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Maleen Hanst!, Carmen G. Kohler!, Axel Seifert', and Linda Schlemmer!
IDeutscher Wetterdienst, Frankfurter StraBe 135, 63067 Offenbach am Main, Germany

Correspondence: Maleen Hanst (maleen.hanst@dwd.de)

Abstract. Contrails-Persistent contrails and contrail-induced cirrus clouds are considered the most significant non-CO3 con-

tributors to aviation’s climate impactand-ecearprimarity-. These clouds primarily form in ice-supersaturated regions (ISSRs)-

Reliablepredietion—of-, defined by relative humidity over ice (RH;..) exceeding 100 %. Reliable prediction of RHjc. in the
upper troposphere and lower stratosphere allows mitigating their formation by re-routing flights. We implemented a two-

moment cloud ice microphysics parameterization within a ten-member Ensemble Prediction System (EPS) using the global
ICON (ICOsahedral Nonhydrostatic) model. RH;.. predictions were evaluated against radiosonde and aircraft observations
from the Northern Hemisphere during 2624—2625-2024-2025. Treating ISSR prediction (RHjc. > 100 %) as a binary classifi-
cation problem, we find that the probability of detection (POD) of ISSRs increases to 0.6 for the two-moment scheme (ICON
2-Mom), compared to 0.4 for the operational ICON with a one-moment ice microphysics scheme, while maintaining a low
false positive rate (FPR < 0.1). Further evaluation of the ICON 2-Mom EPS using Receiver Operating Characteristic (ROC)
analysis shows a POD of 0.8 for a decision model that requires at least three ensemble members to predict ISSR, with an
FPR of 0.13. Additionally, we incorporate ensemble spread information to develop a meta-model that further reduces the FPR.
Since June 2024, more than 100 flights have been rerouted based on ICON 2-Mom EPS predictions in a contrail avoidance
trial, demonstrating the practical value of improved ISSR forecasts for climate-conscious aviation. This study highlights the
significant potential of ensemble-based modeling for predicting ISSRs and RHjc,, supporting environmentally optimized flight

planning and advancing applications in weather and climate science.

Copyright statement. TEXT

1 Introduction

The impact of aviation on climate change is a growing concern, especially as the number of aircraft increases (Yamashita et al.,
2016; Grewe et al., 2021). Air traffic is estimated to contribute to global warming by approximately 3.5 % (Lee et al., 2023) ;
— with an uncertainty range of 2-+4-%-tkee; 2648)52-14 % (Lee, 2018) — caused by CO2 and non-CO,, effects.

While the uncertainty range for the climate impact of CO5 emissions is relatively small, there is significant variability

associated with non-COs effects arising from emissions such as NO,, H2O, and, notably, the formation of persistent con-
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trails and contrail-induced cirrus clouds (Matthes et al., 2017; Klower et al., 2021; Liihrs et al., 2021; Lee et al., 2023).

These phenomena;—coHectively—referred—to—as-aircraft-induced clouds ;-present a complex challenge for climate assessment
Teoh et al., 2024). While Kircher (2018) estimate-that-theireontribution-aceounts-estimates that they account for more than

half of aviation’s total radiative forcing, Bickel-et-al(2020)contend-thatthe-Bickel et al. (2025) contend that their net warming

effect might be less than that of CO., primarily because it may be partially offset by a decrease in natural cirrus cloud coverage

~(Bickel et al., 2020).

Given the variety of findings and the potential trade-off between CO, and non-CO, impacts, effective strategies to miti-
gate the climate impact of aviation must eonsider-address both types of effects. Among-these-strategies;-climate-optimized
flightrouting-has-gained-One such strategy that has gained increasing attention in recent years ;-as-it-seeks—to-minimize-is

climate-optimized flight routing, which aims to reduce aviation-induced warming by accounting for a comprehensive range
of atmospheric impacts (Schumann et al., 2011; Grewe et al., 2017a, b; Matthes et al., 2017; Simorgh et al., 2022). This ap-

proach is built upon climate response models such as the Contrail Cirrus Prediction (CoCiP) model (Schumann, 2012), its
Python adaptation PyContrails (Shapiro et al., 2023), or algorithmic Climate Change Functions (aCCF) (Dietmiiller et al.,
2022; Matthes et al., 2023), which provide the necessary computational framework.

Climate response models rely on four-dimensional meteorological fields — typically derived from numerical weather pre-
diction (NWP) models — in which relative humidity over ice (RHjc) is a key parameter for evaluating contrail formation ac-
cording to the Schmidt-Appleman criterion (Schmidt, 1941; Appleman, 1953; Schumann, 1996). To provide climate response
models with physically consistent and representative atmospheric inputs, it is therefere-crucial that NWP models accurately

capture RH;c., especially under eenditions-ef-icesupersaturation-ice-supersaturated conditions (RH;j.e > 100 %), which are
essential for persistent contrail development. Yet-despite-its-

Beyond contrail modeling, ice-supersaturated regions play a critical role in eentrail-predietion-the development and persistence

of cirrus clouds, which are key regulators of the water vapor budget in the upper troposphere and lower stratosphere (Kércher et al., 2023

. Improving the representation of supersaturation is therefore vital not only for contrail modeling but also for capturing the

. Yet, despite its relevance for climate-relevant processes, RH;.. remains one of the most uncertain variables in NWP models ;

tes(Kunz et al., 2014; Dyroff et al., 20

is particularly challenging due to limited upper tropospheric humidity
hum*dﬁybﬁe}dﬂr—aﬂd—%hedata large humidity variability, and incomplete understanding of ice nucleation and cirrus cloud forma-

s-. Improving cloud cover schemes and parameterizations of ice

microphysics are therefore an active area of research

broader impacts of cirrus cloud dynamics on atmospheric moisture and radiative balance (Dekoutsidis et al., 2023; Borella et al., 2025
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Kircher et al., 2022; Seifert et al.
. Additionally, predicting ice supersaturation peses-chalenges-due-to-resolution-limitationsis complicated by resolution limits:
NWP models typteattyrepresent mean atmospheric values and may-miss-highly-often miss localized ice supersaturated regions
(ISSRs), particutarty-those-associated—with-especially those linked to unresolved mesoscale gravity waves (Wilhelm et al.,
2018).

One way to circumvent these limitations is to build-a-pest-processing-model-which-develop machine learning methods to

derive RH;.. forecast corrections. The resulting correction model receives variables such as temperature, RH;., and others,
and eutputs-returns adjusted values of RHj... Wang et al. (2025) focused their research on reanalysis data, deriving their post-

processing model inputs from ERA5 (ECMWF Reanalysis v5) data, and trained their model using humidity measurements

from the In-service Aircraft for a Global Observing System (IAGOS), showing RH;.. mean absolute error improvements

The use of high-resolution NWP models is another approach to dealing with uncertainties in predicting RHjc.. In a recent
study by Thompson et al. (2024), several leading-high-resolution-NWP-models-have-been-NWP models were validated with
respect to RHj¢. using radiosonde and IAGOS data, and-the-results-are-diseussed-in the context of contrail avoidance flight
routing. RHj¢, predictions effrom IFS (Integrated Forecasting System), GFS (Global Forecast System), and S-WRF (a Weather
Research and Forecasting model eonfigured-configuration by SATAVIA) are-evaluated-and-moderate-seores-in-terms-of-were
evaluated using standard classification metrics, including the I score and the Matthews Correlation Coefficientwere-found-

The-study-highlighted-, which reflect the models’ ability to correctly identify ice-supersaturated conditions. Moderate scores
were found, indicating room for improvement in ISSR prediction skill.

The study highlights that a correct prediction—of-conditions—which-are-not conductive-to-contrail-formation;—mainly—the
eondition-of-identification of non-ISSR +is also crucial, as false negatives (thus, incorrect ISSR predictions) could potentially

lead to unnecessary re-routing. For the S-WRF model, they found-find a true positive rate for the non-ISSR condition of 90.7

% and a-trae-pesitiverate-for-the R-condition-of-45:9-%-—Henee;fo R-they-observe-afalse-positiverate-hence a false

the-eurrentstatus-quo-of-aviation-impaets—Conversely;-the-. The low false positive rate of ISSR suggests that there may be only

few worst-case scenarios where aircraft are diverted to an incorrectly predicted non-ISSR due to an incorrectly predicted ISSR,

at—av
)

resulting in both additional CO, emissions and possible contrail formation.
These studies demonstrate the potential of machine learning models and state-of-the-art NWP systems to improve RH;.
rediction, but they also reveal persistent limitations. In particular, the reliance on simplified cloud cover or microphysics
schemes and deterministic forecasts restricts the ability of current models to capture the full variability and uncertaint
associated with ice supersaturation.

, 2022; Spichtinger et al., 2023; Achatz et al., 2024; Grundner et al., 2024; Liittmer et al., 2024
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A key challenge in realistically representing RH;..

humidity variability and cloud formation processes. The IF'S model addresses this through the Tompkins cloud cover scheme
Tiedtke, 1993; Tompkins et al., 2007; ECMWEF, 2024), which employs a prognostic probability distribution function (PDF) of
total water content to estimate cloud fraction. This statistical approach allows for a probabilistic representation of cloud cover
and ice supersaturation but does not explicitly resolve the underlying ice microphysical processes.

In contrast, the ICON (ICOsahedral Nonhydrostatic) NWP model (Zingl et al., 2014) uses a physically based microphysics
scheme. Within this approach, a key factor in a realistic representation of RHic is the scheme’s ability to simulate the phase

hrouch—the ON-_partnerchip—wh
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erational eonfiguration-of-the HCON-model-one-moment cloud ice microphysics is-represented-by-a-one-moment-scheme-in
whieh-parameterization, the specific ice mass is considered-treated as a prognostic variable—Hewever;-this-approach-cannot

(UFES)we-adept, whereas ice particle number density is estimated from temperature. This approach tends to overestimate
particle numbers at low temperatures, resulting in unrealistically short phase relaxation times and limiting the ability of the
model to represent ice supersaturated conditions. To address these limitations, a two-moment eloud-iee seheme that ineludes
ice microphysics scheme treats the ice particle number density as an additional prognostic variable (Kohler and Seifert, 2015).
This allows ICON to better capture the phase relaxation time, and thereby the degree of ice supersaturation and the persistence
of ice supersaturated regions. ¥ i tmph i ion oh i
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Complementary to the model physics, ensemble forecasting is a powerful tool for capturing atmospheric variability and model
uncertainty. This is particularly valuable for phenomena like ISSR, which are rare, spatially heterogeneous, and sensitive to
small-scale processes. While ensemble means are commonly used to produce stable deterministic forecasts, they may obscure
signals critical for ISSR detection. Instead, ensemble spread and extremes, such as the highest RHice values among members,
may reveal localized supersaturation events and offer a probabilistic measure of forecast confidence.

In our study, we combine both approaches: We implement and evaluate a two-moment cloud ice microphysics scheme
M&MI&WMWMWW as—eaptured
ionassessing how the ensemble can enhance ISSR

The-main-contribution-As part of this studyis

with-the-, the ten-member ICON ensemble with the new two-moment ice microphysics scheme JCON-2-Mom-EPS)-through

The ICON2-Mem-EPS-has been established as a dedicated forecasting system at BPWD-te-provide-the German Meteorological
Service (DWD). It provides continuous meteorological data fer-to support research on contrail avoidance flights. This setup

was developed within the D-KULT project (demonstrator-climate-and-environmentatty-friendly-air-transpertDemonstrator for

Climate and Environmentally Friendly Air Transport), which aims to demonstrate the feasibility of climate-optimized flight
trajectories with a focus on reducing contrail formation in European airspace. faims-The project seeks to optimize flight paths

using climate response models that account for both CO5 and non-CO, effects, while balancing emissions, noise, operating
costsand-real-world-, and operational constraints such as airspace regulations and airport capacity. One of-the-components
key component is the integration of the JCON-2-MemEPSferecastforecasts from the ICON ensemble to identify potential
persistent contrail regions for contrail avoidance flight-planning. In real-world trials, more than 100 flights have already been
rerouted using information from these forecasts, demonstrating the practical applieation-applicability of climate-aware flight
pathsoperations.

The outline-of this-paper

The structure of this work is as follows: In Section 2, we deseribe-he-details-of-the-dedicated ICON-forecastingsystem;
in-partiettar—the-introduce the new two-moment cloud ice microphysics scheme-and-the-ensemblesetup—In-Seetion 3—an
overview-over parameterization, the ensemble generation, and the details of the model setup. Section 3 provides an overview.
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of the in-situ ebservation-measurement-observational data used for verificationis-given. The verification methodology ane-is

described in Section 4, and the results are presented and-analyzed-in Section 5, where we start-by-evaluating-the-deterministic
WIM model with the new two-moment ice-microphysies—schemeand-then—meve-on—to-analyze
scheme, particularly in comparison to the

operational ICON model with the one-moment scheme. Building on the deterministic model verification, we then assess the
ten-member ensemble setup. We conclude with a discussion in Section 6 and a-conelasion-final remarks in Section 8.

2 Model

In its global operational configuration, cloud ice mlcrophys1cs sehemeﬂsedﬂﬁwhwh—ehemm

scheme, where specific ice mass is

density is diagnosed from temperature (see Appendix A for details).
T l | Lmitationss

2.1 Two-Moment Cloud Ice Microphysics Parameterization in ICON

nucleationfollows-the-approach-of (Kéreher; 2048)—This-one-moment cloud ice scheme. It adds a prognostic equation for

cloud ice number density and includes explicit ice nucleation processes. Examples of similar hybrid schemes include those
by Reisner et al. (1998) and Thompson et al. (2004), though these originally used purely temperature-dependent ice initiation.
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Kohler and Seifert (2015, hereafter KS15) present a two-moment scheme that accounts for deposition nucleation based on ice
supersaturation, and includes homogeneous freezing of sulfate aerosol droplets at low temperatures. The version of the two-

moment scheme prevides-amore-physical-and-realks epresentatton-ottce-microphystes;espectally-underconditionsrelevan

1CON-(top)-and the ICON-with-the-used in this study is a simplified and updated version of KS15. The two-mode representation
in KS15 is omitted for computational efficiency, as are the timestep refinements for homogeneous nucleation. In a two-moment
eloud-iee-microphysiesseheme-botton)-scheme, sources and sinks of ice particles must be explicitly parameterized. The
three primary sources of ice particles are detrainment of ice from deep convective clouds, homogeneous nucleation, and
heterogeneous nucleation.

Deep Moist Convection

ICON parameterizes moist convection using a bulk mass flux convection scheme (Tiedtke, 1989; Bechtold et al., 2008). For
cloud ice detrainment from convection, a mean particle diameter of Dj copy = 200 m is assumed, corresponding to a mean
mass of 112 cany = 10~ " kg. A smaller mean mass would increase the number of detrained ice particles in the upper troposphere,
leading to shorter phase relaxation times in convective anvils and reduced ice supersaturation. The assumed size also affects
the effective radius of anvil clouds explicitly represented in the model. While-the-eloud structures remain-similar; the degree-of

Homogeneous Ice Nucleation

For homogeneous ice nucleation, the parameterization by Kércher et al. (2006) is used. It accounts for the presence of pre-existing
ice particles and is applied using grid-scale vertical velocity and ice supersaturation. However, it neglects subgrid-scale
variability, which may lead to an underestimation of nucleation events. The impact on cloud ice number concentration is
less straightforward. While nucleation events in nature occur on much smaller spatial scales, the model assumes that nucleated
particles are evenly distributed across the grid box once the event is triggered.

Heterogeneous Ice Nucleation

Heterogeneous nucleation is represented using the INAS (Ice Nucleating Active Sites) approach of Ullrich et al. (2017), which

includes parameterizations for deposition and immersion freezing on mineral dust and soot. Since prognostic aerosol fields are
not available in ICON, but only in ICON-ART, a constant dust number concentration of Ny, = 1 X 103 m~3 is assumed in
the upper troposphere above py = 200 hPa. Below that pressure height the profile increases followin

Ndust(p) = Ndust,O max {mln [eXp (’Ydust]i)) 7200 }a 1} (1)
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with vg = 1 x 1072, The dust surface area Sy, is calculated based on a lognormal particle size distribution with a mean
diameter of 1 um and a standard deviation of 2.5. The number of nucleated ice particles is then diagnosed as:

Here, ng is the INAS density in m—2, 5) for immersion freezin

Ullrich et al. (2017).

In numerical models, newly formed ice particles are typically diagnosed each timestep using AN; = N — NP, where N
is the number of pre-existing ice particles. However, this can overestimate heterogeneous nucleation since N7 is reduced by
sedimentation or aggregation, while Ngys remains constant. This effectively creates an unlimited reservoir of ice-nucleating.
particles. To avoid this artifact, a budget variable is introduced as described in KS15. A relaxation timescale of two hours is
applied to simulate the recovery of nucleating particle availability due to atmospheric mixing.

arameterized according to Eq. (7) for deposition and Eq.

2.2 EnsemblePredietionSystem

2.2 Ensemble Generation

The ensemble generation is based on the Local Ensemble Transform Kalman Filter (LETKF) method (Ott et al., 2004; Hunt

et al., 2007), which perturbs the initial conditions of all members simultaneously in a member-dimensional space. The initial
state of each ensemble member is computed by combining its background state — a short-range forecast — with a weighted
correction derived from the differences between observations and model background. These weights are computed via a gain
matrix that incorporates both observation error and background error covariances, ensuring that each member assimilates
observation information in a distinct but dynamically consistent way.

In addition to initial condition perturbations, the system includes stochastic perturbations of selected physical parameteriza-

tions —Fer-the-which are known to be sensitive. Thereby, different components of the system are perturbed, including gravity.
waves, convection, microphysics, the cloud scheme, turbulence and land surface. For example for convection, well-known
parameters such as the entrainment rate or the excess of moisture or temperature used in the ascent of a test parcel are targeted.
For the global ensemble system, these physical parameters are randomly perturbed for each ensemble member at-the-start
within their range. The randomisation is accomplished by a phase shift of the sinusoidal wave depending on the ensemble
member ID (for more details see Chapter 13.2 in Reinert et al., 2025). This approach introduces variability among ensemble

members while preserving the consistency of individual forecast trajectories. The combined perturbation strategy ensures a
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Figure 1. Relative humidity over ice (RHic) of the operational ICON with one-moment ice microphysics scheme (top row) and of ICON with
two-moment ice microphysics scheme (bottom row): () Global forecast-only data of RHie, near the tropopause (~~10.2 km); (b) normalized
histograms of RHie; of Vaisala RS41 radiosonde data and ICON; (¢) 2D histograms of RHie. of spatio-temporally matched points between
Vaisala RS41 radiosonde data and ICON forecasts with a lead time of 12 hours; heights between 8500-12500 gpm, corresponding to most
common commercial flight altitudes.

255 realistic representation of forecast uncertainty, which is crucial for assessing the sensitivity of contrail formation potential to

meteorological variability.

As a third source of uncertainty, the sea-surface temperatures over oceans are perturbed in the initial conditions,

2.3 Model Setup

The dedicated system-for-the D-KUETFprejeetis-ICON forecasting system which is implemented and evaluated in this stud
260 is based on ICON version 2.6.6. DPetailed-information-on-the-adapted-code-can-befound-in-the-Appendix-A-The system runs

on the ICON R3B06 grid, which has a horizontal spacing of about 26 km and a vertical spacing of about 206-306-200-300

m at the most common commercial flight altitudes of 8.5-+2:5—12.5 geopotential kilometers. It starts from the operational
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Figure 2. Radiosonde (left) and IAGOS (right) observation data. (a) Locations of 105 stations equipped with Vaisala RS41 radiosondes in
the Northern Hemisphere. (b) Example height profiles of temperature and RHjc. from Vaisala RS41 (TEMP) observations and ICON 2-Mom

EPS forecasts with a lead time of 12h. (¢) Rank histogram: For each spatio-temporal point (comprising ICON 2-Mom EPS values and

the corresponding radiosonde measurement), the observed value is ranked among the ten ensemble members, and the resulting ranks are

displayed in a histogram. The rank histogram includes only samples where the observed RHj.. exceeds 50 %. (d) IAGOS flight routes of

188 flights from December 2024, limited to the Northern Hemisphere. (e) Spatio-temporal comparison of flight data and ICON 2-Mom EPS:

Time series of temperature and RH;.. from one example flight. (f) Rank histogram for IAGOS flight data, analogous to (c).

analysis, which is based on the one-moment ice microphysics scheme, so that we require a spin-up time of at least 6 hours
in our evaluations below to build up ice supersaturation. The model is run four times a day, initialized at 00, 06, 12, and 18
UTC with a forecast lead time of 60 hours, producing hourly forecasts. The system consists of ten ensemble members, whose
generation is based on the first ten members of the operational ensemble prediction system. This is a reasonable approach as
discussed in the-Appendix B.

The model outlined forms the basis for the evaluations performed in this study and will be referred to as FEON2-Mont
£PS ICON 2-Mom EPS in the remainder of this study. Since the dedicated ICON forecasting system does not consist of an
additional deterministic model run, we use individual members of the ensemble as approximates to a deterministic model
setup for our evaluation, denoted by /CON-2-Mo#—ICON 2-Mom in the following. Similarly, the operational ICON with the
one-moment ice microphysics scheme is denoted by ICON 1-Mom.
of relative humidity over ice for both schemes. While overall cloud structures remain comparable, the two-moment cloud ice
scheme produces a markedly higher degree of ice supersaturation. The realism of this behavior is examined in the remainder

10
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3 Observation Data

This study emphasizes in situ measurements for verification, with the primary analysis based on radiosonde data. Additionally,

data from the In-Service Aircraft for a Global Observing System (IAGOS; see https://www.iagos.org/) were considered.
3.1 Vaisala RS41 Radiosonde Data

We restricted our radiosonde verification to Vaisala Radiosonde RS41 data, as this type of radiosonde is best scored for humidity

measurements in the UTLS (—Dﬁksefre%al—’%(—E%—Befge%al—ZG%} Dirksen et al., 2022; Borg et al., 2023; WMO, 2024). The

temperature sens
of £0.2 °C -

entis measured with an accuracy

technology-and the humidity with an accuracy of +3 % RH. Heigh
from-GPS-measurements—For more details on techniques and precision compare Vaisala (2013). We limited our verification to

the Northern Hemisphere, where 105 radiosonde stations frequently yield Vaisala RS41 data. In Figure 222(a), the radiosonde
locations are shown. Mest-of-themproduce-dailydatafrom—twe-aseents{Radiosonde observations are typically conducted
twice daily, with balloon ascents around 0 -UTC and 12 %MMWWMW{V{HW

known as Binary Universal Form for the Representation of meteorological data yfermat-which-is-a-standardized-binary format
#sed-(BUFR), a format developed by the World Meteorological Organization (WMO) to encode and transmit various types
of weather observations;-ineludingradiosonde-data—. These files contain TEMP reports, which include a structured set of
atmospheric measurements such as temperature, pressure, humidity, and wind speed and direction at multiple vertical levels.

The stored—Vaisala RS41 radiosonde-height-resotution—is-radiosondes used in this study record vertical profiles with a
height resolution of approximately 1 gpm;—with-geopotential meter (gpm) and a measurement accuracy of +10-gpm—In-the
TEMP-files-the-£10 gpm. Within the standardized TEMP BUFR files, dew point temperature is stored-from-which-we-derive
provided, from which RHic. as-deseribed-is derived following the method outlined in Appendix C. #n-Fig—22Figure 2(b) -

exampleradiosonde-height-illustrates example vertical profiles of temperature and RH;. are-shown-together-with-obtained
from radiosonde measurements, shown alongside the corresponding ICON 2-Mom EPS data.

3.2 TAGOS Near-Real-Time Data

In addition to radiosonde data, we use in-situ aircraft data for our verification. The In-service Aircraft for a Global Ob-
serving System (IAGOS) is a European research infrastructure that uses commercial aircraft to collect atmospheric data.

IAGOS-CORE contains several measurement instruments, e.g., for ozone, earbene-carbon monoxide, humidity, and cloud

particles, and optionally for nitrogen oxides, greenhouse gases, and more (https://iagos.aeris-data.fr/instrumentation/). Again;

11
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the-measurementof-the-temperature-atthe-humidity-sensingsurface—The time resolution of the temperature measurements is 4

s with an accuracy of £0.5 K, while the time resolution of the humidity measurements ranges from 1 s at 300 K to 120 s at 200

K, with an accuracy of £6 % (for more details, see www.iagos.org/iagos-core-instruments/h2o0/). There are several levels of
data processing, from which we have used near-real-time (NRT) data, where humidity measurements are subject to automated
quality control, usually within 72 hours (https://iagos.aeris-data.fr/levels/). Only data with validity flag “geed™—‘good” were
used (https://iagos.aeris-data.fr/data-quality/) for 625 flights between August 2024 and January 2025. Fig. 2?2(d) shows the
flight routes for December 2024. For an hightighted-example-example highlighted flight route, the temperature and RH;c. time
series are shown together with the corresponding ICON 2-Mom EPS data (Fig. 2?2(e)). Similar to the radiosonde verification,

the analysis is confined to the Northern Hemisphere.

4 Verification AnalysisMethods

12
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Figure 3. verview of categorical verification methods used in this study. (a) Leeations

Confusion Matrix: Provides a structured summary of +65-stations-egquipped-how model predictions align with VaisalaRS4+-—radiosendes
height-profites-of-temperature-and-RHifromVaisala RS41-, false positive (?EMPFP)ebsefvaﬁeﬂ&aﬂd«}GQN%Mm%EPS—fefeeaﬁSWa
lead-time-of+2-h—, false negative (eFN)Rank-histogram:Foreach-spatio-temperal-point-, or true negative (comprising HCON-2-MomEPS
vatues-and-the-corresponding radiosonde-measurement[N), depending on its agreement with the observed value-isranked-among-outcome.

This matrix forms the tefrensemble members; and the resulting ranks-are displayed-foundation for computing categorical performance metrics
such as listed in a-histogram(b). (db) tAGOSHghtreutes Categorical metrics: Frequency bias index (FBI), probability of +88-flightsfrom
Deeember2024detection (POD), timited-tofalse positive rate (FPR). precision, and the Nerthern-HemisphereMatthews correlation coefficient
M&MW (e0) Sﬁﬁmmwwm of
Hight date-and JCON-2-Mem EPSthe ensemble prediction system: Fim ample-flight—(i) Rank
histegramr-the discrimination diagram shows two distributions of forecast probabilities; one for FAGOSflight-datathe case where the event
was observed in the measurements, analogeus-and one where it was not observed, highlighting the model’s ability to separate events by
classification models based on the ensemble’s probabilistic event forecast.
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The ICON grid used in our model setup has a horizontal resolution of areund-approximately 26 km and a vertical resolution

of 266-200-300 m within the altitude range of 8506-12-560-gpm—8500-12500 gpm. ICON simulations with hourly forecasts
up to a lead time of 60 hours were started in 6 hour intervals.

Radiosonde Data

Radiosonde data from a given station are mostly horizontally fixed and provide dense vertical coverage. To generate matched
ICON-radiosonde data pairs, the ICON grid cell center closest to each radiosonde station was first identified. Subsequently,
radiosonde observations were linearly interpolated to the ICON levels, as the model provides mean values across vertical layers
with considerably lower resolution than the radiosonde data. No horizontal interpolation was applied. However, the impact is
expected to be minimal, as typical horizontal scales of ISSRs are on the order of 140 km (Spichtinger and Leschner, 2016).
For temporal matching, the start time of the accent was used as a reference, and we select the corresponding ICON simulation
whose initial time is closest to the observation time minus the required lead time. Since the simulation provides hourly forecasts,
this approach ensures temporal matching to the nearest hour. The exact lead time is explicitly stated in all evaluations and never

below the required spin-up time of 6 hours.
Over the 14-month verification period, this approach yielded approximately 820 000 spatio-temporal matching points from

more than 63 000 radiosonde profiles. Figure 2?2(b) shows example radiosonde profiles of temperature and RH;c. from one

station, compared with ICON ensemble valuesfrom-the-nearest-grid-cell-center.

IAGOS Data

TAGOS data represent aircraft-based observations and thus capture horizontal trajectories spanning several hours. Matched
ICON-TAGOS data pairs were generated by identifying all ICON grid cell centers that were nearest to at least one point along
each flight path. Each selected ICON cell was then paired with its closest flight data point, and the model data were vertically

interpolated to match the altitude of that observation. ArtCON-spin—up-time-of-a-minimum-of-6-hourswas-required—For
temporal matching, the minimum lead time was fixed at 6 hours to account for the required ICON spin-up. Since flights span
several hours, different ICON simulations were used, each selected based on the initial time closest to the observation time
minus the 6-hour lead time. As ICON simulations are initialized in 6-hour intervals, this approach may result in a maximum

temporal mismatch of + 3 hours.
Over the four-month verification period, this procedure yielded approximately 200000 spatio-temporal matching points

from 625 flights. Figure 2?2(e) shows an—example-a sample time series of temperature and RH;.. from an intercontinental
flight, together with the corresponding ICON ensemble valuesfrom-thenearest-model-grid-eell.
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375

4.2 Categorical Metrics

380 4.2.1 CategoriealSeores-of ICON2-Mom

385

390

Instead of analyzing the full continuous range of RHjc., the values can be partitioned based on a specified threshold. This

results in a binary classification, distinguishing between two events:-complementary events:

RHjce <>threshold or RHjc >< threshold.

Tthi by cutarivi Lind .
395  In addition to the duration of ISSRs, pronounced ice supersaturation has been associated with the persistence of contrails
Teoh et al., 2022). While this link is relatively weak, relative humidity remains the dominant factor in contrail-cirrus evolution
governing both the total ice mass and total extinction (Unterstrasser and Gierens, 2010). Given its relevance, this study focuses
on ice supersaturation events (RHi.. > 100%) and events—of-higher—iee-on cases of pronounced supersaturation (RHjce >>
100%). These are treated as the positive events in our categorical verification framework, which we particularly aim to
400 distinguish from their complementary cases. The spatio-temporal matching points between model output and observational

data are-eategorized-can then be categorized with respect to the positive event. Positive predictions and negative predictions
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410

415

420

425

are classified with respect to the observed condition as true positives (TP), false negatives (FN), false positives (FP), and true
negatives (TN). The results are indicated in a confusion matrix (see Figure 3(a)), which serves as the foundation-basis for com-
puting categorical seores-{see-Table-?T)metrics (see Figure 3(b)). Below we provide all metrics which we later use to evaluate
the performance of ICON 2-Mom (EPS). R itive-prediet ive-predictionposit i

D\ £, nagatiy ND_nacative carat

cl S€ Cl c

{RHice > threshold }inreshold € {100%,105%,110%,120%} -

The frequency bias index (FBI) is defined as the ratio of the forecast frequency of an event to its observed frequenc

the-number-of predieted-eventslt indicates whether the forecast system tends to overforecast (FBI > 1) or underforecast (FBI <
1) a given event.
The Probability of Detection (POD, also known as sensitivity) evaluates the forecast system’s ability to correctly identif

observed events. POD is defined as the ratio of correctly predicted events to the total number of observed events, given b

TP
POD= ——.
L TP4FN

The false positive rate (FPR, also defined as 1—specificit uantifies the proportion of non-events that were incorrectl

forecast as events. It is defined as.

FPR = kP
T FPAIN

POD and FPR are both computed relative to the ground truth: the former with respect to the number of observed events
and the latter with respect to the number of observed events:non-events. To complement these metrics, precision provides a
forecast-centric perspective, highlighting the trustworthiness of predicted events and if defined b

TP+FP TP
FBIPrec= ———— ———.
ST TP PN TR PP

The Matthews correlation coefficient (MCC) is a composite measure that accounts for all four components of the confusion
matrix simultaneously. MCC is particularly well-suited for datasets with class imbalance (in our case we have about 13% ISSR

events), as it reflects the quality of binary classifications regardless of event prevalence. It is defined as
TP-TN — FP-FN

MCC = :
/(TP +FP)(TP + FN)(TN + FP) (TN + FN)
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430 The MCC ranges from —1 to +1, where +1 indicates perfect discrimination between events and non-events, O reflects random
redictive skill, and —1 represents complete misclassification.

4.3 Categorical Verification of Probabilistic Model

Ensemble forecasts provide a distribution of values for any forecast quantity of interest. For binary events such as ice supersaturation,
the forecast probability is defined as the fraction of ensemble members predicting the event.

435  Discrimination diagram

The discrimination diagram visualizes two conditional distributions of the forecast probabilities: one conditioned on the event
being observed in the measurement data, and the other conditioned on the event not being observed.

To assess the discriminative capability of the EPS, we employ the discrimination diagram, which visualizes two conditional
distributions of the forecast probabilities: one conditioned on the event being observed in the measurement data, and the other

440  conditioned on the event not being observed.

These distributions are represented as normalized histograms of the EPS forecast probabilities. A clear separation between
the two distributions indicates strong discriminability, reflecting the ensemble’s ability to assign higher probabilities to observed
events and lower probabilities to observed non-events. This method provides a threshold-independent diagnostic of classification
performance in a probabilistic forecasting framework. An example sketch of a discrimination diagram is provided in Figure

445 3(c)().

Receiver Operating Characteristic (ROC) Curve

The ROC curve is a powerful threshold-dependent verification tool to evaluate the performance of a binary classification model.
Such a model typically predicts not just a binary label directly, but rather a scalar score (in our context, this score is the predicted
event probability). A score is turned into an event prediction if it is above a certain threshold. The threshold itself becomes

450  part of the model; by varying the threshold, we effectively obtain a multitude of models, each with its own POD and FPR. The
ROC shows the POD versus the FPR for all of these models at once. The top-left corner corresponds to a perfect classification
model. An example sketch of a ROC curve is provided in Figure 3(c)(ii).

5 Verification Results

We evaluate the RHie, predictions of ICON equipped with the new two-moment ice microphysics scheme in two steps. First,
455  we verify the deterministic model, ICON 2-Mom, which includes a comparison with ICON 1-Mom. Second, we evaluate the
ensemble prediction system, ICON 2-Mom EPS.
Radiosonde data were used unless the use of IAGOS data is indicated. Only data within the 8.5-12.5 km geopotential height
range were included to match commercial flight altitudes.
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460 5.1.1 Relative Frequency Distribution of RH;

Figure 1(b) displays the relative frequency distributions of the observed RH;.. compared to the corresponding model-based

distributions from the operational ICON 1-Mom (top) and the new ICON 2-Mom (bottom) configurations. Pronounced differences
emerge in the tail of the density distribution, which reflects ice supersaturation. ICON 1-Mom exhibits a sharp peak near 100
%o, followed by a rapid decline, with maximum RHc. values reaching only ~103 %. In contrast, ICON 2-Mom more accurately.
465  captures the tail structure, slightly overshooting at low supersaturation but successfully reproducing the upper range. including.
RHice values up to 135 %. A few higher values were excluded from the plot due to axis truncation, ensuring comparability

without distortion from rare outliers.

5.1.2 Continuous Spatio-Temporal Comparison

We examined the 2D histograms of RHic of spatio-temporally matched points between Vaisala RS41 radiosonde data and

470 ICON forecasts (Fig. 1(c)). While ICON 2-Mom reproduces the observed supersaturation range reasonably well - unlike ICON
1-Mom — noticeable scatter remains around the one-to-one line. However, perfect agreement between modeled and observed
RHic values is not strictly required in our context, Crucially, the model must reliably distinguish between ISSR events and
non-events, as both have significant operational implications for flight planning and routing. To assess this capability, we
proceed below with a verification based on categorical performance metrics.

475 5.1.3 Categorical Verification

In the remainder of this study, we consider events of the type

with threshold € {100%,105%,110%,120%}.
Figure 4(a) compares the FBI between ICON 1-Mom and ICON 2-Mom for these events. For the ISSR event (blue curves),

480 the FBI is slightly above 1 for ICON 2-Mom, indicating a modest overprediction, whereas ICON 1-Mom exhibits lower values
around 0.75, reflecting underprediction. In both configurations, the FBI remains relatively constant across the examined altitude
rangeof-8-5-12-5-km-geopotential-height. At higher RHjc, thresholds, the FBI for ICON 2-Mom is slightly below 1 fer-at lower
heights but rises to a maximum of approximately 1.5 near 12 km for the event RHj.e > 120 %. In contrast, ICON 1-Mom
yields an FBI of zero across the entire height range, indicating a failure to detect high supersaturation events. These results

485 demonstrate that the two-moment scheme not only predicts ice supersaturation more frequently than the one-moment scheme

— which consistently underestimates event occurrence — but also tends to slightly overestimate observed event frequency.
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Figure 4. Categorical verification of ICON 1-Mom and ICON 2-Mom against Vaisala RS41 radiosonde measurements. The analysis covers
data from the Northern Hemisphere within the most frequently flown altitude range of 8.5-—12.5 km geopotential height, over a verification

eriod of 11.5 months (June 15, 2024 — May 31, 2025). Forecasts are initialized at 00 and 12 UTC with a lead time of 12 h. Observational

rofiles are linearly interpolated to ICON model levels (~13 levels within the target altitude range), yielding approximately 680 000 samples

with ice supersaturation present in ~13 % of cases. Panels show categorical scores for ice supersaturation events: (a) FBI; (b) POD; (c) FPR;

d) precision; () MCC; (f) Number of Vaisala RS41 radiosonde RHj.. event observations.
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515

we-find-that; The POD for ISSR events -the POB-inereasesfrom-about-(RH;.. > 100 %) increases from approximately 0.4 for
ICON 1-Mom to abett-around 0.6 for ICON 2-Momand-is-almost-eonstant-over, remaining nearly constant across the altitude
range in both easesconfigurations. For events defined by higher RHjc. thresholds, the-two-moment-scheme-ICON 2-Mom
retains some detection capability, with the-POD-POD values gradually decreasing to about 0.15—-0.2 for RHjc. > 120 %. In
contrast, as-also-indicated-by-the FBl-the-one-momentseheme-consistent with the FBI results, ICON 1-Mom fails to detect
RHic. values above 105 %, yielding POD values near zero across-the-altitude-rangethroughout the vertical domain.

FPR = ——.
TN + FP

The-false-positive-rate-is-relatively tow—in-The FPR remains relatively low across all cases, reaching-a-maximum-of-peaking
slightly above 0.1 for the-tweo-moment-scheme-and-RH;z=>106-ICON 2-Mom at RH;.. > 100 % (Fig. 2?4(c))—, indicating a

limited tendency toward false alarms.

TP
TP+ FP’

precision =

For-the ISSR-event;-both-Both schemes yield similar precision values between 0.5 and 0.55 for ISSR events across the en-
tire altitude range (see-Fig—2?Fig. 4(d)). For events-with-higher RH;c. thresholds, the precision of ICON 2-Mom deereases
sueeessivelydeclines progressively, reaching values as low as 0.2 for RH;ce > 120 %. In contrast, ICON 1-Mom yields-produces
very few or even-no positive predictions in these regimes, makingrendering precision largely undefined; accordingly, it is omit-
ted for these cases.

In the context of flight planning, accurate prediction of non-ISSR conditions is alse-equally critical, as false negatives in
this category can lead to unnecessary re-routing and, consequently, avoidable increases in CO2-2 emissions. When eensidering
treating the complementary events (RH;.. < threshold) as “pesitive™“positive” events, the model exhibits high precision, with

average values exceeding 0.9 across all threshold levels. Combined with the low false positive rate observed for RHjce >

threshold events, this high precision further-supports-the-conelasion-thatunderscores the reliability of ICON 2-Mom is-quite
reliable-in-deteeting-in correctly identifying non-ISSR conditions.
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TP x TN — FP x FN
/(TP +FP)(TP + EN)(TN + FP)(TN + FN) |

MCC =

shown in Fig. 4(e) summarizes overall classification performance. For ISSR/non-ISSR classification (blue curves), ICON 2-
Mom achieves an average MCC of 0.47across-all-altitades;-while-, indicating moderate predictive skill. In comparison, ICON
1-Mom yields consistently lower values between 0.38 and 0.39. At higher RH;. thresholds, the MCC fer-of ICON 2-Mom
deereases-sueeessivelydeclines progressively, reaching a minimum of approximately 0.16. In contrast, the- MEE-MCC values
for ICON 1-Mom approaches—zere—(or-is-approach zero or become undefined where the numerator vanishes)-indicating-no

predietiveskill, reflecting a lack of predictive capability in these regimes.
In summary, for ISSR events, ICON 2-Mom achieves a moderate MCC of nearly 0.5 and a POD that is approximately 50 %

higher POD-compared-to-than that of the operational ICON 1-Mom, while maintaining a relatively low false-positive-rate FPR

below 0.1 at-across most altitudes. NeverthelessDespite this improvement, a POD of 0.6 suggests-thatfurtherimprovements
are-possible;and-indicates that a substantial fraction of events remains undetected. To address this, we continue to exptore

investigate potential gains from the ensemble setup introduced in Section 2.2.

5.2 Verification of Ensemble Prediction System ICON 2-Mom EPS

indicated-by-the-U-shaped-rank-histogram-(Fig—22(eevaluation of the ensemble’s ability to represent RH; ., variability, usin,
the rank histogram as a diagnostic tool. The rank histogram is constructed by ranking the observed value relative to the ten

sorted ensemble forecasts and recording its position across all spatio-temporal matching samples.

Fig. 2(c) shows the resulting histogram for the subset of samples where the observed RHje. is above 50 %. We consider this
restricted rank histogram because ICON tends to underestimate very low humidity values, which are not the subject of this study.
but would obscure the relevant behavior (also reflected by the RHice histogram in Fig, 1(b, bottom)). Fhis underdispersioneans
in-part; be-attributed-to-the-inherent The histogram exhibits a U-shape, indicating underdispersion, i.c., the ensemble fails to
capture the full variability present in the observations. This behavior is partly due to spatial averaging over model grid cells,

which tends to smooth out extremes. From-aphysical-modelineperspectivekey-contributine factors-may-inclade-the-absence

However, counteracting this, so-called upscaling effects of the model tend to display small-scale physical behavior on the
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Figure 5. Ensemble verification metrics targeting-illustrating the ability-discriminatory skill of the model-to-diseriminate ICON 2-Mom EPS
in distinguishing between events and non-events (e.g., ISSR and non-ISSR, shown in blue);-. The verification period spans 14 months +(April
2024 — May -2025), feading-to—~-826-000-yielding approximately 820 000 samples. (a) Discrimination diagram: Conditional distributions
of EPS forecast probabilities;—conditioned-or-, given that the event was actualty-observed and not observed in the measurement dataand
conditioned-on-thatit-was-not-observed. (b) Receiver Operating Charaeteristies-Characteristic (ROC) curve: Probability-of-deteetion POD
versus false-positive-rate-of FPR for ice supersaturation eventsfor-varying—, evaluated across a range of threshold-based decision “~-models
{pseudo-deterministic-modelsreceived-derived from the EPS, These pseudo-deterministic models are constructed by applying varieus-varying
probability threshotd-eonversionsjthresholds to the ensemble output.

model scale. Thus, insufficient parameter perturbations may be another reason, together with the lack of subgrid-scale gravity
waves in-the-medel-eenfiguration-and the use of Ncbgnygtglggwyglyl&prescnbed aerosol ﬁeldsffem%}rmafe}egy both of which
Himit-constrain variability in ice nucleation conditions.

Moreover, the rank histogram s-indicating-thatthe-model-tends-to-underestimate-reveals a slight negative bias, with observed
RHice Wﬂﬁmwmmmymm
suggests a systematic underestimation of RHice -

RH;.. > 50% regime. We found that this mainly occurs at ice supersaturated conditions. However, the rank histogram does

not provide any information about magnitudes. Thus, we further analyze the ensemble’s ability to classify ISSR and non-ISSR
conditions below.
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5.2.1 Predietion-of ISSRand-Higherlee-Supersaturation/non-ISSR Discrimination Abilit

To evaluate the ensemble’s ability to

565

% RSCH1IO § Hry-provia proovad O a O ventS-via P

we consider the discrimination diagram introduced in Section 4.3. Figure 5(a) shows the
conditional distributions of i Hiti i

570

iee-forecast probabilities for observed and non-observed events (events are defined as RH;.. > 100 %, and higher thresholds).
For ISSR events, the “not observed” distribution peaks sharply at zero and declines rapidly, indicating strong agreement amon

575 ensemble members when no supersaturation is present. F

almesttozero-for-higherforecastprobabilities—In contrast, the “ebserveddistributionis-much-more-uniform;inereasing-only

580 distribution. This shows that the-ability-of the model- to discriminate between events and non-events decreases significantly
for-events-with-higher-ice-supersaturation“‘observed” distribution is relatively uniform, suggesting that the ensemble assigns a

broad range of probabilities to actual events. As the threshold for supersaturation increases, the “observed” distribution becomes
more left-skewed and increasingly overlaps with the “not observed” distribution, indicating a decline in discriminative skill for

more extreme events.

585 Feeusing-on-To conclude, for the ISSR event, the correspending-diserimination—diagram-shows-that-the-diagram shows

little overlap between the two conditional distribttion

robability distributions below and above ~0.3-

orhigheriee supersaturation—Steh-a-, suggesting that a threshold-based eonversion-yields-what-we term-a—"pseudo-deterministie™
590 medel—Throughout-this—stady;—we-conversion of forecast probabilities aimed at classifying ISSR versus non-ISSR may be

appropriate.
5.2.2 Threshold-Dependent Performance
As ICON 2-Mom EPS consists of ten ensemble members, ISSR forecast probabilities can be 0,0.1,0.2,...,1. Thus, these

values represent the relevant potential thresholds to turn the event forecast probability into an event prediction — yieldin
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classification models as introduced in section 4.3. We refer to these classification models as decision models, eharacterized

with the £-out-of-10 decision

EPS;-the-deterministicforeeast-peonv1s given by

1, ifp> 10
k-out-of-10 decision model : peony =

0, otherwise.

1, ifp> 10,
k-out-of-10 decision model : peony =

0, otherwise.

c—ufveﬁfrng——"l SSR event, the ROC curve (Fig. 5(b)—{ﬂ—gefmfal—thee}esef~arpemkeﬁfheeufveﬁﬁeihe4effeemer—fhe
tty-) shows strong discriminative skill

for thresholds of 0.2 er-and 0.3 afe—appheekffeﬁﬂﬂﬁgﬂ%deaﬁeﬂ—nmdéWZ or-and 3), %hePOBﬁs—gfea{eHhaﬁ
with POD > 0.8 while-the FPR-remainsless-than-and FPR <0.17. H
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72A comparison
%wmwm
he-) shows a substantial
improvement in the POD for ISSR detection{rom-events, from approximately 0.6 in the deterministic case to 0.8-0:9—This
improvementecomes-with-a-mederate-rise—0.9 when using ensemble-based decision models. This gain in POD is accompanied
Mmm the FPRﬁfem—&ppfeaﬂmate}fbgsv@\gvargLnMO I to Ww 0.13 -0:23and 0.23, depending on
“)chosen threshold. These

results highlight the added value of ensemble forecasts in enhancing event detection or classification.
While the ROC curye provides a comprehensive view of classification performance across thresholds, it treats both classes
equally and may obscure performance nuances in the presence of class imbalance. Therefore, we also evaluate the preci-
sion-recall eurve-offers-an-alternative-perspeetive-that-(PR) curve, which focuses specifically on the model&perfefmaﬂee—fef

’s performance on the pos1t1ve classin

Similarlyto-the ROC—eurveinFigure22, Similarly to the construction of the ROC curve, the PR curve plots the recall
equivalent to POD) against precision. In Figure 6(a),

to-the-upper-each EPS-based decision model is represented as a point on the PR curve. The closer the points are to the to
right corner, the better-the-trade-off-between-higher the recall and precision. Overath-the-Although recall remains high even for

intermediate thresholds, overall precision is only moderate and W@Wmﬁg\%

precmon x recall
precmon +recall”

accurate positive predictions as the event definition becomes more stringent.
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675

also conduct a complementary analysis by treating the complementary conditions (e. gISSR—eHmﬁ-ISSRﬂ#ejaefﬁeﬁﬂ—a—ﬁeraf
&ﬂ&kym—bydeﬁmﬂg non- ISSR) as the positive even

vents, as this perspective is equally relevant for flight routing applications.
The PR curve approaches the top right corner, reflecting both high POD and precision, and a zoomed-in view providing details

of this region is shown in Appendix D Fig. D1(a).
We-

To conclude this subsectionby-shifti

to a more holistic ev
Seetton-5-13;-the-model assessment using the MCC, as introduced in Section 4.2. The MCC provides a balanced assessment
of-moedelskillfor-measure of classification skill across both event and non-event elassifications;similar-to-the ROC-eurveand
is-partienlarly-informative-categories, making it particularly valuable in the context of imbalanced datasets. In-the-case-of-

For the ISSR/non-ISSR classification, deeision-models—-7-achieve-higher MCC-values-than-EPS-based decision models
1-7 consistently outperform their deterministic counterparts (i.e., individual ensemble members), with decision models 3 and

4 reaching-a-maximum-MCC-of-achieving the highest MCC values of approximately 0.55. By-In contrast, the MCC-valuesfor
the-deterministic-modelsremain-deterministic models yield MCC scores around 0.47 (see Fig. 226(c)). These results reinforce

the advantage of ensemble-based decision strategies in capturing both sides of the classification task more effectively.

RH;ce max MCC EPS decision POD FPR
threshold (Det) model

3 0.80 0.13

100% 0.55 (0.47) 4 073 0.10

2 0.77 0.14

105% 0.46 (0.37) 3 0.68 0.11

110% 0.37 (0.28) 2 0.64 0.11

120% 0.25 (0.16) 2 0.62 0.11

Table 1. For each RH; . threshold event, the maximum MCC value of the decision models based on the EPS is shown (rounded to the second
decimal place), together with the indices of the corresponding decision model(s). The MCC of the deterministic model (single members) is

given in brackets. The last two columns show the ROC values (POD versus FPR) of the decision model(s) with the maximum MCC.

26



680

685

690

695

700

705

Table 1 shows-summarizes the maximum MCC foreach-RH;thresholdeventvalues achieved for each ice supersaturation
threshold, along with the indices of the corresponding EPS-based decision models. For eomparison-with-the ROCresults;-the
reference, MCC values of the deterministic (single-member) models are shown in brackets. The final columns report the asso-
ciated POD and FPR valuesof-these-models-are-also-provided—, enabling direct comparison with ROC-based performance. In
most cases, the decision models with highest MCC also show favorable POD—FPR combinations, underscoring their robustness
across metrics. For the remainder of this study, we focus on ROC-based evaluation using its associated scores, POD and FPR,
as a representative framework for assessing decision model performance.

5.2.3 Comparison with IAGOS Data

The RHice density of the IAGOS data, limited to the Northern Hemisphere for better comparison with our radiosonde verification,
confirms the characteristic bimodal shape of the RH;.. density (see inset of Fig. 7). Compared to the ICON data, the first peak
in the IAGOS density appears shifted to the right, suggesting fewer near-zero RHic, values in the IAGOS dataset than in the
ICON data. The peak around RHjee & 100 % is shifted to the left and is less pronounced in the IAGOS data. It also does not
reach the same high RHice values as ICON.

Nevertheless, up to RHice > 120 %, the shape of the ROC curves (see Fig, 7) derived from the IAGOS data closely resembles
those derived from the radiosonde data (compare Fig. 5(b)). These findings strengthen our verification insights across different,
independent observation systems.

5.2.4 Longer Forecast Lead Times

-Although for many flights 12 hour forecasts
er-we-considered-, we now consider lead time
increments from 12 hours up to a maximum of 48 hours, which is the standard time horizon of weather forecasts for flight
planning{see-Figure-22)—As-. Figure 8) shows that — as the lead time increases — the ROC curves shift slightly to the right,
indicating higher false-positiveratesFPR. In contrast, no downward shift of the ROC curves is observed for high POD values
of around 0.8 for the first 36 hours —Fhe-and the POD only starts to decrease after 36 hours. Overall, the degradation is not that
severe, and at least up to 36 hours, the-potential scores remain roughly in the range of POD > 0.8 and FPR < 0.2.
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Figure 6. Scores that take into account the unbalanced dataset with respect to the ISSR event or higher ice supersaturation events in two
different ways: The precision-recall (PR) curve and-the-Fr-seere-by focusing on the performance of the model with respect to what is defined
as the ’positive’ event, and the Matthews-correlation-coefficient-MCC by providing a balanced evaluation measure with respect to all four
categories of the confusion matrix. (a) Preeision-reeal-PR curve for the EPS: For increasing prediction probability conversion thresholds,
the recall (POD) is plotted against the precision (+-FPR)-of the corresponding decision model, both with respect to the *positive’ events
{RHice > threshold} (bold crosses) or {RHice <threshold} (stars).

diseussed-n-Seetion-5-2-H—For the single ensemble members, recall is similarly plotted against precision for both types of events (diamond
and thin diamond). A zoom showing the details of the top right corner is provided in the Appendix, Fig. 22-D1. (b) Frsecores;both-for-the

ofnon-ISSR-events-in-the-ensemble—(e)-Matthews-Correlation-Coefliecient(MCC )-for the EPS decision models as well as for the single
members (transparent lines).
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Figure 7. ROC curve of ICON 2-Mom EPS and IAGOS data, the inset figure shows the corresponding RHjc, densities. Evaluation performed

with 625 flights from four months (August 2024, October 2024, December 2024, January 2025) on the Northern Hemisphere, leading to

~200 000 spatio-temporal samples.
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Figure 8. ROC curves for increasing forecast lead times and increasing RHic. thresholds; time period five months: 1.1.2025-3+5-31.5.2025;
ICON initial times 0 UTC and 12 UTC; Northern Hemisphere.
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Figure 9. Event RHi.. > 100 %: Inclusion of the ensemble spread of RH;.., measured by the standard deviation (std) of RHic./100%. (a)
ROC stratifieation-atong-the-curves on sample subsets grouped and color-coded by their standard deviation +-the-(std) values. The inset shows
the histogram of the standard-deviation-std ¢ of RHjce/100%and-, valggll also serves as a legend for the Mmm
to EPS subsets with associated std;—fh&.w"[/l& black ROC isir/questeg\tsNthe original eﬂe—wﬁheu&sfdrsffaﬁﬁe&ﬁeﬂcmcmaﬂlsan@lvgs.
(b) Standard deviation and RMSE for 10 % bins of the predicted RH;.. mean; the coral coloured boxes represent the interquartile range
(IQR) (middle 50 % of the std data) and the black horizontal line inside the boxes represents the median. The bottom of the box is Q1 (25th
percentile) and the top is Q3 (75th percentile). The vertical lines extending from the boxes represent the variability of the data outside Q1 and
Q3. They typically reach the minimum and maximum values within 1.5 x IQR. All data points outside 1.5 x IQR from Q1 or Q3 are plotted
individually as outliers. Blue crosses indicate the RMSE between the ensemble mean and the observed data points. (c) Full histograms of
observed and predicted RH;c. values and histograms conditioned on std<0.lare-shews; in the observation case, the corresponding std values
were defined by the corresponding spatio-temporally matching EPS values. In the EPS model case, the counts were divided by 10 to obtain

a similar range of values to the observations.

5.2.5 Incorporating the Ensemble Spread

deeiston-models)—Here;~we-We further incorporate ensemble spread information in order to get more reliable scores in more

specific situations. fn-general-the The ensemble spread should be an indication of the confidence in a forecast and is typically
measured by the standard deviation (std). Therefore, in the context of RH;z-ISSR forecasts, we further stratify-differentiate the
ROC curve in-terms-of-the-underlying-ensemble-spread-based on the underlying std at each grid point, particularly to achieve a
lower FPR. Ensemble-spread-istypi v-measured by the standard deviation.

The inset of Figure 229(a) shows a histogram of the standard deviation of RHjc./100%; more than 50 % of the ensemble
forecasts have a std below 0.1, with a peak near zero, and only a small proportion have std values greater than 0.2. The colored

bins in the histogram serve as a legend for the ROC curves in the main Figure 229(a): The EPS forecasts are partitioned with
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respect to their std and the corresponding ROC curves are shown in the same color. The general-trend is consistent with our
expectation; the lower the std, the closer the corresponding ROC curve is to the upper left corner, and vice verse, the higher
the std, the closer the ROC curve is to the diagonal, indicating that the model has low skill in these cases. In more-detail;
particular, a significantly improved ROC shape is obtained in more than half of the cases a-significantly-improved-ROCs
obtained-with-POD-between— with POD of 0.9and1-and—-1 and FPR < 0.1 fer-the ISSR-condition-with-deeision-models1-2-

via decision models 1-2. In case the std is greater than 0.1, the ROC curves tend more and more to the diagonal and at least

five or six members should indicate ice supersaturation to achieve an FPR of < 0.1{indicated-by-the-vertical-magentaline). In
these cases s— depending on the specific std — only a lower POD of 0.3-0.8 can be obtained;-between-0-8-and-0-3;-depending

As the shape of the ROC eurves-varies signifieantly along Given the significant variation in ROC curve shapes across different
std regimes, we were-also-interested-in-analyze the std values of different RH;. regimes, particularly when RH;c. is around or
above 100 %. In Fig. 2?9(b), summary statistics of std are shown for increasing 10 % bins of RH;c.. Following an increase in
std values, they-the bins fall before 100 % and reach another local minimum in the RHjc, regime of +66-116-100-110 % with
a median around 0.1. The relative mean squared error (RMSE) shows a similar qualitative behavior fer-up to RHjc. < 120 %.
For higher RH;¢. regimes, the RMSE increases to its maximum over the whole RH;-—vatierange-range of values.

We-take-another-perspeetive-in-Fig—22In Fig. 9(c), where-the full RH;. histograms of the observations and the ensemble
forecasts are shown, as well as both conditioned on std<0.1; in the case of the observations this is done by assigning the std-

value of the corresponding spatie-temporal-EPS-matehing-spatio-temporally matched EPS point. For low std-values (std<0.1),
the corresponding conditional RH;c. histograms show a large peak for low humidity values in the same range as the full uncon-
ditioned histograms. Another peak is observed for RHj., values around 100 %, which is approximately one order of magnitude
lower than that of the unconditioned histograms. This difference persists in the supersaturation tait-regime of the histograms,
where the maximum RHj.. values reached in the conditional case are around 130 %, based on the 820 000 verification points
(where all counts below 100 were cut in this plot). When comparing the conditional histograms of the model and the ob-
servations, the observation histogram exhibits a slightly lower peak around 100 %, similar to the difference observed in the

full histograms. In conclusion, even when the model exhibits high confidence, as reflected by a low standard-deviationstd, the

histogram still displays intermediate supersaturation. This suggests that certain ISSRs can be well predicted.

Fhe-increased predictability in the regime around RH;.. =~ 100 % can be explained by a more stable microphysical behavior

in this near-thermodynamic equilibrium state, which is captured by the model. In this regime, mature cirrus clouds are dominant

compared to young or short-lived cirrus clouds which often form in regions of high ice supersaturation, driven by upward mo-
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tion from gravity waves or deep convection. These young clouds experience rapid crystal growth due to significant mesoscale
temperature fluctuations (MFEs)-caused by gravity waves, which create high spatio-temporal variability in supersaturation.
The fluctuating vertical motions and ice crystal concentrations make forecasting cloud evolution difficult. As a result, young
and short-lived cirrus clouds introduce significant uncertainty in predicting supersaturation, as the microphysical processes are
highly dynamic and rapidly changing. In contrast, mature cirrus clouds, approaching thermodynamic equilibrium (RH;e. ~ 100
%), display weak supersaturation conditions, typically linked to slow, steady-state ascent. Under these conditions, ice crystals
grow and gradually deplete ambient water vapeurvapor, creating a balanced system that enhances the predictability of ice
crystal evolution and overall cloud dynamics.

In clear-sky regions, where clouds and associated microphysical processes are absent, the predictability of RHj is governed
primarily by large-scale thermodynamic and dynamical processes. Supersaturation can persist in these regions due to the
lack of ice nuclei. Observations show that clear-sky supersaturation is often associated with weak vertical motions and low
temperatures in the upper troposphere, particularly in mid- and high-latitude regions (Kahn et al., 2009). However, MTEs
mesoscale temperature fluctuations caused by gravity waves can still occur, challenging predictability, particularly for models
that do not resolve mesoscale temperature or humidity fluctuations. Overall, while the absence of cloud feedbacks simplifies
the microphysical environment, potential variability in temperature, humidity, and vertical motion still introduces uncertainty,

i.e., the predictability of RH;. in clear skies depends on the given specific large- and mesoscale thermodynamic and dynamical

processes.

6 Discussion
The-

6.1 Observed Standard Deviation of RHic,

The results shown in Figures 9(b) and 9(c) share notable similarities with the findings of Borella et al. (2024), who parameterized
the_subgrid-scale distribution of water vapor in the UTLS using TAGOS data. They observed a predominantly guadratic
&@wwmmmm deﬁsﬁ%ef—fhe%GQS—d&%a—hmﬁed%Hie—NeffheﬁrHeﬁﬁsphef&fef
-and its mean, with a peak
occurring between 70 % and approximately 110 %, depending on temperature. Beyond this range, the standard deviation
exhibited an upward trend at even higher RHic. densi ’ —Fi i
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deesnetreachthe-samehigh-. Their temperature-dependent analysis further revealed that this peak decreases in magnitude and
shifts toward higher RH;.. values as
eloselyresembles-thatof the radiosende-data(see Fig—22)—temperature decreases. While our approach to grouping ROC curves

by ensemble spread does not currently account for temperature, incorporating it may be a valuable direction for future work.

7 Summary-and-Diseussion

6.1 Comparing Microphysics-Based and Statistical Approaches to Ice Supersaturation

-implemented in ICON provides
a microphysically based alternative to prognostic cloud cover schemes — such as the Tompkins scheme used in the IFS model
Tompkins et al., 2007) — that infer ice supersaturation from subgrid-scale humidity distributions. The Tompkins a
offers some advantages for operational weather forecasting due to its computational efficiency and its ability to represent
subgrid-scale humidity variability. This can be advantageous for realistic cloud fraction estimates on coarse grids. However, this
scheme does not explicitly prognose specific ice mass or ice particle number density. and phase relaxation time is effectively.
zero because the scheme assumes instantaneous in-cloud equilibrium. Indeed, the current cloud scheme of IFS assumes ice
supersaturation only in the cloud-free portion of the grid box (ECMWEF, 2024), which can lead to an underestimation or
smoothing of ice supersaturation under certain conditions. In contrast, ICON 2-Mom eompared-to FCON-+-Mom:prognoses
both specific ice mass and ice particle number density, allowing phase relaxation time to emerge naturally from microphysical
relationships. This enables a more direct, microphysics-based simulation of the onset and persistence of ice supersaturation,
which is particularly relevant for applications requiring detailed RHi forecasts, such as contrail avoidance. While this approach
offers improved physical realism and consistency, it comes with increased computational cost and sensitivity to assumptions
about nucleation and particle size distributions. Consequently, careful tuning and validation are necessary. especially in global

roach

33



820

825

830

835

840

845

34



855

860

865

870

875

880

Several leading high-resolution NWP models have been validated with respect to RH;.. using radiosonde data in Thompson
et al. (2024). The radiosonde data used were from 2022, covering ten months, and included data from radiosondes of lower
or unknown quality than the Vaisala RS41 radiosondes. Model data were interpolated onto radiosonde data, which differs
from our approach of interpolating radiosonde data onto model data. The most comparable results are the POD and FPR for
RH;ce > 99.99 % events, where (POD, FPR) values of (0.46, 0.09) were obtained for the S-WRF model, (0.19, 0.02) for the
GFS, and (0.50, 0.10) for the IFS. In all cases, the deterministic model was evaluated.

The study also introduced a 3D neighborhood verification, where the number of ISSR events of horizontal and vertical
grid point reighberss-neighbors affects the identification (definition) of true positives, false positives, false negatives and true
negatives. Although in this study neighborhood incorporation is used for model comparison verification, it could also be used
to define another meta-model -— in this case not based on an EPS model, but on a deterministic NWP model. Of course, a
similar definition could also be introduced based on an EPS model. However, although the concept of including neighbors into
a model to identify ISSRs is worth exploring, the neighborhood verification presented in the study corresponds to two different
models, where the one to be used is individually selected for each radiosonde observation, depending on whether ISSR was
actually observed or not. This conditioning on the observation may improve the verification results, as the knowledge of the
observation determines the decision of which model to use. For our purpose, which is to define a model for future predictions,
it is not appropriate to condition this decision on the observation. But even when including only model neighbor values into
a meta-model, the grid resolution we currently use (about 26 km horizontally and about 206-306-200-300 m vertically in the
height range of interest) may be too low to adequately account for horizontal neighbors. We expect that using a finer grid for

ICON predictions may enable such an approach, and most likely improve the overall verification scores.

63 Predietionl 2 Machinel .

7 Outlook

Prediction Improvement via Machine Learnin

While the k-out-of-10 decision models are based on intuitive thresholds, they are ultimately heuristic in nature—eemparable-to
forexample;-a-binary-deep-neuralnetwork-, comparable to a binary classifier trained and validated on model and radiosonde
data. Due to the small amount of data (~ 820000 samples), we chose to use the gradient boosting tree library CatBoost
in classification mode. The results are shown in Appendix Fig. 10. The ROC curve of the CatBoost model shows a slight
improvement in the upper left region of interest compared to the k-out-of-+6-k-out-of-10 decision models. In addition, the

ROC curve is almost continuous and at high RH;.. gives access to POD values that are unattainable even for the 1-out-of-10
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values of all ten members. Solid blue ROC curves: Training and validation period from April to December 2024; test data from January to
test data period. Solid and light orange curves indicate the same setting but with a different training and validation data period (July 2024
to March 2025) and a different test data period (April-June 2024). Except for a larger tree depth of 10, all CatBoost settings were kept at

model, giving a greater degree of control over the desired balance between POD and FPR. Thus, the model reduces the need to
run an EPS with many members (but more members slightly improve the predictions; see the ene-moment40-member ICON
1-Mom EPS case in Fig. B1). Another advantage of the model is that more features than just RH;c. itself can easily be added
as model inputs. Even extending the feature vector with physical quantities of neighboring cells is equally feasible. The results

are very promising and more complex models are being investigated.

8 Conclusions

This study demonstrates the great-potential-of-an-EPS-modelfor ISSRpredictionstrong potential of EPS-based classification
models for ISSR, based on the ICON NWP model with-an-adapted-enhanced with a two-moment ice microphysics scheme. The
two-moement-seheme-Compared to ICON 1-Mom, ICON 2-Mom more accurately captures the physical conditions associated

with thigher)-ice supersaturation, which-many-one-moment-schemes-struggle-to-representorfail-to-identify-—Prior-to-evaluati
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ice—supersaturation—in-NWP-applicationswhere it significantly improves the POD while maintaining a moderate FPR. This

improvement is also reflected by the MCC, indicating better overall classification skill.
The EPS model itself, ICON 2-Mom EPS, has served as the foundation for further meta-model developments aimed at

constructing deterministic models of ISSR/non-ISSR classification and higher ice supersaturation. These models are designed

to provide flight planners with well-scored predictive tools that support actionable decision-making.

alargerin-orderto-keep-the FPR-below-a-—certain-targettevel-outperforming the deterministic ICON 2-Mom model in terms
of POD while maintaining comparable FPRs. For RH;.. > 100 %, ICON 2-Mom achieves a POD of ~0.6 and an FPR of ~0.1
whereas ICON 2-Mom EPS allows for finer control: decision model 1 yields a POD > 0.9 at an FPR of 0.25, while decision

model 9 offers near-zero FPR with reduced POD. This flexibility enables users to select decision models based on operational

cost trade-offs between false positives (e.g., unnecessary diversions) and false negatives (e.g., contrail formation).

define-aFurther refinement was achieved by incorporating ensemble spread into the decision making. Grouping ROC curves
by the standard deviation of RHic, revealed that low-spread conditions correspond to high categorical skill, whereas high-spread
scenarios tend toward random performance. This insight was used to define an adaptive meta-model that funetions-as-a-newly
developed-foreeast-model—selects & based on ensemble spread, keeping FPR below a target level. This approach relies solely
on model data and can be seamlessly integrated into more advanced models.

Building on this methedology,—we—trained-statistical framework, a gradient boosting tree classifier representing-a—more
advaneed-was trained as a more sophisticated meta-model. Despite being-trained-in-undera-minute-using minimal training time
and default hyperparameters, the-model-outperformed-the-k-out-of-N-it outperformed the £-out-of-10 models in the POD-FPR
region of interest. Additional advantages of-this-medelinelude-an-almostinclude a nearly continuous ROC curve and its-ability
to-integrate-additional-featuresin-a-straightforward-mannerthe ability to incorporate additional features with ease.

While these investigations on-the-characteristies-of-the ICON-2-Mem-EPS-system-were ongoing, a contrail avoidance trial
based on the ensemble mean of this-systemrerouted-more-than-ICON 2-Mom EPS rerouted over 100 flights, demonstrating the
operational relevance of this forecasting approach. The results presented in-this-study-demonstrate-here show that EPS-based
meta-models bring us even-closer to reliably identifying the-potential-for-conditions conducive to persistent contrail formation.

The-results-of-this-—study-ecan—also-be-informativefor Finally, these findings may inform the European Union’s-teeently
established-"s Monitoring, Reporting and Verification (MRV) system, where-which uses climate response models are-used-to

quantify-the-trade-off-to quantify trade-offs between contrails, CO, emissions, and other greenhouse gases. Climate-response

equtire-tp-to-15-meteorological parameters,such-as-humidity, temperaturepressure-and-windfields—of-which-RH,c

a-a_critical input for contrail modeling, yet
remains poorly predicted by state-of-the-art-operational- N'WP-modelsmany operational NWP systems. This study is-a-step
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towards-improved-prediction-of ISSR-and-represents a step toward more accurate RH;.. forecasting and improved support for
climate-conscious aviation strategies.

930 Code and data availability. The verification code and data are available under Zenodo (https://doi.org/10.5281/zenodo.15881140).
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Appendix A: The TFwe-Mement-History and Details of the One-Moment Cloud Ice Scheme

e-original one-moment

scheme is a legacy code developed by Giinther Doms at DWD in the 1990s for the COSMO model, which was then known
as the Lokalmodell (LM), and operated at a horizontal grid spacing of 7 km (Steppeler et al., 2003). In the 2000s, the same
one-moment scheme was used in the operational global model GME, the predecessor of ICON (Majewski et al., 2002). A
detailed description of the original one-moment cloud ice scheme is provided in Doms et al. (2021). It shares many similarities
with the one-moment schemes by Lin et al. (1983) and Rutledge et al. (1986), both originally developed for mesoscale models.

Over the past 25 years, the operational one-moment cloud ice scheme has undergone many modifications, documented in
Section 5.8 of the COSMO 6.0 documentation. Notable updates include warm-rain processes based on Seifert and Beheng
(2001), snow particle geometry following Wilson and Ballard (1999), and snow size distributions derived from empirical

relationships by Field et al. (2005). Ice crystal concentration is parameterized using the empirical formula by Cooper (1986).
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Appendix B: Ensemble-Setup-of-Operational FECON

Appendix B: Ensemble Verification of ICON 1-Mom EPS

EPS with respect to RHj.. We wanted to compare the
improvement of results such as the POD due to the ensemble setup when the microphysical scheme has not been adapted to a
two-moment scheme. Therefore, we considered the ROC curve for the 2-Mom-16-member EPSperforms as-weltas-the +-Mom
operational 40-member EPS;-while-the-+-Mem-EPS as well as for 10-member EPS-performs-stightly-but-significantly-worse-
For larger RHice-thresholdsthe-subsets, compare Appendix Figure B1. By similarly defining decision models for ISSR, the
POD can be increased to more than 0.8 with an FPR remaining below 0.2, which holds true for both the 40- and 10-member
EPS. The full EPS yields a more fine-grained curve with slightly higher POD values in the top left corner than the 10-member

EPS. Overall, the potential of an ensemble is highlighted in both cases, especially with respect to a possible increase in POD.
However, the operational 1-Mom EPS-breaks-dewn;-as-shown-in-the-inset—EPS still fails to predict events with higher RH;,

_BI),

This finding aligns with studies that emphasize the importance of model quality as a key factor in the success of ensemble
prediction systems (Wang et al., 2018; Du et al., 2018).

Finally, we wanted to confirm that the specific selection of ten members from the original 40 had little or no effect on the
scores due to the way the ensemble is generated. Therefore, we performed a 10-out-0f-40 bootstrap and considered the mean
and standard deviation of the corresponding points of the ROC curves of each subset EPS. The resulting standard deviation is
negligibly small, encouraging us to transfer this finding to our ICON 2-Mom EPS, using the first ten members.

values (see inset in Fi as it relies on an NWP model with insufficient physical parameterization for larger RH;.. values.
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Figure B1. ROC curves for the ICON 2-Mom EPS (orange), the operational ICON 1-Mom EPS with 40 members (blue) and for the
corresponding ICON 1-Mom EPS subsets with 10 members (green). For the latter, we randomly selected 1000 10-member EPS subsets,
calculated the ROC curve for each and plotted the mean and standard deviation of the corresponding points on the curve. The inset figure
shows ROC curves for the ICON 1-Mom 40-member EPS for higher RHic. thresholds up to 106 %. Evaluation for three months (August
2024, October 2024, January 2025); ICON initial times 0 and 12 UTC; ICON forecast lead time 12 h; Northern Hemisphere.

Appendix C: Calculation of RHjc.
C1 Computation of RH;., for radiosonde data

In the TEMP BUEFR files, as disseminated through the Global Telecommunication System (GTS), the dew point tempera-
ture (17) is provided, which allows us to compute the water vapour-vapor partial pressure (e) using the formula from Hardy
(1998), ensuring consistency with the processing applied by radiosonde manufacturers, such as Vaisala. We further calculate
the saturation vapett-vapor pressure over ice (e;) consistently with the formula used in ICON which is given by

eXp(bgi (T — bg))

ei:bl T*b4‘

(&)
with coefficients

b1 = 610.78, by; = 21.87, by = 273.16, by; = 7.66.
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and referred to as the Magnus-Tetens-Murray approximation (Magnus, 1844; Tetens, 1930; Murray, 1967). Therewith, we

receive

RHice = — 100 %. (€2)

€i

C2 Computation of RH;., for ICON Data
First we calculate the water vapeurvapor partial pressure e by
e=r,Tpqu,

where the temperature T (in K), the density of moist air p (in kg/m?), and the specific water vapeur-vapor content qv (in kg/kg)
are output variables of ICON, and 7, = 461.51 is the gas constant for water vapourvapor. Finally, we calculate e; again with
C1 and RH;. with C2.

Note that recently, as of May 2025, the coefficients in the C1 formula for the saturation vapeur-vapor pressure over ice in
the operational ICON model have been updated. We still use the old version of the coefficients given in C1 in our dedicated

system and therefore in our verification analysis. However, at —37 °C, the error is only about 2 %.
C3 Computation of RH;, for IAGOS Data

In the IAGOS NRT dataset, RHjc. is already included and has been calculated using the formula from Sonntag (1994), which

is very similar to the Hardy formula.
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Appendix D: Details of Precision-Recall Curve for non-ISSR

1025 In Fig. 22-D1 a zoom of the top right of Fig. 22-6 is provided, where the details of the preeision-reeat-PR curve for the non-
ISSR event and for the events {RH;c. < threshold} with threshold in {105%,110%,120%} can be seen. Note that decision
model k here refers to the decision model which requires at least k-events-with{RH;-=—<-thresheld}k ensemble members with

the event {RH;.. < threshold}.

1.00
08 *\*\*"“9«
0.96 A
- 0.94-
o
i)
@ 0.92 -
P
a
0.90 A
—#— RHjee =100%
RHjce =105%
0.88 A
—#— RHjee =110%
—%— RHjee =120%
0867 ¢ single member
0.75 0.80 0.85 0.90 0.95 1.00

Recall (POD)

Figure D1. Precision-recall curve of events {RHjc. < threshold} with threshold in {100 %, 105 %, 110 %, 120 %} (zoom of top right of
Figure 226). Stars on the lines indicate the scores corresponding to the decision models based on the EPS. The pink cross highlights decision

model 4 for which the maximum F? score is obtained. Thin diamonds inidcate the scores of the single ensemble members.
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Appendix E: Binary Classification Models: CatBoost

CatBoost is a machine learning library based on gradient boosting on decision trees, where input features are either real values
or categorical values. Prediction can happen either as regression or classification. For the task at hand, CatBoost was used in

classification mode, with the cross-entropy loss J used for training:

N

J(y,p) = —% > lyslog(ps) + (1 —y:)log(1 — p;)]
=1

where N is the total number of samples (spatio-temporal matching points of model and observation), y; is 1 if an event was
observed, otherwise 0, and p; is the prediction probability of the model. The samples were divided into 75 % training and
validation data and 25 % test data. The test data were taken from different months than the training/validation data to minimise

minimize the effect of potential correlations in the data. Figure 10 shows the performance of the model on the test data,

compared to the EPS-based decision models of this study applied to the test data period.
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