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Abstract

The Vocontian Basin in southeastern France records a long-lived history of subsidence and
polyphase deformation at the junction of Alpine and Pyrenean orogenic systems. This study
aims to reconstructed the geedynamical-tectonic, -and-thermalburial and thermal evolution of
this basin, based on new U-Pb dating of calcite from veins and faults combined with new

RSCM thermometry and stratigraphy-based burial models. Three main generations of calcites

are datedidentified: (1) the Late Cretaceous to Paleocene dates-period related to the Pyrenean-

Provencal convergence (~84-50 Ma); (2) the Oligocene period dates-linked to the extension of
the West European Rift extensien-(~30-24 Ma); and (3) the Miocene dates-period, ascribed to
strike-slip and compression associated with the Alpine collision (~12—-7 Ma). No older ages
related to the Jurassic and Early Cretaceous rifting phases are obtained, despite speeific-targeted

sampling near normal faultsirg, suggesting Hmited—focused syn-rift fluid circulation or

subseguent-dissolution of early calcite mineralization during subsequent tectonic events. RSCM

data highlight a pronounced Eeast—A/~west thermal gradient.; with—pPeak temperatures_are
below 100°C in the west and exceeding 250°C in the eastern basin, —This-is;-consistent-with-a
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more-significant-reflecting greater crustal thinning and/or salt diapirism_in the eastern part-of
the—Vocontian Basin #awith the overlapping —relation—to—the—superimposed—Jurassic and
Cretaceous rifting phases. These results emphasize the large-seatesignificant impact of the
opening-of-the West European Rift in south-easternSE France. They further -and-highlight the
potential diserepaneymismatch underscore—the—possible—mismatch—between the—large-scale
tectonic_processess and the tectonic history inferred from calcite U-Pb dating, which —Fhis
method——whieh-is sensible-sensitive to the presence of fluids and the physical conditions
necessaryrequired for their preservations.

1. Introduction

Sedimentary basins {ecated-in the external part of orogenic belts ean—offer previde—critical
insights into the polyphase and-complex-evolution of tectenic-plate boundaries. The Vocontian
Basin_is located at the front of the southern Alpine belt in southeastern France is—currenthy

basin—region recorded a succession of tectonic events spannirg—from the Late-Mesozoic
Cretaceous-to the Cenozoic (Roure et al., 1992; Homberg et al., 2013; Mouthereau et al., 2021).
They are —(Fig—H)—Theyareattributed to Mesozoic —Fhese-differenttectonic-events-have been

attributed-to-the-Mesozoicrifting-assoctated-with-therifting epening-efin the Alpine Tethys and
the Atlantic-Oeean-Pyrenean riftsystems, Cenozoic inversion ef-therifted-margins-during the

development—of-the Pyreneanes-Provence collision, and the-Eocene-Oligecene—to-Miocene
extension associated with the-epening-ef-the West European Rift and the opening of the Gulf
of Lion_-(e.g., Stampfli, 1993; Homberg et al., 2013; Bestani et al., 2016; Espurt et al., 2019;
Célini et al., 2023).

Seme-dDetails of the tectonic evolution of the Vocontian Bbasin specifically, pesitioned-at the

intersection between the Europe-lberia and Europe-Adria plate plate-boundaries, are however
debated. There has been aA long-standing debate persists—abouton en—whether the Mid-
Cretaceous Vocontian Basin_;—nerth-ef-Prevenee—is part of a continuous rift system-linking
between-the Valaisan bBasin and the /Alpine Tethys #a-the-eastandto the Pyrenean Bbasin and

{Atlantic Ocean Ocean-n-the-west-(Trumpy, 1988; Stampfli, 1993; Stampfli and Borel, 2002;

Turco et al., 2012), or if it—n-contrast—etherstudies-suggest-that-the-\Yocontian-Basin-while
belongsging to the broader Pyrenean/AtIantlc rift system., remained structuratly disconnected

rifts—segments-(Debelmas, 2001; Manatschal and Muntener, 2009; Angrand and Mouthereau,

2



100

2021; Célini et al., 2023; Boschetti et al., 2025a,b). IS,

Despite the-presence-of the-well-established-structural and sedimentary eenstraints-evidence en

showof the-tectonic-evolution-of-the-basin—including-clear-evidence-for- mid-Cretaceous syn-
depositional normal faulting_in the basin -ir-the-mid-Cretaceous-(e.g., Homberg et al., 2013),

brittle deformation lacks precise geochronological eenstraints-data-en-the-timing-of-this-rifting
and-subsequentinversion-are-lacking. Establishing this chronology is critical, as the Cretaceous

extension often overlaps with the onset of Pyrenean compression (Fig. 2B) and could also be

linked to diapirism (Bilau et al., 2023b). Resolving-this-guestion-is-criticalimportant-because;

is unclear whether this part of the Alpine foreland was tectonically affected by experienced-the

Eo-Oligocene same—extension—associated-as-the-West European Rift_extension ;—as-seen in
nearby in the-Valence and Manosque basins -(e.g., Ford and Lickorish, 2004), or with the
opening of the West Mediterranean well identified in the thermal record of the Maures-Esterel
massif, a few tens of kilometers to the south ((Fig. 2B) (Boschetti et al., 2023; 2025a,b).

SuehThese Cenozoic thinning events may have impacted the thermal evolution of the

Vocontian Basin and be confused with Mid-Cretaceous extension or Alpine thickening (Fig.

2B) (e.q., Célini et al., 2023). In addition, two Nnorth-Ssouth compressional events dated to

Eocene and late Miocene are recognized in the fault pattern of Provence (Bergerat et al., 1987;

Lacombe and Jolivet, 2005). —The role of all these major tectonic phases in the brittle

deformation history and in the related thermal regime remains unclear as; the—mestrecent
studies in the basin have not yet successfully isolated the effects of each beenable-to-diseretise
the—ntlucneos—ofcach—ofthese—geadynamic events—within—the—basih—ane—thel—impact. In
particular, the temperatures reconstructed based on reecenstructions—based—on—analyseis—of
Raman Spectroscopy of Carbonaceous Material (RSCM) support two alternative tectonic
scenarios. (i) EitherthetTemperatures from the Digne Nappe are-thterpreted-asresultingreflect
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fromcrustal thickening below the propagating Alpine nappe stack (Balansa et al., 2023). An
alternativeAlternatively, a seeparimodele supports—a tectonic—model efinvolving two

superimposed phases of crustal thinning in the VVocontian basin _has been proposed (Célini et
al., 2023; Fig. 2BA). The first phase, -is-tied-up-tein the Upper Jurassic, anpd-coincides with the
Alpine Tethys opening, while the —Fhe-second-phase, characterised by temperatures exceeding

300°C duringin the Lower Cretaceous, is associated with Pyrenean rifting and VValaisan opening

(Célini et al., 2023). Fhereforelarge-scaleBasin-scale geochronological and thermal analyses

this tectonic intepretations.

This study addresses these questions through-usingby -an-appreach-combining basin-scale U-
Pb dating of calcite in faults and veins, -which origins are constrained eenstrained-by paleostress
inversions, eemplemented-with new RSCM thermechronelogytemperatures and—anand the

analysis of the analysis-ef-the-burial history anralysis-of the Vocontian basinBasin. Our—Ae aim
is to establish a robust chronological framework for the Vocontian basin in the context of the ;

related—to—the—geodynamics of SEsouth-east France, and to clarifying the interactions
betweensueeessionsequence and extent of the different-successive tectonic systemsphases-that

. OurfindingTheses
constraints have—significant—implications—ferimprove our understanding of polyphase

deformation at the Europe-Iberia-Adria plate boundary.
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2. Geological setting

Positioned at the front of the Western Alps, the Vocontian Basin is-forms part of the Southern

Subalpine belt, which developed preduced-through by-the interactions between the Pyrenean-

Provencal belt to the south and the Alpine belt to the east (Philippe et al., 1998; Balansa et al.,
2022; Célini et al., 2024; Fig. 1). It includes the Diois-Baronnies region, and itis bordered by
the Rhone Valley and the French Massif Central basement to the west, the External Crystalline
Massif of Pelvoux to the east, the Vercors Massif to the north, and the Provencal Platform to
the south (Figs. 1, 2A).

The Vocontian Basin is-Tilled-by-wvith-a-suecession-approximately-2.600-m-thick-succession

ofcontains a thick mesthy—Mesozoic sedimentary succession, depesits—atong—its—margins
reaching a-thickness-of-up to 7,000 m in is-theits center and 2,600 m along its margins (Fig.

2B).

The base of the folded stratigraphic sequence is-made-efcomprises Uupper Triassic evaporites,
which have led-resulted te-in the developmentformation of salt diapirs thatpiercing-pierce-the
sedimentary-cover—(e.q. Suzette and; Propiac diapirs) that pierce the overlying sedimentary
cover —or-as-wel-asand locally controlling certainfeatures—of-the-basin-eluding-such-as
variationsta-thickness variations variatiens-(Fig. 3A) (Célini, 2020 and references therein).

Fhe-subsidence-at-the-origin-ofthat formed-the-basinBasin subsidence nitiated-began with the
opening of the Alpine Tethys to-the-east-during the Early to Middle Jurassic_(e. g. Lemoine et

al., 1986). This period is marked by the deposition of alternating shallow marine limestones
and marls, followed by progressive deepening that culminated with marine—envirenments
eulminating-with-the deposition of organic-rich black shales of the “Terres Noires” formation
during the Bathonian—Oxfordian (Fig. 2). In the Late Jurassic, the basin underwent NNE-SSW-

directed extension, as—recorded by syn-sedimentary NNW-SSE-trending normal faults
(Homberg et al., 2013). This extensional regime, eonsistent-linked to with-the propagation of
the Alpine Tethys, led to the deposition of fine-grained bioclastic Tithonian l[=imestones, which
ferm-serves as a distinctive morphostructural marker and reflect slower subsidence (Remane,
1970; Joseph et al.,, 1988). The subsidence continued througheut the Early Cretaceous
(Valanginian-Aptian)-peried, with the duringwhichdeposition of alternating layers of marls and
limestones were—depesitedthat define ;—shaping—the_deeper marine “Vocontian facies”,

contrasting with —Fhese-deeper-marine-depesits-contrast-with-the-shallow-water carbonates of
the Vercors and Provence platforms-te-the-nerth, known as the "Urgonian facies" (Fig. 2A).
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A major tectonic shift in-the-tectonicreghme-occurred during the Aptian—Albian-period, which
was-marked-characterised by increased subsidence and the deposition of thick marly sequences

("Blue Marls"; Debrand-Passard et al., 1988) (Fig. 2B). This phase is associated with the

development of E-W-trending normal faults, suggesting a reorientation of the extensional stress
field from NNE-SSW (Late Jurassic) to WNW-ESE (Homberg et al., 2013). This shift is
interpreted-tolikely reflect-s plate tectonic reorganization, linked to the onset of Europe—Iberia
divergence (Bay of Biscay opening) and the closure of the Alpine Tethys through Europe-Adria
convergence (Lemoine et al., 1987; Stampfli, 1993).

During the Late Cretaceous, sandstones were-depositioned dominated in the east of the basin,

while limestones prevailed in the west whereas-limestones-predominatedin-the-eastof the-basin

(Fig. 2). In the north-eastern part of the basin, At-at the current location of the Dévoluy massif,
inthe-north-eastern-part-of-the-basin;-a stratigraphic hiatus ef-spanning the Turonian, Coniacian
to the Santonian (Fig. 3B) is documented, regionally referred to as the Turonian unconformity
(e._g. Flandrin, 1966). #—is—marked—This interval is characterized by the argillaceous to
sublithographic Hmestenes-ofthe-lower Cretaceous limestones and E-W--trending folds, which
are-lie in direct contact, below an erosional surface, with bieelastic-and-terrigenous-deposits-of
the-Campanian-Maastrichtian_bioclastic and terrigenous deposits —(Fig. 2-3B; Gidon et al.,
1970; Arnaud et al., 1974). In-the-entireAcross the Vocontian basin, the main stratigraphic
hiatus corresponds to the Paleocene-Early Eocene (Fig. 2B). This late Cretaceous-te—-Paleocene

event is-coincides esevalwith the onset of Iberia-Europe convergence, marking the initial stages
of the Pyrenean-Provencal orogeny frem—=84-Ma-(~84 Ma; Angrand and Mouthereau, 2021;
Mouthereau et al., 2014; Mufioz, 1992; Teixell et al., 2018; Ford et al., 2022) and -—Fhese
deformations—areis consistent with the exhumation at—=85—Ma—of the Pelvoux crystalline
basement to the northeast at ~85 Ma (Fig. 2; Boschetti et al., 2025a).

After-Following this tectonic change, marine incursions erby-were limited and localized marine
inedrsions-oceurred-from the Late Eocene to the Miocene (Fig. 2B). This period corresponds to
the early Alpine collision, which affected the internal domains and the eastern parts of the

External Crystalline Massifs_(e. g. Ssimon-Labric et al., 2009; Boschetti et al., 2025c).

Meanwhile, regional-scale extension developed in the European plate, driven by due-te-the
evolution-ef-the Western European Rift system and the opening of the Liguro—Provencal back-
arc basin in southeastern France (Fig. 1) (Hippolyte et al., 1993; Séranne et al., 2021; Jolivet et
al., 2021; Boschetti et al., 2023).
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In the eastern part-of-the-basin, the latest compressional phase is recorded by N-S to NW-SE-
trending structures associated with the Digne thrust (Fig. 1-2) and final Alpine exhumation
between ~12 and 6 Ma (Schwartz et al., 2017).

3. Sampling and methods
3.1 Sampling strategy
Fhe-sSampling sites were carefully selected to characterize both the nature and ages of the
brittle deformation that-in affectinged-the Jurassic and Cretaceous formations within-of the
Vocontian basin—Basin (Fig. 2A). We first targeted sites where normal faults Fhe—main
struetures-were described as syn-rift faults or veins formed shortly after deposition (were-first
dentified—based—on-the—work—ef-Homberg et al.—, {2013), and where we observed calcite

mineralizations,—who—de bed—syn-extensional-features—in-the Vocontian—Basin—that e

itien. The analysis of these specific sites was expanded

to include other types of brittle structures, such as strike-slip and reverse faults, to document

the polyphase deformation of the VVocontian Basin. We-Our sampling targets were further

guided usingused the 1:50.000 scale BRGM geological maps from Die to Sisteron-to-select-eur
Sochsngee s

3.2 Tectonic and paleostress analysis

To reconstruct the tectonic evolution of brittle deformation in the Vocontian Basin, fault-slip
data and other stress indicators, Hke-including calcite veins, were measured in the field and
collected for U-Pb dating. Local stress states were inferred by inverting fault--slip data using
following the methodology euthned-of by-Angelier (1990) using —tnplemented-in-the Win-
Tensor software (Delvaux and Sperner, 2003). This analysis provided the orientation of the

three principal stress axes (c1, 62, and ¢3) and the shape of the stress ellipsoids defined by the

02—-03

ratio ¢ = ——

, reflecting the relative magnitudes of the principal stresses. Relative

chronology between-of the reconstructed stress tensors was achieved-determined through-from
cross-cutting relationships between successive generations of veins and faults (normal, reverse,
or strike-slip faults). Chronology with—respectrelative to folding was further—refined by

comparing the orientation of faults, veins, and/or associated stress states in their present-day

configuration-and after-unfolded unfoeldingconfigurations. This approach assumes that faults
originally were-reeformed according to an Andersonian state of stress, with one principal stress

axis being-vertical.
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3.3 Calcite U-Pb geochronology

Prior to U-Pb analyses, each polished thick section was petrographically characterized at IPRA
(Institut Pluridisciplinaire de Recherche Appliquée) in Pau, France. This eharacterization
involved the-use-of-an-optical microscopye coupled with cathodoluminescence (CL) imaging
to identify multiple calcite generations_(shewn—+r-Supplementary- Material- Fig. S1). CL

images were acquired using an OPEA Cathodyne system coupled with a Nikon BH2
microscope, operating at an acceleration voltage of 12.5 kV and an intensity of 300-500 mA.
Fhe-U-Pb abselute-dating of calcite was performed at IPREM laboratory (Institut des Sciences
Analytiques et de Physico-Chimie pour I'Environnement et les Matériaux)taberatory, following
the analytical-appreach-deseribed-byprotocol of Hoareau et al. (2021). This method employs
isotopic mapping of U, Pb, and Th via a continuous ablation process, combined with a virtual
spot method to construct Tera-Wasserburg (TW) plots (Hoareau et al., 2021, 2024). A
comprehensive Detailed deseription-ofthe-analytical procedure and data processing is provided
in the Supplementary Material 1 (Tabs.- Al-—Fab—A2). The anabpical-setup ireluded-used a
257 nm femtosecond laser ablation system (Lambda3, Nexeya, Bordeaux, France), operating at
a frequency of 500 Hz with a spot size of 15 um. Ablation was conducted in a controlled
atmosphere composed of helium (600 mL/min) and nitrogen (10 mL/min), which—was
subseguenthy-mixed with argon in the ICPMS. This system was coupled to an HR-ICPMS
Element XR (ThermoFisher Scientific, Bremen, Germany) equipped with a jet interface
(Donard et al., 2015).

3.4 Burial history

The subsidence history of the Vocontian Basin was reconstructed using stratigraphic sections,
including thicknesses and lithologies, from the 1:50.000 scale geological maps of Die, Mens,
Dieulefit, Luc-en-Diois, Gap, Nyons, Serres, Laragne-Montéglin, Vaison-la-Romaine, and
Séderon, providing basin-wide coverage (Fig. 4). Standard backstripping techniques (Allen and
Allen 2013) were applied-fer-this-anahysis. The sedimentary units were first decompacted using
a-coefficients correspending-appropriate to their dominant mata-lithology (limestone, marl or

clay), and-with stratigraphic ages inferred from the geological maps. To enable comparison

between the-different-sedimentarystratigraphic columns, the stratigraphic eelumns-data were

resampled at-regulartemperakintervalseveryat 1 Myr intervals, grouped into 5 Myr bins, ef5
Myrand finath-interpolated using the 2D spline method.
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3.5 RSCM thermometry approach

To determine the peak temperatures reached by sediments and-metasediments-in the VVocontian
Bbasin, we—cenducted-RSCM analyses were conducted on an initial set of reck—samples
collectedfrem-Middle to Upper Jurassic and Lower Cretaceous carbonate samples collecteds
elese-near to-U-Pb dated calcites (Fig. 2A, 4). Forcomparison,-this-set-was-complemented-by

aA second set of samples was takencollected further eastwards in; or near,; the Authon-

Valavoire thrust nappe, a {parautochtonous unit belew-at the front of the Digne nappe), where
the—deeper Lower Jurassic strata of the Vocontian are exposed and diapirism has been
deseribedoccurred (e.g., Célini et al., 2024). The RSCM approach is—constrains dsed—te
understand-thermal processes ranging from advanced diagenesis to high-grade metamorphism,
covering temperatures from 100 to 650°C (e.g., Ayoa et al., 2010; Koukestu et al., 2014; Schito
et al., 2017). Bepending-Appropriate calibrations depend on the temperature range and the
geological context,—different-catibrations—are—proposed. Here, In-this-study—we applied the
calibration of Lahfid et al. (2010) fer-was applied for temperatures ranging-between 200 and
340°C, and the qualitative approach prepesed—of in—Saspiturry et al. (2020) for lewer
temperatures between 100 and 200°C. Fhe—aAnalyses were performed at the Bureau de
Recherches Géologiques et Miniéres (BRGM; Orléans, France) using —Fhe-Raman-spectra-were
ebtatned-with-a Horiba LABRAM HR instrument with a 514.5 nm solid-state laser source-fer
exeitation. The laser is-was focused en-the-samples-with a BXFM microscope using a x100

objective with a numerical aperture of 0.90 and under 0.1 mW en-at the sample surface.

4. Results

4.1 Microtectonics and paleostress reconstructions

Veins and striated planes associated with folds (Fig. 5A), reverse faults (Fig. 5B) and normal
faults (Fig. 5C) were measured and sampled. Stereodiagrams of beddings, fault-slip data, veins
and, when necessaryrelevant, their associated back-tilting state of stress, are presented in Figure
6. When the-sufficient rumber-ef-fault-slip data was-sufficientwere available for inversion (a
minimum of four-is—reguired), the calculated stress axes have-beenare reported (Fig. 6; Table
1). In this section, wefirst-present-data from samples VOC-23-09a to VOC-23-16d are
presented {in numerical order,} followed by ard-then-tntroduces-samples BON-23-01 to 062;
and-03, aleng-withand GLAN-23-02, which-; which-—TFhese-samples-belong to a second, and
separate field campaign. No measurements were conducted for samples VOC-23-01a and VOC-

23-01b, as the sampling area is-lies loeated-within a-the diapiric structure of the Dentelles de
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Montmirail (Figs. 2A and; 6), whichpotentially eeuld-preventing-areliable-interpretation-of-the

paleostresstensorintroducinge local complexitiesy.
The sampling area of sample VOC-23-09b shews-is amajoritydominated by-ef strike-slip faults,

fer-whichwith paleostress inversion reveals-indicating a strike-slip regime reselving-under a
NW-SE-directed compression (Fig. 6). At site—of-samplethe VOC-23-11a_site, thewhere
bedding is flat,: YWereselvea-strike-shp-regime-with-pPpaleostress reconstructions also that
ndieatereveal a strike-slip regime, involving NE-SW compression and NW-SE extension (Figs.
5B, 6).

Samples VOC-23-12a and VOC-23-12b exhibit-are-suggestive-ofrecord distinct deformation
patterns. WhHe-sample-VOC-23-12a eorrespends—comprises te—calcite veins indicative of
consistent-with-WNW-ESE extension, whereas sample VOC-23-12b exhibits similar calcite
veins, together with as-weH-as-additional strike-slip deformation, consistent with asreperted-on

the-stereogram-—TFhis-reflects WNW-ESE compression and NNE-SSW extension (Fig. 6). This
stress orientation closely matches that of -which-is-hotsignificanthy-differentfrom-ourresultin
sample-VOC-23-09a and b sites. Fhe-Considering-theThe geometry of the stress axes; when
considered—alongside-the-dip—and-orientation—ofrelative to-the bedding dip and orientation
suggests that this state of stress ececurred-afterpostdates folding.

Sample-At the VOC-23-13 site, -shows-strike-slip faults that-are-censistentindicate a paleostress
regime characterized by N-S-directed compression with-anand E-W-directed extension and-N-
S-directed-compression-(Figs. 5C_and ;6). Sample VOC-23-14a, represents—is-a calcite vein
spatially thatis-associated with sample VOC-23-14b, occurs adjacent to —~which-exhibits Fhis
vein—is—located-—alongside—a strike-slip fault with—with a sinistral component. Paleostress
reconstruction indicates a WNW-ESE extension coupled withare— NNE-SSW compression
(Fig. 6).

Sample VOC-23-16d shows calcite veins affected by strike-slip deformation. In contrast,
sample VOC-23-12b enly-shows only post-vein strike-slip deformation—{pest-vein}-on-the
stereogram. Paleostress ealettation-analysis indicates an-NW-SE-directed extension (Fig. 6).
Samples BON-23-01a and BON-23-01b eerrespond-consist ofte-a striated calcite that-has-been
affected by layer-parallel shortening (LPS), —Fhis—s-interpreted as representing-flexural slip
duringrelated to folding (Lacombe et al., 2021) (Figs. 5A, 6). Sample BON-23-01c, is-a calcite
vein that-formed within the same fold, -as-the-previous-samples—tis interpreted to have formed
during the-fold growth-ef-thefeold. Paleostress analysis—reconstruction ef-at the Bonneval

outcrop indicates N20°E-directed compression associated with the formation of the N110°E-

10
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trending fold (Figs. 5A, 6). Finally, the GLAN-23-02 sample-outcrop exhibits a normal fault
eoherent-consistent with-a NE-SW-oriented extension-direetion.

4.2 Petrography of calcite samples

In summarytotal, 15 samples were dated in this study: 6 veins (samples-VOC-23-01a, 01b, 09b,
12a, 14b and BON-23-03) and 9 striated fault planes with-striations-(samples-VOC-23-9a, 11a,
12b, 13, 14a, 16d, BON-23-01, 02 and GLAN-23-02). Most samples exhibit-contain miHimetric
to—centimetric-blocky er—to elongate-blocky calcite, —r—sizes—ranging from millimetres to
centimetres (Fig. 5; }{samples VOC-23-01, 9a, 12a, 22b, 13a, 14a, BON-23-01, 02, 03 and
GLAN-23-02). Fhey—areThese calcites are characterized by homogeneous luminescence,
indicating no—evidence—ofa single—multi-phase ealeite—growth with no evidence of
recrystallization (Figs. 7A, B; Supplementary. Material Fig. S1.). Two samples exhibit different

distinct calcite morphologies. Sample VOC-23-11a contains a centimetric calcite showing with
a transitional morphology between syntaxial and stretched crystalsirg (Figs. 7C, D), —Fhis

suggestings the-presence-efcrystals-with-variable growth planes-orientations andwithin-the-fault
plane-indicating-petential multiple crack-seal events. Similarly, sample VOC-23-16d displays
millimetric to centimetric blocky calcite: Fhis-is;predeminanthy-composed-of blocky-caleite;
which—and—appears—to—be-crosscut by a seeendyounger generation of more elongated and
stretched seeend-calcite generation-(Fig. 7C, D).

4.3 Calcite U-Pb geochronology

This study presents 16 new calcite U-Pb ages obtained from eight types of brittle structures
(Table 1; Figs. 8, 9, 10). The Tera-Wasserburg diagrams show data well spread along the
discordia line, with —Fhe-Mean Squared Weighted Deviation (MSWD) ranginges from 1.1 to
1.9, which-indicating robust is-consistent-withand well-resolved age estimates. Three distinct
age groups can be identified frem-within this-the dataset.

The first age group corresponds to the Late Cretaceous to Early Eocene perieds-interval, based

on frem-veins collected in late Jurassic-Early Cretaceous strata in the \Westwestern part of the
basin. Ages-ebtained-inln the “Dentelles de Montmirail> area, ages —are-of 82.9 £ 3.8 Ma
(sample-VOC-23-01b) and 76.5 £ 3.4 Ma (sample-VOC-23- Ola) were obtained. Further north,
nin the Die region, I I
fold-related structures associated with N20°E shortening are-have-been-datedyielded ages te-of
72.0 £ 3.7 Ma (sample-BON-23-01a), 71.2 + 8.1 Ma (sample-BON-23-01b), and 50.0 £ 4.3 Ma

(sample-BON-23-01c) (Fig. 8).
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The second age group corresponds to veins and faults dated—formed during back—te—the
Oligocene. The 0Obtained ages range from 34.3 + 1.5 Ma (vein: VOC.23.14a), 30.3 + 1.5 Ma
(fault: VOC.23.14b2), 30.0 + 2.8 Ma (fault: VOC.23.13b), 28.1 £ 1.2 Ma (fault: VOC.23.14b1),
25.6 + 1.3 Ma (vein: VOC.23.12a), 23.2 + 1.3 Ma (deformed vein: VOC.23.12a and b) and 27.6
+ 5.4 Ma (fault: GLAN.23.02) (Fig. 9). Most of these fractures correspond to an-NW-SE to NE-
SW extension (Fig. 6). However, 60ne-efthem—-sample VOC.23.12b indicates —-which—is
the-same-kind-efveins-as-VOC23-12ais-consistent-with-a strike-slip stress regime with NNE-
SSW extension and WNW-ESE compression, similar to that inferred from sample-VOC.23.09
(Fig. 6)._Calcite veins in VOC.23.12b isare of the same kindtype ofveins—as those in
VOC.23.12a. ;

The third age group corresponds to Miocene veins and strike-slip faults eeHeeted-hosted in

Upper Jurassic-lower Cretaceous carbonates. Two subgroups can be distinguished. The first
subgroup, characterized-by-ages-ofdated t0 12.2 + 3.2 Maand 12.5 + 5.2 Ma (fault: VOC.23.11a
and fault: VOC.23.16d), isrecords a assectated-with-a-strike-slip regime eensistent-defined with
by NE-SW compression and NW-SE extension (Figs. 10, 6). The second subgroup, defined
with by-ages of 7.8 £ 0.6 Ma and 7.0 + 2.2 Ma (fault: VOC.23.09a and vein: VOC.23.09b), also
corresponds-reflects to-a strike-slip regime but cerresponds-with te-stress orientations indicating
NW-SE compression and NE-SW extension (Figs. 10, 6).

4.5 RSCM thermometry

RSCM data from the first set of Upper Jurassic and Lower Cretaceous carbonates in the central
and southern parts of the studied-study area indicate that-maximum temperatures eid-—not
exceedbelow 100°C (samples-VOC-23-01 and VOC-23-16; Table 2). For the second set-of
samples, reliable temperatures were-estimates suceessfuthy-—determinedwere obtained for 12
samples using an appropriate calibration (Table 2, Fig. 6), which can be divided in two
subgroups. Temperatures measured in Lower to Upper Jurassic strata sampled—near Saint
Roman and Montmaure, in the Die area, display-the-lowesttemperatures-rangeing between 100
and 180°C (samples-VOC-1823-1718, VOC-1823-178).; The lowest temperatures are found
near Veynes and close to the Devoluy massif (sample VOC-1824-20), in Sigoyer village
(samples VOC-1823-0221, VOC-1823-2203), and in the upper stratigraphic unit of the Authon-
Valavoire nappe (sample-VOC-1824-28), and in the eastern part of the basin, below this-the
Digne nappe (sample VOC-1824-29). The higher bound of RSCM temperatures, reaching up
to—at 170°C, is measured for-in samples VOC-1824-24a and 33, both located near diapiric
structures: {“Rocher de Hongrie”; ({Célini et al., 2024). These latter-values align are-censistent
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with previously reported temperatures between-of 140--and-200°C—recenthy-published in the
vicinity of this-the same diapir (Célini et al., 2024). The second subgroup defined-characterized

by higher temperatures between 215 and 275°C, includes are-samples located fedrd-1 km to
the south of Sigoyer (sample-VOC-1824-23), within the middle Jurassic fayers-strata in the
hangingwall of the Authon-Valavoire nappe (sample-VOC-1824-25), and in the Lias strata
sequence near the Astoin diapir (sample-VOC-1823-31). Temperatures of this second subgroup

fall within the temperature range recorded in the Authon-Valavoire nappe, particularly near
Astoin, closer to the Digne nappe; rearAstoinr-(Célini et al., 2024). To summarize, our data

reveal a thermal contrast between the western and eastern domains of the Vocontian Bbasin.
While the organic matter of upper Jurassic-lower Cretaceous formations is-remaines thermally
immature, deeper Early-Middle-Late Jurassic formations exposed in the eastern part of the
Vocontian basin, close to the Authon-Vallavoire and Digne nappes shew-exhibit significantly
higher thermal maturity, with RSCM temperatures exceeding 180°C and reaching up to 275°C.
Fhe-shift-towards-higherA similar increase in RSCM temperatures between the Upper Jurassic-
Early Cretaceous and deeper stratigraphic units of the Early-Middle Jurassic has also been
observed-documented in stratigraphic eelumns—sections analysed—fremof the Digne Nappe
(Celini et al., 2022; Balansa et al., 2023).

4.4 Burial histories and temperatures reached in the basin

Burial histories for the Vocontian Basin are presented in Figure 11. Each curve represents the
burial evolution within the basin, eateulated-reconstructed from from-a-synthesisofstratigraphic
thicknesses_indicated in explanatory notes of -irferred—frem-the BRGM 1/50.000 geological
maps covering the basin. The data indicate A—first-ebservation—is—that the-total sediment

accumulation in-the-\Yocontian-basin-appears-to-have-reached a maximum of 6-7 km since the
Early Jurassic. This is shown by the estimated-decompacted thicknesses estimated ef-at 6800

m in the Die region_and ;-6+5900 m in-near Nyons, in the northern and western parts-sectors of

the basin, respectively. In contrast, areas lacking exposures of ta-regions-efthe-basin-where-the
Llower Jurassic series such as Vaison-la-Romaine, show are-hret-exposed-the-tetalreduced total

subsidence is-obvieusly-tewertisof enbyr-around 2500 m-in-theregion-of-\aison-la-Romaine.

Despite these differences, most regiens-parts of the basin recorded a main phase of burial during
the Middle Jurassic; inr-the-(Callovian, ~abeut-160 Ma-{Fig—11), associated with the widespread-

This phase affected the entire Vocontian Basin. It is shown by the deposition of marls to-and
shales depesits-of the “Terres Noires”, facies-characteristictypical of the External Alps. During

this period, about 2 km of “Terres Noires” were-deposited{aceumutationaccumulated with rates
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of 200-400 m/Myr}. After-Following the Middle Jurassic, the burial stewed-rates decreased

down-but continued througheut the Late Jurassic and Early Cretaceous. A second phase of
accelerated subsidence took place during the Early Cretaceous, around 130 Ma_(—#the
Hauterivian), documented —H-is-decumented-in the Mens section by the deposition of about 700
m of marls and limestones (Fig. 4). A third mair-major burial phase, ef-burial-is—recerded
arounddated to 100-90 Ma (Fig. 11), is recorded in the-6 eut-of the 10 stratigraphic sections
(Fig. 11). HsThis phase is characterized by increasing siliciclastic influx, revealed by the
deposition of 700-800 m sandstones-alternating sandstones, with-marls and limestones with-a
thickness-of-abeut700-800-m-(e.g., Nyons, Sédéron, Vaison-la-Romaine)-{(Fig—16}. In contrast,

Fhethe Gap, Laragne-Montéglin, and Mens sections, however, record-show evidence of erosion

rather than sedimentation at this time. These contrasting depositional patterns reveal concurrent
beth-uplift in the source regions and structural compartmentalization in the Vocontian basin
Basin (Fig. 11). A last episode of subsidence, reaching ef-maximum-350-500 m (e.g., Die,
Laragne) is documented during the Eocene-Oligocene (Fig. 11).

5. Discussion

The results from this study are put into perspective of the evolution of the Vocontian Basin of

south-east France through time. For this, we merge results from structural analysis with

corresponding U-Pb calcite ages, and discuss the evolution of the related burial history

estimated from the lithological logs, which have been used to infer paleo-thermal gradients.

Four main evolutionary stages can be proposed based on these data, which are discussed below.

5
5.1 The Vecontian-basin-at-the-time-ef-Mesozoic rifting: E-W trend in thermal gradients
and low Ca-rich fluid circulation_(170-90 Ma)

The Vocontian basin recorded a prolonged phase of subsidence during-throughout the Jurassic
and Cretaceous (Fig. 11), which is-was hewever-not associated with a distinct fluid event. This
period coincides with the rifting of the European paleomargin as inferred by the thermal
evolution of the Pelvoux Variscan crystalline basement_to the north ef-thePelveux—massi
(Boschetti et al., 2025a,c)-te-the-Nerth, and from the burial history below the Digne Nappe to
the east (Célini et al., 2023);-which-bounds-the-\focontian-to-the-east. This lattereEastern rim
margin of the basin was likely inverted during the late stages of the Alpine collision between
12 and 6 Ma (Schwartz et al., 2017). We distinguish a first major phase of sedimentary burial
that occurred during the Callovian-Oxfordian_(-between-170--and-160 Ma), which postdates:
Fhis-burial-pestdates-the necking of the European paleomargin; which-eceurred-duringrifting;
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as-identified in the External Crystalline Massifs (Mohn et al., 2014; Ribes et al., 2020; Dall’ Asta
etal., 2022) and is is-synchronous with the opening of the Alpine Tethys (Lemoine et al., 1986%;
Manatschal and Mdntener, 2009). H#-This rifting is recognized in the VVocontian basirBasin,
where it is expressed by WNW-ESE extension across-the-entire-basin-(Dardeau et al., 1988;
Homberg et al., 2013), but it is not recerded-captured in our calcite U-Pb ages. Similar
observations can be made for the subsequent extensional Cretaceous event-at-around(~-135
Ma), for which no faults of that age is-are reported. The high temperatures measured #-the
Vecontian-basin-ofin the Digne Nappe at this time are interpreted te-as reflecting renewed
extension associated with the opening -the-basin-asof the Valaisan domain epened-along the
European margin (Célini et al., 2023), consistent with eontinteus—ongoing burial heating

recorded in the Pelvoux massif (Boschetti et al, 2025a,c). This thermal new—peak in
sedimentation—is—censistentcoincides with a shift from the Middle Jurassic WNW-ESE
extension to NNE-SSW extension al-regime-during the Barremian--te-Aptian interval-(Dardeau,
1988; de Graciansky and Lemoine, 1988; Homberg et al., 2010). This later extensional event
phase is recorded not only throughout the Vocontian Basin (Homberg et al., 2013), but also
along its margins. Evidence for this later extensional event includes deformation along the
Ventoux—Lure fault zone (Beaudoin et al., 1986; Huang et al., 1988), the development
formation of large-scale sliding domains on the Vercors platform (Biévre and Quesne, 2004),

and subsidence in Eeast—A/west-oriented domains along the Ardéche margin during the same
period (Cotillon et al., 1979). Our RSCM analyses shew-indicate an increase ef-in peak
temperatures tewards-toward the East-east of the Vocontian Basin, where the-deeper Lower
Jurassic stratigraphic series-strata are—isare exposed (Fig. 6; Table 2). When-we-compared
Comparing te-cerrespending-burialthese temperatures with temperature inferred from burial
estimates-depthsranging from-using normal (30°C/km) to high (60°C/km) geothermal gradients
suggests —we-infer-that eur-the eastern sector RSCM-datarevealexperienced unsually high to
extreme gradients-in-the-Easteast, thatis;-e—tr-theconsistent with direetion-ef-increasing crustal
thinning in the Vocontian-Valaisan rift segment this direction (Fig. 6; Table 2). It should be
niNoted that the sharp increase in the geothermal gradients is not recessarty-entiresolely related

due to crustal thinning, but is also largely a response-result of mantle thinning and asthenosphere

uprisiaguplift. The laek-absence of calcite mineralisation in brittle tectonic features at this age
time, despite specifically targeting potentially related veins, in—brittle—tectonic—features—is
intriguing. Indeed, evidence of mineralization—of—barite, authigenic quartz and pyrite

mineralization in the Callovian-Oxfordian shales in the deeper part of the basin is interpreted

as reflecting basal fluid flow during syn-rift peak burial in the Middle Cretaceous, as well as

15



504
505
506
507
08
509
510
b11
12
513
514
b15
b16
17
518
19
520
521
522
23
624
525
526
527
528
529
530
531
532
533
534
535
b36
637

brines related to salt diapirs (Guilhaumou et al., 1996). We suggest that the absence of Middle
Cretaceous calcites ean—reflectscan be explained either the—fact-thateitherby 1) that-faulting
occurringed at a depth too shallow for calcite precipitation, -andfer-2) that-subsequent burial to
a-depth-of-2-3 km; in the Easteastern basin leadingé to the dissolution of previous Middle
Cretaceous calcites in-respensedue to changing physical conditions (e.g., pH.and; temperature).

—In addition, mechanical decoupling in the Triassic salt layer during extension may have
resulted—n-thelocalizationfocused of-fluid flow, so that mineralized fluids of this age are
detectable only locally, near the emergence of salt diapirs. anrd-deformation-at-the-base-of-the
basin.

A third depositional phase occurred around 100-90 Ma, in agreement with syn-faulting deposits

along the Clausis and Glandage fault systems in the VVocontian/Dévoluy basin (Fig. 11, 3)
(Gidon et al., 1970; Arnaud et al., 1974) and with strike-slip metiens—activity along the
Toulourenc faults in the Ventoux-Lure massif (Montenat et al., 2004). Regionally, ©n-a-breader
seale;-this tectonic phase coincides with strike-slip movements along the Cevennes, Nimes and
Durance faults (Montenat et al., 2004; Parizot et al., 2022), pessibhy-potentially associated with
local compression related to diapiric movement at 95-90 Ma (Bilau et al., 2023b) and normal

faulting reported in Provence (Zeboudj et al., 2025). This episode is a response of the

continental rifting between Iberia-Ebro and European plates, and the formation of the Pyrenean
rift system (Angrand and Mouthereau, 2021) -(Fig. 12A). —}-sheuld-be reminded-that tThe

e
»,
[
D
D
D
>
D
D,
D
D,
D
1)
—
D
D
»
D
O
e
D
D
D
D
D
D
»
O
D

Strike-slip movements along inherited faults (Cevennes, Nimes, Durance faults) were
associated with obligue extension accommodated by overlapping rift segments in the Pyrenean
and Vocontian basins (Fig. 12). This complex tectonic setting likely triggered the emergence
of continental blocks that can explain the abundance of sandstone deposits during this period in
the Vocontian basin (Fig. 4, 11). This interpretation aligns with the documented formation of
an uplifted structure in Provence during the Albian-Cenomanian, known as the Durancian
Isthmus (Combes, 1990; Guyonnet-Benaize et al., 2010; Chanvry et al., 2020, Marchand et al.,
2021). Cooling and exhumation in the French Massif Central to the west are also documented

from 120-90 Ma (Olivetti et al., 2016), which may have contributed to feeding of the VVocontian

basin during this period (Fig. 12A). Although this period is synchronous with the onset of
Adria/Europe convergence (e.q., Le Breton et al., 2021; Angrand and Mouthereau, 2021:
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Boschetti et al., 2025a,b,c), the impact of contraction in the Alps on the evolution VVocontian

Basin remains to be assessed.

5.2 Post-Mid Cretaceous evolution-efthe\ocentian-basinBasin: U-Pb/calcite dating record
of multiple Pyrenean-Provencal collision events (90-34 Ma)ceHision-and-rifting-events

n-the-basins of south-east SE Francebasins-of Franee
The oldest calcite U-Pb ages of 84.6 £ 2.4 Ma and 77.7 £ 2.9 Ma, reported in the Jurassic strata
forming the wall of the Suzette diapir in-the(=Dentelles de Montmirail™-)structure-are-close-te
i i | and-are-consistentalign with
the age-of-the-onset of the Pyreneanes-Provencalee collision dated-around 84 Ma (Angrand and
Mouthereau, 2021; Mouthereau et al., 2014; Mufioz, 1992; Teixell et al., 2018; Ford et al.,
2022). Fhese-These old calcite ages are—tikelymay reflect —to—berealedto—the—combined
halokinetic movement of the Suzette diapir in response to far-field stresses that triggered

tectonic inversion and exhumation all over Europe (Mouthereau et al., 2021). These ages can
also be related to a deformation event folding-along-E-\W-trending-folds-in the Dévoluy massif
—affecting the Early Cretaceous units,-and linked to asseeiated-te-E-W-directed folding and
erosional surface-dated to Coniacian-Santonian (Fig. 3B) (ca. 85 Ma) (Flandrin, 1966; Lemoine,
1972; Gidon et al., 1970; Arnaud et al., 1974), or the end of diapiric movement during-extension
in southern Provence (Wicker and Ford, 2021). Younger U/Pb ages of 72.0 + 3.7 Ma and 71.2
+ 8.1 Ma associated with N20°E shortening coincides with the intensification of the a-the
Pyrenees exhumation seems-te-inerease-fromat 75-70 Ma (Mouthereau et al., 2014), a phase
that -and-this-is recerded-regionally recorded across southeastern in-SE-ef-France by the-a
cooling event documented from ef-the Pelvoux to the Maures-Tanneron massifs (Fig. 12A)
(Boschetti et al., 2025a,b—+Press). It is also recognized in the region associated with the

sinistral reactivation of the Cevennes fault around 76 Ma (Parizot et al., 2021). The Pyrenean-
Provencal collision is therefore well represented in the Vocontian Basin. Fhis-timing-isfurther




b (2
b73
b74
b 75
b6
77
b78
79
580
581
582
b83
b84
585
86
87
b88
589
590
691
692
593
594
695
696
597
598
599

Our data also resolve another-a later-younger N20°E-directed contractional stage dated at 50.0

+ 4.3 Ma (Fig. 6)_that we link to the main Pyrenan-Provencal collision phase.- It is weH
recognized identified-alse-in other the-U/Pb age dataset #n-from Provence in-the- J/Pb-age-dataset
(Zeboudj et al., 2025), and corresponds to a Nnorth-S-south compression we-phase-spanning
from 59 to 34 Ma —Fhisstagets-regarded as the culmination of the Pyrenean-Provengal collision
caused by plate-scale dynamic changes (Bestani et al., 2016; Balansa et al., 2022; Vacherat et

al., 2016; Mouthereau et al., 2014; 2021) (Fig. 12B).—Fhis-episode-isrelated-to-the-acceleration

\ /] AN N QA N alViakalaa akala¥aTlal N na
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et-ak—2021). In northwestern Europe, the Eocene also alse-heralds anneunces-the onset of
opening-of-the-abertedrift-system-of the West European Rift (WER), which was active until

the Oligocene and just precedes the opening of the Gulf of Lion (e.g. Séranne et al., 1999; Dézes
et al., 2004; Mouthereau et al., 2021).

5.3 Oligocene rifting related to the West European Rift development (35-23 Ma)

The WER stage is wel-represented in the-\ocontian-basinour dataset -as-indicated-by eight
U/Pb dates ranging from 30.4 = 2.7 to 24.3 £ 1.3 Ma associated with NW-SE to NE-SW
extension (Fig. 12C). They ;-whieh-coincides with an-the extensional phase (35-23 Ma) alse

documented in Provence, Wwestern Alps, Eeastern Pyrenees, and Valencia Trough_;coeval

with-the-late-activities-of the-\West-European-Rift-(Merle and Michon, 2001; Ziegler and Dézes,
2006). tn-our-study region;the shallow depth-ofiso-velocity contour Vs=4.2 km.s* considered

that-theThe Late Eocene-Early Oligocene period also coincideséd with the onset ef-depesition
t-theof the flexural-basin-of-the-Alpine foreland (Ford et al., 1999).. The flexural bending
defleetion-of the European margin_caused by Alpine loading -is-likely nereasing-increased the
extensional stresses in the foreland, asseciated-where with-the WER _formed, however the

available data are insufficient to draw defitinive conclusions. From Chattian-Aquitanian times,

at ca. 23 Ma, the opening of the Gulf of Lions and of the Ligurian basin (e.g., Séranne et al.,
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1999; Jolivet et al., 1999, 2020) commenced—initiated following the demise of the WER

suggesting a tectonic relationship between these two rifting events (Mouthereau et al., 2021)

(Fig. 12C). In our study area, the shallow depth of the iso-velocity contour Vs=4.2 km.s™,

considered to be a proxy for the Moho (Schwartz et al., 2024), and the 3D geological modelling

(Bienveignant et al., 2024), confirms a significant crustal thinning in the Valence-Rhéne

depression, where structures related to the WER are preserved (Fig. S2, Supplementary

Material 1). The excellent preservation of the Oligocene-Miocene extensional phase in our
dataset suggests a positive feedbacks between crustal thinning (Fig. S24, Supplementary
Material 1) and physical conditions that becaeme favourable te-for calcite precipitation eloser
at shallower depthste-the-surface, as the basin was progressively exhumed during-following the
former-Late Cretaceous shortening.

5.4 Alpine collision and fold and thrust belt propagation (<16 Ma)
The youngest calcite U/Pb ages of 12.2 + 3.2 Ma, 125+ 5.2 Ma, 7.8 £ 0.6 Ma and 7.0 £ 2.2
Ma are associated with NE-SW compression. This result agrees with the westward propagation

of the Alpine deformation front, which migrated forelandward from 165 to 7 Ma in the Vercors
massif (Bilau et al., 2023a; Mai Yung Sen et al., 2025) to the north of the VVocontian Basin (Fig.
12D). This timing also coincides with the exhumation of Alpine external—erystalline
masstsbasement, such as the Belledonne and Pelvoux massifs-, which accelerated at ca. 12 Ma
(e.g. Beucher et al., 2012; Girault et al., 2022; Boschetti et al., 2025a). This age range is also is

agreement with the Digne Nappe emplacement at 13-9 Ma (Schwartz et al., 2017) and fold and

thrust development in the frontal southern Alps between 18.2 + 1.1 Ma and 3.16 + 0.47 Ma
obtained (Bauer et al., 2025 ; Tigroudija et al., 2025).

CONCLUSION

The goal of this study was to provide a refined chronology of deformation in the Vocontian
Basin using an integrated approach combining U-Pb calcite geochronology, RSCM
thermometry, and subsidence analysis. First, this study highlights the absence of mid-
Cretaceous syn-rift calcites associated with the opening of the VVocontian Basin. This is possibly
related to dissolution during subsequent burial, or reflect the localization of fluid flow and strain
in the basal Triassic salt layer during the mid-Cretaceous extension. The temporal distribution
of dated brittle structures reveals three main deformation episodes: (1) Late Cretaceous to
Paleocene calcite precipitation associated with Pyrenean-Provencal convergence and diapirism;

(2) Oligocene extensional phases tied to the West European Rift opening; and (3) Miocene
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strike-slip reactivation and contraction linked to the Alpine orogeny. These events are
superimposed onto a long-term subsidence history that records major burial phases during the
Jurassic and Cretaceous. Thermal data from RSCM analyses delineate a sharp eastward increase
in geothermal gradients, suggesting enhanced crustal thinning and/or diapiric activity in the
eastern part of the basin. This work highlights the-pessible-mismateha good coherence between
of the local deformation the-tectonic-evolution-of-a-regionand-the-tectoric-history-nferred
inferred from calcite U-Pb dating_and -and-paleostress analysis, andand efthe regional tectonic
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Figure 1: Simplified geological map of SE France. Location of the study area.

31



1053

1054
D55
oo West East
D57 i
<
D59 \ :
D60 ‘ !
D61 § .
- g .
062 ; :
S
063 11
D64 ;
2] o
D65 3 ;
Tit g 5 g
oy o = ®
066 = I
D67 ; g
oo gt |d
069 e
= S
H70 = :
D71 = s
> oo
072 , : \ =
D73 * | Provence Platform & K.
:)74 [} Plio:quatemary () Late JlfraSSic @ U-Pb/Calcite Sample Il Evaporites
[;} Lol ghxaf::dngpeb,:sf:ssic A RSCM Sample [==] Marls and shales Sandstones
075 1 Paleogene ! ; o RSCM from litterature (°C) |~ Dolostomes Conglomerates
Late Cretaceous I Middle Jurassic o ot e e
:)76 5?;&:::?::: ® = 5:::::;: e % An:iform :xis = Marls and limestones ~ =w=== Compression
077 Early Cretaceous [ Crystalline basement —— Synform axis [ Limestones
D78
079 Figure 2: A) Geological map of Vocontian basin with sample location and Raman data in °C from

Bellanger et al. (2015) and Célini et I. (2023). B) General stratigraphic section of the Vocontian basin
D80 and main tectonic events.

D81
D82
P83
P84

D85 : :
North Archier Mountain South
386 Claveliere Mountain

D87
D88
D89
D90
D91
092
393 B | North Grand Ferrand
D94
D95
D96
D97
D98

D99 Figure 3: North-South geological cross-section of the Vocontian basin (A) and the Dévoluy massif (B). Location is presented in Fig.
100 2. Coniacian and Santonian are missing as there is a sedimentary gap (see in the text).

101
102

Ventoux thrust

South

[l el el il el el el el el el el el el el el el el el el el el el el el el el el el el el el el el el el e el el e e el e el e el e el

32



103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

PR R R R RRRRRRRRPRRRRRRRRRR R R Rl sl )

St-Bonnet

\\ '
. Lucen-\| Gaps -
Dieulefit Diois |
\| Laragne
Nyons Serres ‘\Mom?ghn
T Vaisona| Sret
“Romaine | Sédéron | Sisteron
e =2
Mt Ventoux 1 \’

*V2

*V20

2000 m

1500 m

1000 m

500 m

Lithology

E=] Marls/shales
=1 Limestones
E= Dolostones
[=] Evaporites
Sandstones
Conglomerates

*V3 E

s Laragne’

REHTES Montéglin

Vaison®
la
Romaine

V7
:‘VG,V‘] 2

2 =
Stratigraphic ages
*  Lacustrine limestones [ Pliocene [ Upper Jurassic
. Nodules [ Miocene [ Middle Jurassic
Glauconia [J Oligocene [ Lower Jurassic
- Silex Eocéhe [ Triassic
< Lenses El Carboniferous

[ Upper Cretaceous
[ Lower Cretaceous

Bl Micaceous sandstones

Samples * Raman from this study = Raman from Célini et al. (2023) @ U-Pb/calcite from this study

Figure 4: Stratigraphic logs corresponding to each geological notice of BRGM maps from the Vocontian basin. Sample names are
shortened from V.23.X to VX for simplification and space in the figure.

33



1153

=
=
ol
SN

PR R R R R R R R RR R RR R R R Rl )l sl

-

[ el el el el el el el el el el el el el el el

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

200

Figure 5: Main geological structures associated to their corresponding measurement and U-Pb age. A)
sample BON.23.01. B) sample VOC.23.11. C) sample VOC.23.13.

34



VOC.23.9a, 9b VOC.23.11a VOC.23.12a VOC.23.12b VOC.23.13 VOC.23.14a, b
N N

| | Cenozoic
[T] Late Cretaceous
|| Early Cretaceous
] Late Jurassic
—a— Major thrust

7 Antiform axis

¢ Synform axis

Deformation
constraints

A g‘ ARSCM
~ g3 OUPb A

ST .
\55}:8"342},\\/ A a0 voc.23.1N“

l \ l }/A<1o Nt g
VOC.23.11 ‘ ’\\ 140 A
A

/ 7, 120
YN ——X =
{ K\\ A</’100 \5\ VOC.23.14 ZGSQ ‘ GLAN‘.23.DZ
 EEERNS N
o <100 A \3\;/\ —6~ X\
e S L

® NS \\\\ (R =

Figure 6: Simplified geological map with structural analysis of each dated sample and location of
Raman thermometry results given in °C.

Figure 7: Examples of LPNA (A and C) and cathodolumiscence microphotographs (B and D) of two different types of U/Pb-dated
calcite veins. A) and B) sample VOC-23-01. C) and D) sample VOC-23-11a.
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1366
Table 1: Calcite sample types and correspondinng measurements and ages.
U-Pb  Error
Sample Lat Long Structures n g2 o3 (I) (Ma)  (ma)
VOC.23.01a 44.159326 5.049163 Vein + Strike slip - - - - 765 34
VOC.23.02b 44.159326 5.049163 Vein - - - - 82.9 338
VOC.23.9a 44.190622 5.47628 Strike-slip (Reverse) 13 02/124 80/025 10/214 06 7.3 061
VOC.23.8b  44.190622 5.47628 Vein (Associated 9a) 11 73/098 16/291 04/200 0.5 675 2.1
VOC.23.11a 44.367914 5.352686 Strike-slip (Post-fold) 6 17/0.23 71/185 05/292 0.5 11.1 3.6
VOC.23.12a 44.437467 5.293520 Vein - - - - 256 13
VOC.23.12b 44.437467 5.293520 Vein + Strike slip 17 10/292 78/078 06/201 05 232 13
VOC.23.13b 44.417889 5.657694 Normal fault 14 78/069 05/315 10/223 0.5 30 2.8
VOC.23.14a 44.328944 5.631972 Vein (Associated 14b) - - - - 343 15
VOC.23.14b1 44.328944 5.631972  Strike-slip (Normal) 6 17/197 73/007 03/106 0.5 303 15
VOC.23.14b2 44.328944 5.631972  Strike-slip (Normal) 6 17/197 73/007 03/106 0.5 281 1.2
VOC.23.16d 44.575833 5.640667  Strike-slip (Reverse) 20 04/048 86/234 00/138 0.5 13.8 5.7
BON.23.01a 44.62582 5.60985 Plane from fold 11 36/205 04/112 54/017 0.27 72 3.7
BON.23.01 4462582 5.60985 Plane from fold 11 36/205 04/112 54/017 0.27 712 8.1
BON.23.01 4462582 5.60985 Vein 11 36/205 04/112 54/017 0.27 50 4.3
GLAN.23.02  44.68617 5.59384 Normal fault 4 62/203 04/300 27/032 0.5 276 34
1367
1368
1369
Table 2: Raman Thermometry data. 1370
- - Stratigraphic Burial T Burial T RSCMT
Sample Lat °N Lon °E Age (Ma) Log/Map (30°C/km) (60°C/km)  (°C) 1s
VOC.23.02 44 556889 H.772778 142 Gap 52 104 <100
VOC.23.03 44 546834 5.801242 156 Gap 57 114 <100
VOC.23.05 44 354736 5.668139 135 Serres 51 102 <100
VOC.23.06 44 296138 5.281886 142 Nyons 51 102 <100
VOC.23.07 44 299667 5.312604 142 Nyons 51 102 <100
VOC.23.08 44 227526 5.433728 137 Sederon 75 150 <100
VOC.23.10 44 221778 5.429244 142 Sederon 77.5 155 <100
VOC.23.13 44 417889 5.657694 124 Serres 345 69 <100
VOC.23.16 44 575833 5.640667 142 Luc-en-Diois 61.5 123 <100
VOC.24 17 44 681803 5.414283 167 Mens 122 245 100 20
VOC.24.18 44 698656 5.419786 166 Mens 105 21 120 20
VOC.24.20 44 502694 5.820133 156 Gap 57 114 100 20
VOC.24 .21 44 464336 5.697017 157 Luc-en-Diois 69 138 120 20
VOC.24.22 44 316244 5959372 169 Laragne-Monteglin K] 186 120 20
VOC.24.23 44 308639 5.956206 166 Laragne-Monteglin 73 147 265 12
VOC.24.24a 44 281517 6.014347 163 Laragne-Monteglin 58.5 117 180 20
VOC.24.25 44 294617 6.056911 162 Laragne-Monteglin 58.5 117 228 22
VOCY.24.28a 44.328152 6.128097 170 Laragne-Monteglin 108 216 140 20
VOC.24.29 44 335796 6.020728 166 Laragne-Monteglin 73 147 140 20
VOC.24 .31 44 357159 6.166843 175 Laragne-Monteglin ~ >108 >216 275 6
1371
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