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Abstract 18 

The Vocontian Basin in southeastern France records a long-lived history of subsidence and 19 

polyphase deformation at the junction of Alpine and Pyrenean orogenic systems. This study 20 

aims to reconstruct the tectonic, burial and thermal evolution of this basin, based on new U–Pb 21 

dating of calcite from veins and faults combined with new RSCM thermometry and 22 

stratigraphy-based burial models. Three main generations of calcite are identified: (1) the Late 23 

Cretaceous to Paleocene period related to the Pyrenean-Provençal convergence (~84–50 Ma); 24 

(2) the Oligocene period linked to the extension of the West European Rift (~30–24 Ma); and 25 

(3) the Miocene period, ascribed to strike-slip and compression associated with the Alpine 26 

collision (~12–7 Ma). No older ages related to the Jurassic and Early Cretaceous rifting phase 27 

are obtained, despite targeted sampling near normal faults, suggesting focused syn-rift fluid 28 

circulation or dissolution of early calcite mineralization during subsequent tectonic events. 29 

RSCM data highlight a pronounced east–west thermal gradient. Peak temperatures are below 30 

100°C in the west and exceed 250°C in the eastern basin, reflecting greater crustal thinning 31 

and/or salt diapirism in the eastern Vocontian Basin with the overlapping Jurassic and 32 
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Cretaceous rifting phases. These results emphasize the significant impact of the West European 33 

Rift in south-eastern France. They further highlight the potential mismatch between large-scale 34 

tectonic processes and the tectonic history inferred from calcite U–Pb dating, which is sensitive 35 

to the presence of fluids and the physical conditions required for their preservation.  36 

 37 

1. Introduction 38 

Sedimentary basins in the external part of orogenic belts offer critical insights into the 39 

polyphase evolution of plate boundaries. The Vocontian Basin is located at the front of the 40 

southern Alpine belt in southeastern France (Fig. 1, 2A). This region recorded a succession of 41 

tectonic events from the Mesozoic to the Cenozoic (Roure et al., 1992; Homberg et al., 2013; 42 

Mouthereau et al., 2021). They are attributed to Mesozoic rifting in the Alpine Tethys and the 43 

Atlantic-Pyrenean systems, Cenozoic inversion during the Pyrenean-Provence collision, and 44 

Eocene-Miocene extension associated with the West European Rift and the opening of the Gulf 45 

of Lion (e.g., Stämpfli, 1993; Homberg et al., 2013; Bestani et al., 2016; Espurt et al., 2019; 46 

Célini et al., 2023). Details of the tectonic evolution of the Vocontian Basin specifically, at the 47 

intersection between the Europe-Iberia and Europe-Adria plate boundaries, are however 48 

debated. There has been a long-standing debate on whether the Mid-Cretaceous Vocontian 49 

Basin is part of a continuous rift linking the Valaisan Basin and the Alpine Tethys to the 50 

Pyrenean Basin and Atlantic Ocean (Trümpy, 1988; Stämpfli, 1993; Stämpfli and Borel, 2002; 51 

Turco et al., 2012), or if it belongs to the broader Pyrenean/Atlantic rift system. (Debelmas, 52 

2001; Manatschal and Muntener, 2009; Angrand and Mouthereau, 2021; Célini et al., 2023; 53 

Boschetti et al., 2025a,b). Despite structural and sedimentary evidence of mid-Cretaceous syn-54 

depositional normal faulting in the basin (e.g., Homberg et al., 2013), brittle deformation lacks 55 

precise geochronological data. Establishing this chronology is critical, as the Cretaceous 56 

extension often overlaps with the onset of Pyrenean compression (Fig. 2B) and could also be 57 

linked to diapirism (Bilau et al., 2023b). It is also unclear whether this part of the Alpine 58 

foreland was tectonically affected by the Eo-Oligocene West European Rift extension seen 59 

nearby in Valence and Manosque basins (e.g., Ford and Lickorish, 2004), or with the opening 60 

of the West Mediterranean well identified in the thermal record of the Maures-Esterel massif, 61 

a few tens of kilometers to the south ((Fig. 2B) (Boschetti et al., 2023; 2025a,b). These Cenozoic 62 

thinning events may have impacted the thermal evolution of the Vocontian Basin and be 63 

confused with Mid-Cretaceous extension or Alpine thickening (Fig. 2B) (e.g., Célini et al., 64 

2023). In addition, two north-south compressional events dated to Eocene and late Miocene are 65 

recognized in the fault pattern of Provence (Bergerat et al., 1987; Lacombe and Jolivet, 2005). 66 
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The role of all these major tectonic phases in the brittle deformation history and in the related 67 

thermal regime remains unclear as recent studies in the basin have not yet successfully isolated 68 

the effects of each geodynamic event. In particular, the temperatures reconstructed based on 69 

Raman Spectroscopy of Carbonaceous Material (RSCM) support two alternative tectonic 70 

scenarios. (i) Temperatures from the Digne Nappe reflect crustal thickening below the 71 

propagating Alpine nappe stack (Balansa et al., 2023). Alternatively, a model a model involving 72 

two superimposed phases of crustal thinning in the Vocontian basin  has been proposed (Célini 73 

et al., 2023; Fig. 2B). The first phase, in the Upper Jurassic, coincides with the Alpine Tethys 74 

opening, while the second, characterised by temperatures exceeding 300°C in the Lower 75 

Cretaceous, is associated with Pyrenean rifting and Valaisan opening (Célini et al., 2023). 76 

Basin-scale geochronological and thermal analyses are needed to validate this tectonic 77 

intepretations. This study addresses these questions by combining basin-scale U-Pb dating of 78 

calcite in faults and veins, which origins are constrained by paleostress inversions, with new 79 

RSCM temperatures and the analysis of the burial history of the Vocontian Basin. Our aim is 80 

to establish a robust chronological framework for the Vocontian basin in the context of the 81 

geodynamics of south-east France, and to clarify the sequence and extent of the successive 82 

tectonic phases. These constraints improve our understanding of polyphase deformation at the 83 

Europe-Iberia-Adria plate boundary. 84 

 85 

2. Geological setting 86 

Positioned at the front of the Western Alps, the Vocontian Basin forms part of the Southern 87 

Subalpine belt, which developed through the interactions between the Pyrenean-Provençal belt 88 

to the south and the Alpine belt to the east (Philippe et al., 1998; Balansa et al., 2022; Célini et 89 

al., 2024; Fig. 1). It includes the Diois-Baronnies region, and is bordered by the Rhône Valley 90 

and the French Massif Central basement to the west, the External Crystalline Massif of Pelvoux 91 

to the east, the Vercors Massif to the north, and the Provençal Platform to the south (Figs. 1, 92 

2A). The Vocontian Basin contains a thick Mesozoic sedimentary succession, reaching up to 93 

7,000 m in its center and 2,600 m along its margins (Fig. 2B). The base of the folded 94 

stratigraphic sequence comprises Upper Triassic evaporites, which have resulted in the 95 

formation of salt diapirs (e.g. Suzette and Propiac diapirs) that pierce the overlying sedimentary 96 

cover and locally control thickness variations (Fig. 3A) (Célini, 2020 and references therein).  97 

Basin subsidence began with the opening of the Alpine Tethys during the Early to Middle 98 

Jurassic (e. g. Lemoine et al., 1986). This period is marked by the deposition of alternating 99 

shallow marine limestones and marls, followed by progressive deepening that culminated with 100 
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the deposition of organic-rich black shales of the “Terres Noires” formation during the 101 

Bathonian–Oxfordian (Fig. 2). In the Late Jurassic, the basin underwent NNE–SSW-directed 102 

extension, recorded by syn-sedimentary NNW–SSE-trending normal faults (Homberg et al., 103 

2013). This extensional regime, linked to the propagation of the Alpine Tethys, led to the 104 

deposition of fine-grained bioclastic Tithonian limestones, which serves as a distinctive 105 

morphostructural marker and reflect slower subsidence (Remane, 1970; Joseph et al., 1988). 106 

The subsidence continued through the Early Cretaceous (Valanginian-Aptian), with the 107 

deposition of alternating layers of marls and limestones that define the deeper marine 108 

“Vocontian facies”, contrasting with shallow-water carbonates of the Vercors and Provence 109 

platforms, known as the "Urgonian facies" (Fig. 2A). 110 

A major tectonic shift occurred during the Aptian–Albian, characterised by increased 111 

subsidence and the deposition of thick marly sequences ("Blue Marls"; Debrand-Passard et al., 112 

1988) (Fig. 2B). This phase is associated with the development of E–W-trending normal faults, 113 

suggesting a reorientation of the extensional stress field from NNE–SSW (Late Jurassic) to 114 

WNW–ESE (Homberg et al., 2013). This shift likely reflects plate tectonic reorganization, 115 

linked to the onset of Europe–Iberia divergence (Bay of Biscay opening) and the closure of the 116 

Alpine Tethys through Europe-Adria convergence (Lemoine et al., 1987; Stämpfli, 1993). 117 

During the Late Cretaceous, sandstones deposition dominated in the east of the basin, while 118 

limestones prevailed in the west (Fig. 2). In the north-eastern part of the basin, at the current 119 

location of the Dévoluy massif, a stratigraphic hiatus spanning the Turonian, Coniacian to the 120 

Santonian (Fig. 3B) is documented, regionally referred to as the Turonian unconformity (e. g. 121 

Flandrin, 1966). This interval is characterized by the argillaceous to sublithographic lower 122 

Cretaceous limestones and E-W-trending folds, which lie in direct contact, below an erosional 123 

surface, with Campanian-Maastrichtian bioclastic and terrigenous deposits (Fig. 2-3B; Gidon 124 

et al., 1970; Arnaud et al., 1974). Across the Vocontian basin, the main stratigraphic hiatus 125 

corresponds to the Paleocene-Early Eocene (Fig. 2B). This late Cretaceous-Paleocene event 126 

coincides with the onset of Iberia-Europe convergence, marking the initial stages of the 127 

Pyrenean-Provençal orogeny (~84 Ma; Angrand and Mouthereau, 2021; Mouthereau et al., 128 

2014; Muñoz, 1992; Teixell et al., 2018; Ford et al., 2022) and is consistent with the exhumation 129 

of the Pelvoux crystalline basement to the northeast at ~85 Ma (Fig. 2; Boschetti et al., 2025a). 130 

Following this tectonic change, marine incursions were limited and localized from the Late 131 

Eocene to the Miocene (Fig. 2B). This period corresponds to the early Alpine collision, which 132 

affected the internal domains and the eastern parts of the External Crystalline Massifs (e. g. 133 

Simon-Labric et al., 2009; Boschetti et al., 2025c). Meanwhile, regional-scale extension 134 
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developed in the European plate, driven by the Western European Rift system and the opening 135 

of the Liguro–Provençal back-arc basin in southeastern France (Fig. 1) (Hippolyte et al., 1993; 136 

Séranne et al., 2021; Jolivet et al., 2021; Boschetti et al., 2023). In the eastern basin, the latest 137 

compressional phase is recorded by N–S to NW–SE-trending structures associated with the 138 

Digne thrust (Fig. 1-2) and final Alpine exhumation between ~12 and 6 Ma (Schwartz et al., 139 

2017). 140 

 141 

3. Sampling and methods 142 

3.1 Sampling strategy 143 

Sampling sites were carefully selected to characterize both the nature and ages of brittle 144 

deformation in the Jurassic and Cretaceous formations of the Vocontian Basin (Fig. 2A). We 145 

first targeted sites where normal faults were described as syn-rift faults or veins formed shortly 146 

after deposition (Homberg et al., 2013), and where we observed calcite mineralizations. The 147 

analysis of these specific sites was expanded to include other types of brittle structures, such as 148 

strike-slip and reverse faults, to document the polyphase deformation of the Vocontian Basin. 149 

Our sampling targets were further guided using the 1:50.000 scale BRGM geological maps 150 

from Die to Sisteron. 151 

 152 

3.2 Tectonic and paleostress analysis 153 

To reconstruct the tectonic evolution of brittle deformation in the Vocontian Basin, fault-slip 154 

data and other stress indicators, including calcite veins, were measured in the field and collected 155 

for U-Pb dating. Local stress states were inferred by inverting fault-slip data following the 156 

methodology of Angelier (1990) using the Win-Tensor software (Delvaux and Sperner, 2003). 157 

This analysis provided the orientation of the three principal stress axes (σ1, σ2, and σ3) and the 158 

shape of the stress ellipsoids defined by the ratio ϕ =
σ2−σ3 

σ1−σ3
 , reflecting the relative magnitudes 159 

of the principal stresses. Relative chronology of the reconstructed stress tensors was determined 160 

from cross-cutting relationships between successive generations of veins and faults (normal, 161 

reverse, or strike-slip faults). Chronology relative to folding was refined by comparing the 162 

orientation of faults, veins, and/or associated stress states in their present-day and unfolded 163 

configurations. This approach assumes that faults originally formed according to an 164 

Andersonian state of stress, with one principal stress axis vertical. 165 

 166 

3.3 Calcite U-Pb geochronology 167 
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Prior to U-Pb analyses, each polished thick section was petrographically characterized at IPRA 168 

(Institut Pluridisciplinaire de Recherche Appliquée) in Pau, France. This involved optical 169 

microscopy coupled with cathodoluminescence (CL) imaging to identify multiple calcite 170 

generations (Supplementary  Material Fig. S1). CL images were acquired using an OPEA 171 

Cathodyne system coupled with a Nikon BH2 microscope, operating at an acceleration voltage 172 

of 12.5 kV and an intensity of 300–500 mA. U-Pb dating of calcite was performed at IPREM 173 

laboratory (Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les 174 

Matériaux), following the protocol of Hoareau et al. (2021, 2025). This method employs 175 

isotopic mapping of U, Pb, and Th via a continuous ablation process, combined with a virtual 176 

spot method to construct Tera-Wasserburg (TW) plots (Hoareau et al., 2021, 2024, 2025). 177 

Detailed analytical procedure and data processing is provided in the Supplementary Material 1 178 

(Tabs. A1-A2). The setup used a 257 nm femtosecond laser ablation system (Lambda3, Nexeya, 179 

Bordeaux, France), operating at a frequency of 500 Hz with a spot size of 15 µm. Ablation was 180 

conducted in a controlled atmosphere composed of helium (600 mL/min) and nitrogen (10 181 

mL/min), mixed with argon in the ICPMS. This system was coupled to an HR-ICPMS Element 182 

XR (ThermoFisher Scientific, Bremen, Germany) equipped with a jet interface (Donard et al., 183 

2015). 184 

 185 

3.4 Burial history 186 

The subsidence history of the Vocontian Basin was reconstructed using stratigraphic sections, 187 

including thicknesses and lithologies, from the 1:50.000 scale geological maps of Die, Mens, 188 

Dieulefit, Luc-en-Diois, Gap, Nyons, Serres, Laragne-Montéglin, Vaison-la-Romaine, and 189 

Séderon, providing basin-wide coverage (Fig. 4). Standard backstripping techniques (Allen and 190 

Allen 2013) were applied. The sedimentary units were first decompacted using coefficients 191 

appropriate to their dominant lithology (limestone, marl or clay), with stratigraphic ages 192 

inferred from the geological maps. To enable comparison between stratigraphic columns, the 193 

stratigraphic data were resampled at 1 Myr intervals, grouped into 5 Myr bins, and interpolated 194 

using the 2D spline method. 195 

 196 

3.5 RSCM thermometry approach 197 

To determine the peak temperatures reached by sediments in the Vocontian Basin, RSCM 198 

analyses were conducted on an initial set of Middle to Upper Jurassic and Lower Cretaceous 199 

carbonate samples collected near U-Pb dated calcites (Fig. 2A, 4). A second set of samples was 200 

collected further east, in or near, the Authon-Valavoire thrust nappe, a parautochtonous unit at 201 
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the front of the Digne nappe, where deeper Lower Jurassic strata of the Vocontian are exposed 202 

and diapirism has occurred (e.g., Célini et al., 2024). The RSCM approach constrains thermal 203 

processes ranging from advanced diagenesis to high-grade metamorphism, covering 204 

temperatures from 100 to 650°C (e.g., Ayoa et al., 2010; Koukestu et al., 2014; Schito et al., 205 

2017). Appropriate calibrations depend on the temperature range and geological context. Here, 206 

we applied the calibration of Lahfid et al. (2010) was applied for temperatures between 200 and 207 

340°C, and the qualitative approach of Saspiturry et al. (2020) for temperatures between 100 208 

and 200°C. Analyses were performed at the Bureau de Recherches Géologiques et Minières 209 

(BRGM; Orléans, France) using a Horiba LABRAM HR instrument with a 514.5 nm solid-210 

state laser source. The laser was focused with a BxFM microscope using a x100 objective with 211 

a numerical aperture of 0.90 and under 0.1 mW at the sample surface. 212 

 213 

4. Results 214 

4.1 Microtectonics and paleostress reconstructions 215 

Veins and striated planes associated with folds (Fig. 5A), reverse faults (Fig. 5B) and normal 216 

faults (Fig. 5C) were measured and sampled. Stereograms of beddings, fault-slip data, veins 217 

and, when relevant, their associated back-tilting state of stress, are presented in Figure 6. When 218 

sufficient fault-slip data were available for inversion (minimum of four), the calculated stress 219 

axes are reported (Fig. 6; Table 1). In this section, data from samples VOC-23-09a to VOC-23-220 

16d are presented in numerical order, followed by samples BON-23-01 to 03, and GLAN-23-221 

02, which belong to a second, separate field campaign. No measurements were conducted for 222 

samples VOC-23-01a and VOC-23-01b, as the sampling area lies within the diapiric structure 223 

of the Dentelles de Montmirail (Figs. 2A and 6), potentially introducing local complexities. 224 

The sampling area of sample VOC-23-09b is dominated by strike-slip faults, with paleostress 225 

inversion indicating a strike-slip regime under NW-SE compression (Fig. 6). At the VOC-23-226 

11a site, where bedding is flat, paleostress reconstructions also reveal a strike-slip regime, 227 

involving NE-SW compression and NW-SE extension (Figs. 5B, 6).  228 

Samples VOC-23-12a and VOC-23-12b record distinct deformation patterns. VOC-23-12a 229 

comprises calcite veins indicative of WNW-ESE extension, whereas sample VOC-23-12b 230 

exhibits similar calcite veins, together with additional strike-slip deformation, consistent with 231 

WNW-ESE compression and NNE-SSW extension (Fig. 6). This stress orientation closely 232 

matches that of VOC-23-09a and b sites. The geometry of the stress axes relative to bedding 233 

dip and orientation suggests that this state of stress postdates folding.  234 
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At the VOC-23-13 site, strike-slip faults indicate a paleostress regime characterized by N-S-235 

directed compression and E-W-directed extension (Figs. 5C and 6). Sample VOC-23-14a, a 236 

calcite vein spatially associated with sample VOC-23-14b, occurs adjacent to a strike-slip fault 237 

with a sinistral component. Paleostress reconstruction indicates a WNW-ESE extension 238 

coupled with NNE-SSW compression (Fig. 6).  239 

Sample VOC-23-16d shows calcite veins affected by strike-slip deformation. In contrast, 240 

sample VOC-23-12b shows only post-vein strike-slip deformation. Paleostress analysis 241 

indicates NW-SE-directed extension (Fig. 6). Samples BON-23-01a and BON-23-01b consist 242 

of striated calcite affected by layer-parallel shortening (LPS), interpreted as flexural slip related 243 

to folding (Lacombe et al., 2021) (Figs. 5A, 6). Sample BON-23-01c, a calcite vein formed 244 

within the same fold, is interpreted to have formed during fold growth. Paleostress 245 

reconstruction at the Bonneval outcrop indicates N20°E-directed compression associated with 246 

the formation of the N110°E-trending fold (Figs. 5A, 6). Finally, the GLAN-23-02 outcrop 247 

exhibits a normal fault consistent with NE-SW-oriented extension.  248 

 249 

4.2 Petrography of calcite samples 250 

In total, 15 samples were dated in this study: 6 veins (VOC-23-01a, 01b, 09b, 12a, 14b and 251 

BON-23-03) and 9 striated fault planes (VOC-23-9a, 11a, 12b, 13, 14a, 16d, BON-23-01, 02 252 

and GLAN-23-02). Most samples contain blocky to elongate-blocky calcite, ranging from 253 

millimetres to centimetres (Fig. 5;  VOC-23-01, 9a, 12a, 22b, 13a, 14a, BON-23-01, 02, 03 and 254 

GLAN-23-02). These calcites are characterized by homogeneous luminescence, indicating a 255 

single-phase growth with no evidence of recrystallization (Figs. 7A, B; Supplementary. 256 

Material Fig. S1.). Two samples exhibit distinct calcite morphologies. Sample VOC-23-11a 257 

contains a centimetric calcite showing a transitional morphology between syntaxial and 258 

stretched crystals (Figs. 7C, D), suggesting variable growth orientations and multiple crack-259 

seal events. Similarly, sample VOC-23-16d displays millimetric to centimetric blocky calcite 260 

crosscut by a younger generation of more elongated and stretched calcite (Fig. 7C, D). 261 

 262 

4.3 Calcite U-Pb geochronology 263 

This study presents 16 new calcite U-Pb ages obtained from eight types of brittle structures 264 

(Table 1; Figs. 8, 9, 10). The Tera-Wasserburg diagrams show data well spread along the 265 

discordia line, with Mean Squared Weighted Deviation (MSWD) ranging from 1.1 to 1.9, 266 

indicating robust and well-resolved age estimates. Three distinct age groups can be identified 267 

within the dataset. The first age group corresponds to the Late Cretaceous to Early Eocene 268 
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interval, based on veins collected in late Jurassic-Early Cretaceous strata in the western part of 269 

the basin. In the Dentelles de Montmirail area, ages of 82.9 ± 3.8 Ma (VOC-23-01b) and 76.5 270 

± 3.4 Ma (VOC-23-01a) were obtained. Further north, in the Die region, fold-related structures 271 

associated with N20°E shortening yielded ages of 72.0 ± 3.7 Ma (BON-23-01a), 71.2 ± 8.1 Ma 272 

(BON-23-01b), and 50.0 ± 4.3 Ma (BON-23-01c) (Fig. 8).   273 

The second age group corresponds to veins and faults formed during the Oligocene. The 274 

obtained ages range from 34.3 ± 1.5 Ma (vein: VOC.23.14a), 30.3 ± 1.5 Ma (fault: 275 

VOC.23.14b2), 30.0 ± 2.8 Ma (fault: VOC.23.13b), 28.1 ± 1.2 Ma (fault: VOC.23.14b1), 25.6 276 

± 1.3 Ma (vein: VOC.23.12a), 23.2 ± 1.3 Ma (deformed vein: VOC.23.12a and b) and 27.6 ± 277 

5.4 Ma (fault: GLAN.23.02) (Fig. 9). Most of these fractures correspond to NW-SE to NE-SW 278 

extension (Fig. 6). However, sample VOC.23.12b indicates a strike-slip stress regime with 279 

NNE-SSW extension and WNW-ESE compression, similar to that inferred from VOC.23.09 280 

(Fig. 6). Calcite veins in VOC.23.12b are of the same type as those in VOC.23.12a.  281 

The third age group corresponds to Miocene veins and strike-slip faults hosted in Upper 282 

Jurassic-lower Cretaceous carbonates. Two subgroups can be distinguished. The first subgroup, 283 

dated to 12.2 ± 3.2 Ma and 12.5 ± 5.2 Ma (fault: VOC.23.11a and fault: VOC.23.16d), records 284 

a strike-slip regime defined by NE-SW compression and NW-SE extension (Figs. 10, 6). The 285 

second subgroup, with ages of 7.8 ± 0.6 Ma and 7.0 ± 2.2 Ma (fault: VOC.23.09a and vein: 286 

VOC.23.09b), also reflects a strike-slip regime but with stress orientations indicating NW-SE 287 

compression and NE-SW extension (Figs. 10, 6). 288 

 289 

4.5 RSCM thermometry  290 

RSCM data from the first set of Upper Jurassic and Lower Cretaceous carbonates in the central 291 

and southern parts of the study area indicate maximum temperatures below 100°C (VOC-23-292 

01 and VOC-23-16; Table 2). For the second set, reliable temperatures estimates were obtained 293 

for 12 samples using an appropriate calibration (Table 2, Fig. 6), which can be divided in two 294 

groups. Temperatures measured in Lower to Upper Jurassic strata near Saint Roman and 295 

Montmaure, in the Die area, range between 100 and 180°C (VOC-23-18, VOC-23-17). The 296 

lowest temperatures are found near Veynes and close to the Devoluy massif (sample VOC-24-297 

20), in Sigoyer village (samples VOC-23-02, VOC-23-03), and in the upper stratigraphic unit 298 

of the Authon-Valavoire nappe (VOC-24-28), and in the eastern part of the basin, below the 299 

Digne nappe (sample VOC-24-29). The higher bound of RSCM temperatures, reaching up tot 300 

170°C, is measured in samples VOC-24-24a and 33, both located near diapiric structures 301 

“Rocher de Hongrie” (Célini et al., 2024). These values align with previously reported 302 
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temperatures of 140-200°C in the vicinity of the same diapir (Célini et al., 2024). The second 303 

group characterized by higher temperatures between 215 and 275°C, includes samples located 304 

1 km to the south of Sigoyer (VOC-24-23), within the middle Jurassic strata in the hangingwall 305 

of the Authon-Valavoire nappe (VOC-24-25), and in the Lias sequence near the Astoin diapir 306 

(VOC-23-31). Temperatures of this second group fall within the temperature range recorded in 307 

the Authon-Valavoire nappe, particularly near Astoin, closer to the Digne nappe (Célini et al., 308 

2024). To summarize, our data reveal a thermal contrast between the western and eastern 309 

domains of the Vocontian Basin. While the organic matter of upper Jurassic-lower Cretaceous 310 

formations remaines thermally immature, deeper Early-Middle-Late Jurassic formations 311 

exposed in the eastern part of the Vocontian basin, close to the Authon-Vallavoire and Digne 312 

nappes exhibit significantly higher thermal maturity, with RSCM temperatures exceeding 313 

180°C and reaching up to 275°C. A similar increase in RSCM temperatures between the Upper 314 

Jurassic-Early Cretaceous and deeper stratigraphic units of the Early-Middle Jurassic has also 315 

been documented in stratigraphic sections of the Digne Nappe (Célini et al., 2022; Balansa et 316 

al., 2023).   317 

 318 

4.4 Burial histories and temperatures reached in the basin 319 

Burial histories for the Vocontian Basin are presented in Figure 11. Each curve represents the 320 

burial evolution within the basin, reconstructed from stratigraphic thicknesses indicated in 321 

explanatory notes of the BRGM 1/50.000 geological maps covering the basin. The data indicate 322 

that total sediment accumulation reached a maximum of 6-7 km since the Early Jurassic. This 323 

is shown by the decompacted thicknesses estimated at 6800 m in the Die region and 5900 m 324 

near Nyons, in the northern and western sectors of the basin, respectively. In contrast, areas 325 

lacking exposures of Lower Jurassic series such as Vaison-la-Romaine, show reduced total 326 

subsidence of around 2500 m. Despite these differences, most parts of the basin recorded a main 327 

phase of burial during the Middle Jurassic (Callovian, ~160 Ma), associated with the 328 

widespread deposition of marls and shales of the “Terres Noires”, typical of the External Alps. 329 

During this period, about 2 km of “Terres Noires” accumulated with rates of 200-400 m/Myr. 330 

Following the Middle Jurassic, the burial rates decreased but continued through the Late 331 

Jurassic and Early Cretaceous. A second phase of accelerated subsidence took place during the 332 

Early Cretaceous, around 130 Ma (Hauterivian), documented in the Mens section by the 333 

deposition of about 700 m of marls and limestones (Fig. 4). A third major burial phase, dated 334 

to 100-90 Ma (Fig. 11), is recorded in 6 of the 10 stratigraphic sections (Fig. 11). This phase is 335 

characterized by increasing siliciclastic influx, revealed by the deposition of 700-800 m 336 



11 
 

alternating sandstones, marls and limestones (e.g., Nyons, Sédéron, Vaison-la-Romaine). In 337 

contrast, the Gap, Laragne-Montéglin, and Mens sections, however, show evidence of erosion 338 

rather than sedimentation at this time. These contrasting depositional patterns reveal concurrent 339 

uplift in the source regions and structural compartmentalization in the Vocontian Basin (Fig. 340 

11). A last episode of subsidence, reaching 350-500 m (e.g., Die, Laragne) is documented 341 

during the Eocene-Oligocene (Fig. 11). 342 

 343 

5. Discussion 344 

The results from this study are put into perspective of the evolution of the Vocontian Basin of 345 

south-east France through time. For this, we merge results from structural analysis with 346 

corresponding U-Pb calcite ages, and discuss the evolution of the related burial history 347 

estimated from the lithological logs, which have been used to infer paleo-thermal gradients. 348 

Four main evolutionary stages can be proposed based on these data, which are discussed below. 349 

 350 

5.1 The Mesozoic rifting: E-W trend in thermal gradients and low Ca-rich fluid 351 

circulation (170-90 Ma) 352 

The Vocontian basin recorded a prolonged phase of subsidence throughout the Jurassic and 353 

Cretaceous (Fig. 11), which was not associated with a distinct fluid event. This period coincides 354 

with the rifting of the European paleomargin as inferred by the thermal evolution of the Pelvoux 355 

Variscan crystalline basement to the north (Boschetti et al., 2025a,c), and from the burial history 356 

below the Digne Nappe to the east (Célini et al., 2023). This eastern margin of the basin was 357 

likely inverted during the late stages of the Alpine collision between 12 and 6 Ma (Schwartz et 358 

al., 2017). We distinguish a first major phase of sedimentary burial that occurred during the 359 

Callovian-Oxfordian (170-160 Ma), which postdates the necking of the European paleomargin 360 

identified in the External Crystalline Massifs (Mohn et al., 2014; Ribes et al., 2020; Dall’Asta 361 

et al., 2022) and is synchronous with the opening of the Alpine Tethys (Lemoine et al., 1986; 362 

Manatschal and Müntener, 2009). This rifting is recognized in the Vocontian Basin, where it is 363 

expressed by WNW-ESE extension (Dardeau et al., 1988; Homberg et al., 2013), but it is not 364 

captured in our calcite U-Pb ages. Similar observations can be made for the subsequent 365 

extensional Cretaceous (~135 Ma), for which no faults of that age are reported. The high 366 

temperatures measured in the Digne Nappe at this time are interpreted as reflecting renewed 367 

extension associated with the opening of the Valaisan domain along the European margin 368 

(Célini et al., 2023), consistent with ongoing burial heating recorded in the Pelvoux massif 369 

(Boschetti et al, 2025a,c). This thermal peak coincides with a shift from the Middle Jurassic 370 
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WNW–ESE extension to NNE–SSW extension during the Barremian-Aptian (Dardeau, 1988; 371 

de Graciansky and Lemoine, 1988; Homberg et al., 2010). This later extensional phase is 372 

recorded not only throughout the Vocontian Basin (Homberg et al., 2013), but also along its 373 

margins. Evidence for this later extensional event includes deformation along the Ventoux–374 

Lure fault zone (Beaudoin et al., 1986; Huang et al., 1988), the formation of large-scale sliding 375 

domains on the Vercors platform (Bièvre and Quesne, 2004), and subsidence in east-west-376 

oriented domains along the Ardèche margin during the same period (Cotillon et al., 1979). Our 377 

RSCM analyses indicate an increase in peak temperatures toward the east of the Vocontian 378 

Basin, where deeper Lower Jurassic stratigraphic strata are exposed (Fig. 6; Table 2). 379 

Comparing these temperatures with temperature inferred from burial depths using normal 380 

(30°C/km) to high (60°C/km) geothermal gradients suggests that the eastern sector experienced 381 

unsually high to extreme gradients, consistent with increasing crustal thinning in the Vocontian-382 

Valaisan rift segment this direction (Fig. 6; Table 2). It should be noted that the sharp increase 383 

in the geothermal gradients is not solely due to crustal thinning, but is also largely a result of 384 

mantle thinning and asthenosphere uplift. The absence of calcite mineralisation in brittle 385 

tectonic features at this time, despite specifically targeting potentially related veins, is 386 

intriguing. Indeed, evidence of barite, authigenic quartz and pyrite mineralization in the 387 

Callovian-Oxfordian shales in the deeper part of the basin is interpreted as reflecting basal fluid 388 

flow during syn-rift peak burial in the Middle Cretaceous, as well as brines related to salt diapirs 389 

(Guilhaumou et al., 1996). We suggest that the absence of Middle Cretaceous calcites can be 390 

explained either by 1) faulting occurring at a depth too shallow for calcite precipitation, 2) 391 

subsequent burial to 2-3 km in the eastern basin leading to the dissolution of previous Middle 392 

Cretaceous calcites due to changing physical conditions (e.g., pH and temperature). In addition, 393 

mechanical decoupling in the Triassic salt layer during extension may have focused fluid flow, 394 

so that mineralized fluids of this age are detectable only locally, near the emergence of salt 395 

diapirs.  396 

A third depositional phase occurred around 100-90 Ma, in agreement with syn-faulting deposits 397 

along the Clausis and Glandage fault systems in the Vocontian/Dévoluy basin (Fig. 11, 3) 398 

(Gidon et al., 1970; Arnaud et al., 1974) and with strike-slip activity along the Toulourenc faults 399 

in the Ventoux-Lure massif (Montenat et al., 2004). Regionally, this tectonic phase coincides 400 

with strike-slip movements along the Cevennes, Nîmes and Durance faults (Montenat et al., 401 

2004; Parizot et al., 2022), potentially associated with local compression related to diapiric 402 

movement at 95-90 Ma (Bilau et al., 2023b) and normal faulting reported in Provence (Zeboudj 403 

et al., 2025). This episode is a response of the continental rifting between Iberia-Ebro and 404 
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European plates, and the formation of the Pyrenean rift system (Angrand and Mouthereau, 405 

2021) (Fig. 12A). Strike-slip movements along inherited faults (Cevennes, Nîmes, Durance 406 

faults) were associated with oblique extension accommodated by overlapping rift segments in 407 

the Pyrenean and Vocontian basins (Fig. 12). This complex tectonic setting likely triggered the 408 

emergence of continental blocks that can explain the abundance of sandstone deposits during 409 

this period in the Vocontian basin (Fig. 4, 11). This interpretation aligns with the documented 410 

formation of an uplifted structure in Provence during the Albian-Cenomanian, known as the 411 

Durancian Isthmus (Combes, 1990; Guyonnet-Benaize et al., 2010; Chanvry et al., 2020, 412 

Marchand et al., 2021). Cooling and exhumation in the French Massif Central to the west are 413 

also documented from 120-90 Ma (Olivetti et al., 2016), which may have contributed to feeding 414 

of the Vocontian basin during this period (Fig. 12A). Although this period is synchronous with 415 

the onset of Adria/Europe convergence (e.g., Le Breton et al., 2021; Angrand and Mouthereau, 416 

2021; Boschetti et al., 2025a,b,c), the impact of contraction in the Alps on the evolution 417 

Vocontian Basin remains to be assessed.  418 

 419 

5.2 Post-Mid Cretaceous evolution: U-Pb/calcite dating record of multiple Pyrenean-420 

Provençal collision events (90-34 Ma) 421 

The oldest calcite U-Pb ages of 84.6 ± 2.4 Ma and 77.7 ± 2.9 Ma, reported in the Jurassic strata 422 

forming the wall of the Suzette diapir (Dentelles de Montmirail) align with the onset of the 423 

Pyrenean-Provençal collision around 84 Ma (Angrand and Mouthereau, 2021; Mouthereau et 424 

al., 2014; Muñoz, 1992; Teixell et al., 2018; Ford et al., 2022). These old calcite ages may 425 

reflect  halokinetic movement of the Suzette diapir in response to far-field stresses that triggered 426 

tectonic inversion and exhumation all over Europe (Mouthereau et al., 2021). These ages can 427 

also be related to a deformation event in the Dévoluy massif affecting the Early Cretaceous 428 

units, linked to E-W-directed folding and erosion dated to Coniacian-Santonian (Fig. 3B) (ca. 429 

85 Ma) (Flandrin, 1966; Lemoine, 1972; Gidon et al., 1970; Arnaud et al., 1974), or the end of 430 

diapiric movement in southern Provence (Wicker and Ford, 2021). Younger U/Pb ages of 72.0 431 

± 3.7 Ma and 71.2 ± 8.1 Ma associated with N20°E shortening coincides with the intensification 432 

of the Pyrenees exhumation at 75-70 Ma (Mouthereau et al., 2014), a phase that is regionally 433 

recorded across southeastern France by a cooling event documented from the Pelvoux to the 434 

Maures-Tanneron massifs (Fig. 12A) (Boschetti et al., 2025a,b). It is also recognized in the 435 

region associated with the sinistral reactivation of the Cevennes fault around 76 Ma (Parizot et 436 

al., 2021). The Pyrenean-Provençal collision is therefore well represented in the Vocontian 437 

Basin.  438 
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Our data also resolve a younger N20°E-directed contractional stage dated at 50.0 ± 4.3 Ma (Fig. 439 

6) that we link to the main Pyrenan-Provençal collision phase. It is recognized in other U/Pb 440 

age dataset from Provence (Zeboudj et al., 2025), and corresponds to a north-south compression 441 

spanning from 59 to 34 Ma regarded as the culmination of the Pyrenean-Provençal collision 442 

caused by plate-scale dynamic changes (Bestani et al., 2016; Balansa et al., 2022; Vacherat et 443 

al., 2016; Mouthereau et al., 2014; 2021) (Fig. 12B). In northwestern Europe, the Eocene also 444 

heralds the onset of the West European Rift (WER), which was active until the Oligocene and 445 

just precedes the opening of the Gulf of Lion (e.g. Séranne et al., 1999; Dèzes et al., 2004; 446 

Mouthereau et al., 2021).  447 

 448 

5.3 Oligocene rifting related to the West European Rift development (35-23 Ma) 449 

The WER stage is represented in our dataset by eight U/Pb dates ranging from 30.4 ± 2.7 to 450 

24.3 ± 1.3 Ma associated with NW-SE to NE-SW extension (Fig. 12C). They coincide with the 451 

extensional phase (35–23 Ma) documented in Provence, Western Alps, Eastern Pyrenees, and 452 

Valencia Trough (Merle and Michon, 2001; Ziegler and Dèzes, 2006). The Late Eocene-Early 453 

Oligocene period also coincides with the onset of the Alpine foreland (Ford et al., 1999). The 454 

flexural bending of the European margin caused by Alpine loading likely increased extensional 455 

stresses in the foreland, where the WER formed, however the available data are insufficient to 456 

draw defitinive conclusions. From Chattian-Aquitanian times, at ca. 23 Ma, the opening of the 457 

Gulf of Lion and of the Ligurian basin (e.g., Séranne et al., 1999; Jolivet et al., 1999, 2020) 458 

initiated following the demise of the WER suggesting a tectonic relationship between these two 459 

rifting events (Mouthereau et al., 2021) (Fig.  12C). In our study area, the shallow depth of the 460 

iso-velocity contour Vs=4.2 km.s-1, considered to be a proxy for the Moho (Schwartz et al., 461 

2024), and the 3D geological modelling (Bienveignant et al., 2024), confirms a significant 462 

crustal thinning in the Valence-Rhône depression, where structures related to the WER are 463 

preserved (Fig. S2, Supplementary Material 1). The excellent preservation of the Oligocene-464 

Miocene extensional phase in our dataset suggests a positive feedback between crustal thinning 465 

(Fig. S2, Supplementary Material 1) and physical conditions that became favourable for calcite 466 

precipitation at shallower depths, as the basin was progressively exhumed following Late 467 

Cretaceous shortening.  468 

 469 

5.4 Alpine collision and fold and thrust belt propagation (<16 Ma) 470 

The youngest calcite U/Pb ages of 12.2 ± 3.2 Ma, 12.5 ± 5.2 Ma, 7.8 ± 0.6 Ma and 7.0 ± 2.2 471 

Ma are associated with NE-SW compression. This result agrees with the westward propagation 472 
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of the Alpine deformation front, which migrated forelandward from 16 to 7 Ma in the Vercors 473 

massif (Bilau et al., 2023a; Mai Yung Sen et al., 2025) to the north of the Vocontian Basin (Fig. 474 

12D). This timing also coincides with the exhumation of Alpine basement, such as the 475 

Belledonne and Pelvoux massifs, which accelerated at ca. 12 Ma (e.g. Beucher et al., 2012; 476 

Girault et al., 2022; Boschetti et al., 2025a). This age range is also is agreement with the Digne 477 

Nappe emplacement at 13-9 Ma (Schwartz et al., 2017) and fold and thrust development in the 478 

frontal southern Alps between 18.2 ± 1.1 Ma and 3.16 ± 0.47 Ma obtained (Bauer et al., 2025 ; 479 

Tigroudja et al., 2025). 480 

 481 

CONCLUSION 482 

The goal of this study was to provide a refined chronology of deformation in the Vocontian 483 

Basin using an integrated approach combining U-Pb calcite geochronology, RSCM 484 

thermometry, and subsidence analysis. First, this study highlights the absence of mid-485 

Cretaceous syn-rift calcites associated with the opening of the Vocontian Basin. This is possibly 486 

related to dissolution during subsequent burial, or reflect the localization of fluid flow and strain 487 

in the basal Triassic salt layer during the mid-Cretaceous extension. The temporal distribution 488 

of dated brittle structures reveals three main deformation episodes: (1) Late Cretaceous to 489 

Paleocene calcite precipitation associated with Pyrenean-Provençal convergence and diapirism; 490 

(2) Oligocene extensional phases tied to the West European Rift opening; and (3) Miocene 491 

strike-slip reactivation and contraction linked to the Alpine orogeny. These events are 492 

superimposed onto a long-term subsidence history that records major burial phases during the 493 

Jurassic and Cretaceous. Thermal data from RSCM analyses delineate a sharp eastward increase 494 

in geothermal gradients, suggesting enhanced crustal thinning and/or diapiric activity in the 495 

eastern part of the basin. This work highlights a good coherence of the local deformation 496 

inferred from calcite U–Pb dating and paleostress analysis, and the regional tectonic evolution.  497 
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Figure 1: Simplified geological map of SE France. Location of the study area. 
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Figure 2: A) Geological map of Vocontian basin with sample location and Raman data in °C from 
Bellanger et al. (2015) and Célini et l. (2023).  B) General stratigraphic section of the Vocontian basin 
and main tectonic events. 

Figure 3: North-South geological cross-section of the Vocontian basin (A) and the Dévoluy massif (B). Location is presented in Fig. 
2. Coniacian and Santonian are missing as there is a sedimentary gap (see in the text). 
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Figure 4: Stratigraphic logs corresponding to each geological notice of BRGM maps from the Vocontian basin. Sample names are 
shortened from V.23.X to VX for simplification and space in the figure. 
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Figure 5: Main geological structures associated to their corresponding measurement and U-Pb age. A) 
sample BON.23.01. B) sample VOC.23.11. C) sample VOC.23.13.  
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Figure 7: Examples of LPNA (A and C) and cathodolumiscence microphotographs (B and D) of two different types of U/Pb-dated 
calcite veins. A) and B) sample VOC-23-01. C) and D) sample VOC-23-11a. 

Figure 6: Simplified geological map with structural analysis of each dated sample and location of 
Raman thermometry results given in °C. 
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Figure 9: U-Pb on calcite dating 
results from 30 to 20 Ma. 

Figure 8: U-Pb on calcite dating 
results from 80 to 50 Ma. 
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Figure 10: U-Pb on calcite dating results from 12 to 7 Ma. 

Figure 11: A) Burial history computed after the synthetic stratigraphic sections shown in Figure 10. B) evolution of sediment 
accumulation rate through time. 0: Die; 1: Dieulefit; 2: Gap; 3: Laragne-Montéglin; 4: Luc-en-Diois; 5: Mens; 6: Nyons; 7: 
Sédéron; 8: Serre; 9: Vaison-la-Romaine. L: lower, mi: middle; u: upper; J: jurassic; C: cretaceous; p: Paleocene; e: Eocene; o: 
Oligocene; m: Miocene; pl: Pliocene. 
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 1224 Figure 12: Regional tectonic and paleogeographical reconstitutions of SE France showing the evolution of the Vocontian 
basin since the Middle Cretaceous (modified after Boschetti et al., 2025b). A) Rifting in overlapping Pyrenean-Vocontian rift 
segments at 110-90 Ma. B) Pyrenees-Provence collision phase from 75 to 50 Ma. C) Opening of the West European Rift and 
onset of Alpine foreland fold and thrust belt tectonics. D) Alpine collision and westward propagation of deformation front. 
SC: Corsica-Sardinia; B: Baleares; C: Chartreuse; V: Vercors. 
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Table 1: Calcite sample types and correspondinng measurements and ages. 

Table 2: Raman Thermometry data. 
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