

# Polyphase tectonic, thermal and burial history of the Vocontian basin revealed by U-Pb calcite dating

Louise Boschetti<sup>1</sup>, Malou Pelletier<sup>1</sup>, Frédéric Moutherau<sup>1,2</sup>, Stéphane Schwartz<sup>3</sup>, Yann Rolland<sup>3,4</sup>, Guilhem Hoareau<sup>5</sup>, Thierry Dumont<sup>3</sup>, Dorian Bienveignant<sup>3</sup>, Abdeltif Lahfid<sup>6</sup>

1. Géosciences Environnement Toulouse, Université de Toulouse Paul Sabatier, CNRS, IRD, 14 av. Edouard Belin, 31400 Toulouse, France
2. Institut Universitaire de France, F-75005 Paris, France
3. ISTerre, Université Grenoble Alpes, USMB, CNRS, IRD, UGE, 38000 Grenoble, France.
4. EDYTEM, Université Savoie Mont Blanc, CNRS, UMR 5204, Le Bourget du Lac, France.
5. Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, LFCR, UMR5150, Pau, France.
6. BRGM, B.P. 6009, 45060 Orléans Cedex, France

Corresponding author: louise.boschetti@univ-tlse3.fr

## Abstract

The Vocontian Basin in southeastern France records a long-lived history of subsidence and polyphase deformation at the junction of Alpine and Pyrenean orogenic systems. This study aims to reconstruct the geodynamical tectonic, and thermal burial and thermal evolution of this basin, based on new U–Pb dating of calcite from veins and faults combined with new RSCM thermometry and stratigraphy-based burial models. Three main generations of calcites are dated identified: (1) the Late Cretaceous to Paleocene dates period related to the Pyrenean-Provençal convergence (~84–50 Ma); (2) the Oligocene period dates linked to the extension of the West European Rift extension (~30–24 Ma); and (3) the Miocene dates period, ascribed to strike-slip and compression associated with the Alpine collision (~12–7 Ma). No older ages related to the Jurassic and Early Cretaceous rifting phases are obtained, despite specific targeted sampling near normal faults, suggesting limited focused syn-rift fluid circulation or subsequent dissolution of early calcite mineralization during subsequent tectonic events. RSCM data highlight a pronounced East – West thermal gradient, with peak temperatures are below 100°C in the west and exceeding 250°C in the eastern basin. This is, consistent with a

33 ~~more significant reflecting greater~~ crustal thinning and/or salt diapirism ~~in the eastern part of~~  
34 ~~the~~ Vocontian Basin ~~in~~with the overlapping ~~relation to the superimposed Jurassic and~~  
35 ~~Cretaceous rifting phases~~. These results emphasize the ~~large scale~~~~significant~~ impact of ~~the~~  
36 ~~opening of~~ the West European Rift in ~~south-eastern~~ SE France. ~~They further and highlight the~~  
37 ~~potential discrepancy mismatch~~ underscore the possible mismatch between ~~the~~ large-scale  
38 tectonic ~~processes~~ and the tectonic history inferred from calcite U–Pb dating, ~~which~~. ~~This~~  
39 ~~method~~, ~~which~~ is ~~sensible~~ ~~sensitive~~ to ~~the~~ presence of fluids and the physical conditions  
40 ~~necessary~~~~required~~ for their preservations.

41

## 42 1. Introduction

43 Sedimentary basins ~~located~~ in the external part of orogenic belts ~~can offer provide~~ critical  
44 insights into the polyphase ~~and complex~~ evolution of ~~tectonic~~ plate boundaries. The Vocontian  
45 Basin ~~is located at the front of the southern Alpine belt~~ in southeastern France ~~is currently~~  
46 ~~positioned at the front of the southern Alpine belt, to the north of Provence~~ (Fig. 1, 2A). This  
47 ~~basin region~~ recorded a succession of tectonic events ~~spanning~~ from the ~~Late Mesozoic~~  
48 ~~Cretaceous~~ to the Cenozoic (Roure et al., 1992; Homberg et al., 2013; Moutherau et al., 2021).  
49 ~~They are, (Fig. 1). They are attributed to Mesozoic. These different tectonic events have been~~  
50 ~~attributed to the Mesozoic rifting associated with the rifting opening of~~ in the Alpine Tethys and  
51 the Atlantic Ocean-Pyrenean ~~riftsystems~~, Cenozoic inversion ~~of the rifted margins~~ during ~~the~~  
52 ~~development of~~ the Pyrenees-Provence collision, and ~~the~~ Eocene-Oligocene to Miocene  
53 extension associated with ~~the opening of~~ the West European Rift and the ~~opening of the~~ Gulf  
54 of Lion (e.g., Stämpfli, 1993; Homberg et al., 2013; Bestani et al., 2016; Espurt et al., 2019;  
55 Célini et al., 2023).

56 ~~Some~~ ~~d~~Details of the tectonic evolution of the Vocontian Basin ~~specifically~~, ~~positioned~~ at the  
57 intersection between the Europe-Iberia and Europe-Adria ~~plate~~ ~~plate~~ boundaries, are however  
58 debated. ~~There has been a~~ ~~A~~ long-standing debate ~~persists about on~~ whether the Mid-  
59 Cretaceous Vocontian Basin, ~~north of Provence~~, is part of a continuous rift ~~system~~ ~~linking~~  
60 ~~between~~ the Valaisan ~~Basin and the~~ Alpine Tethys ~~in the east and to~~ the Pyrenean Basin and  
61 ~~the~~ Atlantic Ocean ~~in the west~~ (Trümpy, 1988; Stämpfli, 1993; Stämpfli and Borel, 2002;  
62 Turco et al., 2012), ~~or if it~~. ~~In contrast, other studies suggest that the Vocontian Basin, while~~  
63 ~~belonging~~ to the broader Pyrenean/Atlantic rift system, ~~remained structurally disconnected~~  
64 ~~from other Pyrenean and Provençal rifts~~ ~~with~~ ~~In the latter case, Provence would be a small~~  
65 ~~emerged continental domain that is structurally disconnected from the Pyrenean and Provençal~~  
66 ~~rifts~~ ~~segments~~ (Debelmas, 2001; Manatschal and Muntener, 2009; Angrand and Moutherau,

67 2021; Célini et al., 2023; Boschetti et al., 2025a,b). In the latter hypothesis, Provence forms a  
68 rather small emerged continental domain between two Cretaceous rift segments.  
69 The analyses of Raman Spectroscopy of Carbonaceous Material (RSCM) temperatures from  
70 the Digne Nappe, in the eastern part of the Vocontian basin (Fig. 2A), supports a tectonic model  
71 in which the Vocontian basin resulted from two superimposed phases of crustal thinning. The  
72 first one is dated to the Upper Jurassic and coincides with the Alpine Tethys opening. The  
73 second phase, characterised by temperatures in the basin exceeding 300°C, is believed to have  
74 occurred during the Lower Cretaceous period, when the Pyrenean rifting led to continental  
75 breakup in the Valaisan domain (Célini et al., 2023).  
76 Despite the presence of the well-established structural and sedimentary constraints evidence on  
77 show of the tectonic evolution of the basin, including clear evidence for mid-Cretaceous syn-  
78 depositional normal faulting in the basin in the mid-Cretaceous (e.g., Homberg et al., 2013),  
79 brittle deformation lacks precise geochronological constraints data on the timing of this rifting  
80 and subsequent inversion are lacking. Establishing this chronology is critical, as the Cretaceous  
81 extension often overlaps with the onset of Pyrenean compression (Fig. 2B) and could also be  
82 linked to diapirism (Bilau et al., 2023b). Resolving this question is critical important because,  
83 as the timing of the end of Cretaceous extension often overlaps coincides with the onset of  
84 Pyrenean compression (Fig. 2B) also be related to (Bilau et al., 2023b). Furthermore, it is also  
85 is unclear whether this part of the Alpine foreland was tectonically affected by experienced the  
86 Eo-Oligocene same extension associated as the West European Rift extension, as seen in  
87 nearby in the Valence and Manosque basins (e.g., Ford and Lickorish, 2004), or with the  
88 opening of the West Mediterranean well identified in the thermal record of the Maures-Esterel  
89 massif, a few tens of kilometers to the south (Fig. 2B) (Boschetti et al., 2023; 2025a,b).  
90 Such These Cenozoic thinning events may have impacted the thermal evolution of the  
91 Vocontian Basin and be confused with Mid-Cretaceous extension or Alpine thickening (Fig.  
92 2B) (e.g., Célini et al., 2023). In addition, two N-north-S-south compressional events dated to  
93 Eocene and late Miocene are recognized in the fault pattern of Provence (Bergerat et al., 1987;  
94 Lacombe and Jolivet, 2005). — The role of all these major tectonic phases in the brittle  
95 deformation history and in the related thermal regime remains unclear as, the most recent  
96 studies in the basin have not yet successfully isolated the effects of each been able to discretise  
97 the influences of each of these geodynamic events within the basin and their impact. In  
98 particular, the temperatures reconstructed based on reconstructions based on analyseis of  
99 Raman Spectroscopy of Carbonaceous Material (RSCM) support two alternative tectonic  
100 scenarios. (i) Either the tTemperatures from the Digne Nappe are interpreted as resulting reflect

101 from crustal thickening below the propagating Alpine nappe stack (Balansa et al., 2023). An  
102 alternative Alternatively, a scenario model supports a tectonic model of involving two  
103 superimposed phases of crustal thinning in the Vocontian basin has been proposed (Célini et  
104 al., 2023; Fig. 2BA). The first phase, is tied up to in the Upper Jurassic, and coincides with the  
105 Alpine Tethys opening, while the . The second phase, characterised by temperatures exceeding  
106 300°C during in the Lower Cretaceous, is associated with Pyrenean rifting and Valaisan opening  
107 (Célini et al., 2023). Therefore, large scale Basin-scale geochronological and thermal analyses  
108 tectonic implications of the thermal evolution of Vocontian basin need to be confirmed by a  
109 combined geochronological and thermal approach at the scale of the basin are needed to validate  
110 this tectonic interpretations.

111

112

113 This study addresses these questions through using by an approach combining basin-scale U-  
114 Pb dating of calcite in faults and veins, -which origins are constrained constrained by paleostress  
115 inversions, complemented with new RSCM thermochronology temperatures and an and the  
116 analysis of the analysis of the burial history analysis of the Vocontian basin Basin. Our We aim  
117 is to establish a robust chronological framework for the Vocontian basin in the context of the ,  
118 related to the geodynamics of SE south-east France, and to clarify ing the interactions  
119 between succession sequence and extent of the different successive tectonic systems phases that  
120 developed in SE France by establishing a robust chronological framework. Our finding Theses  
121 constraints have significant implications for improve our understanding of polyphase  
122 deformation at the Europe-Iberia-Adria plate boundary.

123

124

125 The analyses of Raman Spectroscopy of Carbonaceous Material (RSCM) temperatures from  
126 the Digne Nappe, supports a tectonic model of two superimposed phases of crustal thinning in  
127 the Vocontian basin (Fig. 2A). The first phase is dated to the Upper Jurassic and coincides with  
128 the Alpine Tethys opening. The second phase, characterised by temperatures exceeding 300°C  
129 during the Lower Cretaceous, is associated with Pyrenean rifting and Valaisan opening (Célini  
130 et al., 2023). To gain insights on the large scale tectonic implications of the thermal evolution  
131 of Vocontian basin, temperature constraints have been obtained in eastern part of the Vocontian  
132 Basin that was inverted during the Alpine collision, and transported in the Digne Nappe. Large-  
133 scale tectonic implications of the thermal evolution of Vocontian basin did to be confirmed in  
134 the Vocontian Basin

135  
136

137 **2. Geological setting**

138 Positioned at the front of the Western Alps, the Vocontian Basin ~~is forms~~ part of the Southern  
139 Subalpine belt, ~~which developed produced through by~~ the interactions between the Pyrenean-  
140 Provençal belt to the south and the Alpine belt to the east (Philippe et al., 1998; Balansa et al.,  
141 2022; Célini et al., 2024; Fig. 1). It includes the Diois-Baronnies region, and ~~it~~ is bordered by  
142 the Rhône Valley and the ~~French~~ Massif Central basement to the west, the External Crystalline  
143 Massif of Pelvoux to the east, the Vercors Massif to the north, and the Provençal Platform to  
144 the south (Figs. 1, 2A).

145 The Vocontian Basin ~~is filled by with a succession approximately 2,600 m thick succession~~  
146 ~~of~~~~contains a thick mostly Mesozoic sedimentary succession, deposits, along its margins~~  
147 ~~reaching a thickness of~~ up to 7,000 m in ~~its theits~~ center ~~and 2,600 m along its margins~~ (Fig.  
148 2B).

149 The base of the folded stratigraphic sequence ~~is made of~~~~comprises~~ Upper Triassic evaporites,  
150 which have ~~led resulted to in~~ the ~~development formation~~ of salt diapirs ~~that piercing pierce the~~  
151 ~~sedimentary cover~~ (e.g. Suzette ~~and~~ Propiac diapirs) ~~that pierce the overlying sedimentary~~  
152 ~~cover, or as well as and locally~~ controlling ~~certain features of the basin including such as~~  
153 ~~variations in thickness variations variations~~ (Fig. 3A) (Célini, 2020 and references therein).

154 ~~The subsidence at the origin of that formed the basin~~ Basin subsidence initiated began with the  
155 opening of the Alpine Tethys ~~to the east~~ during the Early to Middle Jurassic (e. g. Lemoine et  
156 al., 1986). This period is marked by the deposition of alternating shallow marine limestones  
157 and marls, followed by ~~progressive~~ deepening ~~that culminated with marine environments~~  
158 ~~culminating with~~ the deposition of organic-rich black shales of the “Terres Noires” formation  
159 during the Bathonian–Oxfordian (Fig. 2). In the Late Jurassic, the basin underwent NNE–SSW-  
160 directed extension, ~~as~~ recorded by syn-sedimentary NNW–SSE-trending normal faults  
161 (Homberg et al., 2013). This extensional regime, ~~consistent linked to with~~ the propagation of  
162 the Alpine Tethys, led to the deposition of fine-grained bioclastic Tithonian ~~L~~imestones, which  
163 ~~form serves as~~ a distinctive morphostructural marker and reflect slower subsidence (Remane,  
164 1970; Joseph et al., 1988). The subsidence continued through ~~out~~ the Early Cretaceous  
165 (Valanginian-Aptian) ~~period, with the during which~~ deposition of alternating layers of marls and  
166 limestones ~~were deposited that define, shaping the deeper marine “Vocontian facies”~~  
167 ~~contrasting with. These deeper marine deposits contrast with the~~ shallow-water carbonates of  
168 the Vercors ~~and Provence~~ platform ~~s to the north~~, known as the "Urgonian facies" (Fig. 2A).

169 A major tectonic shift in the tectonic regime occurred during the Aptian–Albian period, which  
170 was marked characterised by increased subsidence and the deposition of thick marly sequences  
171 ("Blue Marls"; Debrand-Passard et al., 1988) (Fig. 2B). This phase is associated with the  
172 development of E–W-trending normal faults, suggesting a reorientation of the extensional stress  
173 field from NNE–SSW (Late Jurassic) to WNW–ESE (Homberg et al., 2013). This shift is  
174 interpreted to likely reflect s plate tectonic reorganization, linked to the onset of Europe–Iberia  
175 divergence (Bay of Biscay opening) and the closure of the Alpine Tethys through Europe–Adria  
176 convergence (Lemoine et al., 1987; Stämpfli, 1993).

177 During the Late Cretaceous, sandstones were depositioned dominated in the east of the basin,  
178 while limestones prevailed in the west whereas limestones predominated in the east of the basin  
179 (Fig. 2). In the north-eastern part of the basin, At at the current location of the Dévoluy massif,  
180 in the north-eastern part of the basin, a stratigraphic hiatus of spanning the Turonian, Coniacian  
181 to the Santonian (Fig. 3B) is documented, regionally referred to as the Turonian unconformity  
182 (e. g. Flandrin, 1966). It is marked This interval is characterized by the argillaceous to  
183 sublithographic limestones of the lower Cretaceous limestones and E–W–trending folds, which  
184 are lie in direct contact, below an erosional surface, with bioclastic and terrigenous deposits of  
185 the Campanian–Maastrichtian bioclastic and terrigenous deposits (Fig. 2–3B; Gidon et al.,  
186 1970; Arnaud et al., 1974). In the entire Across the Vocontian basin, the main stratigraphic  
187 hiatus corresponds to the Paleocene–Early Eocene (Fig. 2B). This late Cretaceous to Paleocene  
188 event is coincides eoval with the onset of Iberia–Europe convergence, marking the initial stages  
189 of the Pyrenean–Provençal orogeny from ~84 Ma (~84 Ma; Angrand and Moutherau, 2021;  
190 Moutherau et al., 2014; Muñoz, 1992; Teixell et al., 2018; Ford et al., 2022) and These  
191 deformations are is consistent with the exhumation at ~85 Ma of the Pelvoux crystalline  
192 basement to the northeast at ~85 Ma (Fig. 2; Boschetti et al., 2025a).

193 After Following this tectonic change, marine incursions only were limited and localized marine  
194 incursions occurred from the Late Eocene to the Miocene (Fig. 2B). This period corresponds to  
195 the early Alpine collision, which affected the internal domains and the eastern parts of the  
196 External Crystalline Massifs (e. g. Ssimon-Labréte et al., 2009; Boschetti et al., 2025c).  
197 Meanwhile, regional-scale extension developed in the European plate, driven by due to the  
198 evolution of the Western European Rift system and the opening of the Liguro–Provençal back-  
199 arc basin in southeastern France (Fig. 1) (Hippolyte et al., 1993; Séranne et al., 2021; Jolivet et  
200 al., 2021; Boschetti et al., 2023).

201 In the eastern ~~part of the~~ basin, the latest compressional phase is recorded by N–S to NW–SE–  
202 trending structures associated with the Digne thrust (Fig. 1–2) and final Alpine exhumation  
203 between ~12 and 6 Ma (Schwartz et al., 2017).

204

### 205 3. Sampling and methods

#### 206 3.1 Sampling strategy

207 ~~The-s~~Sampling sites were carefully selected to characterize both the nature and ages of ~~the~~  
208 brittle deformation ~~that in affecting~~ the Jurassic and Cretaceous formations ~~within of~~ the  
209 Vocontian ~~basin Basin~~ (Fig. 2A). ~~We first targeted sites where normal faults The main~~  
210 ~~structures were described as syn-rift faults or veins formed shortly after deposition (were first~~  
211 ~~identified based on the work of~~ Homberg et al.–~~(2013)~~, ~~and where we observed calcite~~  
212 ~~mineralizations, who described syn extensional features in the Vocontian Basin that were~~  
213 ~~formed "shortly after" sediment deposition. The analysis of these specific sites was expanded~~  
214 ~~to include other types of brittle structures, such as strike-slip and reverse faults, to document~~  
215 ~~the polyphase deformation of the Vocontian Basin. We Our sampling targets were further~~  
216 ~~guided using~~ used the 1:50.000 scale BRGM geological maps from Die to Sisteron ~~to select our~~  
217 ~~sampling targets.~~

218

#### 219 3.2 Tectonic and paleostress analysis

220 To reconstruct the tectonic evolution of brittle deformation in the Vocontian Basin, fault-slip  
221 data and other stress indicators, ~~like including~~ calcite veins, were measured in the field and  
222 collected for U–Pb dating. Local stress states were inferred by inverting fault–slip data ~~using~~  
223 ~~following~~ the methodology ~~outlined of by~~ Angelier (1990) ~~using, implemented in~~ the Win–  
224 Tensor software (Delvaux and Sperner, 2003). This analysis provided the orientation of the  
225 three principal stress axes ( $\sigma_1$ ,  $\sigma_2$ , and  $\sigma_3$ ) and the shape of the stress ellipsoids defined by the  
226 ratio  $\phi = \frac{\sigma_2 - \sigma_3}{\sigma_1 - \sigma_3}$ , reflecting the relative magnitudes of the principal stresses. Relative  
227 chronology ~~between of~~ the reconstructed stress tensors was ~~achieved determined through from~~  
228 cross-cutting relationships between successive generations of veins and faults (normal, reverse,  
229 or strike-slip faults). Chronology ~~with respect relative~~ to folding was ~~further~~ refined by  
230 comparing the orientation of faults, veins, and/or associated stress states in their present-day  
231 ~~configuration and after unfolded unfolding configurations~~. This approach assumes that faults  
232 ~~originally were neo~~formed according to an Andersonian state of stress, with one principal stress  
233 axis ~~being~~ vertical.

234

### 235 **3.3 Calcite U-Pb geochronology**

236 Prior to U-Pb analyses, each polished thick section was petrographically characterized at IPRA  
237 (Institut Pluridisciplinaire de Recherche Appliquée) in Pau, France. This ~~characterization~~  
238 involved ~~the use of an~~ optical microscopy coupled with cathodoluminescence (CL) imaging  
239 to identify multiple calcite generations (shown in Supplementary Material: Fig. S1). CL  
240 images were acquired using an OPEA Cathodyne system coupled with a Nikon BH2  
241 microscope, operating at an acceleration voltage of 12.5 kV and an intensity of 300–500 mA.  
242 The U-Pb ~~absolute~~ dating of calcite was performed at IPREM laboratory (Institut des Sciences  
243 Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux) ~~laboratory~~, following  
244 the ~~analytical approach described by~~ protocol of Hoareau et al. (2021). This method employs  
245 isotopic mapping of U, Pb, and Th via a continuous ablation process, combined with a virtual  
246 spot method to construct Tera-Wasserburg (TW) plots (Hoareau et al., 2021, 2024). A  
247 ~~comprehensive~~ Detailed ~~des~~cription of the analytical procedure and data processing is provided  
248 in the Supplementary Material 1 (Tabs. A1, Tab. A2). The ~~analytical~~ setup included used a  
249 257 nm femtosecond laser ablation system (Lambda3, Nexeya, Bordeaux, France), operating at  
250 a frequency of 500 Hz with a spot size of 15  $\mu\text{m}$ . Ablation was conducted in a controlled  
251 atmosphere composed of helium (600 mL/min) and nitrogen (10 mL/min), ~~which was~~  
252 ~~subsequently~~ mixed with argon in the ICPMS. This system was coupled to an HR-ICPMS  
253 Element XR (ThermoFisher Scientific, Bremen, Germany) equipped with a jet interface  
254 (Donard et al., 2015).

255

### 256 **3.4 Burial history**

257 The subsidence history of the Vocontian Basin was reconstructed using stratigraphic sections,  
258 including thicknesses and lithologies, from the 1:50.000 scale geological maps of Die, Mens,  
259 Dieulefit, Luc-en-Diois, Gap, Nyons, Serres, Laragne-Montéglise, Vaison-la-Romaine, and  
260 Séderon, providing basin-wide coverage (Fig. 4). Standard backstripping techniques (Allen and  
261 Allen 2013) were applied ~~for this analysis~~. The sedimentary units were first decompacted using  
262 ~~a~~ coefficients ~~corresponding appropriate~~ to their dominant main lithology (limestone, marl or  
263 clay), ~~and with~~ stratigraphic ages inferred from the geological maps. To enable comparison  
264 between ~~the different sedimentary~~ stratigraphic columns, the stratigraphic ~~columns~~ data were  
265 resampled ~~at regular temporal intervals, every~~ at 1 Myr intervals, grouped into 5 Myr bins, ~~of 5~~  
266 Myr and ~~finally~~ interpolated using the 2D spline method.

267

268 **3.5 RSCM thermometry approach**

269 To determine the peak temperatures reached by sediments ~~and metasediments~~ in the Vocontian  
270 ~~B~~ basin, ~~we conducted~~ RSCM analyses ~~were conducted~~ on an initial set of ~~rock samples~~  
271 ~~collected from~~ Middle to Upper Jurassic and Lower Cretaceous carbonate ~~samples collected~~  
272 ~~close near to~~ U-Pb dated calcites (Fig. 2A, 4). ~~For comparison, this set was complemented by~~  
273 ~~a~~ ~~A~~ second set of samples ~~was taken collected~~ further eastwards in, or near, the Authon-  
274 Valavoire thrust nappe, ~~a (parautochtonous unit below at the front of)~~ where  
275 ~~the~~ deeper Lower Jurassic strata of the Vocontian are exposed and diapirism has ~~been~~  
276 ~~described occurred~~ (e.g., Célini et al., 2024). The RSCM approach ~~is constrains used to~~  
277 ~~understand~~ thermal processes ranging from advanced diagenesis to high-grade metamorphism,  
278 covering temperatures from 100 to 650°C (e.g., Ayoa et al., 2010; Koukestu et al., 2014; Schito  
279 et al., 2017). ~~Depending Appropriate calibrations depend~~ on the temperature range and ~~the~~  
280 geological context, ~~different calibrations are proposed~~. ~~Here, In this study,~~ we applied the  
281 calibration of Lahfid et al. (2010) ~~for was applied for~~ temperatures ~~ranging~~ between 200 and  
282 340°C, and the qualitative approach ~~proposed of in~~ Saspiturry et al. (2020) for ~~lower~~  
283 temperatures between 100 and 200°C. ~~The a~~ Analyses were performed at the Bureau de  
284 Recherches Géologiques et Minières (BRGM; Orléans, France) ~~using~~. ~~The Raman spectra were~~  
285 ~~obtained with~~ a Horiba LABRAM HR instrument with a 514.5 nm solid-state laser source ~~for~~  
286 ~~excitation~~. The laser ~~is was~~ focused ~~on the samples~~ with a BxFM microscope using a x100  
287 objective with a numerical aperture of 0.90 and under 0.1 mW ~~on at~~ the sample surface.

288 **4. Results**

289 **4.1 Microtectonics and paleostress reconstructions**

290 Veins and striated planes associated with folds (Fig. 5A), reverse faults (Fig. 5B) and normal  
291 faults (Fig. 5C) were measured and sampled. Stereo~~diagrams~~ of beddings, fault-slip data, veins  
292 and, when ~~necessary relevant~~, their associated back-tilting state of stress, are presented in Figure  
293 6. When ~~the sufficient number of~~ fault-slip data ~~was sufficient were available~~ for inversion (~~a~~  
294 minimum of four ~~is required~~), the calculated stress axes ~~have been are~~ reported (Fig. 6; Table  
295 1). In this section, ~~we first present~~ data from samples VOC-23-09a to VOC-23-16d ~~are~~  
296 ~~presented~~ (in numerical order, ~~followed by and then introduces~~ samples BON-23-01 ~~to~~, 02,  
297 ~~and~~ 03, ~~along with and~~ GLAN-23-02, ~~which, which~~ ~~These samples~~ belong to a second, ~~and~~  
298 separate field campaign. No measurements were conducted for samples ~~s~~ VOC-23-01a and VOC-  
299 23-01b, as the sampling area ~~is lies located~~ within ~~a the~~ diapiric structure of the Dentelles de  
300

301 Montmirail (Figs. 2A and, 6), which potentially could preventing a reliable interpretation of the  
302 paleostress tensor introducing local complexities.

303 The sampling area of sample VOC-23-09b shows is a majority dominated by of strike-slip faults,  
304 for which with paleostress inversion reveals indicating a strike-slip regime resolving under a  
305 NW-SE directed compression (Fig. 6). At site of sample the VOC-23-11a site, the where  
306 bedding is flat. We resolve a strike-slip regime with pPp paleostress reconstructions also that  
307 indicate reveal a strike-slip regime, involving NE-SW compression and NW-SE extension (Figs.  
308 5B, 6).

309 Samples VOC-23-12a and VOC-23-12b exhibit are suggestive of record distinct deformation  
310 patterns. While sample VOC-23-12a corresponds comprises to calcite veins indicative of  
311 consistent with WNW-ESE extension, whereas sample VOC-23-12b exhibits similar calcite  
312 veins, together with as well as additional strike-slip deformation, consistent with as reported on  
313 the stereogram. This reflects WNW-ESE compression and NNE-SSW extension (Fig. 6). This  
314 stress orientation closely matches that of, which is not significantly different from our result in  
315 sample VOC-23-09a and b sites. The Considering the The geometry of the stress axes, when  
316 considered alongside the dip and orientation of relative to the bedding dip and orientation  
317 suggests that this state of stress occurred after postdates folding.

318 Sample At the VOC-23-13 site, shows strike-slip faults that are consistent indicate a paleostress  
319 regime characterized by N-S-directed compression with an and E-W-directed extension and N-  
320 S-directed compression (Figs. 5C and, 6). Sample VOC-23-14a, represents is a calcite vein  
321 spatially that is associated with sample VOC-23-14b, occurs adjacent to, which exhibits This  
322 vein is located alongside a strike-slip fault with with a sinistral component. Paleostress  
323 reconstruction indicates a WNW-ESE extension coupled with and NNE-SSW compression  
324 (Fig. 6).

325 Sample VOC-23-16d shows calcite veins affected by strike-slip deformation. In contrast,  
326 sample VOC-23-12b only shows only post-vein strike-slip deformation (post vein) on the  
327 stereogram. Paleostress ealeulation analysis indicates an NW-SE-directed extension (Fig. 6).  
328 Samples BON-23-01a and BON-23-01b correspond consist of to a striated calcite that has been  
329 affected by layer-parallel shortening (LPS). This is interpreted as representing flexural slip  
330 during related to folding (Lacombe et al., 2021) (Figs. 5A, 6). Sample BON-23-01c, is a calcite  
331 vein that formed within the same fold, as the previous samples. It is interpreted to have formed  
332 during the fold growth of the fold. Paleostress analysis reconstruction of at the Bonneval  
333 outcrop indicates N20°E-directed compression associated with the formation of the N110°E-

334 trending fold (Figs. 5A, 6). Finally, the GLAN-23-02 ~~sample~~-outcrop exhibits a normal fault  
335 ~~coherent consistent with a NE-SW oriented~~ extension ~~direction~~.

336

## 337 4.2 Petrography of calcite samples

338 In ~~summary total~~, 15 samples were dated in this study: 6 veins (~~samples~~ VOC-23-01a, 01b, 09b,  
339 12a, 14b and BON-23-03) and 9 striated fault planes ~~with striations~~ (~~samples~~ VOC-23-9a, 11a,  
340 12b, 13, 14a, 16d, BON-23-01, 02 and GLAN-23-02). Most samples ~~exhibit contain~~ millimetric  
341 ~~to centimetric~~ blocky ~~or to~~ elongate-blocky calcite, ~~in sizes ranging from millimetres to~~  
342 ~~centimetres~~ (Fig. 5; ~~samples~~ VOC-23-01, 9a, 12a, 22b, 13a, 14a, BON-23-01, 02, 03 and  
343 GLAN-23-02). ~~They are~~ These calcites are characterized by homogeneous luminescence,  
344 indicating ~~no evidence of a single multi-phase calcite growth with no evidence of~~  
345 ~~recrystallization~~ (Figs. 7A, B; Supplementary Material Fig. S1). Two samples exhibit ~~different~~  
346 ~~distinct~~ calcite morphologies. Sample VOC-23-11a contains a centimetric calcite ~~showing with~~  
347 a transitional morphology between syntaxial and stretched ~~crystals~~ (Figs. 7C, D). ~~This~~  
348 ~~suggesting the presence of crystals with variable growth planes orientations and within the fault~~  
349 ~~plane, indicating potential~~ multiple crack-seal events. Similarly, sample VOC-23-16d displays  
350 millimetric to centimetric blocky calcite. ~~This is, predominantly composed of blocky calcite,~~  
351 ~~which and appears to be~~ crosscut by a ~~second~~ younger generation of more elongated and  
352 stretched ~~second~~ calcite ~~generation~~ (Fig. 7C, D).

353

## 354 4.3 Calcite U-Pb geochronology

355 This study presents 16 new calcite U-Pb ages obtained from eight types of brittle structures  
356 (Table 1; Figs. 8, 9, 10). The Tera-Wasserburg diagrams show data well spread along the  
357 discordia line, ~~with~~. ~~The~~ Mean Squared Weighted Deviation (MSWD) ranges from 1.1 to  
358 1.9, ~~which indicating robust is consistent with~~ well-resolved age estimates. Three distinct  
359 age groups can be identified ~~from within this the~~ dataset.

360 The first age group corresponds to the Late Cretaceous to Early Eocene ~~periods interval, based~~  
361 ~~on from~~ veins collected in late Jurassic-Early Cretaceous strata in the ~~West~~ western part of the  
362 basin. ~~Ages obtained in~~ In the “Dentelles de Montmirail” area, ~~ages are~~ of  $82.9 \pm 3.8$  Ma  
363 (~~sample~~ VOC-23-01b) and  $76.5 \pm 3.4$  Ma (~~sample~~ VOC-23-01a) were obtained. ~~Further north,~~  
364 ~~In~~ in the Die region, to the North ~~north of the study area, in the Die region, corresponding~~  
365 ~~fold-related~~ structures associated with  $N20^\circ E$  shortening ~~are have been dated~~ yielded ages to ~~of~~  
366  $72.0 \pm 3.7$  Ma (~~sample~~ BON-23-01a),  $71.2 \pm 8.1$  Ma (~~sample~~ BON-23-01b), and  $50.0 \pm 4.3$  Ma  
367 (~~sample~~ BON-23-01c) (Fig. 8).

368 The second age group corresponds to veins and faults ~~dated~~~~formed~~ ~~during~~ ~~back to~~ the  
369 Oligocene. ~~The obtained~~ ages range from  $34.3 \pm 1.5$  Ma (vein: VOC.23.14a),  $30.3 \pm 1.5$  Ma  
370 (fault: VOC.23.14b2),  $30.0 \pm 2.8$  Ma (fault: VOC.23.13b),  $28.1 \pm 1.2$  Ma (fault: VOC.23.14b1),  
371  $25.6 \pm 1.3$  Ma (vein: VOC.23.12a),  $23.2 \pm 1.3$  Ma (deformed vein: VOC.23.12a and b) and  $27.6$   
372  $\pm 5.4$  Ma (fault: GLAN.23.02) (Fig. 9). Most of these fractures correspond to ~~an~~ NW-SE to NE-  
373 SW extension (Fig. 6). ~~However, one of them~~, sample VOC.23.12b ~~indicates~~, which is  
374 ~~the same kind of veins as VOC.23.12a, is consistent with~~ a strike-slip ~~stress~~ regime with NNE-  
375 SSW extension and WNW-ESE compression, similar to ~~that inferred from sample~~ VOC.23.09  
376 (Fig. 6). ~~Calcite veins in VOC.23.12b are of the same kind~~ ~~type of veins as those in~~  
377 ~~VOC.23.12a.~~

378 The third age group corresponds to Miocene veins and strike-slip faults ~~collected~~~~hosted~~ in  
379 Upper Jurassic-lower Cretaceous carbonates. Two subgroups can be distinguished. The first  
380 subgroup, ~~characterized by ages of~~ ~~dated to~~  $12.2 \pm 3.2$  Ma and  $12.5 \pm 5.2$  Ma (fault: VOC.23.11a  
381 and fault: VOC.23.16d), ~~is records a~~ ~~associated with a~~ strike-slip regime ~~consistent~~ ~~defined with~~  
382 ~~by~~ NE-SW compression and NW-SE extension (Figs. 10, 6). The second subgroup, ~~defined~~  
383 ~~with by~~ ages of  $7.8 \pm 0.6$  Ma and  $7.0 \pm 2.2$  Ma (fault: VOC.23.09a and vein: VOC.23.09b), ~~also~~  
384 ~~corresponds reflects to~~ a strike-slip regime but ~~corresponds with to~~ stress orientations indicating  
385 NW-SE compression and NE-SW extension (Figs. 10, 6).

386

#### 387 4.5 RSCM thermometry

388 RSCM data from the first set of Upper Jurassic and Lower Cretaceous carbonates in the central  
389 and southern parts of the ~~studied~~~~study~~ area indicate ~~that~~ ~~maximum~~ temperatures ~~did not~~  
390 ~~exceed~~~~below~~  $100^\circ\text{C}$  (~~samples~~ VOC-23-01 and VOC-23-16; Table 2). For the second set ~~of~~  
391 ~~samples~~, ~~reliable~~ temperatures ~~were~~ ~~estimates~~ ~~successfully~~ ~~determined~~ ~~were obtained~~ for 12  
392 samples using an appropriate calibration (Table 2, Fig. 6), which can be divided in two  
393 subgroups. Temperatures measured in Lower to Upper Jurassic strata ~~sampled~~ near Saint  
394 Roman and Montmaure, in the Die area, ~~display the lowest temperatures~~ ~~ranging~~ between 100  
395 and  $180^\circ\text{C}$  (~~samples~~ VOC-1823-1718, VOC-1823-178). ~~The lowest temperatures are found~~  
396 near Veynes and close to the Devoluy massif (sample VOC-1824-20), ~~in~~ Sigoyer village  
397 (~~samples~~ VOC-1823-0224, VOC-1823-2203), and in the upper stratigraphic unit of the Authon-  
398 Valavoire nappe (~~sample~~ VOC-1824-28), ~~and~~ in the eastern ~~part~~ of the basin, below ~~this~~ ~~the~~  
399 ~~Digne~~ nappe (sample VOC-1824-29). The higher bound of RSCM temperatures, ~~reaching up~~  
400 ~~to~~ ~~at~~  $170^\circ\text{C}$ , is measured ~~for~~ ~~in~~ samples VOC-1824-24a and 33, ~~both~~ located near diapiric  
401 structures: “Rocher de Hongrie” (Célini et al., 2024). These latter values ~~align~~ are consistent

402 with previously reported temperatures ~~between of~~ 140–~~and~~ 200°C ~~recently published~~ in the  
403 vicinity of ~~this the same~~ diapir (Célini et al., 2024). The second ~~sub~~group ~~defined characterized~~  
404 by higher temperatures between 215 and 275°C, includes ~~are samples located found~~ 1 km to  
405 the south of Sigoyer (~~sample~~ VOC-1824-23), within the middle Jurassic ~~layers strata~~ in the  
406 hangingwall of the Authon-Valavoire nappe (~~sample~~ VOC-1824-25), and in the Lias ~~strata~~  
407 sequence near the Astoin diapir (~~sample~~ VOC-1823-31). Temperatures of this second ~~sub~~group  
408 fall within the temperature range recorded in the Authon-Valavoire nappe, particularly near  
409 Astoin, closer to the Digne nappe, ~~near Astoin~~ (Célini et al., 2024). To summarize, our data  
410 reveal a thermal contrast between the western and eastern domains of the Vocontian ~~B~~basin.  
411 While the organic matter of upper Jurassic-lower Cretaceous formations ~~is remains~~ thermally  
412 immature, deeper Early-Middle-Late Jurassic formations exposed in the eastern part of the  
413 Vocontian basin, close to the Authon-Vallavoire and Digne nappes ~~show exhibit~~ significantly  
414 higher thermal maturity, with RSCM temperatures exceeding 180°C and reaching up to 275°C.  
415 ~~The shift towards higher~~ A similar increase in RSCM temperatures between the Upper Jurassic-  
416 Early Cretaceous and deeper stratigraphic units of the Early-Middle Jurassic has also been  
417 ~~observed documented~~ in stratigraphic ~~columns sections analysed from of~~ the Digne Nappe  
418 (Célini et al., 2022; Balansa et al., 2023).

419

#### 420 **4.4 Burial histories and temperatures reached in the basin**

421 Burial histories for the Vocontian Basin are presented in Figure 11. Each curve represents the  
422 burial evolution ~~within the basin, calculated reconstructed from from a synthesis of~~ stratigraphic  
423 thicknesses indicated in explanatory notes of ~~inferred from~~ the BRGM 1/50.000 geological  
424 maps covering the basin. The data indicate ~~A first observation is~~ that ~~the~~ total sediment  
425 accumulation ~~in the Vocontian basin appears to have~~ reached a maximum of 6-7 km since the  
426 Early Jurassic. This is shown by the estimated decompacted thicknesses estimated of at 6800  
427 m in the Die region and, or 5900 m in near Nyons, in the northern and western parts sectors of  
428 the basin, respectively. In contrast, areas lacking exposures of ~~In regions of the basin where the~~  
429 Lower Jurassic series such as Vaison-la-Romaine, show are not exposed the total reduced total  
430 subsidence is obviously lower; it is of only around 2500 m in the region of Vaison la Romaine.  
431 Despite these differences, most regions parts of the basin recorded a main phase of burial during  
432 the Middle Jurassic, in the (Callovian, ~about 160 Ma (Fig. 11), associated with the widespread  
433 This phase affected the entire Vocontian Basin. It is shown by the deposition of marls to and  
434 shales deposits of the “Terres Noires”, facies characteristic typical of the External Alps. During  
435 this period, about 2 km of “Terres Noires” were deposited (accumulation accumulated with rates

436 of 200-400 m/Myr). ~~After Following~~ the Middle Jurassic, the burial ~~slowed rates decreased~~  
437 ~~down~~ but continued ~~throughout~~ the Late Jurassic and Early Cretaceous. A second phase of  
438 accelerated subsidence took place during the Early Cretaceous, around 130 Ma ~~(, in the~~  
439 ~~Hauterivian), documented. It is documented~~ in the Mens section by the deposition of about 700  
440 m of marls and limestones (Fig. 4). A third ~~main major burial~~ phase, ~~of burial is recorded~~  
441 ~~around dated to~~ 100-90 Ma (Fig. 11), ~~is recorded~~ in ~~the~~ 6 ~~out of the~~ 10 stratigraphic sections  
442 ~~(Fig. 11). It is~~~~This phase is~~ characterized by increasing siliciclastic influx, revealed by the  
443 deposition of ~~700-800 m sandstones~~ alternating ~~sandstones, with~~ marls and limestones ~~with a~~  
444 ~~thickness of about 700-800 m~~ (e.g., Nyons, Sédéron, Vaison-la-Romaine) ~~(Fig. 10). In contrast,~~  
445 ~~The the~~ Gap, Laragne-Montéglise, and Mens sections, however, ~~record show evidence of~~ erosion  
446 rather than sedimentation at this time. These ~~contrasting~~ depositional patterns reveal ~~concurrent~~  
447 ~~both~~ uplift in the source regions and structural compartmentalization in the Vocontian ~~basin~~  
448 ~~Basin~~ (Fig. 11). A last episode of subsidence, ~~reaching of maximum~~ 350-500 m (e.g., Die,  
449 Laragne) is documented during the Eocene-Oligocene (Fig. 11).

450

451

## 5. Discussion

452

453  
454  
455  
456  
457

~~The results from this study are put into perspective of the evolution of the Vocontian Basin of~~  
~~south-east France through time. For this, we merge results from structural analysis with~~  
~~corresponding U-Pb calcite ages, and discuss the evolution of the related burial history~~  
~~estimated from the lithological logs, which have been used to infer paleo-thermal gradients.~~  
~~Four main evolutionary stages can be proposed based on these data, which are discussed below.~~

~~5.~~

458

459

### 5.1 The ~~Vocontian basin at the time of~~ Mesozoic rifting: E-W trend in thermal gradients and low Ca-rich fluid circulation (170-90 Ma)

460  
461  
462  
463  
464  
465  
466  
467  
468  
469

The Vocontian basin recorded a prolonged phase of subsidence ~~during throughout~~ the Jurassic  
and Cretaceous (Fig. 11), which ~~is was however~~ not associated with a distinct fluid event. This  
period coincides with the rifting of the European paleomargin as inferred by the thermal  
evolution of the ~~Pelvoux~~ Variscan crystalline basement ~~to the north of the Pelvoux massif~~  
(Boschetti et al., 2025a,c) ~~to the North~~, and ~~from the~~ burial history below the Digne Nappe ~~to~~  
~~the east~~ (Célini et al., 2023), ~~which bounds the Vocontian to the east~~. This ~~latter e~~Eastern rim  
~~margin~~ of the basin was likely inverted during the late stages of the Alpine collision between  
12 and 6 Ma (Schwartz et al., 2017). We distinguish a first major phase of sedimentary burial  
that occurred during the Callovian-Oxfordian ~~(, between 170 and 160 Ma), which postdates~~ It  
~~This burial postdates~~ the necking of the European paleomargin, ~~which occurred during rifting~~.

470 as identified in the External Crystalline Massifs (Mohn et al., 2014; Ribes et al., 2020; Dall'Asta  
471 et al., 2022) and ~~is is~~ synchronous with the opening of the Alpine Tethys (Lemoine et al., 198~~67~~;  
472 Manatschal and Müntener, 2009). ~~It~~This ~~rifting~~ is recognized in the Vocontian ~~basin~~Basin,  
473 where it is expressed by WNW–ESE extension ~~across the entire basin~~ (Dardeau et al., 1988;  
474 Homberg et al., 2013), but it is not ~~recorded~~captured in our calcite U-Pb ages. Similar  
475 observations can be made for the subsequent extensional Cretaceous ~~event at around~~(~~~~~135  
476 Ma), for which no faults~~s~~ of that age ~~is~~are reported. The high temperatures~~s~~ measured ~~in the~~  
477 ~~Vocontian basin of~~in the Digne Nappe at this time are interpreted ~~to as~~ reflecting renewed  
478 extension ~~associated with the opening in the basin as of~~ the Valaisan domain ~~opened~~ along the  
479 European margin (Célini et al., 2023), consistent with ~~continuous ongoing~~ burial heating  
480 recorded in the Pelvoux massif (Boschetti et al., 2025a,c). This ~~thermal new~~ peak ~~in~~  
481 ~~sedimentation is consistent~~coincides with a shift from the Middle Jurassic WNW–ESE  
482 extension to NNE–SSW extension ~~at regime~~ during the Barremian–~~to~~ Aptian ~~interval~~ (Dardeau,  
483 1988; de Graciansky and Lemoine, 1988; Homberg et al., 2010). This later extensional ~~event~~  
484 ~~phase~~ is recorded not only throughout the Vocontian Basin (Homberg et al., 2013), but also  
485 along its margins. Evidence ~~for this later extensional event~~ includes deformation along the  
486 Ventoux–Lure fault zone (Beaudoin et al., 1986; Huang et al., 1988), the ~~development~~  
487 ~~formation~~ of large-scale sliding domains on the Vercors platform (Bièvre and Quesne, 2004),  
488 and subsidence in ~~E~~east–~~W~~west-oriented domains along the Ardèche margin during the same  
489 period (Cotillon et al., 1979). Our RSCM analyses ~~show~~indicate an increase ~~of~~in peak  
490 temperatures ~~towards~~toward the ~~E~~east–~~W~~west of the Vocontian ~~Basin~~, where ~~the~~ deeper Lower  
491 Jurassic stratigraphic ~~series~~strata ~~are~~is ~~are~~exposed (Fig. 6; Table 2). ~~When we compared~~  
492 ~~Comparing to corresponding~~burial~~these~~ temperatures ~~with~~inferred from burial  
493 ~~estimates~~depths ~~ranging from~~using normal (30°C/km) to high (60°C/km) geothermal gradients  
494 ~~suggests~~, we infer that ~~our~~the eastern sector ~~RSCM~~data ~~revealed~~experienced unusually  
495 high to extreme gradients ~~in the E~~east, ~~that is, i.e.~~in the ~~consistent with~~ ~~direction of~~ increasing crustal  
496 thinning in the Vocontian–Valaisan rift segment ~~this~~in direction (Fig. 6; Table 2). ~~It~~This should be  
497 ~~noted~~noted that the sharp increase in the geothermal gradients is not ~~necessarily~~entirely ~~solely~~related  
498 ~~to~~due to crustal thinning, but ~~is~~also largely a ~~response~~result of mantle thinning and asthenosphere  
499 ~~uprising~~uplift. The ~~lack~~absence of calcite mineralisation ~~in~~in brittle tectonic features ~~at~~at this ~~age~~  
500 ~~time~~time, ~~despite~~specifically targeting ~~potentially~~potentially related veins, ~~in~~in brittle tectonic features ~~is~~  
501 ~~intriguing~~intriguing. Indeed, evidence of ~~mineralization of~~mineralization of barite, authigenic quartz and pyrite  
502 ~~mineralization~~mineralization in the Callovian–Oxfordian shales in the deeper part of the basin is interpreted  
503 as reflecting basal fluid flow during ~~syn-rift~~syn-rift peak burial in the Middle Cretaceous, as well as

504 brines related to salt diapirs (Guilhaumou et al., 1996). We suggest that the absence of Middle  
505 Cretaceous calcites ~~can reflect~~can be explained either the fact that~~either~~by 1) ~~that~~ faulting  
506 occurring~~ing~~ at a depth too shallow for calcite precipitation, ~~and/or~~ 2) ~~that~~ subsequent burial to  
507 ~~a depth of~~ 2-3 km, in the ~~East, eastern~~ basin leading~~ed~~ to the dissolution of previous Middle  
508 Cretaceous calcites ~~in response~~due to changing physical conditions (e.g., pH ~~and~~, temperature).  
509 ~~In addition, mechanical decoupling in the Triassic salt layer during extension may have~~  
510 ~~resulted in the localization focused of~~ fluid flow, ~~so that mineralized fluids of this age are~~  
511 ~~detectable only locally, near the emergence of salt diapirs. and deformation at the base of the~~  
512 ~~basin.~~

513 A third depositional phase occurred around 100-90 Ma, in agreement with syn-faulting deposits  
514 along the Clausis and Glandage fault systems in the Vocontian/Dévoluy basin (Fig. 11, 3)  
515 (Gidon et al., 1970; Arnaud et al., 1974) and ~~with~~ strike-slip ~~motions~~activity along the  
516 Toulourenc faults in the Ventoux-Lure massif (Montenat et al., 2004). ~~Regionally, On a broader~~  
517 ~~scale,~~ this tectonic phase coincides with strike-slip movements along the Cévennes, Nîmes and  
518 Durance faults (Montenat et al., 2004; Parizot et al., 2022), ~~possibly potentially~~ associated with  
519 local compression related to diapiric movement at 95-90 Ma (Bilau et al., 2023b) and normal  
520 faulting reported in Provence (Zeboudj et al., 2025). This episode is a response of the  
521 continental rifting between Iberia-Ebro and European plates, and the formation of the Pyrenean  
522 rift system (Angrand and Moutherieu, 2021) ~~-(Fig. 12A). - It should be reminded that t~~The  
523 ~~locally complex tectonic evolution of SE France during the Middle Late Cretaceous is a~~  
524 ~~response to large scale differential movements between Iberia Ebro and Adria that~~  
525 ~~accommodated both extension in the Pyrenees Provence rift and contraction in the Alps (e.g..~~  
526 ~~Le Breton et al., 2021; Angrand and Moutherieu, 2021; Boschetti et al., 2025b, In Press).~~  
527 Strike-slip movements along inherited faults (Cévennes, Nîmes, Durance faults) were  
528 associated with oblique extension accommodated by overlapping rift segments in the Pyrenean  
529 and Vocontian basins (Fig. 12). This complex tectonic setting likely triggered the emergence  
530 of continental blocks that can explain the abundance of sandstone deposits during this period in  
531 the Vocontian basin (Fig. 4, 11). This interpretation aligns with the documented formation of  
532 an uplifted structure in Provence during the Albian-Cenomanian, known as the Durancian  
533 Isthmus (Combes, 1990; Guyonnet-Benaize et al., 2010; Chanvry et al., 2020, Marchand et al.,  
534 2021). Cooling and exhumation in the ~~French~~ Massif Central to the west are also documented  
535 from 120-90 Ma (Olivetti et al., 2016), which may have contributed to feeding of the Vocontian  
536 basin during this period (Fig. 12A). ~~Although this period is synchronous with the onset of~~  
537 ~~Adria/Europe convergence (e.g., Le Breton et al., 2021; Angrand and Moutherieu, 2021;~~

538 Boschetti et al., 2025a,b,c), the impact of contraction in the Alps on the evolution Vocontian  
539 Basin remains to be assessed. It should be reminded that the locally complex tectonic evolution  
540 of SE France during the Middle-Late Cretaceous is a response to large-scale differential  
541 movements between Iberia-Ebro and Adria that accommodated both extension in the Pyrenees-  
542 Provence rift and contraction in the Alps (e.g., Le Breton et al., 2021; Angrand and Moutherneau,  
543 2021; Boschetti et al., 2025, In Press).

544  
545

## 546 **5.2 Post-Mid Cretaceous evolution of the Vocontian basinBasin: U-Pb/calcite dating record** 547 **of multiple Pyrenean-Provençal collision events (90-34 Ma) collision and rifting events** 548 **in the basins of south-east SE Francebasins of France**

549 The oldest calcite U-Pb ages of  $84.6 \pm 2.4$  Ma and  $77.7 \pm 2.9$  Ma, reported in the Jurassic strata  
550 forming the wall of the Suzette diapir in the (“Dentelles de Montmirail”) structure are close to  
551 previously obtained ages of  $90.6 \pm 2.4$  Ma of Bilau et al. (2023b), and are consistent align with  
552 the age of the onset of the Pyrenees-Provençal collision dated around 84 Ma (Angrand and  
553 Moutherneau, 2021; Moutherneau et al., 2014; Muñoz, 1992; Teixell et al., 2018; Ford et al.,  
554 2022). These old calcite ages are likely may reflect to be related to the combined  
555 halokinetic movement of the Suzette diapir in response to far-field stresses that triggered  
556 tectonic inversion and exhumation all over Europe (Moutherneau et al., 2021). These ages can  
557 also be related to a deformation event folding along E-W trending folds in the Dévoluy massif  
558 , affecting the Early Cretaceous units, and linked to associated to E-W-directed folding and  
559 erosional surface dated to Coniacian-Santonian (Fig. 3B) (ca. 85 Ma) (Flandrin, 1966; Lemoine,  
560 1972; Gidon et al., 1970; Arnaud et al., 1974), or the end of diapiric movement during extension  
561 in southern Provence (Wicker and Ford, 2021). Younger U/Pb ages of  $72.0 \pm 3.7$  Ma and  $71.2$   
562  $\pm 8.1$  Ma associated with N20°E shortening coincides with the intensification of the In the  
563 Pyrenees exhumation seems to increase from at 75-70 Ma (Moutherneau et al., 2014), a phase  
564 that and this is recorded regionally recorded across southeastern in SE of France by the a  
565 cooling event documented from of the Pelvoux to the Maures-Tanneron massifs (Fig. 12A)  
566 (Boschetti et al., 2025a,b-In Press). It is also recognized in the region associated with the  
567 sinistral reactivation of the Cévennes fault around 76 Ma (Parizot et al., 2021). The Pyrenean-  
568 Provençal collision is therefore well represented in the Vocontian Basin. This timing is further  
569 in-line with the earliest surface sediment cover deformation, which is recorded around 75 Ma  
570 (Parizot et al., 2021). U/Pb ages of  $72.0 \pm 3.7$  Ma and  $71.2 \pm 8.1$  Ma associated with folding  
571 during N20°E compression are consistent with the latest sinistral reactivation of the Cévennes

572 ~~fault from since 76 Ma (Parizot et al., 2021). These ages can may also be related to folding~~  
573 ~~along an East Wwest axis in the Dévoluy massif, affecting the Early Lower Cretaceous units.~~  
574 ~~and This folding is associated to an erosional surface estimated, which formed to occur during~~  
575 ~~the Turonian-Coniacian-Santonian period (ca. 85 Ma) (Fig. 3) (ca. 85 Ma) (Flandrin, 1966;~~  
576 ~~Lemoine, 1972; Gidon et al., 1970; Arnaud et al., 1974).~~

577 Our data also resolve ~~another a later younger~~ N20°E-directed contractional stage dated at 50.0  
578  $\pm 4.3$  Ma (Fig. 6) that we link to the main Pyrenan-Provençal collision phase. ~~It~~ It is well  
579 recognized identified also in other the U/Pb age dataset in from Provence in the U/Pb age dataset  
580 (Zeboudj et al., 2025), and corresponds to a Nnorth-Ssouth compression phase spanning  
581 from 59 to 34 Ma. ~~This stage is~~ regarded as the culmination of the Pyrenean-Provençal collision  
582 caused by plate-scale dynamic changes (Bestani et al., 2016; Balansa et al., 2022; Vacherat et  
583 al., 2016; Mouthereau et al., 2014; 2021) (Fig. 12B). ~~This episode is related to the acceleration~~  
584 ~~of the collision process at around ca. 50 Ma, which was caused by dynamic changes in the~~  
585 ~~motion of Africa motion, and the opening of the North Atlantic ocean opening (e.g. Mouthereau~~  
586 ~~et al., 2021).~~ In northwestern Europe, the Eocene also ~~also heralds announces~~ the onset ~~of~~  
587 ~~opening of the aborted rift system~~ of the West European Rift (WER), which was active until  
588 the Oligocene and just precedes the opening of the Gulf of Lion (e.g. Séranne et al., 1999; Dèzes  
589 et al., 2004; Mouthereau et al., 2021).

### 591 5.3 Oligocene rifting related to the West European Rift development (35-23 Ma)

592 The WER stage is ~~well~~ represented in ~~the~~ Vocentian basin ~~our~~ dataset ~~as indicated~~ by eight  
593 U/Pb dates ranging from  $30.4 \pm 2.7$  to  $24.3 \pm 1.3$  Ma associated with NW-SE to NE-SW  
594 extension (Fig. 12C). ~~They, which~~ coincides with ~~an the~~ extensional phase (35–23 Ma) ~~also~~  
595 documented in Provence, Western Alps, Eastern Pyrenees, and Valencia Trough, coeval  
596 with the late activities of the West European Rift (Merle and Michon, 2001; Ziegler and Dèzes,  
597 2006). ~~In our study region, the shallow depth of iso-velocity contour  $V_s = 4.2 \text{ km.s}^{-1}$ , considered~~  
598 ~~to be a proxy for the Moho (Schwartz et al., 2024), confirms a significant crustal thinning in~~  
599 ~~the Valence Rhone depression (Fig. S21, Supplementary Material 1).~~ It should also be noted  
600 ~~that the~~ The Late Eocene-Early Oligocene period also coincides with the onset ~~of~~ of deposition  
601 ~~in the~~ of the flexural basin of the Alpine foreland (Ford et al., 1999). ~~–~~ The flexural bending  
602 deflection of the European margin caused by Alpine loading ~~is~~ likely increasing ~~increased~~ the  
603 extensional stresses in the foreland, associated where with the WER formed, however the  
604 available data are insufficient to draw definitive conclusions. From Chattian-Aquitian times,  
605 at ca. 23 Ma, the opening of the Gulf of Lions and of the Ligurian basin (e.g., Séranne et al.,

606 1999; Jolivet et al., 1999, 2020) ~~commenced-initiated~~ following the demise of the WER  
607 suggesting a tectonic relationship between these two rifting events (Mouthereau et al., 2021)  
608 (Fig. 12C). In our study area, the shallow depth of the iso-velocity contour  $V_s=4.2 \text{ km.s}^{-1}$ ,  
609 considered to be a proxy for the Moho (Schwartz et al., 2024), and the 3D geological modelling  
610 (Bienveignant et al., 2024), confirms a significant crustal thinning in the Valence-Rhône  
611 depression, where structures related to the WER are preserved (Fig. S2, Supplementary  
612 Material 1). The excellent preservation of the Oligocene-Miocene extensional phase in our  
613 dataset suggests a positive feedbacks between crustal thinning (Fig. S24, Supplementary  
614 Material 1) and physical conditions that became favourable to-for calcite precipitation closer  
615 at shallower depths to the surface, as the basin was progressively exhumed during following the  
616 former Late Cretaceous shortening.

617

#### 618 **5.4 Alpine collision and fold and thrust belt propagation (<16 Ma)**

619 The youngest calcite U/Pb ages of  $12.2 \pm 3.2 \text{ Ma}$ ,  $12.5 \pm 5.2 \text{ Ma}$ ,  $7.8 \pm 0.6 \text{ Ma}$  and  $7.0 \pm 2.2$   
620 Ma are associated with NE-SW compression. This result agrees with the westward propagation  
621 of the Alpine deformation front, which migrated forelandward from 165 to 7 Ma in the Vercors  
622 massif (Bilau et al., 2023a; Mai Yung Sen et al., 2025) to the north of the Vocontian Basin (Fig.  
623 12D). This timing also coincides with the exhumation of Alpine external crystalline  
624 massifs basement, such as the Belledonne and Pelvoux massifs, which accelerated at ca. 12 Ma  
625 (e.g. Beucher et al., 2012; Girault et al., 2022; Boschetti et al., 2025a). This age range is also in  
626 agreement with the Digne Nappe emplacement at 13-9 Ma (Schwartz et al., 2017) and fold and  
627 thrust development in the frontal southern Alps between  $18.2 \pm 1.1 \text{ Ma}$  and  $3.16 \pm 0.47 \text{ Ma}$   
628 obtained (Bauer et al., 2025 ; Tigroudja et al., 2025).

629

### 630 **CONCLUSION**

631 The goal of this study was to provide a refined chronology of deformation in the Vocontian  
632 Basin using an integrated approach combining U-Pb calcite geochronology, RSCM  
633 thermometry, and subsidence analysis. First, this study highlights the absence of mid-  
634 Cretaceous syn-rift calcites associated with the opening of the Vocontian Basin. This is possibly  
635 related to dissolution during subsequent burial, or reflect the localization of fluid flow and strain  
636 in the basal Triassic salt layer during the mid-Cretaceous extension. The temporal distribution  
637 of dated brittle structures reveals three main deformation episodes: (1) Late Cretaceous to  
638 Paleocene calcite precipitation associated with Pyrenean-Provençal convergence and diapirism;  
639 (2) Oligocene extensional phases tied to the West European Rift opening; and (3) Miocene

640 strike-slip reactivation and contraction linked to the Alpine orogeny. These events are  
641 superimposed onto a long-term subsidence history that records major burial phases during the  
642 Jurassic and Cretaceous. Thermal data from RSCM analyses delineate a sharp eastward increase  
643 in geothermal gradients, suggesting enhanced crustal thinning and/or diapiric activity in the  
644 eastern part of the basin. This work highlights ~~the possible mismatch a good coherence between  
645 of the local deformation the tectonic evolution of a region and the tectonic history inferred  
646 inferred~~ from calcite U–Pb dating ~~and and~~ paleostress analysis, ~~and and~~ of the regional tectonic  
647 evolution. ~~The calcite U Pb ages, which is are~~ ~~sensitvile to the brittle behaviour of the~~  
648 ~~sedimentary cover and to combined fluid circulation during burial, history and as well as to the~~  
649 ~~specific physical conditions required to for the precipitation of e syn deformation calcite. This~~  
650 ~~makes it impossible to document the fluid free brittle history.~~

651

652

### 653 **Declaration of Competing Interest**

654 The authors declare that they have no known competing financial interests or personal  
655 relationships that could have appeared to influence the work reported in this paper.

656

### 657 **Availability of data material**

658 The dataset(s) supporting the conclusions of this article is(are) available in Supplementary  
659 Material 1.

660

### 661 **Acknowledgments**

662 Authors would like to thank BRGM and the RGF program which allows the founding this  
663 project.

664

### 665 **Author's contribution**

666 LB is the corresponding author who carried out the field investigation, analysis, interpretation  
667 and drafting of the manuscript. MP carried out the field investigations, analysis and review of  
668 the manuscript. FM carried out the filed investigation, interpretation, drafting a review of the  
669 manuscript. GH carried out the U-Pb analysis and review of the Manuscript. SS and YR carried  
670 out the field investigation and review of the manuscript. DB carried out interpretation and  
671 discussion and AL carried out analysis of Raman data.

### 672 **Funding**

673 This study was made possible thanks to ministerial funding from the SDU2E doctoral school at  
674 Toulouse University and by additional the funding by the RFG-Alps programme, coordinated  
675 by the BRGM.

676

## 677 **References**

678 Allen, P. A., & Allen, J. R.: Basin analysis: Principles and application to petroleum play  
679 assessment. John Wiley & Sons, 2013.

680 Angelier, J.: Inversion of field data in fault tectonics to obtain the regional stress—III.  
681 A new rapid direct inversion method by analytical means. *Geophysical Journal  
682 International*, 103(2), 363-376. <https://doi.org/10.1111/j.1365-246X.1990.tb01777.x>,  
683 1990.

684 Angrand, P., & Mouthereau, F.: Evolution of the Alpine orogenic belts in the Western  
685 Mediterranean region as resolved by the kinematics of the Europe-Africa diffuse plate  
686 boundary. *BSGF-Earth Sciences Bulletin*, 192(1), 42.  
687 <https://doi.org/10.1051/bsgf/2021031>, 2021.

688 Arnaud H., Charollais J., Delamette M. & Portault B. : Crétacé supérieur. Chaînes  
689 subalpines. In: S. Debrand-Passard et al., Eds, *Syn thèse géologique du Sud-Est de la  
690 France*. – Mém.BRGM, 125, 355-359, 1984.

691 Balansa, J., Espurt, N., Hippolyte, J. C., Philip, J., & Caritg, S.: Structural evolution of  
692 the superimposed Provençal and Subalpine fold-thrust belts (SE France). *Earth-Science  
693 Reviews*, 227, 103972. <https://doi.org/10.1016/j.earscirev.2022.103972>, 2022.

694 Balansa, J., Lahfid, A., Espurt, N., Hippolyte, J. C., Henry, P., Caritg, S., & Fasentieux, B.:  
695 Unraveling the eroded units of mountain belts using RSCM thermometry and cross-  
696 section balancing: example of the southwestern French Alps. *International Journal of  
697 Earth Sciences*, 112(2), 443-458. <https://doi.org/10.1007/s00531-022-02257-3>, 2023.

698 Bauer, R., Corsini, M., Matonti, C., Bosch, D., Bruguier, O., & Issautier, B.: The role of  
699 Cretaceous tectonics in the present-day architecture of the Nice arc (Western Subalpine  
700 foreland, France). *Journal of Structural Geology*, 105538, 2025.

701 Bestani, L., Espurt, N., Lamarche, J., Bellier, O., & Hollender, F.: Reconstruction of the  
702 Provence Chain evolution, southeastern France. *Tectonics*, 35(6), 1506-1525-  
703 <https://doi.org/10.1002/2016TC004115>, 2016.

704 Beaudoin, B., Friès, G., Joseph, P., Bouchet, R., & Cabrol, C. : Tectonique

705       synsédimentaire crétacée à l'ouest de la Durance (S.-E. France). Comptes rendus de  
706       l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers,  
707       Sciences de la Terre, 303(8), 713-718, 1986.

708       Beucher, R., van der Beek, P., Braun, J., & Batt, G. E.: Exhumation and relief  
709       development in the Pelvoux and Dora-Maira massifs (Western Alps) assessed by  
710       spectral analysis and inversion of thermochronological age transects. Journal of  
711       Geophysical Research: Earth Surface, 117(F3). <https://doi.org/10.1029/2011JF002240>,  
712       2012.

713       Bièvre, G., & Quesne, D.: Synsedimentary collapse on a carbonate platform margin μ  
714       (lower Barremian, southern Vercors, SE France). Geodiversitas, 26(2), 169-184, 2004.

715       Bienveignant, D., Nouibat, A., Sue, C., Rolland, Y., Schwartz, S., Bernet, M., Dumont, T.,  
716       Nomade, J., Caritg, S., & Walpersdorf, A.: Shaping the crustal structure of the SW-  
717       Alpine Foreland : Insight from 3D modeling. Tectonophysics, 889, 230471.  
718       [https://doi.org/10.1016/j.tecto.2024.230471, 2024.](https://doi.org/10.1016/j.tecto.2024.230471)

719       Bilau, A., Bienveignant, D., Rolland, Y., Schwartz, S., Godeau, N., Guihou, A., et al.: The  
720       Tertiary structuration of the Western Subalpine foreland deciphered by calcite-filled  
721       faults and veins. Earth Science Reviews, 236, 104270, 2023a.

722       Bilau, A., Bienveignant, D., Rolland, Y., Schwartz, S., Godeau, N., Guihou, A., ... & Dumont,  
723       T. (2023a). The Tertiary structuration of the Western Subalpine foreland deciphered by  
724       calcite filled faults and veins. Earth Science Reviews, 236, 104270.

725       Bilau, A., Rolland, Y., Dumont, T., Schwartz, S., Godeau, N., Guihou, A., & Deschamps, P.,  
726       2023b. Early onset of Pyrenean collision (97–90 Ma) evidenced by U–Pb dating on  
727       calcite (Provence, SE France). Terra Nova, 35(5), 413-423.  
728       [https://doi.org/10.1111/ter.12665, 2004](https://doi.org/10.1111/ter.12665)

729       Boschetti, L., Schwartz, S., Rolland, Y., Dumont, T., and Nouibat, A.: A new tomographic-  
730       petrological model for the Ligurian-Provence back-arc basin (North-Western Mediterranean  
731       Sea), Tectonophysics, 230111, https://doi.org/10.1016/j.tecto.2023.230111, 2023.  
732       Boschetti, L., Schwartz, S., Rolland, Y., Dumont, T., & Nouibat, A. (2023). A new tomographic petrological  
733       model for the Ligurian Provence back-arc basin (North-Western Mediterranean Sea).  
734       Tectonophysics, 868, 230111.

735

736       Boschetti, L., Mouthereau, F., Schwartz, S., Rolland, Y., Bernet, M., Balvay, M., ... & Lahfid,

737 A.: Thermochronology of the western Alps (Pelvoux massif) reveals the longterm  
738 multiphase tectonic history of the European paleomargin. *Tectonics*, 44(2),  
739 e2024TC008498. <https://doi.org/10.1029/2024TC008498>, 2025a.

740 [Boschetti, L., Rolland, Y., Mouthereau, F., Schwartz, S., Milesi, G., Munch, P., Bernet, M.,](#)  
741 [Balvay, M., Thiéblemont, D., Bonno, M., Martin, C., and Monié, P.: Thermochronology of the](#)  
742 [Maures-Tanneron crystalline basement: insights for SW Europe Triassic to Miocene tectonic](#)  
743 [history, Swiss J. Geosci., 118, 14, https://doi.org/10.1186/s00015-025-00485-8,](#)  
744 [2025b.](#)[Boschetti, L., Rolland, Y., Mouthereau, F., Schwartz, S., Milesi, G., Munch, P., Bernet,](#)  
745 [M., Balvay, M., Thiéblemont, D., Bonno, M., Martin, C. Monié, P.: Thermochronology of the](#)  
746 [Maures-Tanneron crystalline basement: Insights for SW Europe Triassic to Miocene tectonic](#)  
747 [history. Swiss Journal of Geoscience. https://doi.org/10.1186/s00015-025-00485-8, In Press](#)

748

749 [Boschetti, L., Boulle, C., Rolland, Y., Schwartz, S., Milesi, G., Bienveignant, D., et al. Shear](#)  
750 [zone memory revealed by in-situ Rb-Sr and 40Ar/39Ar dating of Pyrenean and Alpine](#)  
751 [tectonic phases in the external Alps. Lithos, 108168, 2025c.](#)

752 Célini, N. : Le rôle des évaporites dans l'évolution tectonique du front alpin: le cas de la  
753 nappe de Digne (Doctoral dissertation, Université de Pau et des Pays de l'Adour), 2020.

754 [Célini, N., Mouthereau, F., Lahfid, A., Gout, C., and Callot, J.-P.: Rift thermal inheritance in](#)  
755 [the SW Alps \(France\): insights from RSCM thermometry and 1D thermal numerical](#)  
756 [modelling, Solid Earth, 14, 1–16, https://doi.org/10.5194/se-14-1-2023, 2023.](#)[Célini, N.,](#)  
757 [Mouthereau, F., Lahfid, A., Gout, C., & Callot, J. P. \(2023\). Rift thermal inheritance in](#)  
758 [the SW Alps \(France\): insights from RSCM thermometry and 1D thermal numerical](#)  
759 [modelling. Solid earth, 14\(1\), 1–16.](#)[Célini, N., Pichat, A., Mouthereau, F., Ringenbach,](#)  
760 [J. C., & Callot, J. P.: Along-strike](#)

761

762 [variations of structural style in the external Western Alps \(France\): Review, insights](#)  
763 [from analogue models and the role of salt. Journal of Structural Geology, 105048.](#)  
764 [https://doi.org/10.1016/j.jsg.2023.105048, 2023.](#)

765 Célini, N., Pichat, A., Mouthereau, F., Ringenbach, J. C., & Callot, J. P.: Along-strike  
766 variations of structural style in the external Western Alps (France): Review, insights  
767 from analogue models and the role of salt. *Journal of Structural Geology*, 179, 105048.  
768 <https://doi.org/10.1016/j.jsg.2023.105048>, 2024.

769 Chanvry, E., Marchand, E., Lopez, M., Séranne, M., Le Saout, G., & Vinches, M. :

770 Tectonic and climate control on allochthonous bauxite deposition. Example from the  
771 mid-Cretaceous Villeveyrac basin, southern France. *Sedimentary Geology*, 407,  
772 105727. <https://doi.org/10.1016/j.sedgeo.2020.105727>, 2020.

773 Combes, P. J. : Typologie, cadre géodynamique et genèse des bauxites françaises.  
774 *Geodinamica Acta*, 4(2), 91-109. <https://doi.org/10.1080/09853111.1990.11105202>,  
775 1990.

776 Cotillon, P., Ferry, S., Busnardo, R., Lafarge, D., & Renaud, B.: Synthèse  
777 stratigraphique et paléogéographique sur les faciès urgoniens du Sud de l'Ardèche et du  
778 Nord du Gard (France SE). *Geobios*, 12, 121-139. [https://doi.org/10.1016/S0016-6995\(79\)80055-8](https://doi.org/10.1016/S0016-6995(79)80055-8), 1979.

780 Dall'Asta, N., Hoareau, G., Manatschal, G., Centrella, S., Denèle, Y., Ribes, C., & Kalifi, A. :  
781 Structural and petrological characteristics of a Jurassic detachment fault from the Mont-  
782 Blanc massif (Col du Bonhomme area, France). *Journal of Structural Geology*, 159,  
783 104593. <https://doi.org/10.1016/j.jsg.2022.104593>, 2022.

784 Dardeau, G., Atrops, F., Fortwengler, D., De Graciansky, P. C., & Marchand, D. : Jeux  
785 de blocs et tectonique distensive au Callovien et à l'Oxfordien dans le bassin du Sud-Est  
786 de la France. *Bulletin de la Société géologique de France*, 4(5), 771-777, 1988.

787 Debèlmas, J. : La zone subbriançonnaise et la zone valaisanne savoyarde dans le cadre  
788 de la tectonique des plaques. *Géologie Alpine*, 77, 3-8, 1988, 2001.

789 Delvaux, D., & Sperner, B.: New aspects of tectonic stress inversion with reference to  
790 the TENSOR program. <https://doi.org/10.1144/GSL.SP.2003.212.01.06>, 2003.

791 Debrand-Passard, S. : Synthèse géologique du Sud-Est de la France (Vol. 1).  
792 Editions BRGM.de Graciansky, P.C., & Lemoine, Marcel., 1988. Early Cretaceous  
793 extensional tectonics in the southwestern French Alps; a consequence of North-  
794 Atlantic rifting during Tethyan spreading. *Bulletin de la Société géologique de France*,  
795 4(5), 733-737, 1984.

796 Dèzes, P., Schmid, S. M., & Ziegler, P. A. : Evolution of the European Cenozoic Rift  
797 System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere.  
798 *Tectonophysics*, 389(1-2), 1-33. <https://doi.org/10.1016/j.tecto.2004.06.011>, 2004.

799 Donard, A., Pottin, A. C., Pointurier, F., & Péchéyran, C.: Determination of relative rare  
800 earth element distributions in very small quantities of uranium ore concentrates using  
801 femtosecond UV laser ablation-SF-ICP-MS coupling. *Journal of Analytical Atomic  
802 Spectrometry*, 30(12), 2420-2428, 2015.

803 Espurt, N., Angrand, P., Teixell, A., Labaume, P., Ford, M., de Saint Blanquat, M., & Chevrot,

804 S. Crustal-scale balanced cross-section and restorations of the Central Pyrenean belt  
805 (Nestes-Cinca transect): Highlighting the structural control of Variscan belt and  
806 Permian-Mesozoic rift systems on mountain building. *Tectonophysics*, 764, 25-45.  
807 <https://doi.org/10.1016/j.tecto.2019.04.026>, 2019.

808 Flandrin, J. : Sur l'âge des principaux traits structuraux du Diois et des Baronnies.  
809 Bulletin de la Société géologique de France, 7(3), 376-386.  
810 <https://doi.org/10.2113/gssgbull.S7-VIII.3.376>, 1966.

811 Ford, M., Lickorish, W.H. & Kusznir, N.J.: Tertiary foreland sedimentation in the  
812 southern Subalpine chains, SE France: a geodynamic analysis. *Basin Research*, 11, 315–  
813 336. <https://doi.org/10.1046/j.1365-2117.1999.00103.x>, 1999

814 Ford, M., & Lickorish, W. H.: Foreland basin evolution around the western Alpine Arc.  
815 <https://doi.org/10.1144/GSL.SP.2004.221.01.04>, 2004.

816 Ford, M., Masini, E., Vergés, J., Pik, R., Ternois, S., Léger, J., ... & Calassou, S.:  
817 Evolution of a low convergence collisional orogen: a review of Pyrenean orogenesis.  
818 BSGF-Earth Sciences Bulletin, 193(1), 19. <https://doi.org/10.1051/bsgf/2022018>, 2022.

819 Gidon, M., Arnaud, H., Pairis, J. L., AprAHAMIAN, J., & Uselle, J. P. : Les  
820 déformations tectoniques superposées du Dévoluy méridional (Hautes-Alpes). *Géologie  
821 Alpine*, 46, 87-110, 1970.

822 Girault, J. B., Bellahsen, N., Bernet, M., Pik, R., Loget, N., Lasseur, E., ... & Sonnet, M.:  
823 Exhumation of the Western Alpine collisional wedge: New thermochronological data.  
824 *Tectonophysics*, 822, 229155. <https://doi.org/10.1016/j.tecto.2021.229155>, 2022.

825 Guilhaumou, N., Touray, J. C., Perthuisot, V., & Roure, F., Palaeocirculation in the  
826 basin of southeastern France sub-alpine range: a synthesis from fluid inclusions studies.  
827 *Marine and Petroleum Geology*, 13(6), 695-706. [https://doi.org/10.1016/0264-8172\(95\)00064-X](https://doi.org/10.1016/0264-8172(95)00064-X). 1996.

828 Guyonnet-Benaize, C., Lamarche, J., Masse, J. P., Villeneuve, M., & Viseur, S. : 3D  
829 structural modelling of small-deformations in poly-phase faults pattern. Application to  
830 the Mid-Cretaceous Durance uplift, Provence (SE France). *Journal of Geodynamics*,  
831 50(2), 81-93. <https://doi.org/10.1016/j.jog.2010.03.003>, 2010.

832 Hoareau, G., Claverie, F., Pecheyran, C., Barbotin, G., Perk, M., Beaudoin, N. E., ... & Rasbury,  
833 E. T.: The virtual spot approach: a simple method for image U-Pb carbonate  
834 geochronology by high-repetition rate LA-ICP-MS. *EGUphere*, 2024, 1-35.  
835 <https://doi.org/10.5194/egusphere-2024-2366>, 2024.

836 Hoareau, G., Claverie, F., Pecheyran, C., Paroissin, C., Grignard, P. A., Motte, G., ... & Girard,

838 J. P.: Direct U–Pb dating of carbonates from micron-scale femtosecond laser ablation  
839 inductively coupled plasma mass spectrometry images using robust regression.  
840 *Geochronology*, 3(1), 67-87. <https://doi.org/10.5194/gchron-3-67-2021>, 2021.

841 Homberg, C., Barrier, E., Mroueh, M., Muller, C., Hamdan, W., & Higazi, F.: Tectonic  
842 evolution of the central Levant domain (Lebanon) since Mesozoic time.  
843 <https://doi.org/10.1144/SP341.12>, 2010.

844 Homberg, C., Schnyder, J., & Benzaggagh, M.: Late Jurassic-Early Cretaceous faulting  
845 in the Southeastern French Basin: does it reflect a tectonic reorganization?. *Bulletin de*  
846 *la Société géologique de France*, 184(4-5), 501-514.  
847 <https://doi.org/10.2113/gssgbull.184.4-5.501>, 2013.

848 Hippolyte, J. C., Angelier, J., Bergerat, F., Nury, D., & Guieu, G.: Tectonic-stratigraphic  
849 record of paleostress time changes in the Oligocene basins of the Provence, southern  
850 France. *Tectonophysics*, 226(1-4), 15-35. [https://doi.org/10.1016/0040-1951\(93\)90108-V](https://doi.org/10.1016/0040-1951(93)90108-V). 1993

852 Huang, Q., Geometry and tectonic significance of Albian sedimentary dykes in the Sisteron  
853 area, SE France, *J. Struct. Geol.*, 10, 453–462, 1988.

854 Jolivet, L., Frizon de Lamotte, D., Mascle, A., & Séranne, M.: The Mediterranean  
855 basins: Tertiary extension within the Alpine orogen—An introduction. *Geological*  
856 *Society, London, Special Publications*, 156(1), 1-14.  
857 <https://doi.org/10.1144/GSL.SP.1999.156.01.02>, 1999

858 Jolivet, L., Menant, A., Roche, V., Le Pourhiet, L., Maillard, A., Augier, R., ... & Canva, A.:  
859 Transfer zones in Mediterranean back-arc regions and tear faults. *Bulletin de la Société*  
860 *Géologique de France*, 192(1). <https://doi.org/10.1051/bsgf/2021006>, 2021.

861 Joseph, P., Beaudoin, B., Sempere, T., & Maillart, J. : Vallées sous-marines et systèmes  
862 d'épandages carbonatés du Berriasien vocontien (Alpes méridionales françaises). *Bull.*  
863 *Soc. Geol. Fr*, 8, 363-374, 1988.

864 Kouketsu, Y., Mizukami, T., Mori, H., Endo, S., Aoya, M., Hara, H., ... & Wallis, S.: A  
865 new approach to develop the Raman carbonaceous material geothermometer for low-  
866 grade metamorphism using peak width. *Island Arc*, 23(1), 33-50.  
867 <https://doi.org/10.1111/iar.12057>, 2014.

868 Lacombe, O., Beaudoin, N. E., Hoareau, G., Labeur, A., Pecheyran, C., and Callot, J.-P.: Dating  
869 folding beyond folding, from layer-parallel shortening to fold tightening, using  
870 mesostructures: lessons from the Apennines, Pyrenees, and Rocky Mountains, Solid

871 Earth, 12, 2145–2157, <https://doi.org/10.5194/se-12-2145-2021>, 2021. Lacombe, O.,  
872 Parlangeau, C., Beaudoin, N. E., & Amrouch, K. : Calcite twin formation,  
873  
874 ~~measurement and use as stress strain indicators: a review of progress over the last~~  
875 ~~decade. Geosciences~~, 11(11), 445. <https://doi.org/10.3390/geosciences11110445>, 2021.  
876 Lahfid, A., Beyssac, O., Deville, E., Negro, F., Chopin, C., & Goffé, B. (2010). Evolution of  
877 the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus  
878 Alps (Switzerland). Terra nova, 22(5), 354-360. <https://doi.org/10.1111/j.1365-3121.2010.00956.x>, 2010.  
879  
880 Le Breton, E., Brune, S., Ustaszewski, K., Zahirovic, S., Seton, M., & Müller, R. D. :  
881 Kinematics and extent of the Piemont–Liguria Basin–implications for subduction  
882 processes in the Alps. Solid Earth, 12(4), 885-913. <https://doi.org/10.5194/se-12-885-2021>, 2021.  
883  
884 Lemoine, M. : Rythme et modalités des plissements superposés dans les chaînes  
885 subalpines méridionales des Alpes occidentales françaises. Geologische Rundschau, 61,  
886 975-1010. <https://doi.org/10.1007/BF01820902>, 1972.  
887 Lemoine, M., Bas, T., Arnaud-Vanneau, A., Arnaud, H., Dumont, T., Gidon, M., Bourbon, M.,  
888 Graciansky, P.-C. de, Rudkiewicz, J.-L., Megard-Galli, J., and Tricart, P.: The  
889 continental margin of the Mesozoic Tethys in the Western Alps, Mar Petrol Geol, 3,  
890 179–199, [https://doi.org/10.1016/0264-8172\(86\)90044-9](https://doi.org/10.1016/0264-8172(86)90044-9), 1986. Lemoine, M., Bas, T.,  
891 Arnaud-Vanneau, A., Arnaud, H., Dumont, T., Gidon, M., ... & Tricart, P. (1986). The  
892 continental margin of the Mesozoic Tethys in the Western Alps. Marine and petroleum  
893 geology, 3(3), 179-199.

894  
895 Lemoine, M., Tricart, P. and Boillot, G.: Ultramafic and gabbroic ocean floor of the  
896  
897 Ligurian Tethys (Alps, Corsica, Apennines): in search for a genetic model. Geology, 15:  
898 622-625, 1987.  
899 Manatschal, G., & Müntener, O.: A type sequence across an ancient magma-poor ocean–  
900 continent transition: the example of the western Alpine Tethys ophiolites.  
901 Tectonophysics, 473(1-2), 4-19. <https://doi.org/10.1016/j.tecto.2008.07.021>, 2009  
902 Marchand, E., Séranne, M., Bruguier, O., & Vinches, M. : LA-ICP-MS dating of detrital

903 zircon grains from the Cretaceous allochthonous bauxites of Languedoc (south of  
904 France): Provenance and geodynamic consequences. *Basin Research*, 33(1), 270-290.  
905 <https://doi.org/10.1111/bre.12465>, 2021.

906 Merle, O., & Michon, L.: The formation of the West European Rift; a new model as  
907 exemplified by the Massif Central area. *Bulletin de la Société géologique de France*,  
908 172(2), 213-221. <https://doi.org/10.2113/172.2.213>, 2021.

909 Mohn, G., Manatschal, G., Beltrando, M., & Haupert, I.: The role of rift-inherited hyper-  
910 extension in Alpine-type orogens. *Terra Nova*, 26(5), 347-353.  
911 <https://doi.org/10.1111/ter.12104>, 2014.

912 Montenat, C., Janin, M. C., & Barrier, P. : L'accident du Toulourenc: une limite  
913 Tectonique entre la plate-forme provençale et le Bassin vocontien à l'Aptien–Albien (SE  
914 France). *Comptes rendus. Géoscience*, 336(14), 1301-1310, 2004.

915 Mouthereau, F., Filleaudeau, P. Y., Vacherat, A., Pik, R., Lacombe, O., Fellin, M. G., ... &  
916 Masini, E.: Placing limits to shortening evolution in the Pyrenees: Role of margin  
917 architecture and implications for the Iberia/Europe convergence. *Tectonics*, 33(12),  
918 2283-2314. <https://doi.org/10.1002/2014TC003663>, 2014.

919 Mouthereau, F., Angrand, P., Jourdon, A., Ternois, S., Fillon, C., Calassou, S., ... & Baudin, T.:  
920 Cenozoic mountain building and topographic evolution in Western Europe: impact of  
921 billions of years of lithosphere evolution and plate kinematics. *BSGF-Earth Sciences  
922 Bulletin*, 192(1), 56. <https://doi.org/10.1051/bsgf/2021040>, 2021.

923 Muñoz, J. A.: Evolution of a continental collision belt: ECORS-Pyrenees crustal  
924 balanced cross-section. In *Thrust tectonics* (pp. 235-246). Dordrecht: Springer  
925 Netherlands, 1992.

926 Olivetti, V., Godard, V., Bellier, O., & Aster Team.: Cenozoic rejuvenation events of  
927 Massif Central topography (France): Insights from cosmogenic denudation rates and  
928 river profiles. *Earth and Planetary Science Letters*, 444, 179-191.  
929 <https://doi.org/10.1016/j.epsl.2016.03.049>, 2016.

930 Parizot, O., Missenard, Y., Haurine, F., Blaise, T., Barbarand, J., Benedicto, A., & Sarda, P.:  
931 When did the Pyrenean shortening end? Insight from U–Pb geochronology of syn-  
932 faulting calcite (Corbières area, France). *Terra nova*, 33(6), 551-559.  
933 <https://doi.org/10.1111/ter.12547>, 2021.

934 Parizot, O., Missenard, Y., Barbarand, J., Blaise, T., Benedicto, A., Haurine, F., & Sarda, P.:

935 How sensitive are intraplate inherited structures? Insight from the Cévennes Fault  
936 System (Languedoc, SE France). Geological Magazine, 159(11-12), 2082-2094.  
937 <https://doi.org/10.1017/S0016756822000152>, 2022.

938 Ribes, C., Ghienne, J. F., Manatschal, G., Dall'Asta, N., Stockli, D. F., Galster, F., ... & Karner,  
939 G. D.: The Grès Singuliers of the Mont Blanc region (France and Switzerland):  
940 stratigraphic response to rifting and crustal necking in the Alpine Tethys. International  
941 Journal of Earth Sciences, 109, 2325-2352. <https://doi.org/10.1007/s00531-020-01902-z>, 2020.

943 Roure, F., Brun, J. P., Colletta, B., & Van Den Driessche, J.: Geometry and kinematics  
944 of extensional structures in the Alpine foreland basin of southeastern France. Journal of  
945 Structural Geology, 14(5), 503-519. [https://doi.org/10.1016/0191-8141\(92\)90153-N](https://doi.org/10.1016/0191-8141(92)90153-N),  
946 1992.

947 Saspiturry, N., Lahfid, A., Baudin, T., Guillou-Frottier, L., Razin, P., Issautier, B., ... & Corre,  
948 B.: Paleogeothermal gradients across an inverted hyperextended rift system: Example  
949 of the Mauléon Fossil Rift (Western Pyrenees). Tectonics, 39(10), e2020TC006206.  
950 <https://doi.org/10.1029/2020TC006206>, 2020.

951 Schito, A., Romano, C., Corrado, S., Grigo, D., & Poe, B.: Diagenetic thermal evolution  
952 of organic matter by Raman spectroscopy. Organic Geochemistry, 106, 57-67.  
953 <https://doi.org/10.1016/j.orggeochem.2016.12.006>, 2017.

954 Schwartz, S., Gautheron, C., Audin, L., Dumont, T., Nomade, J., Barbarand, J., ... & van der  
955 Beek, P.: Foreland exhumation controlled by crustal thickening in the Western Alps.  
956 Geology, 45(2), 139-142, 2017

957 Schwartz, S., Rolland, Y., Nouibat, A., Boschetti, L., Bienveignant, D., Dumont, T., ... &  
958 Mouthereau, F.: Role of mantle indentation in collisional deformation evidenced by  
959 deep geophysical imaging of Western Alps. Communications Earth & Environment,  
960 5(1), 17. <https://doi.org/10.1038/s43247-023-01180-y>, 2024.

961 Séranne, M.: The Gulf of Lion continental margin (NW Mediterranean) revisited by  
962 IBS: an overview. Geological Society, London, Special Publications, 156(1), 15-36.  
963 <https://doi.org/10.1144/GSL.SP.1999.156.01.03>, 1999.

964 Séranne, M., Couëffé, R., Husson, E., Baral, C., & Villard, J. : The transition from  
965 Pyrenean shortening to Gulf of Lion rifting in Languedoc (South France)–A tectonic-  
966 sedimentation analysis. BSGF-Earth Sciences Bulletin, 192(1), 27, 2021.

967 [Simon-Labric, T., Rolland, Y., Dumont, T., Heymes, T., Authemayou, C., Corsini, M., and](#)  
968 [Fornari, M.: 40Ar/39Ar dating of Penninic Front tectonic displacement \(W Alps\) during](#)

969 the Lower Oligocene (31–34 Ma), *Terra Nova*, 21, 127–136,  
970 <https://doi.org/10.1111/j.1365-3121.2009.00865.x>, 2009.

971 Simon Labrie, T., Rolland, Y., Dumont, T., Heymes, T., Authemayou, C., Corsini, M., &  
972 Fornari, M. (2009). 40Ar/39Ar dating of Penninic Front tectonic displacement (W Alps) during  
973 the Lower Oligocene (31–34 Ma). *Terra Nova*, 21(2), 127–136. Teixell, A., Labaume, P.,  
974 Ayarza, P., Espurt, N., de Saint Blanquat, M., & Lagabrielle, Y.:  
975 Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new  
976 interpretations from recent concepts and data. *Tectonophysics*, 724, 146–170.  
977 <https://doi.org/10.1016/j.tecto.2018.01.009>, 2018.

978 Tigroudja, L., Espurt, N., & Scalabrino, B.: Quantifying Miocene thin-and thick-skinned  
979 shortening in the Baous thrust system, SW French Alpine Front. *Tectonophysics*,  
980 230930, 2025.

981 Trümpy, R.: A possible Jurassic-Cretaceous transform system in the Alps and the  
982 Carpathians. <https://doi.org/10.1130/SPE218-p93>, 1988.

983 Turco, E., Macchiavelli, C., Mazzoli, S., Schettino, A., & Pierantoni, P. P. : Kinematic  
984 evolution of Alpine Corsica in the framework of Mediterranean mountain belts.  
985 *Tectonophysics*, 579, 193–206, 2012.

986 Vacherat, A., Mouthereau, F., Pik, R., Bellahsen, N., Gautheron, C., Bernet, M., Daudet, M.,  
987 Balansa, J., Tibari, B., Jamme, R. P., and Radal, J.: Rift-to-collision transition recorded  
988 by tectonothermal evolution of the northern Pyrenees, *Tectonics*, 35, 907–933,  
989 [https://doi.org/10.1002/2015tc004016, 2016.](https://doi.org/10.1002/2015tc004016)

990 Wicker, V., & Ford, M.: Assessment of the tectonic role of the Triassic evaporites in the  
991 North Toulon fold-thrust belt. *BSGF-Earth Sciences Bulletin*, 192(1), 51.  
992 <https://doi.org/10.1051/bsgf/2021033>, 2021.

993 Zeboudj, A., Lacombe, O., Beaudoin, N. E., Callot, J. P., Lamarche, J., Guihou, A., & Hoareau,  
994 G.: Sequence, duration, rate of deformation and paleostress evolution during fold  
995 development: Insights from fractures, calcite twins and U-Pb calcite geochronology in  
996 the Mirabeau anticline (SE France). *Journal of Structural Geology*, 105460.  
997 <https://doi.org/10.1016/j.jsg.2025.105460>, 2025.

998 Ziegler, P. A., & Dèzes, P.: Crustal evolution of western and central Europe.  
999 [https://doi.org/10.1144/GSL.MEM.2006.032.01.03, 2006.](https://doi.org/10.1144/GSL.MEM.2006.032.01.03)

1000  
1001  
1002

1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1050  
1051  
1052

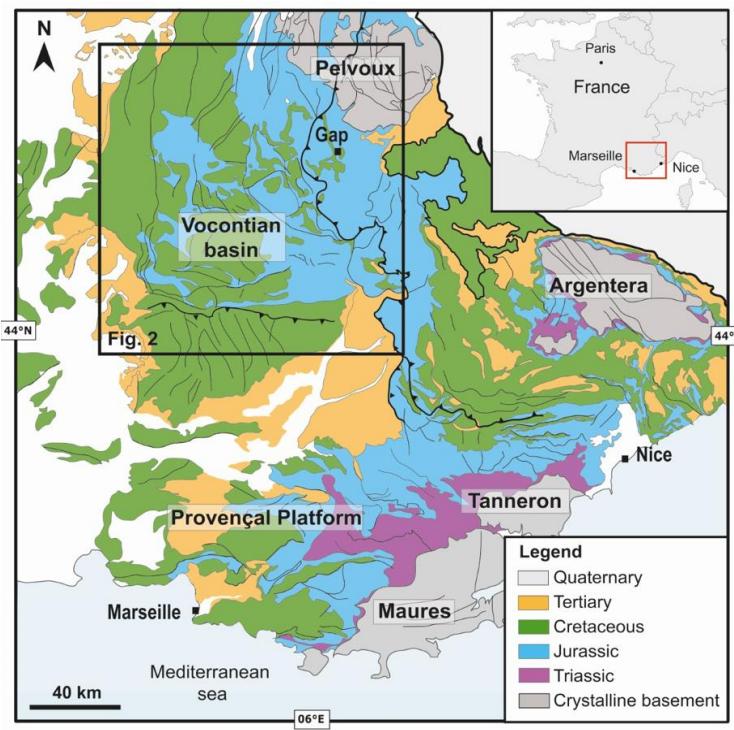



Figure 1: Simplified geological map of SE France. Location of the study area.

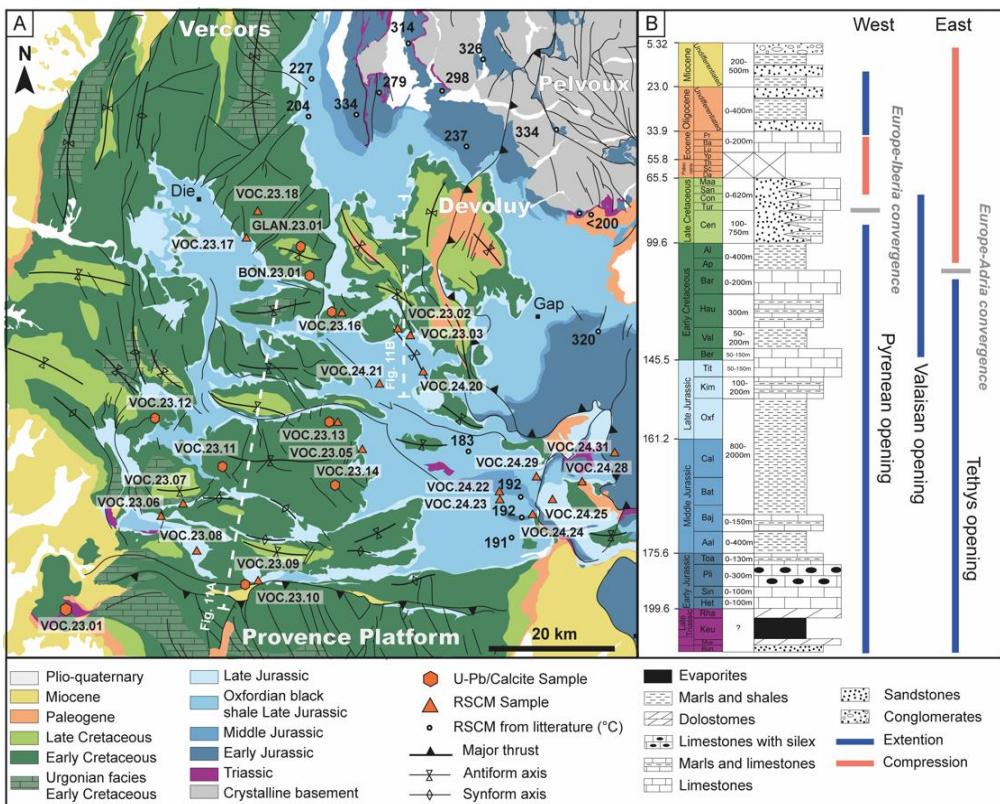



Figure 2: A) Geological map of Vocontian basin with sample location and Raman data in °C from Bellanger et al. (2015) and Célini et al. (2023). B) General stratigraphic section of the Vocontian basin and main tectonic events.

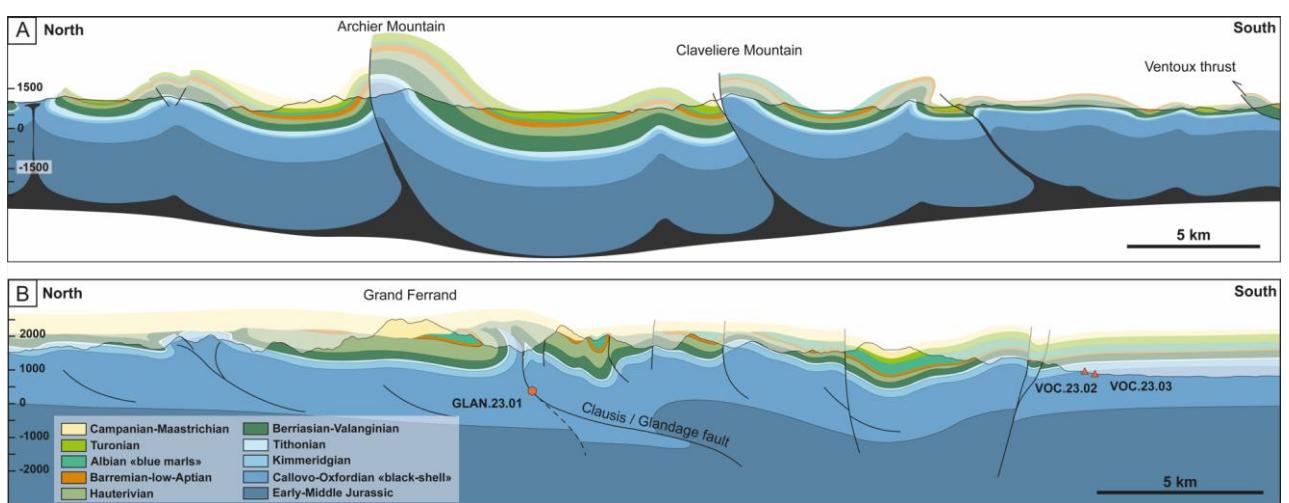



Figure 3: North-South geological cross-section of the Vocontian basin (A) and the Dévoluy massif (B). Location is presented in Fig. 2. Coniacian and Santonian are missing as there is a sedimentary gap (see in the text).

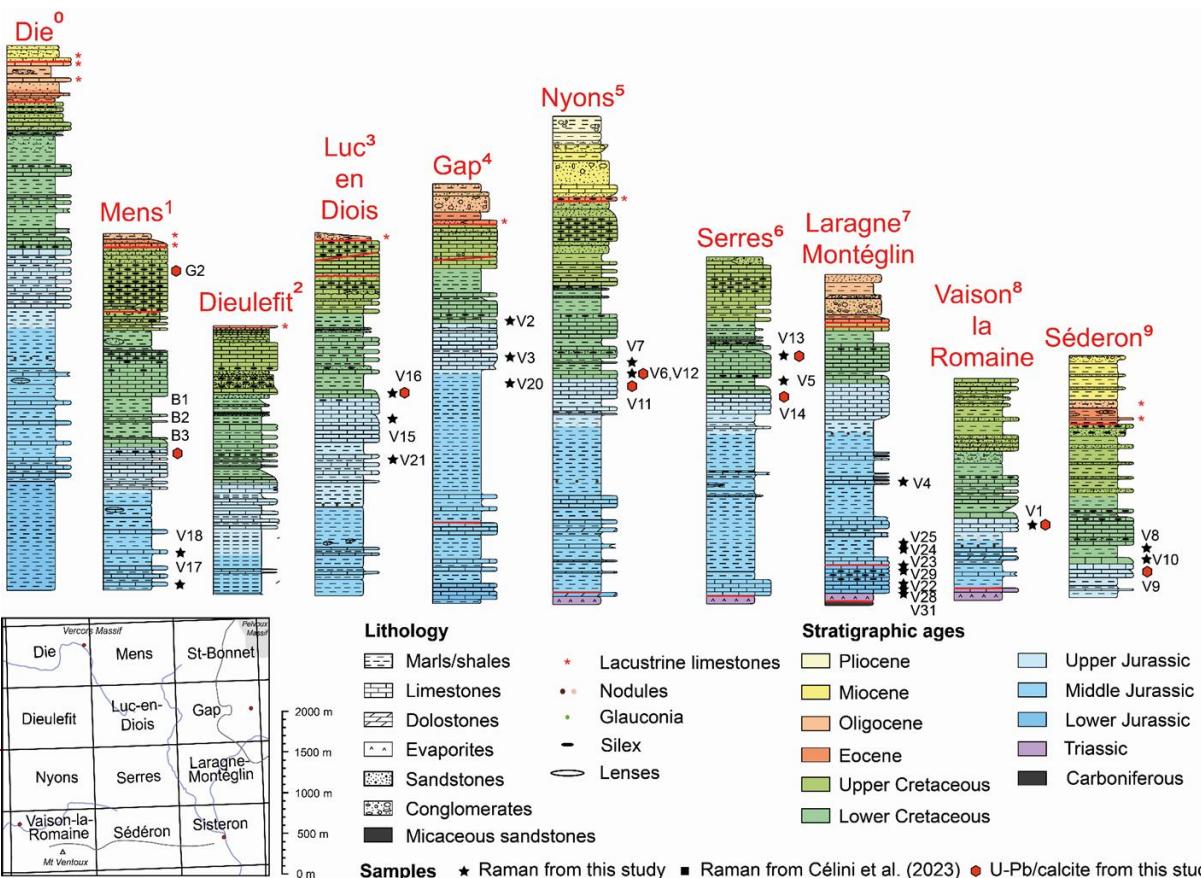



Figure 4: Stratigraphic logs corresponding to each geological notice of BRGM maps from the Vocontian basin. Sample names are shortened from V.23.X to VX for simplification and space in the figure.

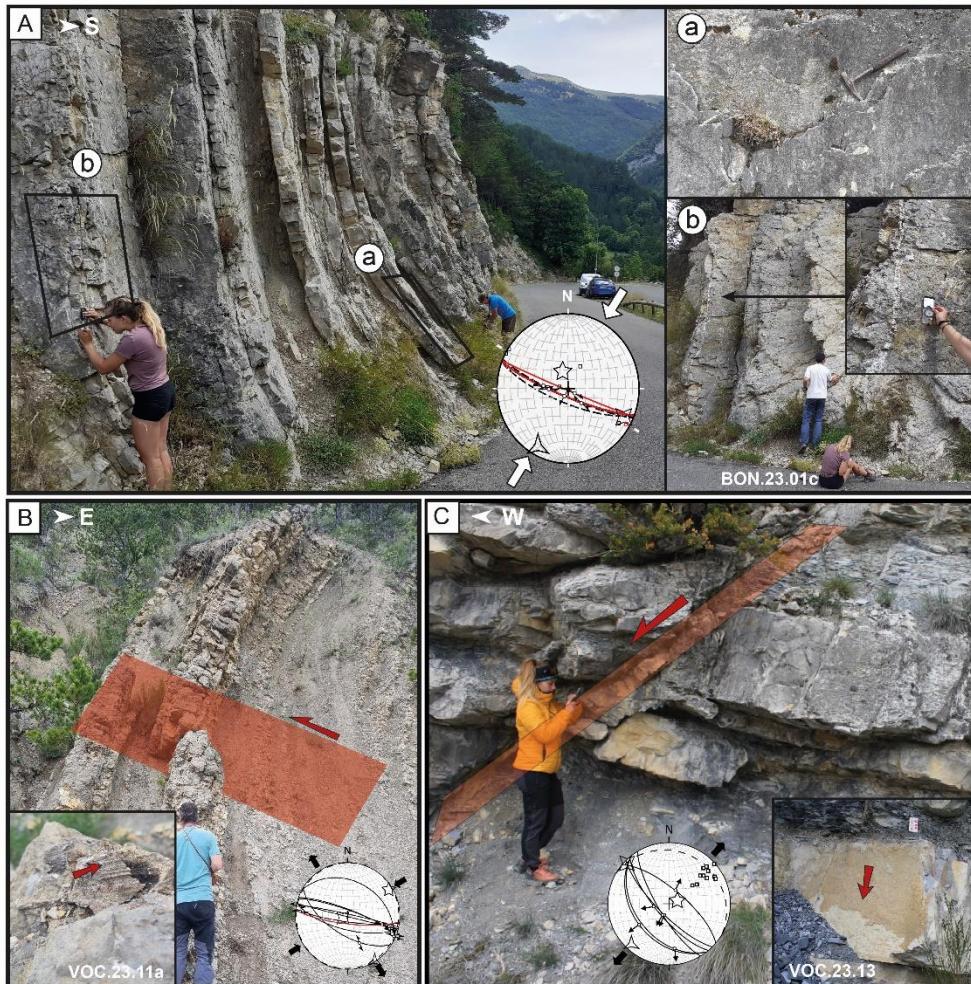



Figure 5: Main geological structures associated to their corresponding measurement and U-Pb age. A) sample BON.23.01. B) sample VOC.23.11. C) sample VOC.23.13.

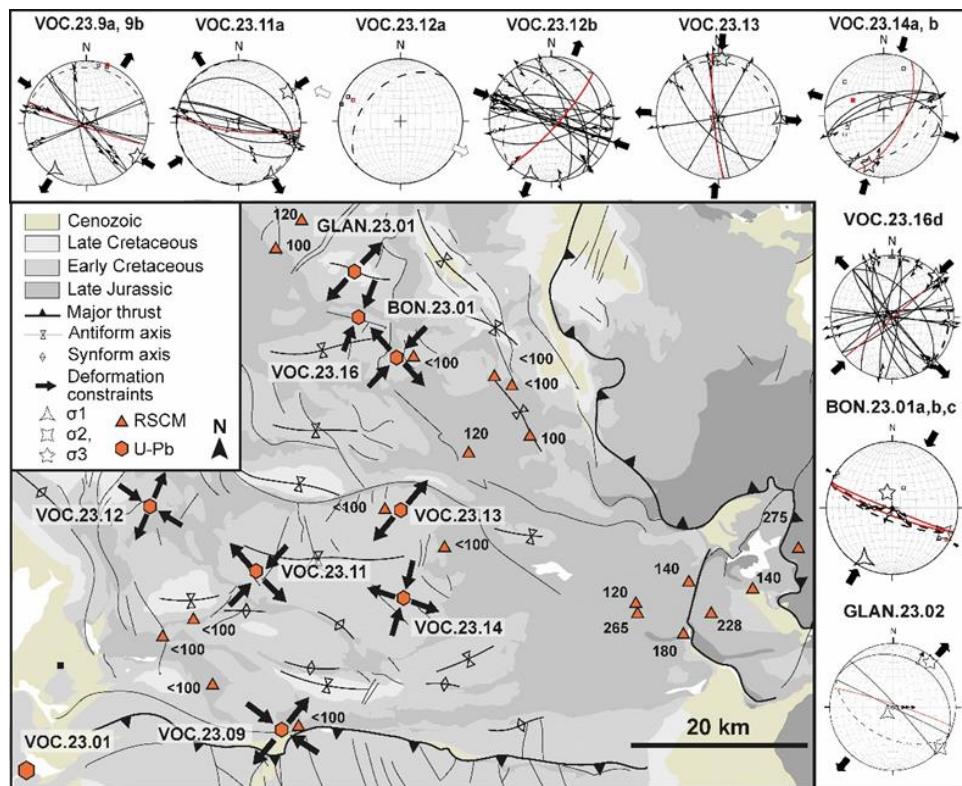



Figure 6: Simplified geological map with structural analysis of each dated sample and location of Raman thermometry results given in °C.

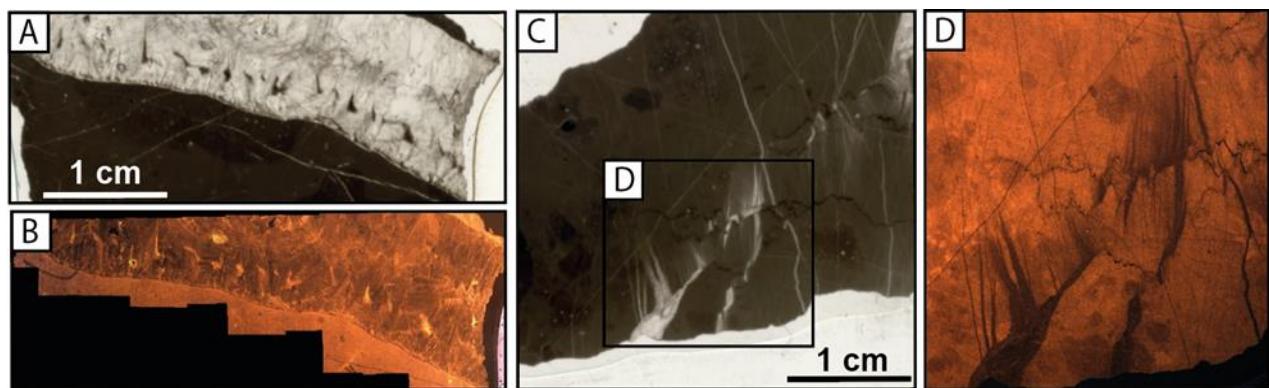



Figure 7: Examples of LPNA (A and C) and cathodoluminescence microphotographs (B and D) of two different types of U/Pb-dated calcite veins. A) and B) sample VOC-23-01. C) and D) sample VOC-23-11a.

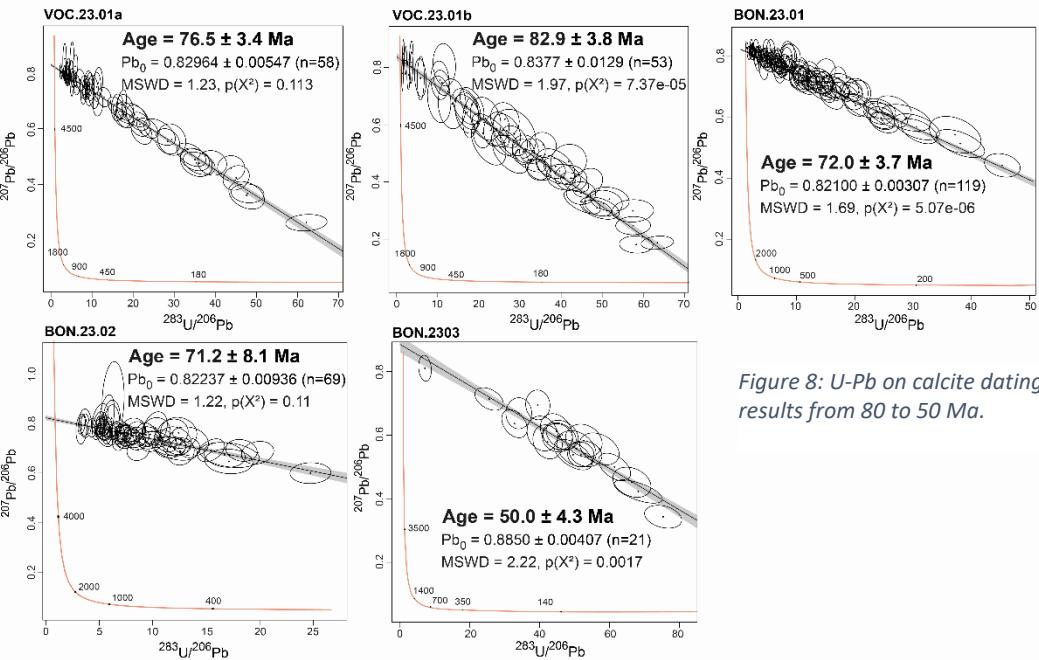



Figure 8: U-Pb on calcite dating results from 80 to 50 Ma.

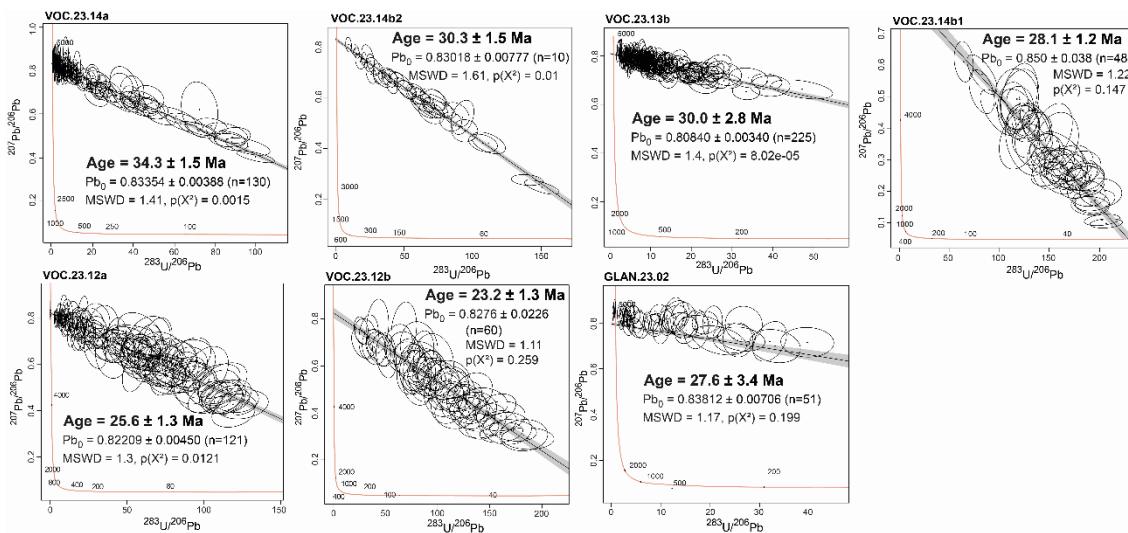



Figure 9: U-Pb on calcite dating results from 30 to 20 Ma.

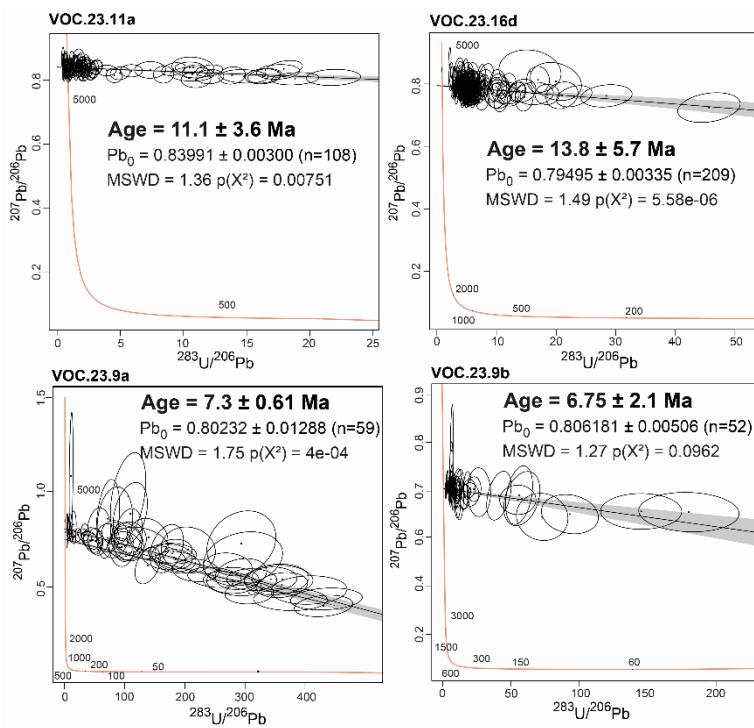



Figure 10: U-Pb on calcite dating results from 12 to 7 Ma.

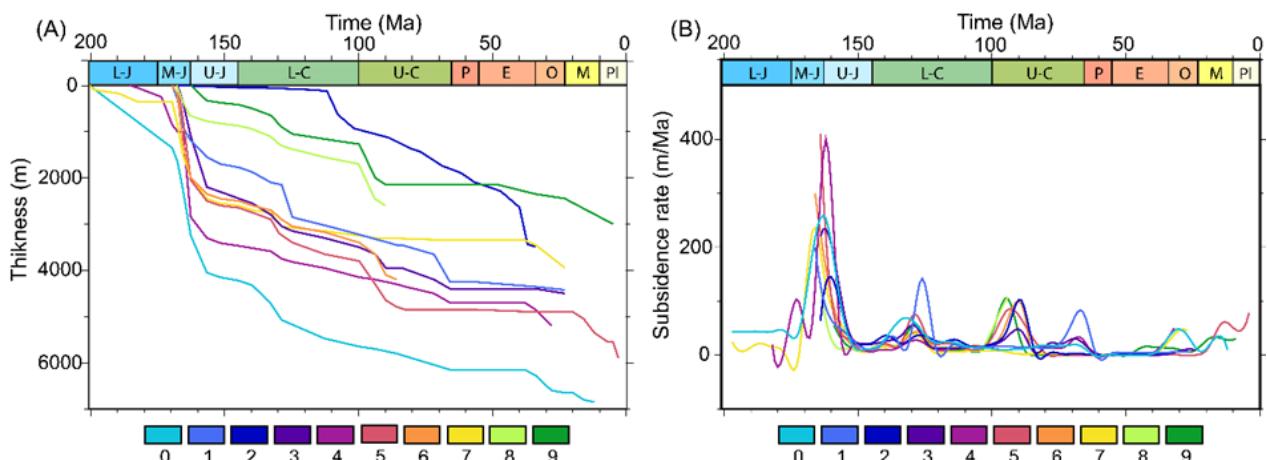



Figure 11: A) Burial history computed after the synthetic stratigraphic sections shown in Figure 10. B) evolution of sediment accumulation rate through time. 0: Die; 1: Dieulefit; 2: Gap; 3: Laragne-Montéglise; 4: Luc-en-Diois; 5: Mens; 6: Nyons; 7: Sédéron; 8: Serre; 9: Vaison-la-Romaine. L: lower; mi: middle; u: upper; J: jurassic; C: cretaceous; P: Paleocene; E: Eocene; O: Oligocene; M: Miocene; pl: Pliocene.

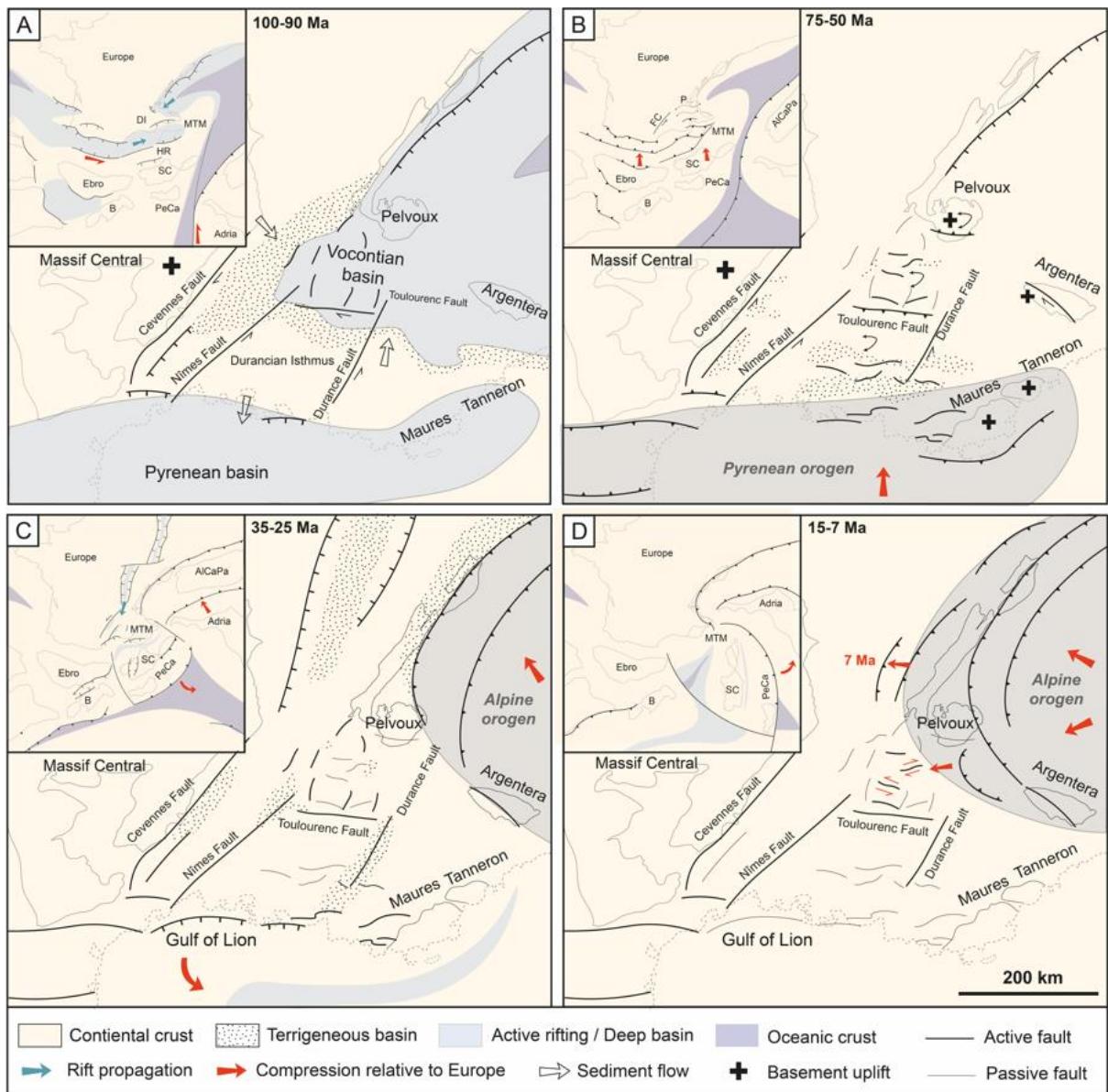



Figure 12: Regional tectonic and paleogeographical reconstructions of SE France showing the evolution of the Vocontian basin since the Middle Cretaceous (modified after Boschetti et al., 2025b). A) Rifting in overlapping Pyrenean-Vocontian rift segments at 110-90 Ma. B) Pyrenees-Provence collision phase from 75 to 50 Ma. C) Opening of the West European Rift and onset of Alpine foreland fold and thrust belt tectonics. D) Alpine collision and westward propagation of deformation front. SC: Corsica-Sardinia; B: Balearics; C: Chartreuse; V: Vercors.

1365  
1366

Table 1: Calcite sample types and corresponding measurements and ages.

| Sample      | Lat       | Long     | Structures              | n  | $\sigma 1$ | $\sigma 2$ | $\sigma 3$ | $\phi$ | U-Pb (Ma) | Error (Ma) |
|-------------|-----------|----------|-------------------------|----|------------|------------|------------|--------|-----------|------------|
| VOC.23.01a  | 44.159326 | 5.049163 | Vein + Strike slip      | -  | -          | -          | -          | -      | 76.5      | 3.4        |
| VOC.23.02b  | 44.159326 | 5.049163 | Vein                    | -  | -          | -          | -          | -      | 82.9      | 3.8        |
| VOC.23.9a   | 44.190622 | 5.47628  | Strike-slip (Reverse)   | 13 | 02/124     | 80/025     | 10/214     | 0.6    | 7.3       | 0.61       |
| VOC.23.9b   | 44.190622 | 5.47628  | Vein (Associated 9a)    | 11 | 73/098     | 16/291     | 04/200     | 0.5    | 6.75      | 2.1        |
| VOC.23.11a  | 44.367914 | 5.352686 | Strike-slip (Post-fold) | 6  | 17/0.23    | 71/185     | 05/292     | 0.5    | 11.1      | 3.6        |
| VOC.23.12a  | 44.437467 | 5.293520 | Vein                    | -  | -          | -          | -          | -      | 25.6      | 1.3        |
| VOC.23.12b  | 44.437467 | 5.293520 | Vein + Strike slip      | 17 | 10/292     | 78/078     | 06/201     | 0.5    | 23.2      | 1.3        |
| VOC.23.13b  | 44.417889 | 5.657694 | Normal fault            | 14 | 78/069     | 05/315     | 10/223     | 0.5    | 30        | 2.8        |
| VOC.23.14a  | 44.328944 | 5.631972 | Vein (Associated 14b)   | -  | -          | -          | -          | -      | 34.3      | 1.5        |
| VOC.23.14b1 | 44.328944 | 5.631972 | Strike-slip (Normal)    | 6  | 17/197     | 73/007     | 03/106     | 0.5    | 30.3      | 1.5        |
| VOC.23.14b2 | 44.328944 | 5.631972 | Strike-slip (Normal)    | 6  | 17/197     | 73/007     | 03/106     | 0.5    | 28.1      | 1.2        |
| VOC.23.16d  | 44.575833 | 5.640667 | Strike-slip (Reverse)   | 20 | 04/048     | 86/234     | 00/138     | 0.5    | 13.8      | 5.7        |
| BON.23.01a  | 44.62582  | 5.60985  | Plane from fold         | 11 | 36/205     | 04/112     | 54/017     | 0.27   | 72        | 3.7        |
| BON.23.01   | 44.62582  | 5.60985  | Plane from fold         | 11 | 36/205     | 04/112     | 54/017     | 0.27   | 71.2      | 8.1        |
| BON.23.01   | 44.62582  | 5.60985  | Vein                    | 11 | 36/205     | 04/112     | 54/017     | 0.27   | 50        | 4.3        |
| GLAN.23.02  | 44.68617  | 5.59384  | Normal fault            | 4  | 62/203     | 04/300     | 27/032     | 0.5    | 27.6      | 3.4        |

1367  
1368  
1369

Table 2: Raman Thermometry data.

| Sample      | Lat °N    | Lon °E   | Stratigraphic Age (Ma) | Log/Map           | Burial T (30°C/km) | Burial T (60°C/km) | RSCM T (°C) | 1s |
|-------------|-----------|----------|------------------------|-------------------|--------------------|--------------------|-------------|----|
| VOC.23.02   | 44.556889 | 5.772778 | 142                    | Gap               | 52                 | 104                | <100        |    |
| VOC.23.03   | 44.546834 | 5.801242 | 156                    | Gap               | 57                 | 114                | <100        |    |
| VOC.23.05   | 44.354736 | 5.668139 | 135                    | Serres            | 51                 | 102                | <100        |    |
| VOC.23.06   | 44.296138 | 5.281886 | 142                    | Nyons             | 51                 | 102                | <100        |    |
| VOC.23.07   | 44.299667 | 5.312604 | 142                    | Nyons             | 51                 | 102                | <100        |    |
| VOC.23.08   | 44.227526 | 5.433728 | 137                    | Sederon           | 75                 | 150                | <100        |    |
| VOC.23.10   | 44.221778 | 5.429244 | 142                    | Sederon           | 77.5               | 155                | <100        |    |
| VOC.23.13   | 44.417889 | 5.657694 | 124                    | Serres            | 34.5               | 69                 | <100        |    |
| VOC.23.16   | 44.575833 | 5.640667 | 142                    | Luc-en-Diois      | 61.5               | 123                | <100        |    |
| VOC.24.17   | 44.681803 | 5.414283 | 167                    | Mens              | 122                | 245                | 100         | 20 |
| VOC.24.18   | 44.698656 | 5.419786 | 166                    | Mens              | 105                | 211                | 120         | 20 |
| VOC.24.20   | 44.502694 | 5.820133 | 156                    | Gap               | 57                 | 114                | 100         | 20 |
| VOC.24.21   | 44.464336 | 5.697017 | 157                    | Luc-en-Diois      | 69                 | 138                | 120         | 20 |
| VOC.24.22   | 44.316244 | 5.959372 | 169                    | Laragne-Monteglin | 93                 | 186                | 120         | 20 |
| VOC.24.23   | 44.308639 | 5.956206 | 166                    | Laragne-Monteglin | 73                 | 147                | 265         | 12 |
| VOC.24.24a  | 44.281517 | 6.014347 | 163                    | Laragne-Monteglin | 58.5               | 117                | 180         | 20 |
| VOC.24.25   | 44.294617 | 6.056911 | 162                    | Laragne-Monteglin | 58.5               | 117                | 228         | 22 |
| VOCY.24.28a | 44.328152 | 6.128097 | 170                    | Laragne-Monteglin | 108                | 216                | 140         | 20 |
| VOC.24.29   | 44.335796 | 6.020728 | 166                    | Laragne-Monteglin | 73                 | 147                | 140         | 20 |
| VOC.24.31   | 44.357159 | 6.166843 | 175                    | Laragne-Monteglin | >108               | >216               | 275         | 6  |

1371  
1372  
1373  
1374  
1375  
1376  
1377

1370

1378  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427

1428  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1470  
1471  
1472

1473

1474  
1475

1476  
1477  
1478  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1498  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1520  
1521  
1522  
1523  
1524  
1525

1526  
1527  
1528  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1570  
1571  
1572  
1573  
1574  
1575

1576  
1577  
1578  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618

1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1650  
1651  
1652

1653

1654

1655

1656