264-8172\(95\)00064-X](https://doi.org/10.1016/0264-8172(95)00064-X). 1996.

659 Guyonnet-Benaize, C., Lamarche, J., Masse, J. P., Villeneuve, M., & Viseur, S. : 3D
660 structural modelling of small-deformations in poly-phase faults pattern. Application to
661 the Mid-Cretaceous Durance uplift, Provence (SE France). *Journal of Geodynamics*,
662 50(2), 81-93. <https://doi.org/10.1016/j.jog.2010.03.003>, 2010.

663 Hoareau, G., Claverie, F., Pecheyran, C., Barbotin, G., Perk, M., Beaudoin, N. E., ... & Rasbury,
664 E. T.: The virtual spot approach: a simple method for image U-Pb carbonate
665 geochronology by high-repetition rate LA-ICP-MS. *EGUspHERE*, 2024, 1-35.
666 <https://doi.org/10.5194/egusphere-2024-2366>, 2024.

667 Hoareau, G., Claverie, F., Pecheyran, C., Paroissin, C., Grignard, P. A., Motte, G., ... & Girard,
668 J. P.: Direct U–Pb dating of carbonates from micron-scale femtosecond laser ablation
669 inductively coupled plasma mass spectrometry images using robust regression.
670 *Geochronology*, 3(1), 67-87. <https://doi.org/10.5194/gchron-3-67-2021>, 2021.

671 Homberg, C., Barrier, E., Mroueh, M., Muller, C., Hamdan, W., & Higazi, F.: Tectonic
672 evolution of the central Levant domain (Lebanon) since Mesozoic time.
673 <https://doi.org/10.1144/SP341.12>, 2010.

674 Homberg, C., Schnyder, J., & Benzaggagh, M.: Late Jurassic-Early Cretaceous faulting

675 in the Southeastern French Basin: does it reflect a tectonic reorganization?. *Bulletin de*
676 *la Société géologique de France*, 184(4-5), 501-514.
677 <https://doi.org/10.2113/gssgbull.184.4-5.501>, 2013.

678 Hippolyte, J. C., Angelier, J., Bergerat, F., Nury, D., & Guieu, G.: Tectonic-stratigraphic
679 record of paleostress time changes in the Oligocene basins of the Provence, southern
680 France. *Tectonophysics*, 226(1-4), 15-35. [https://doi.org/10.1016/0040-1951\(93\)90108-V](https://doi.org/10.1016/0040-1951(93)90108-V). 1993

682 Huang, Q., Geometry and tectonic significance of Albian sedimentary dykes in the Sisteron
683 area, *SE France, J. Struct. Geol.*, 10, 453–462, 1988.

684 Jolivet, L., Frizon de Lamotte, D., Mascle, A., & Séranne, M.: The Mediterranean
685 basins: Tertiary extension within the Alpine orogen—An introduction. *Geological
686 Society, London, Special Publications*, 156(1), 1-14.
687 <https://doi.org/10.1144/GSL.SP.1999.156.01.02>, 1999

688 Jolivet, L., Menant, A., Roche, V., Le Pourhiet, L., Maillard, A., Augier, R., ... & Canva, A.:
689 Transfer zones in Mediterranean back-arc regions and tear faults. *Bulletin de la Société
690 Géologique de France*, 192(1). <https://doi.org/10.1051/bsgf/2021006>, 2021.

691 Joseph, P., Beaudoin, B., Sempere, T., & Maillart, J. : Vallées sous-marines et systèmes
692 d'épandages carbonatés du Berriasien vocontien (Alpes méridionales françaises). *Bull.
693 Soc. Geol. Fr*, 8, 363-374, 1988.

694 Kouketsu, Y., Mizukami, T., Mori, H., Endo, S., Aoya, M., Hara, H., ... & Wallis, S.: A
695 new approach to develop the Raman carbonaceous material geothermometer for low-
696 grade metamorphism using peak width. *Island Arc*, 23(1), 33-50.
697 <https://doi.org/10.1111/iar.12057>, 2014.

698 Lacombe, O., Beaudoin, N. E., Hoareau, G., Labey, A., Pecheyran, C., and Callot, J.-P.: Dating
699 folding beyond folding, from layer-parallel shortening to fold tightening, using
700 mesostructures: lessons from the Apennines, Pyrenees, and Rocky Mountains, *Solid
701 Earth*, 12, 2145–2157, <https://doi.org/10.5194/se-12-2145-2021>, 2021.

702 Lahfid, A., Beyssac, O., Deville, E., Negro, F., Chopin, C., & Goffé, B. (2010). Evolution of
703 the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus
704 Alps (Switzerland). *Terra nova*, 22(5), 354-360. <https://doi.org/10.1111/j.1365-3121.2010.00956.x>, 2010.

706 Le Breton, E., Brune, S., Ustaszewski, K., Zahirovic, S., Seton, M., & Müller, R. D. :

707 Kinematics and extent of the Piemont–Liguria Basin–implications for subduction
708 processes in the Alps. *Solid Earth*, 12(4), 885–913. <https://doi.org/10.5194/se-12-885-2021>, 2021.

710 Lemoine, M. : Rythme et modalités des plissements superposés dans les chaînes
711 subalpines méridionales des Alpes occidentales françaises. *Geologische Rundschau*, 61,
712 975–1010. <https://doi.org/10.1007/BF01820902>, 1972.

713 Lemoine, M., Bas, T., Arnaud-Vanneau, A., Arnaud, H., Dumont, T., Gidon, M., Bourbon, M.,
714 Graciansky, P.-C. de, Rudkiewicz, J.-L., Megard-Galli, J., and Tricart, P.: The
715 continental margin of the Mesozoic Tethys in the Western Alps, *Mar Petrol Geol*, 3,
716 179–199, [https://doi.org/10.1016/0264-8172\(86\)90044-9](https://doi.org/10.1016/0264-8172(86)90044-9), 1986.

717 Lemoine, M., Tricart, P. and Boillot, G.: Ultramafic and gabbroic ocean floor of the
718 Ligurian Tethys (Alps, Corsica, Apennines): in search for a genetic model. *Geology*, 15:
719 622–625, 1987.

720 Manatschal, G., & Müntener, O.: A type sequence across an ancient magma-poor ocean–
721 continent transition: the example of the western Alpine Tethys ophiolites.
722 *Tectonophysics*, 473(1–2), 4–19. <https://doi.org/10.1016/j.tecto.2008.07.021>, 2009

723 Marchand, E., Séranne, M., Bruguier, O., & Vinches, M. : LA-ICP-MS dating of detrital
724 zircon grains from the Cretaceous allochthonous bauxites of Languedoc (south of
725 France): Provenance and geodynamic consequences. *Basin Research*, 33(1), 270–290.
726 <https://doi.org/10.1111/bre.12465>, 2021.

727 Merle, O., & Michon, L.: The formation of the West European Rift; a new model as
728 exemplified by the Massif Central area. *Bulletin de la Société géologique de France*,
729 172(2), 213–221. <https://doi.org/10.2113/172.2.213>, 2021.

730 Mohn, G., Manatschal, G., Beltrando, M., & Haupert, I.: The role of rift-inherited hyper-
731 extension in Alpine-type orogens. *Terra Nova*, 26(5), 347–353.
732 <https://doi.org/10.1111/ter.12104>, 2014.

733 Montenat, C., Janin, M. C., & Barrier, P. : L'accident du Toulourenc: une limite
734 Tectonique entre la plate-forme provençale et le Bassin vocontien à l'Aptien–Albien (SE
735 France). *Comptes rendus. Géoscience*, 336(14), 1301–1310, 2004.

736 Mouthereau, F., Filleaudeau, P. Y., Vacherat, A., Pik, R., Lacombe, O., Fellin, M. G., ... &
737 Masini, E.: Placing limits to shortening evolution in the Pyrenees: Role of margin
738 architecture and implications for the Iberia/Europe convergence. *Tectonics*, 33(12),
739 2283–2314. <https://doi.org/10.1002/2014TC003663>, 2014.

740 Mouthereau, F., Angrand, P., Jourdon, A., Ternois, S., Fillon, C., Calassou, S., ... & Baudin, T.:

741 Cenozoic mountain building and topographic evolution in Western Europe: impact of
742 billions of years of lithosphere evolution and plate kinematics. BSGF-Earth Sciences
743 Bulletin, 192(1), 56. <https://doi.org/10.1051/bsgf/2021040>, 2021.

744 Muñoz, J. A.: Evolution of a continental collision belt: ECORS-Pyrenees crustal
745 balanced cross-section. In Thrust tectonics (pp. 235-246). Dordrecht: Springer
746 Netherlands, 1992.

747 Olivetti, V., Godard, V., Bellier, O., & Aster Team.: Cenozoic rejuvenation events of
748 Massif Central topography (France): Insights from cosmogenic denudation rates and
749 river profiles. Earth and Planetary Science Letters, 444, 179-191.
750 <https://doi.org/10.1016/j.epsl.2016.03.049>, 2016.

751 Parizot, O., Missenard, Y., Haurine, F., Blaise, T., Barbarand, J., Benedicto, A., & Sarda, P.:
752 When did the Pyrenean shortening end? Insight from U-Pb geochronology of syn-
753 faulting calcite (Corbières area, France). Terra nova, 33(6), 551-559.
754 <https://doi.org/10.1111/ter.12547>, 2021.

755 Parizot, O., Missenard, Y., Barbarand, J., Blaise, T., Benedicto, A., Haurine, F., & Sarda, P.:
756 How sensitive are intraplate inherited structures? Insight from the Cévennes Fault
757 System (Languedoc, SE France). Geological Magazine, 159(11-12), 2082-2094.
758 <https://doi.org/10.1017/S0016756822000152>, 2022.

759 Ribes, C., Ghienne, J. F., Manatschal, G., Dall'Asta, N., Stockli, D. F., Galster, F., ... & Karner,
760 G. D.: The Grès Singuliers of the Mont Blanc region (France and Switzerland):
761 stratigraphic response to rifting and crustal necking in the Alpine Tethys. International
762 Journal of Earth Sciences, 109, 2325-2352. <https://doi.org/10.1007/s00531-020-01902-z>, 2020.

763 Roura, F., Brun, J. P., Colletta, B., & Van Den Driessche, J.: Geometry and kinematics
764 of extensional structures in the Alpine foreland basin of southeastern France. Journal of
765 Structural Geology, 14(5), 503-519. [https://doi.org/10.1016/0191-8141\(92\)90153-N](https://doi.org/10.1016/0191-8141(92)90153-N),
766 1992.

767 Saspiturry, N., Lahfid, A., Baudin, T., Guillou-Frottier, L., Razin, P., Issautier, B., ... & Corre,
768 B.: Paleogeothermal gradients across an inverted hyperextended rift system: Example
769 of the Mauléon Fossil Rift (Western Pyrenees). Tectonics, 39(10), e2020TC006206.
770 <https://doi.org/10.1029/2020TC006206>, 2020.

771 Schito, A., Romano, C., Corrado, S., Grigo, D., & Poe, B.: Diagenetic thermal evolution
772 of organic matter by Raman spectroscopy. Organic Geochemistry, 106, 57-67.
773 <https://doi.org/10.1016/j.orggeochem.2016.12.006>, 2017.

774

775 Schwartz, S., Gautheron, C., Audin, L., Dumont, T., Nomade, J., Barbarand, J., ... & van der
776 Beek, P.: Foreland exhumation controlled by crustal thickening in the Western Alps.
777 *Geology*, 45(2), 139-142, 2017

778 Schwartz, S., Rolland, Y., Nouibat, A., Boschetti, L., Bienveignant, D., Dumont, T., ... &
779 Mouthereau, F.: Role of mantle indentation in collisional deformation evidenced by
780 deep geophysical imaging of Western Alps. *Communications Earth & Environment*,
781 5(1), 17. <https://doi.org/10.1038/s43247-023-01180-y>, 2024.

782 Séranne, M.: The Gulf of Lion continental margin (NW Mediterranean) revisited by
783 IBS: an overview. *Geological Society, London, Special Publications*, 156(1), 15-36.
784 <https://doi.org/10.1144/GSL.SP.1999.156.01.03>, 1999.

785 Séranne, M., Couëffé, R., Husson, E., Baral, C., & Villard, J. : The transition from
786 Pyrenean shortening to Gulf of Lion rifting in Languedoc (South France)—A tectonic-
787 sedimentation analysis. *BSGF-Earth Sciences Bulletin*, 192(1), 27, 2021.

788 Simon-Labré, T., Rolland, Y., Dumont, T., Heymes, T., Authemayou, C., Corsini, M., and
789 Fornari, M.: 40Ar/39Ar dating of Penninic Front tectonic displacement (W Alps) during
790 the Lower Oligocene (31–34 Ma), *Terra Nova*, 21, 127–136,
791 <https://doi.org/10.1111/j.1365-3121.2009.00865.x>, 2009.

792 Teixell, A., Labaume, P., Ayarza, P., Espurt, N., de Saint Blanquat, M., & Lagabrielle, Y.:
793 Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new
794 interpretations from recent concepts and data. *Tectonophysics*, 724, 146-170.
795 <https://doi.org/10.1016/j.tecto.2018.01.009>, 2018.

796 Tigrroudja, L., Espurt, N., & Scalabrino, B.: Quantifying Miocene thin-and thick-skinned
797 shortening in the Baous thrust system, SW French Alpine Front. *Tectonophysics*,
798 230930, 2025.

799 Trümpy, R.: A possible Jurassic-Cretaceous transform system in the Alps and the
800 Carpathians. <https://doi.org/10.1130/SPE218-p93>, 1988.

801 Turco, E., Macchiavelli, C., Mazzoli, S., Schettino, A., & Pierantoni, P. P. : Kinematic
802 evolution of Alpine Corsica in the framework of Mediterranean mountain belts.
803 *Tectonophysics*, 579, 193-206, 2012.

804 Vacherat, A., Mouthereau, F., Pik, R., Bellahsen, N., Gautheron, C., Bernet, M., Daudet, M.,
805 Balansa, J., Tibari, B., Jamme, R. P., and Radal, J.: Rift-to-collision transition recorded
806 by tectonothermal evolution of the northern Pyrenees, *Tectonics*, 35, 907–933,
807 <https://doi.org/10.1002/2015tc004016>, 2016.

808 Wicker, V., & Ford, M.: Assessment of the tectonic role of the Triassic evaporites in the

809 North Toulon fold-thrust belt. BSGF-Earth Sciences Bulletin, 192(1), 51.
810 <https://doi.org/10.1051/bsgf/2021033>, 2021.

811 Zeboudj, A., Lacombe, O., Beaudoin, N. E., Callot, J. P., Lamarche, J., Guihou, A., & Hoareau,
812 G.: Sequence, duration, rate of deformation and paleostress evolution during fold
813 development: Insights from fractures, calcite twins and U-Pb calcite geochronology in
814 the Mirabeau anticline (SE France). Journal of Structural Geology, 105460.
815 <https://doi.org/10.1016/j.jsg.2025.105460>, 2025.

816 Ziegler, P. A., & Dèzes, P.: Crustal evolution of western and central Europe.
817 <https://doi.org/10.1144/GSL.MEM.2006.032.01.03>, 2006.

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

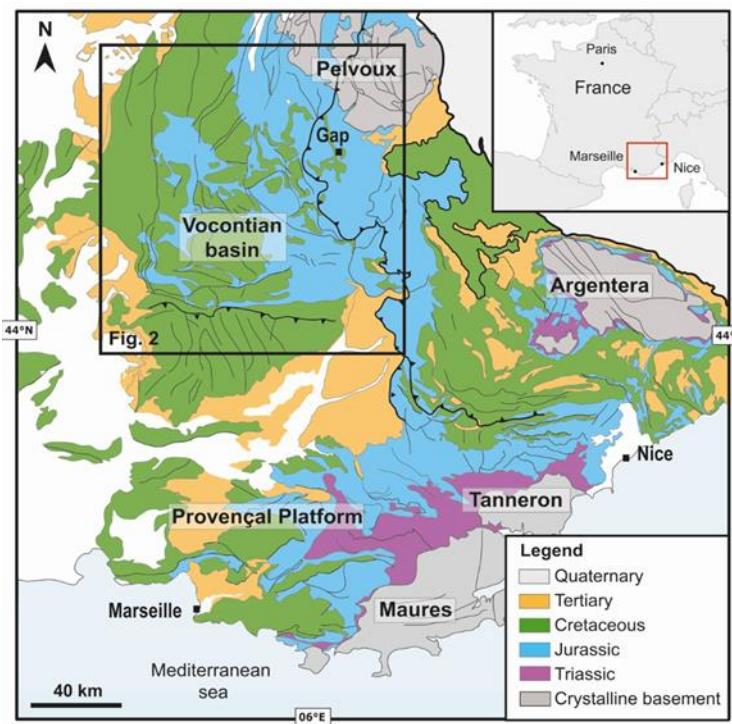


Figure 1: Simplified geological map of SE France. Location of the study area.

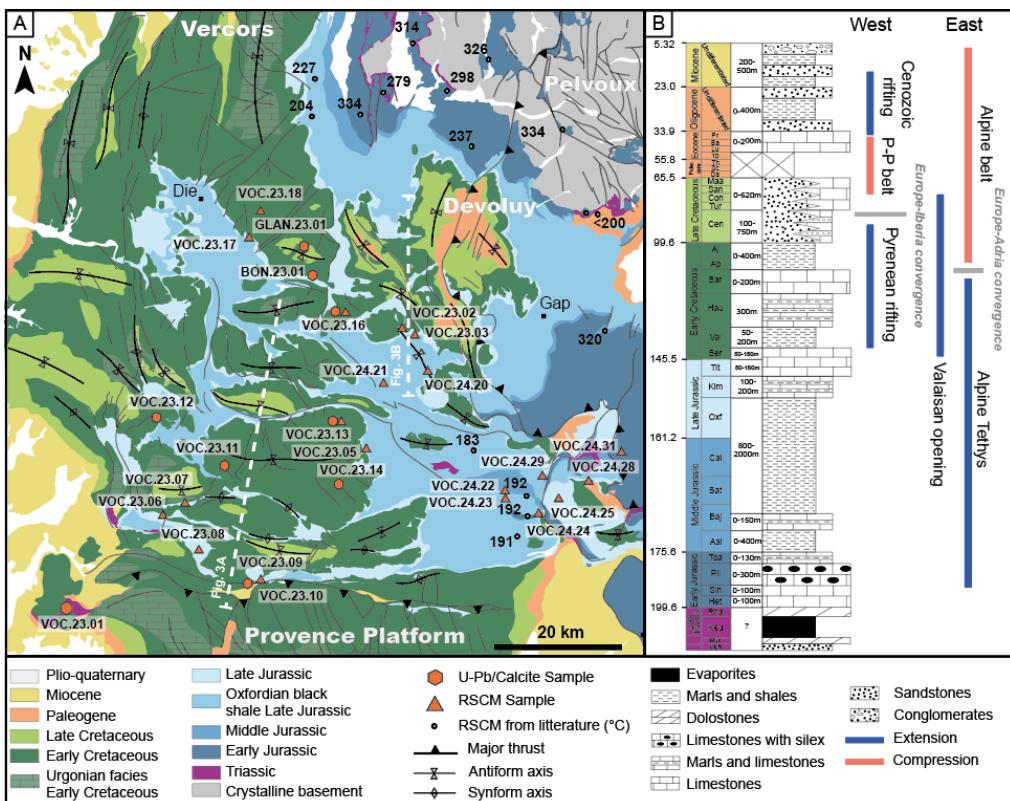


Figure 2: A) Geological map of Vocontian Basin with sample location and RSCM temperatures (°C) after Bellanger et al. (2015) and Céline et al. (2023). B) General stratigraphic section of the Vocontian Basin and main tectonic events in the region.

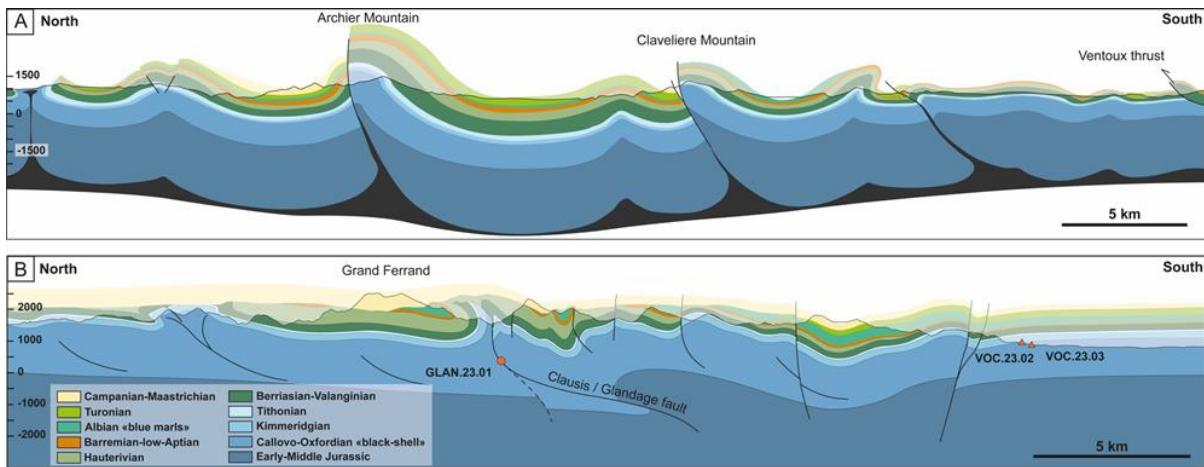


Figure 3: North-South geological cross-section of the Vocontian Basin (A) and the Dévoluy massif (B). Location is presented in Fig. 2. Note that Coniacian and Santonian are missing (see explanation in the text).

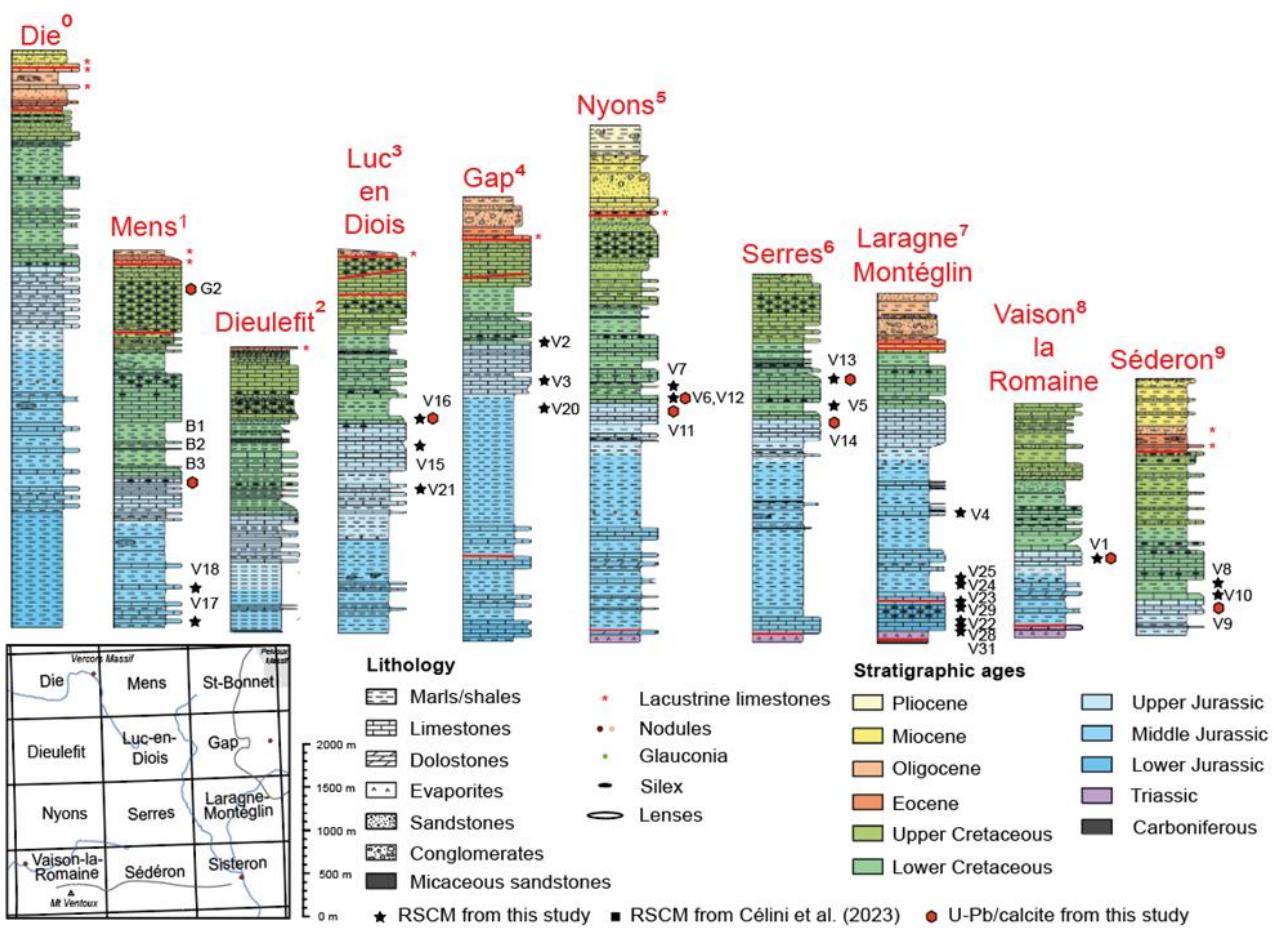


Figure 4: Synthetic stratigraphic sections of the Vocontian Basin reconstructed from stratigraphic thicknesses indicated in explanatory notes of the BRGM 1/50.000 geological maps. VX labels refer to sample names V.23.X indicated in the text. Numbers associated to each stratigraphic section are those indicated in Figure 11.

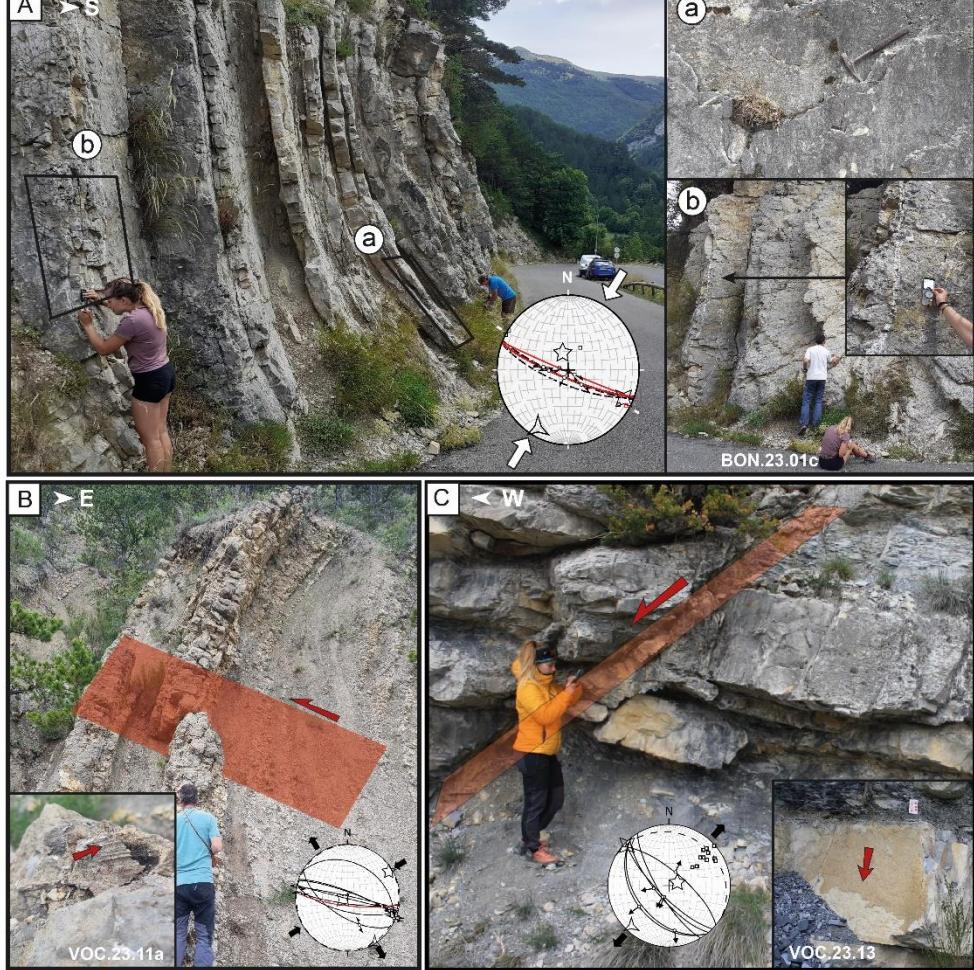


Figure 5: Examples of tectonic structures for sample BON.23.01 (A), sample VOC.23.11 (B), sample VOC.23.1 (C) with their corresponding stereograms and stress orientations.

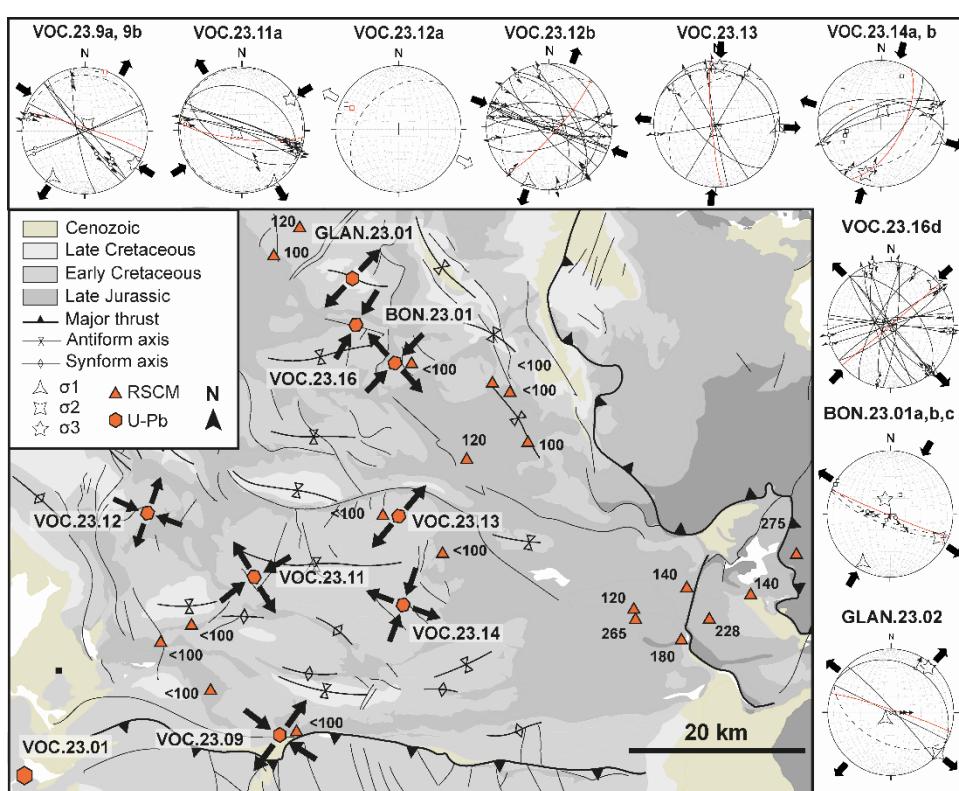


Figure 6: Simplified geological map of U-Pb dated sampling sites showing stereograms of each dated vein and fault (in red), together with their associated tectonic structures and stress orientations. Samples with RSCM thermometric constraints (in °C) are also indicated.

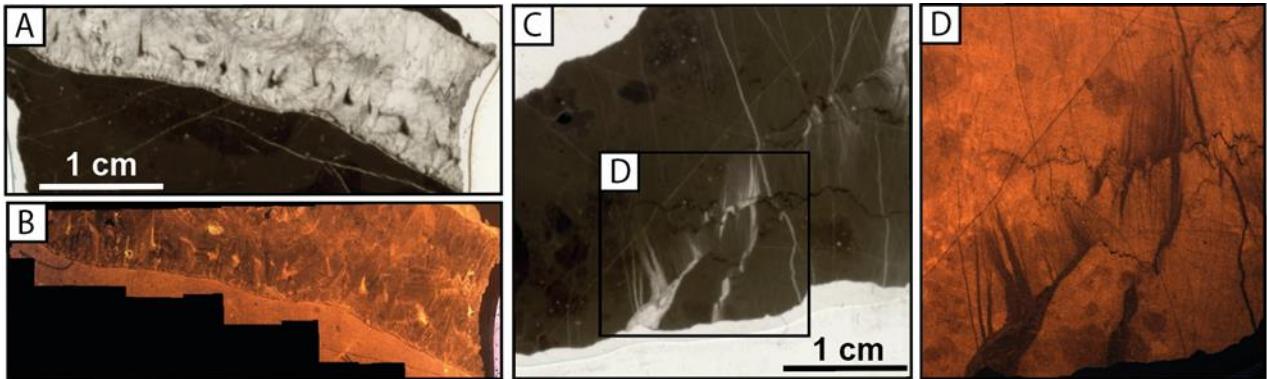


Figure 7: Examples of LPNA (A and C) and cathodoluminescence microphotographs (B and D) of two different types of U/Pb-dated calcite veins. A) and B) sample VOC-23-01. C) and D) sample VOC-23-11a.

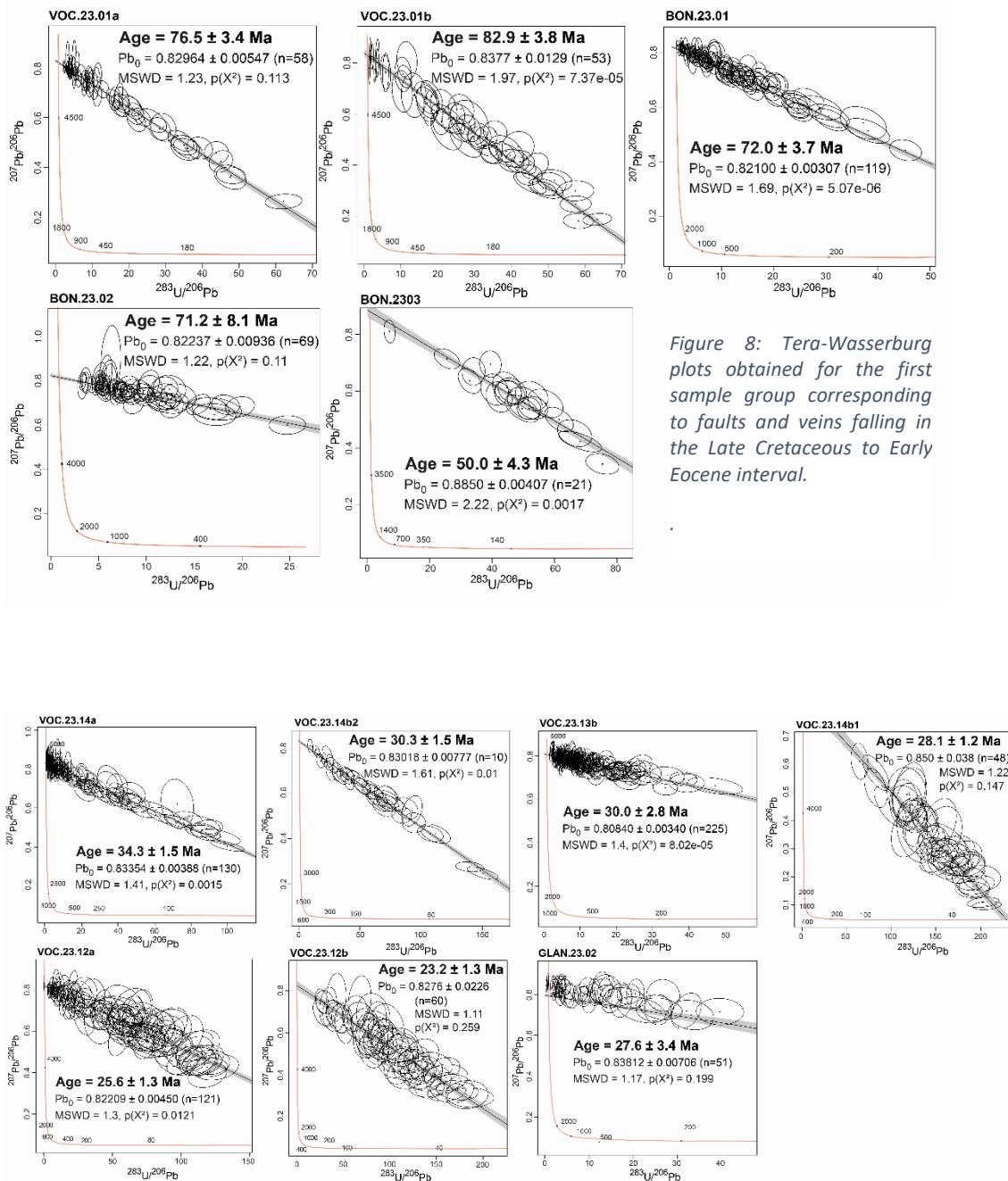


Figure 8: Tera-Wasserburg plots obtained for the first sample group corresponding to faults and veins falling in the Late Cretaceous to Early Eocene interval.

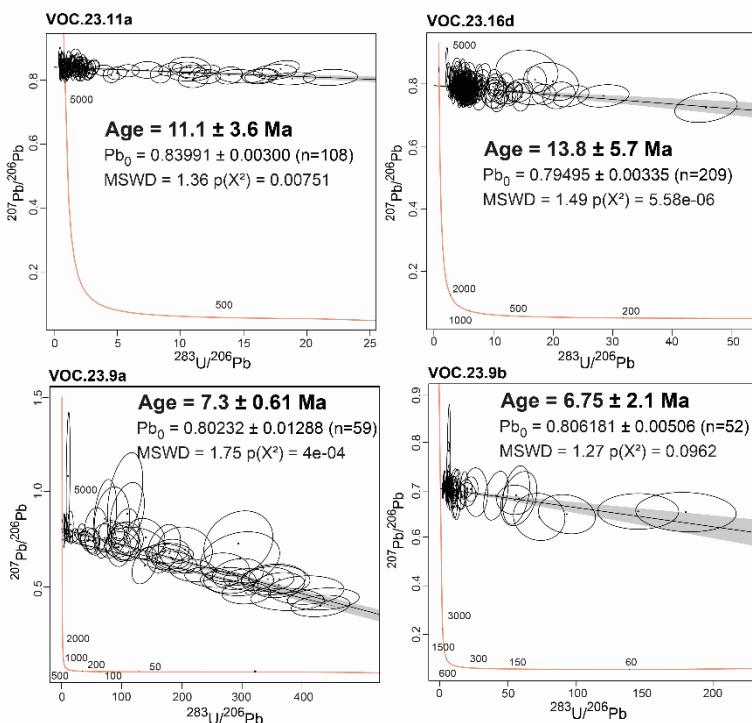


Figure 10: Tera-Wasserburg plots obtained for the third sample group corresponding to Miocene faults and veins.

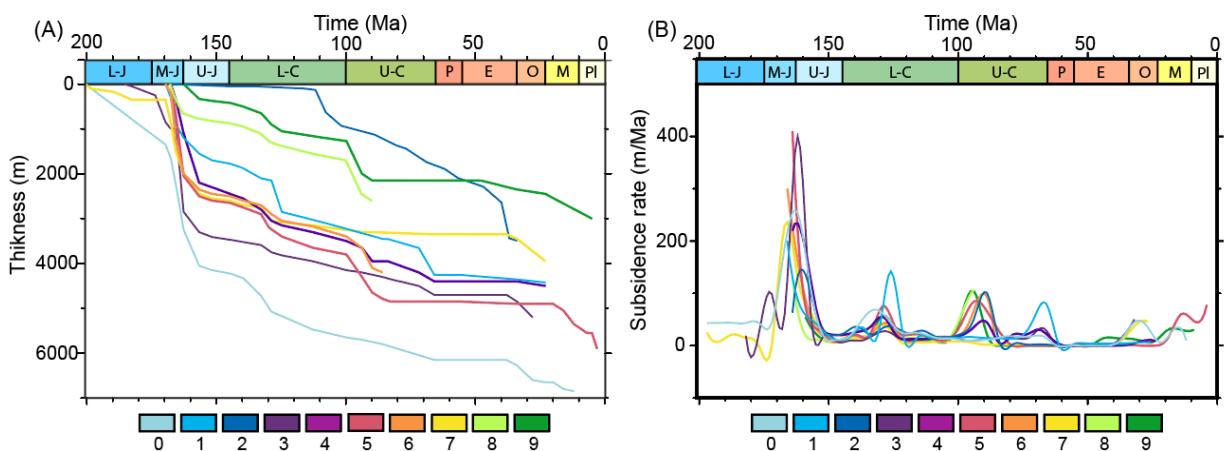


Figure 11: A) Burial history computed based on the synthetic stratigraphic sections shown in Figure 4. B) evolution of sediment accumulation rate through time. 0: Die; 1: Dieulefit; 2: Gap; 3: Laragne-Montéglion; 4: Luc-en-Diois; 5: Mens; 6: Nyons; 7: Sédéron; 8: Serre; 9: Vaison-la-Romaine. L: lower; mi: middle; u: upper; J: Jurassic; C: Cretaceous; p: Paleocene; e: Eocene; o: Oligocene; m: Miocene; pl: Pliocene.

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

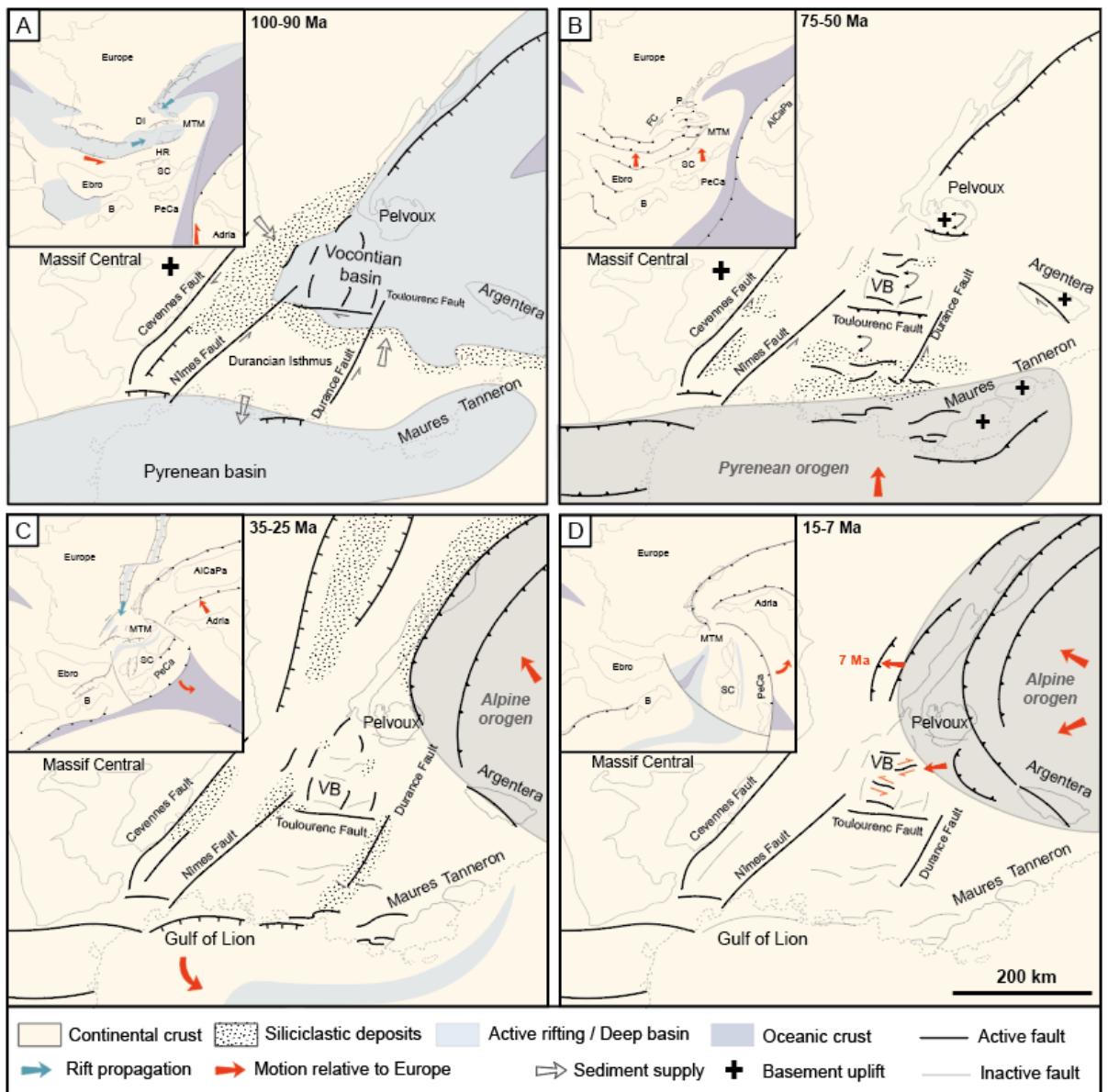


Figure 12: Regional tectonic and paleogeographical reconstructions of SE France showing the evolution of the Vocontian Basin (VB) since the Middle Cretaceous (modified after Boschetti et al., 2025b). A) Rifting in overlapping Pyrenean-Vocontian rift segments at 110-90 Ma. B) Pyrenean-Provençal collision phase from 75 to 50 Ma. C) Opening of the West European Rift and onset of Alpine foreland fold and thrust belt tectonics. D) Alpine collision and westward propagation of deformation front. SC: Corsica-Sardinia; B: Baleares; C: Chartreuse; V: Vercors.

Table 1: U-Pb dated calcite samples with the location and types of the dated structures (vein or fault indicated as strike-slip, normal or reverse), and their measurements (dip/azimuth).

Sample	LAT °N	LON °E	Structures	n	σ1	σ2	σ3	ϕ	U-Pb (Ma)	Error (Ma)
VOC.23.01a	44.159326	5.049163	Vein + Strike slip fault	-	-	-	-	-	76.5	3.4
VOC.23.01b	44.159326	5.049163	Vein	-	-	-	-	-	82.9	3.8
VOC.23.9a	44.190622	5.47628	Strike-slip fault	13	02/124	80/025	10/214	0.6	7.3	0.61
VOC.23.9b	44.190622	5.47628	Vein	11	73/098	16/291	04/200	0.5	6.75	2.1
VOC.23.11a	44.367914	5.352686	Strike-slip fault	6	17/023	71/185	05/292	0.5	11.1	3.6
VOC.23.12a	44.437467	5.293520	Vein	-	-	-	-	-	25.6	1.3
VOC.23.12b	44.437467	5.293520	Vein + Strike slip	17	10/292	78/078	06/201	0.5	23.2	1.3
VOC.23.13b	44.417889	5.657694	Normal fault	14	78/069	05/315	10/223	0.5	30	2.8
VOC.23.14a	44.328944	5.631972	Vein	-	-	-	-	-	34.3	1.5
VOC.23.14b1	44.328944	5.631972	Strike-slip fault	6	17/197	73/007	03/106	0.5	30.3	1.5
VOC.23.14b2	44.328944	5.631972	Strike-slip fault	6	17/197	73/007	03/106	0.5	28.1	1.2
VOC.23.16d	44.575833	5.640667	Strike-slip fault	20	04/048	86/234	00/138	0.5	13.8	5.7
BON.23.01a	44.62582	5.60985	Bedding-parallel fault	11	36/205	04/112	54/017	0.3	72	3.7
BON.23.01	44.62582	5.60985	Bedding-parallel fault	11	36/205	04/112	54/017	0.3	71.2	8.1
BON.23.01	44.62582	5.60985	Vein	11	36/205	04/112	54/017	0.3	50	4.3
GLAN.23.02	44.68617	5.59384	Normal fault	4	62/203	04/300	27/032	0.5	27.6	3.4

Table 2: Observed and predicted (burial) RSCM temperatures for samples given their location (lat, lon, geological map) and stratigraphic position indicated as absolute

Sample	Lat °N	Lon °E	Stratigraphic Age (Ma)	Log/Map	Burial T (30°C/km)	Burial T (60°C/km)	RSCM T (°C)	1σ
VOC.23.02	44.556889	5.772778	142	Gap	52	104	<100	
VOC.23.03	44.546834	5.801242	156	Gap	57	114	<100	
VOC.23.05	44.354736	5.668139	135	Serres	51	102	<100	
VOC.23.06	44.296138	5.281886	142	Nyons	51	102	<100	
VOC.23.07	44.299667	5.312604	142	Nyons	51	102	<100	
VOC.23.08	44.227526	5.433728	137	Sederon	75	150	<100	
VOC.23.10	44.221778	5.429244	142	Sederon	77.5	155	<100	
VOC.23.13	44.417889	5.657694	124	Serres	34.5	69	<100	
VOC.23.16	44.575833	5.640667	142	Luc-en-Diois	61.5	123	<100	
VOC.24.17	44.681803	5.414283	167	Mens	122	245	100	20
VOC.24.18	44.698656	5.419786	166	Mens	105	211	120	20
VOC.24.20	44.502694	5.820133	156	Gap	57	114	100	20
VOC.24.21	44.464336	5.697017	157	Luc-en-Diois	69	138	120	20
VOC.24.22	44.316244	5.959372	169	Laragne-Monteglin	93	186	120	20
VOC.24.23	44.308639	5.956206	166	Laragne-Monteglin	73	147	265	12
VOC.24.24a	44.281517	6.014347	163	Laragne-Monteglin	58.5	117	180	20
VOC.24.25	44.294617	6.056911	162	Laragne-Monteglin	58.5	117	228	22
VOC.24.28a	44.328152	6.128097	170	Laragne-Monteglin	108	216	140	20
VOC.24.29	44.335796	6.020728	166	Laragne-Monteglin	73	147	140	20
VOC.24.31	44.357159	6.166843	175	Laragne-Monteglin	>108	>216	275	6