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Abstract. Contrails
::::::::
Persistent

::::::::
contrails and contrail-induced cirrus clouds are considered the most significant non-CO2 con-

tributors to aviation’s climate impactand occur primarily .
::::::
These

:::::
clouds

::::::::
primarily

:::::
form in ice-supersaturated regions (ISSRs).

Reliable prediction of
:
,
:::::::
defined

::
by

:
relative humidity over ice (RHice)

::::::::
exceeding

::::
100

:::
%.

:::::::
Reliable

:::::::::
prediction

::
of

:::::
RHice:in the

upper troposphere and lower stratosphere allows mitigating their formation by re-routing flights. We implemented a two-

moment cloud ice microphysics parameterization within a ten-member Ensemble Prediction System (EPS) using the global5

ICON (ICOsahedral Nonhydrostatic) model. RHice predictions were evaluated against radiosonde and aircraft observations

from the Northern Hemisphere during 2024–2025.
::::::::::
2024–2025. Treating ISSR prediction (RHice > 100 %) as a binary classifi-

cation problem, we find that the probability of detection (POD) of ISSRs increases to 0.6 for the two-moment scheme (ICON

2-Mom), compared to 0.4 for the operational ICON with a one-moment ice microphysics scheme, while maintaining a low

false positive rate (FPR < 0.1). Further evaluation of the ICON 2-Mom EPS using Receiver Operating Characteristic (ROC)10

analysis shows a POD of 0.8 for a decision model that requires at least three ensemble members to predict ISSR, with an

FPR of 0.13. Additionally, we incorporate ensemble spread information to develop a meta-model that further reduces the FPR.

Since June 2024, more than 100 flights have been rerouted based on ICON 2-Mom EPS predictions in a contrail avoidance

trial, demonstrating the practical value of improved ISSR forecasts for climate-conscious aviation. This study highlights the

significant potential of ensemble-based modeling for predicting ISSRs and RHice, supporting environmentally optimized flight15

planning and advancing applications in weather and climate science.

Copyright statement. TEXT

1 Introduction

The impact of aviation on climate change is a growing concern, especially as the number of aircraft increases (Yamashita et al.,

2016; Grewe et al., 2021). Air traffic is estimated to contribute to global warming by approximately 3.5 % (Lee et al., 2023) ,20

:
–
:
with an uncertainty range of 2-14 % (Lee, 2018) ,

::::
2–14

::
%

::::::::::
(Lee, 2018)

:
–
:
caused by CO2 and non-CO2 effects.

While the uncertainty range for the climate impact of CO2 emissions is relatively small, there is significant variability

associated with non-CO2 effects arising from emissions such as NOx, H2O, and, notably, the formation of persistent con-
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trails and contrail-induced cirrus clouds (Matthes et al., 2017; Klöwer et al., 2021; Lührs et al., 2021; Lee et al., 2023).

These phenomena, collectively referred to as aircraft-induced clouds , present a complex challenge for climate assessment25

:::::::::::::::
(Teoh et al., 2024). While Kärcher (2018) estimate that their contribution accounts

::::::::
estimates

:::
that

::::
they

:::::::
account

:
for more than

half of aviation’s total radiative forcing, Bickel et al. (2020) contend that the
::::::::::::::::
Bickel et al. (2025)

::::::
contend

:::
that

::::
their

:
net warming

effect might be less than that of CO2, primarily because it may be partially offset by a decrease in natural cirrus cloud coverage

.
::::::::::::::::
(Bickel et al., 2020).

:

Given the variety of findings and the potential trade-off between CO2 and non-CO2 impacts, effective strategies to miti-30

gate the climate impact of aviation must consider
::::::
address

:
both types of effects. Among these strategies, climate-optimized

flight routing has gained
:::
One

::::
such

:::::::
strategy

::::
that

:::
has

::::::
gained

:::::::::
increasing

:
attention in recent years , as it seeks to minimize

::
is

:::::::::::::::
climate-optimized

::::
flight

:::::::
routing,

::::::
which

::::
aims

:::
to

::::::
reduce aviation-induced warming by accounting for a comprehensive range

of atmospheric impacts (Schumann et al., 2011; Grewe et al., 2017a, b; Matthes et al., 2017; Simorgh et al., 2022). This ap-

proach is built upon climate response models such as the Contrail Cirrus Prediction (CoCiP) model (Schumann, 2012), its35

Python adaptation PyContrails (Shapiro et al., 2023), or algorithmic Climate Change Functions (aCCF) (Dietmüller et al.,

2022; Matthes et al., 2023), which provide the necessary computational framework.

Climate response models rely on four-dimensional meteorological fields -
:
–
:
typically derived from numerical weather pre-

diction (NWP) models -
:
– in which relative humidity over ice (RHice) is a key parameter for evaluating contrail formation ac-

cording to the Schmidt-Appleman criterion (Schmidt, 1941; Appleman, 1953; Schumann, 1996). To provide climate response40

models with physically consistent and representative atmospheric inputs, it is therefore crucial that NWP models accurately

capture RHice, especially under conditions of ice supersaturation
::::::::::::::
ice-supersaturated

:::::::::
conditions

:
(RHice > 100 %), which are

essential for persistent contrail development. Yet, despite its

::::::
Beyond

:::::::
contrail

::::::::
modeling,

:::::::::::::::
ice-supersaturated

::::::
regions

::::
play

:
a
:
critical role in contrail prediction,

::
the

:::::::::::
development

:::
and

:::::::::
persistence

::
of

:::::
cirrus

::::::
clouds,

:::::
which

:::
are

:::
key

::::::::
regulators

::
of

:::
the

:::::
water

:::::
vapor

::::::
budget

::
in

::
the

:::::
upper

::::::::::
troposphere

:::
and

:::::
lower

::::::::::
stratosphere

::::::::::::::::::
(Kärcher et al., 2023)45

:
.
:::::::::
Improving

:::
the

::::::::::::
representation

::
of

:::::::::::::
supersaturation

::
is

::::::::
therefore

::::
vital

:::
not

::::
only

:::
for

:::::::
contrail

::::::::
modeling

::::
but

:::
also

:::
for

:::::::::
capturing

:::
the

::::::
broader

:::::::
impacts

::
of

:::::
cirrus

:::::
cloud

::::::::
dynamics

::
on

::::::::::
atmospheric

:::::::
moisture

::::
and

:::::::
radiative

:::::::
balance

::::::::::::::::::::::::::::::::::::
(Dekoutsidis et al., 2023; Borella et al., 2025)

:
.
:::
Yet,

::::::
despite

:::
its

::::::::
relevance

:::
for

:::::::::::::
climate-relevant

:::::::::
processes, RHice remains one of the most uncertain variables in NWP models ,

with ongoing difficulties in capturing its variability, dynamics, and interactions with cloud microphysics
:::::::::::::::::::::::::::::::::::::::::::::::
(Kunz et al., 2014; Dyroff et al., 2015; Krüger et al., 2022)

.50

Errors and uncertainties in Numerical Weather Prediction (NWP) models stem from various factors, including sparse and

noisy observational data for initial conditions, as well as inherent limitations in model physics and numerical methods. Among

these challenges, accurate prediction of

RHice remains particularly difficult, even for state-of-the-art models. This is largely due to the limited availability of
::::::::
prediction

:
is
::::::::::
particularly

::::::::::
challenging

:::
due

:::
to

::::::
limited upper tropospheric humidity observations for dataassimilation, a large variability of55

humidity fields, and the
::::
data,

::::
large

::::::::
humidity

:::::::::
variability,

:::
and

:
incomplete understanding of ice nucleation and cirrus cloud forma-

tionprocesses. Parameterizations of ice microphysical processes
:
.
:::::::::
Improving

:::::
cloud

:::::
cover

:::::::
schemes

:::
and

:::::::::::::::
parameterizations

::
of

:::
ice

:::::::::::
microphysics are therefore an active area of research (Kärcher et al., 2022; Seifert et al., 2022; Spichtinger et al., 2023; Achatz et al., 2024; Lüttmer et al., 2024)
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::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kärcher et al., 2022; Seifert et al., 2022; Spichtinger et al., 2023; Achatz et al., 2024; Grundner et al., 2024; Lüttmer et al., 2024)

. Additionally, predicting ice supersaturation poses challenges due to resolution limitations
:
is

::::::::::
complicated

:::
by

::::::::
resolution

:::::
limits:60

NWP models typically represent mean atmospheric values and may miss highly
::::
often

::::
miss localized ice supersaturated regions

(ISSRs), particularly those associated with
::::::::
especially

:::::
those

:::::
linked

:::
to unresolved mesoscale gravity waves (Wilhelm et al.,

2018).

One way to circumvent these limitations is to build a post-processing model which
:::::::
develop

:::::::
machine

:::::::
learning

::::::::
methods

::
to

:::::
derive

:::::
RHice:::::::

forecast
::::::::::
corrections.

::::
The

::::::::
resulting

::::::::
correction

::::::
model

:
receives variables such as temperature, RHice, and others,65

and outputs
:::::
returns

::::::::
adjusted

:::::
values

::
of

:
RHice. Wang et al. (2025) focused their research on reanalysis data, deriving their post-

processing model inputs from ERA5 (ECMWF Reanalysis v5) data, and trained their model using humidity measurements

from the In-service Aircraft for a Global Observing System (IAGOS), showing RHice mean absolute error improvements in

::::
when

::::::::
validated

::::::
against

:
test data.

:::::::
Previous

::::::
studies

::::
have

::::
also

::::::::
examined

::::::::::
corrections

::
to

:::::
ERA5

:::::::::
reanalysis

:::::
RHice,

::::::::::
particularly

::
in

:::
the

::::::
context

::
of

:::::::::
estimating

:::
the

::::::
climate

::::::
effects

::
of

:::::::
aviation

:::::::
contrails

::::::::::::::::::::
(e.g., Teoh et al., 2022).

:
70

The use of high-resolution NWP models is another approach to dealing with uncertainties in predicting RHice. In a recent

study by Thompson et al. (2024), several leading high-resolution NWP models have been
:::::
NWP

::::::
models

:::::
were validated with

respect to RHice using radiosonde and IAGOS data, and the results are discussed in the context of contrail avoidance flight

routing. RHice predictions of
::::
from IFS (Integrated Forecasting System), GFS (Global Forecast System), and S-WRF (

:
a Weather

Research and Forecasting model configured
:::::::::::
configuration by SATAVIA) are evaluated and moderate scores in terms of

::::
were75

::::::::
evaluated

:::::
using

:::::::
standard

:::::::::::
classification

:::::::
metrics,

::::::::
including

:
the F1 score and the Matthews Correlation Coefficientwere found.

The study highlighted
:
,
:::::
which

::::::
reflect

:::
the

:::::::
models’

::::::
ability

::
to

::::::::
correctly

::::::
identify

:::::::::::::::
ice-supersaturated

::::::::::
conditions.

::::::::
Moderate

::::::
scores

::::
were

::::::
found,

::::::::
indicating

:::::
room

:::
for

:::::::::::
improvement

::
in

::::
ISSR

:::::::::
prediction

:::::
skill.

:::
The

:::::
study

:::::::::
highlights

:
that a correct prediction of conditions which are not conductive to contrail formation, mainly the

condition of
:::::::::::
identification

::
of

:
non-ISSR , is also crucial, as false negatives (thus, incorrect ISSR predictions) could potentially80

lead to unnecessary re-routing. For the S-WRF model, they found
:::
find a true positive rate for the non-ISSR condition of 90.7

% and a true positive rate for the ISSR condition of 45.9 %. Hence, for ISSR they observe a false positive rate
:::::
hence

:
a
:::::
false

::::::
positive

::::
rate of

::::
ISSR

::
of

:
9.3 %and a false negative rate of 54.1 %. The authors point out that the relatively high false negative

rate of ISSR indicates missed opportunities for contrail avoidance, which is not ideal, but also has no consequences other than

the current status quo of aviation impacts. Conversely, the
:
.
::::
The low false positive rate of ISSR suggests that there may be only85

few worst-case scenarios where aircraft are diverted to an incorrectly predicted non-ISSR due to an incorrectly predicted ISSR,

resulting in both additional CO2 emissions and possible contrail formation.

In our study, we investigate the ability to predict

:::::
These

::::::
studies

::::::::::
demonstrate

::::
the

:::::::
potential

:::
of

:::::::
machine

:::::::
learning

:::::::
models

:::
and

:::::::::::::
state-of-the-art

:::::
NWP

:::::::
systems

::
to

::::::::
improve

:::::
RHice

:::::::::
prediction,

:::
but

::::
they

::::
also

::::::
reveal

::::::::
persistent

::::::::::
limitations.

::
In

:::::::::
particular,

:::
the

:::::::
reliance

:::
on

:::::::::
simplified

:::::
cloud

:::::
cover

::
or

::::::::::::
microphysics90

:::::::
schemes

::::
and

:::::::::::
deterministic

::::::::
forecasts

:::::::
restricts

:::
the

::::::
ability

:::
of

::::::
current

:::::::
models

::
to
:::::::

capture
:::
the

::::
full

:::::::::
variability

::::
and

::::::::::
uncertainty

::::::::
associated

::::
with

:::
ice

:::::::::::::
supersaturation.

:
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:
A
::::
key

::::::::
challenge

::
in

::::::::::
realistically

::::::::::
representing

:
RHice by using a two-moment cloud ice microphysics parameterization scheme

within a ten-member Ensemble Prediction System (EPS) in the global
::
in

:::::
NWP

::::::
models

::::
lies

::
in

:::
the

::::::::
treatment

::
of

::::::::::::
subgrid-scale

:::::::
humidity

:::::::::
variability

:::
and

:::::
cloud

:::::::::
formation

:::::::::
processes.

:::
The

::::
IFS

:::::
model

::::::::
addresses

::::
this

:::::::
through

:::
the

::::::::
Tompkins

:::::
cloud

:::::
cover

:::::::
scheme95

::::::::::::::::::::::::::::::::::::::::::::
(Tiedtke, 1993; Tompkins et al., 2007; ECMWF, 2024)

:
,
:::::
which

:::::::
employs

:
a
:::::::::
prognostic

::::::::::
probability

:::::::::
distribution

:::::::
function

::::::
(PDF)

::
of

::::
total

::::
water

:::::::
content

::
to

:::::::
estimate

:::::
cloud

:::::::
fraction.

::::
This

:::::::::
statistical

:::::::
approach

::::::
allows

:::
for

:
a
:::::::::::
probabilistic

::::::::::::
representation

::
of

:::::
cloud

:::::
cover

:::
and

:::
ice

::::::::::::
supersaturation

:::
but

:::::
does

:::
not

::::::::
explicitly

::::::
resolve

:::
the

:::::::::
underlying

:::
ice

::::::::::::
microphysical

::::::::
processes.

:

::
In

:::::::
contrast,

:::
the ICON (ICOsahedral Nonhydrostatic) NWP model (Zängl et al., 2014)

:::
uses

::
a
:::::::::
physically

:::::
based

:::::::::::
microphysics

::::::
scheme.

:::::::
Within

:::
this

::::::::
approach,

::
a
:::
key

::::::
factor

::
in

:
a
:::::::
realistic

::::::::::::
representation

::
of

:::::
RHice::

is
:::
the

::::::::
scheme’s

::::::
ability

::
to

::::::::
simulate

:::
the

:::::
phase100

::::::::
relaxation

::::
time

::
–

::
the

::::::::
timescale

::::
over

::::::
which

:::::
water

:::::
vapor

:::::::::
transitions

::
to

::
ice. ICON is used by the German Meteorological Service

(DWD) and is developed through the ICON partnership, which includes the Deutsches Klimarechenzentrum, Max Planck

Institute for Meteorology, Karlsruhe Institute of Technology, Center for Climate Systems Modeling, and DWD. In the op-

erational configuration of the ICON model,
::::::::::
one-moment

:
cloud ice microphysics is represented by a one-moment scheme in

which
:::::::::::::
parameterization,

::::
the

::::::
specific

:
ice mass is considered

:::::
treated

:::
as a prognostic variable. However, this approach cannot105

capture higher levels of supersaturation. To improve predictions of RHice in the upper troposphere and lower stratosphere

(UTLS), we adopt
:
,
:::::::
whereas

:::
ice

:::::::
particle

::::::
number

:::::::
density

::
is

::::::::
estimated

::::
from

:::::::::::
temperature.

::::
This

::::::::
approach

:::::
tends

::
to

:::::::::::
overestimate

::::::
particle

::::::::
numbers

::
at

:::
low

::::::::::::
temperatures,

:::::::
resulting

:::
in

::::::::::::
unrealistically

::::
short

:::::
phase

:::::::::
relaxation

:::::
times

::::
and

::::::
limiting

::::
the

:::::
ability

:::
of

:::
the

:::::
model

::
to

::::::::
represent

:::
ice

::::::::::::
supersaturated

::::::::::
conditions.

::
To

:::::::
address

::::
these

::::::::::
limitations,

:
a two-moment cloud ice scheme that includes

ice
::::::::::
microphysics

:::::::
scheme

:::::
treats

:::
the

:::
ice particle number density as an additional prognostic variable

:::::::::::::::::::::
(Köhler and Seifert, 2015)

:
.110

::::
This

:::::
allows

::::::
ICON

::
to

:::::
better

::::::
capture

:::
the

:::::
phase

::::::::
relaxation

:::::
time,

:::
and

:::::::
thereby

:::
the

:::::
degree

:::
of

::
ice

:::::::::::::
supersaturation

:::
and

:::
the

::::::::::
persistence

::
of

:::
ice

::::::::::::
supersaturated

:::::::
regions. We have implemented a simplified and slightly adapted version of Köhler and Seifert (2015)

, which allows a more realistic representation of ice microphysical processes than the operational model, while remaining

consistent in the warm phase.

Building on ICON with the two-moment ice microphysics scheme, we set up an ensemble prediction system analogous to115

the operational global ICON. To balance the benefits of ensemble forecasting with the constraints of computational resources,

we selected ten of the 40 ensemble members used in the operational configuration.

Ensemble forecasting offers a powerful framework for assessing both the predictability of atmospheric phenomena and the

uncertainties inherent in NWP models (Epstein, 1969; Lewis, 2005). It is state-of-the-art to describe the initial conditions of

an NWP model using probabilistic distributions (Du et al., 2018) and to perform ensemble-based data assimilation, not only to120

obtain initial conditions for ensemble forecasts, but also for deterministic forecasts (Snyder and Zhang, 2003; Hunt et al., 2007)

. Furthermore, NWP model imperfections can be addressed by multi-model, multi-physics and stochastic physics approaches

(Berner et al., 2011) integrated into the ensemble forecast generation process.

Ensemble forecasts inherently provide access to uncertainty estimates by generating a probability distribution for each

grid point. Although taking the ensemble mean is a common method for deriving a more stable deterministic forecast,125

ISSR prediction may benefit from alternative uses of ensemble information. Since NWP models generally represent mean

conditions, extreme RHice values within the ensemble may indicate potentially extreme ISSR events. Additionally, the spread of
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:::::::::::::
Complementary

::
to

:::
the

:::::
model

:::::::
physics,

::::::::
ensemble

::::::::::
forecasting

::
is

:
a
::::::::
powerful

:::
tool

:::
for

::::::::
capturing

::::::::::
atmospheric

:::::::::
variability

:::
and

::::::
model

:::::::::
uncertainty.

:::::
This

::
is

:::::::::
particularly

::::::::
valuable

:::
for

::::::::::
phenomena

:::
like

::::::
ISSR,

:::::
which

:::
are

::::
rare,

::::::::
spatially

::::::::::::
heterogeneous,

::::
and

::::::::
sensitive

::
to

:::::::::
small-scale

:::::::::
processes.

:::::
While

::::::::
ensemble

::::::
means

:::
are

:::::::::
commonly

::::
used

::
to

:::::::
produce

:::::
stable

:::::::::::
deterministic

::::::::
forecasts,

::::
they

::::
may

:::::::
obscure130

::::::
signals

::::::
critical

:::
for

::::
ISSR

:::::::::
detection.

::::::
Instead,

:::::::::
ensemble

:::::
spread

::::
and

::::::::
extremes,

::::
such

::
as

:::
the

:::::::
highest RHice values

:::::
among

:::::::::
members,

:::
may

::::::
reveal

:::::::
localized

:::::::::::::
supersaturation

::::::
events

:::
and

::::
offer

::
a
::::::::::
probabilistic

:::::::
measure

:::
of

::::::
forecast

::::::::::
confidence.

:

::
In

:::
our

::::::
study,

:::
we

:::::::
combine

:::::
both

::::::::::
approaches:

:::
We

::::::::::
implement

:::
and

::::::::
evaluate

:
a
:::::::::::

two-moment
:::::

cloud
::::

ice
:::::::::::
microphysics

:::::::
scheme

::
in

:::
the

::::::
global

::::::
ICON.

:::::::
Further,

:::
we

:::::::
explore

:::
its

::::::
impact

::::::
within

:
a
:::::::::::

ten-member
::::::::
ensemble

:::::::::
prediction

::::::
system

::::::
(EPS), as captured

by the standard deviation, may improve the reliability of ISSR classification
::::::::
assessing

::::
how

:::
the

::::::::
ensemble

::::
can

:::::::
enhance

:::::
ISSR135

:::::::::::
identification

::::::
beyond

:::::::::
mean-state

::::::::::::
representation.

Nevertheless, the practical application of ensemble forecasts remains challenging. While they provide access to uncertainty

and thus represent a more complete and realistic forecasting framework compared to deterministic point forecasts, they

still face the typical challenges associated with forecast application. Not only is the process of NWP forecasting inherently

imperfect at each step (data collection, data assimilation, model physics and model numerics)but the interpretation of the140

resulting forecast output, whether deterministic or probabilistic, also leaves room for methodological variability. Different

post-processing techniques and user perspectives can lead to significant differences in how forecasts are applied in real-world

scenarios (Du et al., 2018), especially in the case of ensemble forecasts.

The main contribution
::
As

::::
part

:
of this studyis to carefully analyze and interpret the EPS predictions of RHice based on ICON

with the
:
,
:::
the

::::::::::
ten-member

:::::
ICON

::::::::
ensemble

::::
with

:::
the

::::
new

:
two-moment ice microphysics scheme (ICON 2-Mom EPS) through145

verification with radiosonde observations. For this purpose, several ensemble metrics are considered and meta-models based

on the EPS are discussed, showing a great potential of ensemble-based forecasts of RHice compared to deterministic forecasts.

The ICON 2-Mom EPS has been established as a dedicated forecasting system at DWD to provide
:::
the

:::::::
German

::::::::::::
Meteorological

::::::
Service

:::::::
(DWD).

::
It

::::::::
provides continuous meteorological data for

::
to

::::::
support

:
research on contrail avoidance flights. This setup

was developed within the D-KULT project (demonstrator climate and environmentally friendly air transport
:::::::::::
Demonstrator

:::
for150

::::::
Climate

::::
and

::::::::::::::
Environmentally

:::::::
Friendly

::::
Air

::::::::
Transport), which aims to demonstrate the feasibility of climate-optimized flight

trajectories with a focus on reducing contrail formation in European airspace. It aims
:::
The

::::::
project

:::::
seeks to optimize flight paths

using climate response models that account for both CO2 and non-CO2 effects, while balancing emissions, noise, operating

costsand real-world ,
::::
and

:::::::::
operational

:
constraints such as airspace regulations and airport capacity. One of the components

:::
key

:::::::::
component

:
is the integration of the ICON 2-Mom EPS forecast

:::::::
forecasts

::::
from

:::
the

::::::
ICON

::::::::
ensemble

:
to identify potential155

persistent contrail regions for contrail avoidance flight planning. In real-world trials, more than 100 flights have already been

rerouted using information from these forecasts, demonstrating the practical application
::::::::::
applicability of climate-aware flight

paths
:::::::::
operations.

The outline of this paper

:::
The

::::::::
structure

::
of

::::
this

::::
work

:
is as follows: In Section 2, we describe he details of the dedicated ICON forecasting system,160

in particular, the
::::::::
introduce

:::
the

::::
new two-moment cloud ice microphysics scheme and the ensemble setup. In Section 3 , an

overview over
::::::::::::::
parameterization,

:::
the

::::::::
ensemble

::::::::::
generation,

:::
and

:::
the

::::::
details

::
of

:::
the

::::::
model

:::::
setup.

::::::
Section

::
3
:::::::
provides

:::
an

::::::::
overview

5



::
of the in-situ observation measurement

:::::::::::
observational

:
data used for verificationis given. The verification methodology and

::
is

::::::::
described

::
in

::::::
Section

::
4,

::::
and

:::
the results are presented and analyzed in Section 5, where we start by evaluating the deterministic

:::::::
evaluate

:::
the

:::::::::::
deterministic

::::::
ICON model with the new two-moment ice microphysics schemeand then move on to analyze165

ensemble metrics of the EPS setup. This is followed by a discussion of the results
:::::::
scheme,

:::::::::
particularly

:::
in

::::::::::
comparison

::
to

:::
the

:::::::::
operational

:::::
ICON

::::::
model

::::
with

:::
the

:::::::::::
one-moment

:::::::
scheme.

::::::::
Building

::
on

:::
the

:::::::::::
deterministic

::::::
model

::::::::::
verification,

:::
we

::::
then

::::::
assess

:::
the

::::::::::
ten-member

::::::::
ensemble

:::::
setup.

:::
We

::::::::
conclude

::::
with

:
a
:::::::::
discussion

:
in Section 6 and a conclusion

:::
final

:::::::
remarks

:
in Section 8.

2 Model

In the following, the dedicated ICON forecasting system is described, which has been specifically established for climate-optimized170

flying and differs from the operational setup of the ICON model at DWD. The two main changes are the use of a two-moment

cloud ice microphysics scheme and the reduction of ensemble members, both of which are described in detail below.

2.1 Two-Moment Cloud Ice Microphysics Parameterization in ICON

Accurate prediction of the potential for persistent contrail formation requires a realistic representation of RHice in NWP

models. A key factor in this is the model’s ability to simulate the phase relaxation time - the timescale over which water175

vapour transitions to ice. In the operational configurationof ICON, a one-moment
:::
The

::::::
ICON

::::::
model,

:::::::::
developed

::
by

:::
the

::::::
ICON

:::::::::
partnership

::::::::
including

:::::::::
Deutsches

:::::::::::::::::
Klimarechenzentrum,

::::
Max

::::::
Planck

:::::::
Institute

:::
for

:::::::::::
Meteorology,

::::::::
Karlsruhe

:::::::
Institute

::
of

::::::::::
Technology,

::
the

::::::
Center

:::
for

:::::::
Climate

::::::::
Systems

:::::::::
Modeling,

:::
and

:::
the

:::::::
German

:::::::::::::
Meteorological

:::::::
Service

:::::::
(DWD),

::
is

::::
used

:::::::::::
operationally

:::
by

::::::
DWD.

::
In

::
its

::::::
global

:::::::::
operational

::::::::::::
configuration,

:
cloud ice microphysics scheme is used, in which the

:
is
::::::::::
represented

:::
by

:
a
:::::::::::
one-moment

::::::
scheme,

::::::
where

:
specific ice mass is treated as a prognostic variable and the ice particle number density is estimated from180

temperature . This approach tends to overestimate particle numbers at low temperatures, resulting in unrealistically short

relaxation times and limiting the ability of the model to represent ice supersaturated conditions.
:::::::::
prognostic

:::
and

:::
ice

:::::::
particle

::::::
density

::
is

::::::::
diagnosed

:::::
from

::::::::::
temperature

:::
(see

:::::::::
Appendix

::
A

:::
for

::::::
details).

:

To address these limitations, a

2.1
:::::::::::

Two-Moment
::::::
Cloud

:::
Ice

::::::::::::
Microphysics

:::::::::::::::
Parameterization

::
in

::::::
ICON185

:::
The

:
two-moment ice microphysics scheme has been implemented in ICON , in which the ice particle number density is treated

as an additional prognostic variable. The implementation is based on previous versions, as described in Köhler and Seifert (2015)

, and has been adapted to maintain consistency with the
::::
cloud

:::
ice

::::::
scheme

::
in

:::::
ICON

::
is
::
an

::::::::
extension

::
of
:::
the

:
operational one-moment

scheme of the ICON model, using a single ice mode. In the updated version, heterogeneous ice nucleation is parameterizedbased

on laboratory measurements from the Karlsruhe Institute of Technology (KIT) (Ullrich et al., 2017), while homogeneous190

nucleationfollows the approach of (Kärcher, 2018). This
::::::::::
one-moment

:::::
cloud

:::
ice

::::::::
scheme.

::
It

::::
adds

::
a
:::::::::
prognostic

::::::::
equation

:::
for

::::
cloud

:::
ice

:::::::
number

:::::::
density

:::
and

:::::::
includes

:::::::
explicit

:::
ice

:::::::::
nucleation

:::::::::
processes.

::::::::
Examples

:::
of

::::::
similar

::::::
hybrid

:::::::
schemes

:::::::
include

:::::
those

::
by

:::::::::::::::::
Reisner et al. (1998)

:::
and

:::::::::::::::::::
Thompson et al. (2004)

:
,
::::::
though

:::::
these

::::::::
originally

::::
used

::::::
purely

:::::::::::::::::::
temperature-dependent

::
ice

:::::::::
initiation.
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::::::::::::::::::::::::::::::::::
Köhler and Seifert (2015, hereafter KS15)

::::::
present

:
a
:::::::::::
two-moment

:::::::
scheme

:::
that

::::::::
accounts

:::
for

::::::::
deposition

:::::::::
nucleation

:::::
based

:::
on

:::
ice

:::::::::::::
supersaturation,

:::
and

:::::::
includes

::::::::::::
homogeneous

:::::::
freezing

:::
of

::::::
sulfate

::::::
aerosol

:::::::
droplets

::
at

::::
low

:::::::::::
temperatures.

::::
The

::::::
version

::
of

:::
the

:
two-195

moment scheme provides a more physical and realistic representation of ice microphysics, especially under conditions relevant

to contrail formation. More details on the scheme and its implementation can be found in the Appendix A. The difference in

model behavior is illustrated in Fig. ??(a), which shows the global structures of relative humidity over ice with the operational

ICON (top) and the ICON with the
::::
used

::
in

:::
this

:::::
study

:
is
::
a

::::::::
simplified

:::
and

:::::::
updated

::::::
version

::
of
::::::
KS15.

:::
The

:::::::::
two-mode

::::::::::::
representation

::
in

:::::
KS15

:
is
:::::::
omitted

:::
for

::::::::::::
computational

::::::::
efficiency,

::
as

:::
are

:::
the

:::::::
timestep

::::::::::
refinements

:::
for

:::::::::::
homogeneous

::::::::::
nucleation.

::
In

:
a
:
two-moment200

cloud ice microphysics scheme (bottom)
:::::::
scheme,

::::::
sources

::::
and

:::::
sinks

::
of

:::
ice

::::::::
particles

::::
must

:::
be

::::::::
explicitly

:::::::::::::
parameterized.

::::
The

::::
three

:::::::
primary

:::::::
sources

::
of

::::
ice

:::::::
particles

:::
are

:::::::::::
detrainment

::
of

:::
ice

:::::
from

:::::
deep

:::::::::
convective

::::::
clouds,

::::::::::::
homogeneous

::::::::::
nucleation,

::::
and

::::::::::::
heterogeneous

:::::::::
nucleation.

::::
Deep

::::::
Moist

::::::::::
Convection

:::::
ICON

::::::::::::
parameterizes

:::::
moist

:::::::::
convection

:::::
using

::
a

::::
bulk

::::
mass

::::
flux

::::::::::
convection

::::::
scheme

:::::::::::::::::::::::::::::::
(Tiedtke, 1989; Bechtold et al., 2008).

::::
For205

::::
cloud

:::
ice

:::::::::::
detrainment

::::
from

::::::::::
convection,

:
a
:::::

mean
:::::::

particle
::::::::
diameter

::
of

::::::::::::
Di,conv = 200

:::
µm

::
is

::::::::
assumed,

::::::::::::
corresponding

::
to

::
a
:::::
mean

::::
mass

::
of

:::::::::::::
mi,conv = 10−9

:::
kg.

:
A
:::::::
smaller

::::
mean

:::::
mass

:::::
would

:::::::
increase

:::
the

:::::::
number

::
of

::::::::
detrained

::
ice

::::::::
particles

::
in

::
the

:::::
upper

:::::::::::
troposphere,

::::::
leading

::
to

::::::
shorter

:::::
phase

:::::::::
relaxation

:::::
times

::
in

:::::::::
convective

:::::
anvils

::::
and

:::::::
reduced

:::
ice

:::::::::::::
supersaturation.

::::
The

:::::::
assumed

::::
size

::::
also

::::::
affects

::
the

::::::::
effective

:::::
radius

::
of

:::::
anvil

:::::
clouds

::::::::
explicitly

::::::::::
represented

::
in

:::
the

:::::
model. While the cloud structures remain similar, the degree of

ice supersaturation increases significantly with the new two-moment cloud ice scheme. The extent to which this is realistic is210

elaborated in Section 5 in comparison with observational data

::::::::::::
Homogeneous

::::
Ice

::::::::::
Nucleation

:::
For

:::::::::::
homogeneous

:::
ice

:::::::::
nucleation,

:::
the

::::::::::::::
parameterization

::
by

::::::::::::::::::
Kärcher et al. (2006)

:
is

:::::
used.

:
It
::::::::
accounts

::
for

:::
the

:::::::
presence

:::
of

:::::::::
pre-existing

::
ice

::::::::
particles

::::
and

::
is

:::::::
applied

:::::
using

:::::::::
grid-scale

::::::
vertical

::::::::
velocity

::::
and

:::
ice

:::::::::::::
supersaturation.

:::::::::
However,

::
it

:::::::
neglects

::::::::::::
subgrid-scale

:::::::::
variability,

:::::
which

::::
may

::::
lead

:::
to

::
an

::::::::::::::
underestimation

:::
of

:::::::::
nucleation

::::::
events.

::::
The

::::::
impact

:::
on

:::::
cloud

:::
ice

:::::::
number

::::::::::::
concentration

::
is215

:::
less

:::::::::::::
straightforward.

::::::
While

::::::::
nucleation

::::::
events

::
in

:::::
nature

:::::
occur

:::
on

:::::
much

::::::
smaller

::::::
spatial

::::::
scales,

::
the

::::::
model

:::::::
assumes

::::
that

::::::::
nucleated

:::::::
particles

:::
are

:::::
evenly

:::::::::
distributed

::::::
across

:::
the

::::
grid

:::
box

::::
once

:::
the

:::::
event

::
is

::::::::
triggered.

:

:::::::::::::
Heterogeneous

:::
Ice

:::::::::
Nucleation

::::::::::::
Heterogeneous

:::::::::
nucleation

::
is

:::::::::
represented

:::::
using

:::
the

:::::
INAS

::::
(Ice

:::::::::
Nucleating

::::::
Active

:::::
Sites)

:::::::
approach

:::
of

::::::::::::::::
Ullrich et al. (2017),

::::::
which

:::::::
includes

::::::::::::::
parameterizations

:::
for

:::::::::
deposition

:::
and

:::::::::
immersion

:::::::
freezing

:::
on

::::::
mineral

::::
dust

::::
and

::::
soot.

:::::
Since

:::::::::
prognostic

::::::
aerosol

:::::
fields

:::
are220

:::
not

:::::::
available

::
in
::::::

ICON,
::::

but
::::
only

::
in

::::::::::
ICON-ART,

::
a
:::::::
constant

::::
dust

:::::::
number

:::::::::::
concentration

:::
of

:::::::::::::
Ndust = 1× 103

::::
m−3

::
is

::::::::
assumed

::
in

::
the

:::::
upper

::::::::::
troposphere

::::::
above

::::::::
p0 = 200

:::
hPa.

::::::
Below

::::
that

:::::::
pressure

:::::
height

:::
the

::::::
profile

::::::::
increases

::::::::
following

:

Ndust(p) =Ndust,0 max

{
min [exp

(
γdust

p

p0

)
,200 ],1

}
:::::::::::::::::::::::::::::::::::::::::::::

(1)
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::::
with

::::::::::::::
γdust = 1× 10−3.

::::
The

::::
dust

::::::
surface

::::
area

:::::
S̄dust ::

is
::::::::
calculated

::::::
based

::
on

::
a
:::::::::
lognormal

::::::
particle

::::
size

::::::::::
distribution

::::
with

::
a
:::::
mean

:::::::
diameter

::
of

::
1

:::
µm

:::
and

::
a
:::::::
standard

::::::::
deviation

::
of

::::
2.5.

:::
The

:::::::
number

::
of

::::::::
nucleated

:::
ice

:::::::
particles

::
is

::::
then

:::::::::
diagnosed

::
as:

:
225

N∗
i =Ndust

{
1− exp

[
−S̄dustnS(T,Si)

]}
:::::::::::::::::::::::::::::::::

(2)

::::
Here,

:::
nS::

is
:::
the

:::::
INAS

::::::
density

::
in
:::::
m−2,

::::::::::::
parameterized

::::::::
according

::
to
::::
Eq.

:::
(7)

::
for

:::::::::
deposition

::::
and

:::
Eq.

:::
(5)

:::
for

:::::::::
immersion

:::::::
freezing

::
in

::::::::::::::::
Ullrich et al. (2017).

::
In

::::::::
numerical

:::::::
models,

:::::
newly

::::::
formed

:::
ice

:::::::
particles

:::
are

::::::::
typically

::::::::
diagnosed

::::
each

:::::::
timestep

:::::
using

::::::::::::::::
∆Ni =N∗

i −N pre
i ,

::::::
where

::::
N pre

i

:
is
:::
the

:::::::
number

::
of

::::::::::
pre-existing

:::
ice

::::::::
particles.

::::::::
However,

::::
this

:::
can

:::::::::::
overestimate

::::::::::::
heterogeneous

:::::::::
nucleation

::::
since

::::
N pre

i ::
is
:::::::
reduced

:::
by230

:::::::::::
sedimentation

:::
or

::::::::::
aggregation,

:::::
while

:::::
Ndust :::::::

remains
::::::::
constant.

::::
This

:::::::::
effectively

::::::
creates

::
an

:::::::::
unlimited

:::::::
reservoir

:::
of

::::::::::::
ice-nucleating

:::::::
particles.

:::
To

:::::
avoid

:::
this

:::::::
artifact,

::
a

::::::
budget

:::::::
variable

::
is

:::::::::
introduced

::
as

::::::::
described

::
in
::::::

KS15.
::
A

:::::::::
relaxation

::::::::
timescale

::
of

::::
two

:::::
hours

::
is

::::::
applied

::
to

:::::::
simulate

:::
the

::::::::
recovery

::
of

:::::::::
nucleating

::::::
particle

::::::::::
availability

:::
due

::
to

::::::::::
atmospheric

:::::::
mixing.

2.2 Ensemble Prediction System

2.2
::::::::

Ensemble
::::::::::
Generation235

For the D-KULT project, a dedicated ten-member global ensemble prediction system based on the operational ICON model

(Reinert et al., 2025) has been established. Although the full operational system consists of 40 ensemble members, the reduced

configuration of 10 members was found to be sufficient to meet the project requirements for forecasting key variables such as

relative humidity over ice.

The ensemble generation is based on the Local Ensemble Transform Kalman Filter (LETKF) method (Ott et al., 2004; Hunt240

et al., 2007), which perturbs the initial conditions of all members simultaneously in a member-dimensional space. The initial

state of each ensemble member is computed by combining its background state -
:
– a short-range forecast -

:
–
:
with a weighted

correction derived from the differences between observations and model background. These weights are computed via a gain

matrix that incorporates both observation error and background error covariances, ensuring that each member assimilates

observation information in a distinct but dynamically consistent way.245

In addition to initial condition perturbations, the system includes stochastic perturbations of selected physical parameteriza-

tions . For the
:::::
which

:::
are

::::::
known

::
to

::
be

::::::::
sensitive.

::::::::
Thereby,

:::::::
different

::::::::::
components

:::
of

:::
the

::::::
system

:::
are

::::::::
perturbed,

:::::::::
including

::::::
gravity

:::::
waves,

::::::::::
convection,

::::::::::::
microphysics,

:::
the

::::::
cloud

:::::::
scheme,

:::::::::
turbulence

:::
and

:::::
land

:::::::
surface.

:::
For

::::::::
example

:::
for

:::::::::
convection,

:::::::::::
well-known

:::::::::
parameters

::::
such

::
as

:::
the

::::::::::
entrainment

:::
rate

:::
or

::
the

::::::
excess

::
of

::::::::
moisture

::
or

::::::::::
temperature

::::
used

::
in

:::
the

:::::
ascent

:::
of

:
a
:::
test

:::::
parcel

:::
are

::::::::
targeted.

:::
For

:::
the

:
global ensemble system, these physical parameters are randomly perturbed for each ensemble member at the start250

of the forecast and remain fixed throughout the forecast integration
:::
with

:::::::::::::
time-dependent

::::::::::::
perturbations

::::::
varying

:::::::::::
sinusoidally

:::::
within

::::
their

::::::
range.

::::
The

::::::::::::
randomisation

::
is

::::::::::::
accomplished

::
by

::
a
:::::
phase

:::::
shift

::
of

:::
the

:::::::::
sinusoidal

:::::
wave

:::::::::
depending

::
on

:::
the

:::::::::
ensemble

:::::::
member

::
ID

:::::::::::::::::::::::::::::::::::::::::::::::
(for more details see Chapter 13.2 in Reinert et al., 2025). This approach introduces variability among ensemble

members while preserving the consistency of individual forecast trajectories. The combined perturbation strategy ensures a
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Relative humidity over ice (RHice) of the operational ICON with one-moment ice microphysics scheme (top row) and of ICON with

two-moment ice microphysics scheme as implemented in the dedicated system (bottom row): (a) Global forecast-only data of RHice near the

tropopause; (b) normalized histograms of RHice of Vaisala RS41 radiosonde data and ICON; (c) scatter plot of RHice of Vaisala RS41

radiosonde data versus ICON forecasts with a lead time of 12 hours; pressure between 150-300 hPa, corresponding to most common

commercial flight altitudes.

Figure 1.
::::::
Relative

:::::::
humidity

:::
over

:::
ice

::::::
(RHice) :

of
:::
the

::::::::
operational

:::::
ICON

::::
with

:::::::::
one-moment

:::
ice

::::::::::
microphysics

::::::
scheme

:::
(top

::::
row)

::
and

::
of
:::::
ICON

::::
with

:::::::::
two-moment

:::
ice

::::::::::
microphysics

::::::
scheme

::::::
(bottom

::::
row):

::
(a)

::::::
Global

::::::::::
forecast-only

:::
data

::
of

:::::
RHice :::

near
:::
the

::::::::
tropopause

::::::
(∼10.2

::::
km);

::
(b)

:::::::::
normalized

::::::::
histograms

::
of

::::
RHice::

of
::::::

Vaisala
:::::
RS41

::::::::
radiosonde

::::
data

:::
and

:::::
ICON;

:::
(c)

::
2D

:::::::::
histograms

::
of

::::
RHice::

of
::::::::::::::

spatio-temporally
::::::
matched

:::::
points

:::::::
between

:::::
Vaisala

:::::
RS41

::::::::
radiosonde

::::
data

:::
and

:::::
ICON

:::::::
forecasts

:::
with

::
a

:::
lead

::::
time

::
of

::
12

:::::
hours;

::::::
heights

::::::
between

::::::::::
8500–12500

::::
gpm,

:::::::::::
corresponding

::
to

::::
most

::::::
common

:::::::::
commercial

::::
flight

:::::::
altitudes.

realistic representation of forecast uncertainty, which is crucial for assessing the sensitivity of contrail formation potential to255

meteorological variability.

::
As

::
a

::::
third

::::::
source

::
of

::::::::::
uncertainty,

:::
the

:::::::::
sea-surface

:::::::::::
temperatures

::::
over

::::::
oceans

:::
are

::::::::
perturbed

::
in

:::
the

:::::
initial

:::::::::
conditions.

:

2.3 Model Setup

The dedicated system for the D-KULT project is
:::::
ICON

:::::::::
forecasting

::::::
system

::::::
which

::
is

:::::::::::
implemented

:::
and

::::::::
evaluated

::
in
::::
this

:::::
study

:
is
:
based on ICON version 2.6.6. Detailed information on the adapted code can be found in the Appendix A. The system runs260

on the ICON R3B06 grid, which has a horizontal spacing of about 26 km and a vertical spacing of about 200-300
:::::::
200–300

m at the most common commercial flight altitudes of 8.5-12.5
::::
–12.5

:
geopotential kilometers. It starts from the operational
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Figure 2.
:::::::::
Radiosonde

::::
(left)

:::
and

::::::
IAGOS

:::::
(right)

:::::::::
observation

::::
data.

:::
(a)

:::::::
Locations

::
of
::::
105

::::::
stations

:::::::
equipped

:::
with

::::::
Vaisala

:::::
RS41

:::::::::
radiosondes

::
in

::
the

:::::::
Northern

::::::::::
Hemisphere.

::
(b)

:::::::
Example

:::::
height

::::::
profiles

::
of

:::::::::
temperature

:::
and

::::
RHice::::

from
::::::
Vaisala

::::
RS41

:::::::
(TEMP)

:::::::::
observations

:::
and

:::::
ICON

::::::
2-Mom

:::
EPS

:::::::
forecasts

::::
with

:
a
::::

lead
::::
time

::
of

::::
12 h.

:::
(c)

::::
Rank

:::::::::
histogram:

:::
For

::::
each

::::::::::::
spatio-temporal

::::
point

:::::::::
(comprising

:::::
ICON

:::::::
2-Mom

:::
EPS

:::::
values

::::
and

::
the

:::::::::::
corresponding

:::::::::
radiosonde

:::::::::::
measurement),

:::
the

:::::::
observed

::::
value

::
is

:::::
ranked

::::::
among

:::
the

:::
ten

:::::::
ensemble

::::::::
members,

:::
and

:::
the

::::::
resulting

:::::
ranks

:::
are

:::::::
displayed

::
in

:
a
::::::::
histogram.

::::
The

::::
rank

:::::::
histogram

:::::::
includes

::::
only

::::::
samples

:::::
where

:::
the

:::::::
observed

::::
RHice:::::::

exceeds
::
50

:::
%.

::
(d)

::::::
IAGOS

:::::
flight

:::::
routes

::
of

:::
188

:::::
flights

::::
from

:::::::
December

:::::
2024,

:::::
limited

::
to

:::
the

:::::::
Northern

:::::::::
Hemisphere.

:::
(e)

::::::::::::
Spatio-temporal

:::::::::
comparison

:
of
:::::
flight

:::
data

:::
and

:::::
ICON

::::::
2-Mom

::::
EPS:

::::
Time

::::
series

::
of

:::::::::
temperature

:::
and

:::::
RHice ::::

from
:::
one

::::::
example

:::::
flight.

::
(f)

::::
Rank

::::::::
histogram

:::
for

::::::
IAGOS

::::
flight

::::
data,

:::::::
analogous

::
to
:::
(c).

analysis, which is based on the one-moment ice microphysics scheme, so that we require a spin-up time of at least 6 hours

in our evaluations below to build up ice supersaturation. The model is run four times a day, initialized at 00, 06, 12, and 18

UTC with a forecast lead time of 60 hours, producing hourly forecasts. The system consists of ten ensemble members, whose265

generation is based on the first ten members of the operational ensemble prediction system. This is a reasonable approach as

discussed in the Appendix B.

The model outlined forms the basis for the evaluations performed in this study and will be referred to as ICON 2-Mom

EPS
:::::
ICON

:::::::
2-Mom

::::
EPS in the remainder of this study. Since the dedicated

:::::
ICON

:::::::::
forecasting

:
system does not consist of an

additional deterministic model run, we use individual members of the ensemble as approximates to a deterministic model270

setup for our evaluation, denoted by ICON 2-Mom.
:::::
ICON

::::::
2-Mom

::
in
:::
the

:::::::::
following.

:::::::::
Similarly,

:::
the

:::::::::
operational

::::::
ICON

::::
with

:::
the

::::::::::
one-moment

:::
ice

:::::::::::
microphysics

:::::::
scheme

:
is
:::::::
denoted

:::
by

:::::
ICON

:::::::
1-Mom.

:

:::::
Figure

::::
1(a)

::::::::
illustrates

:::
the

:::::::::
difference

::
in

::::::
model

:::::::
behavior

:::::::
between

::::::
ICON

::::::
1-Mom

::::
and

:::::
ICON

:::::::
2-Mom,

:::::::
showing

::::::
global

:::::::
patterns

::
of

::::::
relative

::::::::
humidity

::::
over

:::
ice

:::
for

::::
both

::::::::
schemes.

:::::
While

::::::
overall

:::::
cloud

:::::::::
structures

::::::
remain

::::::::::
comparable,

:::
the

:::::::::::
two-moment

:::::
cloud

:::
ice

::::::
scheme

::::::::
produces

:
a
::::::::
markedly

::::::
higher

::::::
degree

::
of

:::
ice

:::::::::::::
supersaturation.

::::
The

::::::
realism

:::
of

:::
this

::::::::
behavior

::
is

::::::::
examined

::
in

:::
the

:::::::::
remainder275

::
of

:::
this

:::::
study

:::::::
through

:::::::::
comparison

::::
with

::::::::::::
observational

::::
data.

:
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3 Observation Data

This study emphasizes in situ measurements for verification, with the primary analysis based on radiosonde data. Additionally,

data from the In-Service Aircraft for a Global Observing System (IAGOS; see https://www.iagos.org/) were considered.

3.1 Vaisala RS41 Radiosonde Data280

We restricted our radiosonde verification to Vaisala Radiosonde RS41 data, as this type of radiosonde is best scored for humidity

measurements in the UTLS (Dirksen et al., 2022; Borg et al., 2023)
:::::::::::::::::::::::::::::::::::::::::::
(Dirksen et al., 2022; Borg et al., 2023; WMO, 2024). The

temperature sensor utilizes stable, linear resistive platinum technology that yields a measurement
::
is

::::::::
measured

::::
with

::
an

:
accuracy

of ±0.2 ◦C . The humidity sensor integrates humidity and temperature sensing elements and is based on capacitive polymer

technology
:::
and

:::
the

::::::::
humidity

:
with an accuracy of ±3 % RH. Height, pressure, and wind speed and direction data are derived285

from GPS measurements. For more details on techniques and precision compare Vaisala (2013). We limited our verification to

the Northern Hemisphere, where 105 radiosonde stations frequently yield Vaisala RS41 data. In Figure ??
:
2(a), the radiosonde

locations are shown. Most of them produce dailydata from two ascents (
:::::::::
Radiosonde

:::::::::::
observations

:::
are

::::::::
typically

:::::::::
conducted

::::
twice

:::::
daily,

::::
with

:::::::
balloon

::::::
ascents

:
around 0 UTC and 12 UTC), which is stored in so-called TEMP BUFR files: TEMP reports

include a standardized set of meteorological data, such as temperature, air pressure, wind speed and direction, and humidity290

at various atmospheric levels. The files are in the BUFR (
::::
UTC.

::::
The

::::::::
resulting

::::
data

:::
are

::::::
stored

::
in

:::::::::::
standardized

::::::
binary

::::
files

:::::
known

:::
as Binary Universal Form for the Representation of meteorological data ) format which is a standardized binary format

used
:::::::
(BUFR),

::
a
::::::
format

:::::::::
developed by the World Meteorological Organization (WMO) to encode and transmit various types

of weather observations, including radiosonde data . .
::::::
These

::::
files

::::::
contain

::::::
TEMP

:::::::
reports,

::::::
which

::::::
include

::
a
::::::::
structured

:::
set

:::
of

::::::::::
atmospheric

::::::::::::
measurements

::::
such

::
as

:::::::::::
temperature,

::::::::
pressure,

::::::::
humidity,

:::
and

:::::
wind

:::::
speed

::::
and

:::::::
direction

::
at
::::::::
multiple

::::::
vertical

::::::
levels.295

:::::
TEMP

::::::
BUFR

::::
files

:::::
serve

::
as

:::
the

::::::::::
standardized

::::::
source

::
of

:::::::::
radiosonde

::::
data

::::
used

::
in
::::
this

:::::
study.

:

The stored Vaisala RS41 radiosonde height resolution is
:::::::::
radiosondes

:::::
used

::
in

::::
this

:::::
study

::::::
record

:::::::
vertical

:::::::
profiles

::::
with

::
a

:::::
height

:::::::::
resolution

::
of

:
approximately 1 gpm, with

::::::::::
geopotential

:::::
meter

::::::
(gpm)

::::
and a measurement accuracy of ±10 gpm. In the

TEMP files, the
::::
±10

::::
gpm.

::::::
Within

:::
the

:::::::::::
standardized

::::::
TEMP

:::::
BUFR

:::::
files, dew point temperature is stored from which we derive

::::::::
provided,

::::
from

::::::
which RHice as described

::
is

::::::
derived

:::::::::
following

:::
the

:::::::
method

:::::::
outlined

:
in Appendix C. In Fig. ??

:::::
Figure

::
2(b) ,300

example radiosonde height
:::::::
illustrates

::::::::
example

:::::::
vertical profiles of temperature and RHice are shown together with

:::::::
obtained

::::
from

:::::::::
radiosonde

:::::::::::::
measurements,

:::::
shown

::::::::
alongside

:
the corresponding ICON 2-Mom EPS data.

3.2 IAGOS Near-Real-Time Data

In addition to radiosonde data, we use in-situ aircraft data for our verification. The In-service Aircraft for a Global Ob-

serving System (IAGOS) is a European research infrastructure that uses commercial aircraft to collect atmospheric data.305

IAGOS-CORE contains several measurement instruments, e.g., for ozone, carbone
:::::
carbon

:
monoxide, humidity, and cloud

particles, and optionally for nitrogen oxides, greenhouse gases, and more (https://iagos.aeris-data.fr/instrumentation/). Again,

the humidity measurement technology used here combines humidity and temperature sensing elements. In more detail, it

11
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consists of a capacitive relative humidity sensor (Humicap-H, Vaisala, Finland) and a platinum resistance sensor (PT100) for

the measurement of the temperature at the humidity sensing surface. The time resolution of the temperature measurements is 4310

s with an accuracy of ±0.5 K, while the time resolution of the humidity measurements ranges from 1 s at 300 K to 120 s at 200

K, with an accuracy of ±6 % (for more details, see www.iagos.org/iagos-core-instruments/h2o/). There are several levels of

data processing, from which we have used near-real-time (NRT) data, where humidity measurements are subject to automated

quality control, usually within 72 hours (https://iagos.aeris-data.fr/levels/). Only data with validity flag "good" “good” were

used (https://iagos.aeris-data.fr/data-quality/) for 625 flights between August 2024 and January 2025. Fig. ??
:
2(d) shows the315

flight routes for December 2024. For an highlighted example
:::::::
example

:::::::::
highlighted

:
flight route, the temperature and RHice time

series are shown together with the corresponding ICON 2-Mom EPS data (Fig. ??
:
2(e)). Similar to the radiosonde verification,

the analysis is confined to the Northern Hemisphere.

4 Verification Analysis
:::::::
Methods

We evaluated the dedicated ICON system in two steps to successively unravel the improvements in predicting RHice resulting320

from the adapted two-moment ice microphysics scheme (ICON 2-Mom) and the ensemble setup (ICON 2-Mom EPS). The

methodology used to verify the deterministic model also serves as the basis for the verification of the ensemble prediction

system.

4.1
::::::::::::::

Spatio-Temporal
:::::::::
Matching

::
of

::::::
Model

:::
and

:::::::::::
Observation

:::::
Data

4.2 Verification of Deterministic Model ICON 2-Mom325

In the following subsections, we start with the verification of the deterministic model ICON 2-Mom and, in particular, compare

it to the operational ICON with the one-moment cloud ice microphysics scheme (denoted by ICON 1-Mom). When validating

an NWP model with observational data, climatological comparisons on the one hand and spatio-temporal comparisons (e.g.,

with metrics such as the RMSE) on the other can span the evaluation horizon. We start with a brief look at both, before moving

on to consider categorical scores.330

4.1.1 Relative Frequency Distribution of RHice

To enable a climatological comparison between model and observations, we analyze normalized histograms of RHice within the

8.5-12.5 km geopotential height range. Figure ??(b) displays the observed RHice relative frequency distributions (densities),

shown alongside the corresponding model-based distributions from the operational ICON 1-Mom (top) and ICON 2-Mom

(bottom) configurations.335

Pronounced differences emerge in the density tail, which reflects ice supersaturation. The operational system exhibits a sharp

peak near 100 %, followed by a rapid decline, with maximum RHice values reaching only ≈103 %. In contrast, the two-moment

scheme more accurately captures the tail structure, slightly overshooting at low supersaturation but successfully reproducing

12
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Figure 3. Radiosonde (left) and IAGOS (right) observation data
:::::::

Overview
:
of
:::::::::
categorical

::::::::
verification

:::::::
methods

:::
used

::
in

:::
this

::::
study. (a) Locations

::::::::
Confusion

::::::
Matrix:

::::::
Provides

::
a
::::::::
structured

:::::::
summary

:
of 105 stations equipped

:::
how

:::::
model

:::::::::
predictions

::::
align

:
with Vaisala RS41 radiosondes

::::
actual

::::::::::
observations in the Northern Hemisphere

:
a
:::::
binary

::::::::::
classification

:::::
setting.

:::
Each

::::::::
prediction

::
is

::::::::
categorized

::
as

:
a
::::
true

::::::
positive (b

::
TP)Example

height profiles of temperature and RHice from Vaisala RS41 ,
::::
false

::::::
positive (TEMP

::
FP)observations and ICON 2-Mom EPS forecasts with a

lead time of 12 h.
:
,
::::
false

::::::
negative

:
(c

::
FN)Rank histogram: For each spatio-temporal point ,

::
or

:::
true

:::::::
negative (comprising ICON 2-Mom EPS

values and the corresponding radiosonde measurement
::
TN),

:::::::
depending

::
on

::
its

::::::::
agreement

::::
with

:
the observed value is ranked among

:::::::
outcome.

:::
This

:::::
matrix

:::::
forms the ten ensemble members, and the resulting ranks are displayed

::::::::
foundation

::
for

::::::::
computing

:::::::::
categorical

:::::::::
performance

::::::
metrics

:::
such

::
as
:::::
listed in a histogram

::
(b). (d

:
b) IAGOS flight routes

:::::::::
Categorical

::::::
metrics:

::::::::
Frequency

::::
bias

::::
index

:::::
(FBI),

::::::::
probability

:
of 188 flights from

December 2024
:::::::
detection

:::::
(POD), limited to

::::
false

::::::
positive

:::
rate

:::::
(FPR),

:::::::
precision,

:::
and the Northern Hemisphere

:::::::
Matthews

::::::::
correlation

::::::::
coefficient

:::::
(MCC)

::::
offer

::::::
distinct

::::::
insights

::::
into

:::::
model

:::::::
behavior

::
as

:::::::
described

::
in

::::::
Section

:::
4.2. (e

:
c) Spatio-temporal comparison

:::::::::
Categorical

::::::::
evaluation of

flight data and ICON 2-Mom EPS
::
the

:::::::
ensemble

::::::::
prediction

:::::
system: Time series of temperature and RHice from one example flight. (f

:
i) Rank

histogram
::
the

:::::::::::
discrimination

::::::
diagram

:::::
shows

:::
two

::::::::::
distributions

::
of

::::::
forecast

::::::::::
probabilities;

:::
one

:
for IAGOS flight data

::
the

::::
case

:::::
where

::
the

:::::
event

:::
was

:::::::
observed

::
in

:::
the

:::::::::::
measurements, analogous

::
and

:::
one

:::::
where

::
it
:::
was

:::
not

::::::::
observed,

:::::::::
highlighting

:::
the

::::::
model’s

::::::
ability to

::::::
separate

:::::
events

:::
by

::::::::
probability;

:
(c
:
ii)

::
the

:::::::
Receiver

::::::::
Operating

::::::::::
Characteristic

::::::
(ROC)

::::
curve

::::::::
illustrates

:::
the

:::::::
trade-off

:::::::
between

::
the

:::::
POD

:::
and

::::
FPR

:::::
across

:::::::
different

:::::::::
classification

::::::
models

:::::
based

::
on

::
the

:::::::::
ensemble’s

:::::::::
probabilistic

:::::
event

::::::
forecast.
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the upper range, including RHice values up to 135 %. A few higher values were excluded from the plot due to axis truncation,

ensuring comparability without distortion from rare outliers.340

4.1.1 Spatio-Temporal Comparison

The ICON grid used in our model setup has a horizontal resolution of around
::::::::::::
approximately 26 km and a vertical resolution

of 200
:::::::
200–300 m within the altitude range of 8500-12 500 gpm.

::::::::::
8500–12500

:::::
gpm.

:::::
ICON

::::::::::
simulations

::::
with

::::::
hourly

::::::::
forecasts

::
up

::
to

:
a
::::
lead

::::
time

::
of
:::
60

:::::
hours

::::
were

::::::
started

::
in

::
6

::::
hour

::::::::
intervals.

::::::::::
Radiosonde

:::::
Data345

Radiosonde data from a given station are mostly horizontally fixed and provide dense vertical coverage. To generate matched

ICON–radiosonde data pairs, the ICON grid cell center closest to each radiosonde station was first identified. Subsequently,

radiosonde observations were linearly interpolated to the ICON levels, as the model provides mean values across vertical layers

with considerably lower resolution than the radiosonde data.
:::
No

::::::::
horizontal

:::::::::::
interpolation

::::
was

:::::::
applied.

::::::::
However,

:::
the

::::::
impact

::
is

:::::::
expected

::
to

:::
be

:::::::
minimal,

::
as

::::::
typical

:::::::::
horizontal

:::::
scales

::
of

::::::
ISSRs

:::
are

::
on

:::
the

:::::
order

::
of

::::
140

:::
km

:::::::::::::::::::::::::::
(Spichtinger and Leschner, 2016).

:
350

:::
For

:::::::
temporal

:::::::::
matching,

::
the

::::
start

::::
time

::
of

:::
the

::::::
accent

:::
was

::::
used

::
as

::
a

::::::::
reference,

:::
and

:::
we

:::::
select

:::
the

::::::::::::
corresponding

:::::
ICON

:::::::::
simulation

:::::
whose

:::::
initial

::::
time

::
is

::::::
closest

::
to

::
the

::::::::::
observation

::::
time

:::::
minus

:::
the

:::::::
required

::::
lead

::::
time.

:::::
Since

:::
the

:::::::::
simulation

:::::::
provides

::::::
hourly

::::::::
forecasts,

:::
this

::::::::
approach

::::::
ensures

::::::::
temporal

::::::::
matching

::
to

::
the

::::::
nearest

:::::
hour.

::::
The

::::
exact

::::
lead

::::
time

::
is

::::::::
explicitly

:::::
stated

::
in

::
all

::::::::::
evaluations

:::
and

:::::
never

:::::
below

:::
the

:::::::
required

::::::
spin-up

:::::
time

::
of

:
6
::::::
hours.

Over the 14-month verification period, this approach yielded approximately 820 000 spatio-temporal matching points from355

more than 63 000 radiosonde profiles. Figure ??
:
2(b) shows example radiosonde profiles of temperature and RHice from one

station, compared with ICON ensemble valuesfrom the nearest grid cell center.

::::::
IAGOS

:::::
Data

IAGOS data represent aircraft-based observations and thus capture horizontal trajectories spanning several hours. Matched

ICON–IAGOS data pairs were generated by identifying all ICON grid cell centers that were nearest to at least one point along360

each flight path. Each selected ICON cell was then paired with its closest flight data point, and the model data were vertically

interpolated to match the altitude of that observation. An ICON spin up time of a minimum of 6 hourswas required.
:::
For

:::::::
temporal

:::::::::
matching,

:::
the

::::::::
minimum

::::
lead

::::
time

::::
was

::::
fixed

::
at

::
6

:::::
hours

::
to

::::::
account

:::
for

:::
the

::::::::
required

:::::
ICON

:::::::
spin-up.

:::::
Since

::::::
flights

::::
span

::::::
several

:::::
hours,

::::::::
different

:::::
ICON

::::::::::
simulations

:::::
were

::::
used,

:::::
each

:::::::
selected

:::::
based

:::
on

:::
the

:::::
initial

::::
time

::::::
closest

:::
to

:::
the

::::::::::
observation

::::
time

:::::
minus

:::
the

::::::
6-hour

::::
lead

::::
time.

:::
As

::::::
ICON

:::::::::
simulations

:::
are

:::::::::
initialized

::
in

::::::
6-hour

::::::::
intervals,

:::
this

::::::::
approach

::::
may

:::::
result

:::
in

:
a
:::::::::
maximum365

:::::::
temporal

::::::::
mismatch

:::
of

::
±

:
3
::::::
hours.

Over the four-month verification period, this procedure yielded approximately 200 000 spatio-temporal matching points

from 625 flights. Figure ??
:
2(e) shows an example

:
a
::::::
sample

:
time series of temperature and RHice from an intercontinental

flight, together with the corresponding ICON ensemble valuesfrom the nearest model grid cell.
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In the main part of this study, we limit our verification to radiosonde data; the use of IAGOS data is explicitly indicated370

whenever applicable. As an initial step toward evaluating the spatio-temporal matching points, we examined a simple scatter

plot. While ICON 2-Mom reproduces the supersaturation range comparably to the observations, notable scatter remains around

the one-to-one line (see Fig. ??(c), showing ICON 1-Mom, top, and ICON 2-Mom, bottom). However, there is no absolute need

for perfect agreement between modelled and observed RHice values. In our context, it is sufficient for the model to realistically

capture the occurrence and extent of ice supersaturation. Crucially, the model should be able to distinguish between ISSR375

events and non-events, both of which have important operational implications for flight planning and routing. To evaluate this

capability, we focus on categorical scores below such as the probability of detection and the false positive rate for conditions

in which RHice exceeds selected thresholds.

4.2
:::::::::

Categorical
:::::::
Metrics

4.2.1 Categorical Scores of ICON 2-Mom380

Categorical scores of operational ICON (1-Mom) and ICON 2-Mom versus Vaisala Radiosonde RS41 measurement data.

All data from the Northern Hemisphere and in most frequent flight altitudes of 8.5-12.5 km geopotential height; verification

period of 11.5 months: June 15th, 2024 - May 31th, 2025; ICON initial times 12 UTC and 00 UTC; forecast lead time

12 h; linear interpolation of observation measurements with respect to ICON (on average, there are 13 model levels in the

considered altitudes); yielding ∼ 680 000 samples in total, with ice supersaturation in ∼ 13 % of cases. Scores of events of385

ice supersaturation: (a) Frequency bias index: ratio of model events to actual observed events; (b) Probability of detection:

proportion of actual observed events that are correctly identified by the model; (c) False positive rate: proportion of actual

observed non-events that are incorrectly classified by the model as positives; (d) Precision: proportion of positive predictions

that are correct. (e) Matthews correlation coefficient: considering all four entries of the confusion matrix (TP, FP, FN, TN)

together (missing values are due to vanishing denominators); (f) Vaisala RS41 radiosonde observation measurements.390

Instead of analyzing the full continuous range of RHice, the values can be partitioned based on a specified threshold. This

results in a binary classification, distinguishing between two events:
::::::::::::
complementary

::::::
events:

:

RHice≤>
:

threshold or RHice>≤
:

threshold.

In this study, we are particularly interested in ice supersaturation

::
In

:::::::
addition

::
to

:::
the

:::::::
duration

:::
of

::::::
ISSRs,

::::::::::
pronounced

:::
ice

:::::::::::::
supersaturation

:::
has

::::
been

:::::::::
associated

::::
with

:::
the

::::::::::
persistence

::
of

::::::::
contrails395

:::::::::::::::
(Teoh et al., 2022).

:::::
While

::::
this

:::
link

::
is

::::::::
relatively

:::::
weak,

::::::
relative

::::::::
humidity

:::::::
remains

:::
the

::::::::
dominant

:::::
factor

::
in

:::::::::::
contrail-cirrus

:::::::::
evolution,

::::::::
governing

::::
both

:::
the

::::
total

:::
ice

::::
mass

::::
and

::::
total

::::::::
extinction

:::::::::::::::::::::::::::
(Unterstrasser and Gierens, 2010)

:
.
:::::
Given

:::
its

::::::::
relevance,

:::
this

:::::
study

:::::::
focuses

::
on

:::
ice

:::::::::::::
supersaturation

::::::
events

:
(RHice > 100%) and events of higher ice

::
on

:::::
cases

::
of

::::::::::
pronounced

:
supersaturation (RHice ≫

100%).
::::
These

::::
are

::::::
treated

:::
as

:::
the

:::::::
positive

::::::
events

::
in

::::
our

:::::::::
categorical

::::::::::
verification

::::::::::
framework,

::::::
which

:::
we

::::::::::
particularly

::::
aim

:::
to

:::::::::
distinguish

::::
from

:::::
their

:::::::::::::
complementary

:::::
cases.

:
The spatio-temporal matching points between model output and observational400

data are categorized
:::
can

::::
then

::
be

::::::::::
categorized

::::
with

::::::
respect

:::
to

:::
the

:::::::
positive

:::::
event.

:::::::
Positive

:::::::::
predictions

::::
and

:::::::
negative

::::::::::
predictions
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::
are

::::::::
classified

:::::
with

::::::
respect

::
to

:::
the

::::::::
observed

::::::::
condition

::
as

::::
true

:::::::
positives

:::::
(TP),

::::
false

::::::::
negatives

:::::
(FN),

::::
false

::::::::
positives

:::::
(FP),

:::
and

::::
true

:::::::
negatives

:::::
(TN).

::::
The

::::::
results

:::
are

:::::::
indicated

:
in a confusion matrix

:::
(see

::::::
Figure

::::
3(a)), which serves as the foundation

::::
basis

:
for com-

puting categorical scores (see Table ??)
::::::
metrics

:::
(see

::::::
Figure

:::::
3(b)).

::::::
Below

:::
we

::::::
provide

:::
all

::::::
metrics

:::::
which

:::
we

::::
later

::::
use

::
to

:::::::
evaluate

::
the

:::::::::::
performance

:::
of

:::::
ICON

:::::::
2-Mom

:::::
(EPS). RHice > threshold positive prediction negative predictionpositive observation true405

positive (TP)false negative (FN) negative observation false positive (FP) true negative (TN) Confusion matrix: Categorization

of predicted events (positive predictions) and predicted non-events (negative predictions) in relation to the actual observed

situation. In the remainder of this study, we consider eventsof the type

{RHice > threshold}threshold∈{100%,105%,110%,120%}.

:::
The

:::::::::
frequency

:::
bias

:::::
index

:::::
(FBI)

::
is

::::::
defined

:::
as

::
the

:::::
ratio

::
of

:::
the

:::::::
forecast

::::::::
frequency

::
of

:::
an

::::
event

::
to
:::
its

::::::::
observed

::::::::
frequency410

FBI =
TP+FP
TP+FN

.
:::::::::::::

As a starting point for evaluating categorical performance, we consider the Frequency Bias Index (FBI), defined as the ratio of

the number of predicted events
:
It

:::::::
indicates

:::::::
whether

:::
the

:::::::
forecast

::::::
system

:::::
tends

::
to

::::::::::
overforecast

:::::
(FBI

:
>
::
1)

::
or

::::::::::::
underforecast

::::
(FBI

::
<

::
1)

:
a
:::::
given

:::::
event.

:

:::
The

::::::::::
Probability

::
of

::::::::
Detection

::::::
(POD,

::::
also

::::::
known

::
as

::::::::::
sensitivity)

::::::::
evaluates

:::
the

:::::::
forecast

:::::::
system’s

::::::
ability

::
to

::::::::
correctly

:::::::
identify415

:::::::
observed

::::::
events.

:::::
POD

::
is

::::::
defined

::
as

:::
the

::::
ratio

::
of

::::::::
correctly

::::::::
predicted

:::::
events

:::
to

::
the

:::::
total

::::::
number

::
of

::::::::
observed

::::::
events,

:::::
given

::
by

:

POD =
TP

TP+FN
.

::::::::::::::

:::
The

:::::
false

:::::::
positive

:::
rate

::::::
(FPR,

::::
also

::::::
defined

::
as
:::::::::::::

1−specificity)
::::::::
quantifies

:::
the

:::::::::
proportion

:::
of

:::::::::
non-events

::::
that

::::
were

::::::::::
incorrectly

::::::
forecast

::
as
:::::::
events.

:
It
::
is

::::::
defined

:::
as

FPR =
FP

FP+TN
.

::::::::::::::

420

::::
POD

::::
and

::::
FPR

:::
are

::::
both

:::::::::
computed

::::::
relative

::
to

:::
the

:::::::
ground

:::::
truth:

:::
the

::::::
former

::::
with

::::::
respect

:::
to

:::
the

::::::
number

:::
of

::::::::
observed

::::::
events,

:::
and

:::
the

:::::
latter

::::
with

::::::
respect

:
to the number of observed events:

:::::::::
non-events.

:::
To

::::::::::
complement

:::::
these

:::::::
metrics,

::::::::
precision

:::::::
provides

::
a

::::::::::::
forecast-centric

::::::::::
perspective,

:::::::::::
highlighting

:::
the

::::::::::::
trustworthiness

:::
of

:::::::
predicted

::::::
events

:::
and

::
if
:::::::
defined

::
by

:

FBIPrec
:::

=
TP+FP
TP+FN

TP
TP+FP
:::::::

.

The results are shown in Figure ??(a)425

:::
The

::::::::
Matthews

::::::::::
correlation

:::::::::
coefficient

::::::
(MCC)

::
is

:
a
:::::::::
composite

:::::::
measure

:::
that

::::::::
accounts

:::
for

::
all

::::
four

::::::::::
components

::
of

:::
the

:::::::::
confusion

:::::
matrix

:::::::::::::
simultaneously.

:::::
MCC

::
is

::::::::::
particularly

:::::::::
well-suited

:::
for

::::::
datasets

::::
with

:::::
class

::::::::
imbalance

:::
(in

:::
our

::::
case

:::
we

::::
have

:::::
about

::::
13%

:::::
ISSR

::::::
events),

::
as

::
it
::::::
reflects

:::
the

::::::
quality

::
of

::::::
binary

::::::::::::
classifications

::::::::
regardless

::
of
:::::
event

::::::::::
prevalence.

::
It

:
is
:::::::
defined

::
as

MCC =
TP ·TN−FP ·FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
.

::::::::::::::::::::::::::::::::::::::::::::
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:::
The

:::::
MCC

::::::
ranges

::::
from

:::
−1

::
to
::::
+1,

:::::
where

:::
+1

:::::::
indicates

::::::
perfect

::::::::::::
discrimination

::::::::
between

:::::
events

::::
and

:::::::::
non-events,

::
0

::::::
reflects

:::::::
random430

::::::::
predictive

::::
skill,

::::
and

:::
−1

::::::::
represents

::::::::
complete

:::::::::::::::
misclassification.

4.3
:::::::::

Categorical
:::::::::::
Verification

::
of

:::::::::::
Probabilistic

::::::
Model

::::::::
Ensemble

:::::::
forecasts

:::::::
provide

:
a
::::::::::
distribution

::
of

:::::
values

:::
for

:::
any

:::::::
forecast

:::::::
quantity

::
of

:::::::
interest.

:::
For

:::::
binary

::::::
events

::::
such

::
as

::
ice

:::::::::::::
supersaturation,

::
the

:::::::
forecast

::::::::::
probability

:
is
:::::::
defined

::
as

:::
the

:::::::
fraction

::
of

::::::::
ensemble

::::::::
members

::::::::
predicting

:::
the

:::::
event.

:

:::::::::::::
Discrimination

:::::::
diagram435

:::
The

::::::::::::
discrimination

:::::::
diagram

:::::::::
visualizes

:::
two

::::::::::
conditional

::::::::::
distributions

::
of

:::
the

:::::::
forecast

:::::::::::
probabilities:

::::
one

:::::::::
conditioned

:::
on

:::
the

:::::
event

::::
being

::::::::
observed

::
in

:::
the

:::::::::::
measurement

:::::
data,

:::
and

:::
the

:::::
other

::::::::::
conditioned

::
on

:::
the

:::::
event

:::
not

:::::
being

::::::::
observed.

::
To

:::::
assess

:::
the

::::::::::::
discriminative

:::::::::
capability

::
of

:::
the

::::
EPS,

:::
we

::::::
employ

:::
the

::::::::::::
discrimination

::::::::
diagram,

:::::
which

:::::::::
visualizes

:::
two

::::::::::
conditional

::::::::::
distributions

::
of

:::
the

:::::::
forecast

:::::::::::
probabilities:

:::
one

::::::::::
conditioned

:::
on

:::
the

:::::
event

:::::
being

:::::::
observed

::
in

:::
the

:::::::::::
measurement

:::::
data,

:::
and

:::
the

:::::
other

:::::::::
conditioned

:::
on

:::
the

:::::
event

:::
not

:::::
being

::::::::
observed.440

:::::
These

::::::::::
distributions

:::
are

::::::::::
represented

::
as

::::::::::
normalized

:::::::::
histograms

::
of

:::
the

::::
EPS

:::::::
forecast

:::::::::::
probabilities.

::
A
:::::
clear

:::::::::
separation

:::::::
between

::
the

::::
two

::::::::::
distributions

::::::::
indicates

:::::
strong

:::::::::::::
discriminability,

::::::::
reflecting

:::
the

::::::::::
ensemble’s

:::::
ability

::
to

:::::
assign

::::::
higher

::::::::::
probabilities

::
to

::::::::
observed

:::::
events

:::
and

:::::
lower

:::::::::::
probabilities

:
to
::::::::
observed

::::::::::
non-events.

::::
This

::::::
method

:::::::
provides

:
a
:::::::::::::::::::
threshold-independent

::::::::
diagnostic

::
of

:::::::::::
classification

::::::::::
performance

::
in

::
a
::::::::::
probabilistic

::::::::::
forecasting

::::::::::
framework.

:::
An

:::::::
example

::::::
sketch

::
of

::
a
::::::::::::
discrimination

:::::::
diagram

::
is

::::::::
provided

::
in

::::::
Figure

::::::
3(c)(i).445

:::::::
Receiver

::::::::::
Operating

::::::::::::
Characteristic

:::::::
(ROC)

:::::
Curve

:::
The

:::::
ROC

::::
curve

::
is

:
a
::::::::
powerful

:::::::::::::::::
threshold-dependent

:::::::::
verification

::::
tool

::
to

:::::::
evaluate

:::
the

::::::::::
performance

::
of

:
a
::::::
binary

:::::::::::
classification

::::::
model.

::::
Such

:
a
::::::
model

:::::::
typically

:::::::
predicts

:::
not

:::
just

:
a
::::::
binary

::::
label

:::::::
directly,

:::
but

:::::
rather

:
a
:::::
scalar

:::::
score

:::
(in

:::
our

::::::
context,

::::
this

::::
score

::
is

:::
the

::::::::
predicted

::::
event

:::::::::::
probability).

::
A

:::::
score

::
is

::::::
turned

:::
into

:::
an

:::::
event

::::::::
prediction

::
if
::
it
::
is

:::::
above

::
a
::::::
certain

:::::::::
threshold.

:::
The

::::::::
threshold

:::::
itself

::::::::
becomes

:::
part

::
of

:::
the

::::::
model;

:::
by

::::::
varying

:::
the

:::::::::
threshold,

::
we

:::::::::
effectively

::::::
obtain

:
a
::::::::
multitude

:::
of

::::::
models,

::::
each

::::
with

:::
its

::::
own

::::
POD

::::
and

::::
FPR.

::::
The450

::::
ROC

:::::
shows

:::
the

:::::
POD

:::::
versus

:::
the

::::
FPR

:::
for

:::
all

::
of

:::::
these

::::::
models

::
at

:::::
once.

:::
The

:::::::
top-left

:::::
corner

::::::::::
corresponds

::
to

::
a
::::::
perfect

:::::::::::
classification

::::::
model.

:::
An

::::::::
example

:::::
sketch

::
of

::
a
::::
ROC

:::::
curve

::
is

::::::::
provided

::
in

:::::
Figure

:::::::
3(c)(ii).

:

5
::::::::::
Verification

:::::::
Results

:::
We

:::::::
evaluate

:::
the

:::::
RHice :::::::::

predictions
:::
of

:::::
ICON

::::::::
equipped

::::
with

:::
the

::::
new

:::::::::::
two-moment

::
ice

::::::::::::
microphysics

::::::
scheme

::
in
::::
two

:::::
steps.

:::::
First,

::
we

::::::
verify

:::
the

:::::::::::
deterministic

::::::
model,

:::::
ICON

:::::::
2-Mom,

::::::
which

:::::::
includes

:
a
::::::::::
comparison

::::
with

::::::
ICON

:::::::
1-Mom.

:::::::
Second,

:::
we

:::::::
evaluate

:::
the455

::::::::
ensemble

::::::::
prediction

:::::::
system,

:::::
ICON

:::::::
2-Mom

::::
EPS.

:

:::::::::
Radiosonde

::::
data

:::::
were

::::
used

:::::
unless

:::
the

:::
use

::
of

:::::::
IAGOS

::::
data

:
is
:::::::::
indicated.

::::
Only

::::
data

::::::
within

:::
the

::::::::::
8.5–12.5 km

::::::::::
geopotential

::::::
height

::::
range

:::::
were

:::::::
included

::
to

::::::
match

::::::::::
commercial

::::
flight

::::::::
altitudes.

:
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5.1
:::::::::

Verification
:::
of

::::::::::::
Deterministic

::::::
Model

:::::
ICON

:::::::
2-Mom

5.1.1
:::::::
Relative

::::::::::
Frequency

::::::::::
Distribution

:::
of

:::::
RHice460

:::::
Figure

::::
1(b)

:::::::
displays

::::
the

::::::
relative

:::::::::
frequency

::::::::::
distributions

:::
of

:::
the

::::::::
observed

:::::
RHice ::::::::

compared
:::

to
:::
the

::::::::::::
corresponding

:::::::::::
model-based

::::::::::
distributions

::::
from

:::
the

:::::::::
operational

::::::
ICON

::::::
1-Mom

::::
(top)

::::
and

::
the

::::
new

:::::
ICON

:::::::
2-Mom

:::::::
(bottom)

::::::::::::
configurations.

::::::::::
Pronounced

::::::::::
differences

::::::
emerge

::
in

:::
the

:::
tail

::
of

:::
the

:::::::
density

::::::::::
distribution,

:::::
which

:::::::
reflects

::
ice

::::::::::::::
supersaturation.

:::::
ICON

:::::::
1-Mom

:::::::
exhibits

:
a
:::::
sharp

::::
peak

::::
near

::::
100

::
%,

::::::::
followed

::
by

:
a
:::::
rapid

:::::::
decline,

::::
with

::::::::
maximum

:::::
RHice::::::

values
:::::::
reaching

::::
only

:::::
≈103

::
%.

:::
In

:::::::
contrast,

:::::
ICON

:::::::
2-Mom

::::
more

:::::::::
accurately

:::::::
captures

:::
the

:::
tail

::::::::
structure,

::::::
slightly

:::::::::::
overshooting

::
at

:::
low

:::::::::::::
supersaturation

:::
but

::::::::::
successfully

::::::::::
reproducing

:::
the

:::::
upper

::::::
range,

::::::::
including465

:::::
RHice :::::

values
:::
up

::
to

::::
135

:::
%.

::
A

:::
few

::::::
higher

::::::
values

::::
were

::::::::
excluded

:::::
from

:::
the

::::
plot

:::
due

::
to

::::
axis

:::::::::
truncation,

::::::::
ensuring

::::::::::::
comparability

::::::
without

::::::::
distortion

:::::
from

:::
rare

:::::::
outliers.

:

5.1.2
::::::::::
Continuous

:::::::::::::::
Spatio-Temporal

:::::::::::
Comparison

:::
We

::::::::
examined

:::
the

:::
2D

::::::::::
histograms

::
of

:::::
RHice:::

of
:::::::::::::::
spatio-temporally

:::::::
matched

::::::
points

:::::::
between

::::::
Vaisala

::::::
RS41

:::::::::
radiosonde

::::
data

::::
and

:::::
ICON

:::::::
forecasts

:::::
(Fig.

::::
1(c)).

::::::
While

:::::
ICON

::::::
2-Mom

::::::::::
reproduces

:::
the

:::::::
observed

:::::::::::::
supersaturation

:::::
range

:::::::::
reasonably

::::
well

:
–
:::::
unlike

::::::
ICON470

::::::
1-Mom

::
–

::::::::
noticeable

::::::
scatter

:::::::
remains

::::::
around

:::
the

:::::::::
one-to-one

:::::
line.

::::::::
However,

::::::
perfect

:::::::::
agreement

:::::::
between

:::::::
modeled

::::
and

::::::::
observed

:::::
RHice :::::

values
::
is
:::
not

:::::::
strictly

:::::::
required

::
in

:::
our

:::::::
context.

:::::::::
Crucially,

:::
the

::::::
model

::::
must

:::::::
reliably

:::::::::
distinguish

::::::::
between

:::::
ISSR

:::::
events

::::
and

:::::::::
non-events,

:::
as

::::
both

::::
have

::::::::::
significant

:::::::::
operational

:::::::::::
implications

:::
for

:::::
flight

::::::::
planning

:::
and

:::::::
routing.

:::
To

::::::
assess

::::
this

:::::::::
capability,

:::
we

::::::
proceed

::::::
below

::::
with

:
a
::::::::::
verification

:::::
based

::
on

:::::::::
categorical

:::::::::::
performance

:::::::
metrics.

5.1.3
::::::::::
Categorical

::::::::::
Verification475

::
In

:::
the

::::::::
remainder

::
of

::::
this

:::::
study,

:::
we

:::::::
consider

::::::
events

::
of

:::
the

::::
type

RHice > threshold,
:::::::::::::::

::::
with

:::::::
threshold

::::::::::::::::::::::::::
∈ {100%,105%,110%,120%}.

:::::
Figure

::::
4(a)

::::::::
compares

:::
the

::::
FBI

:::::::
between

:::::
ICON

:::::::
1-Mom

:::
and

::::::
ICON

::::::
2-Mom

:::
for

:::::
these

::::::
events. For the ISSR event (blue curves),

the FBI is slightly above 1 for ICON 2-Mom, indicating a modest overprediction, whereas ICON 1-Mom exhibits lower values480

around 0.75, reflecting underprediction. In both configurations, the FBI remains relatively constant across the examined altitude

rangeof 8.5-12.5 km geopotential height. At higher RHice thresholds, the FBI for ICON 2-Mom is slightly below 1 for
::
at lower

heights but rises to a maximum of approximately 1.5 near 12 km for the event RHice > 120 %. In contrast, ICON 1-Mom

yields an FBI of zero across the entire height range, indicating a failure to detect high supersaturation events. These results

demonstrate that the two-moment scheme not only predicts ice supersaturation more frequently than the one-moment scheme485

:
–
::::::
which

::::::::::
consistently

:::::::::::::
underestimates

:::::
event

:::::::::
occurrence

::
–
:
but also tends to slightly overestimate observed event frequency.

Meanwhile, the one-moment scheme consistently underestimates event occurrence.
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Figure 4.
:::::::::
Categorical

::::::::
verification

::
of

:::::
ICON

::::::
1-Mom

:::
and

:::::
ICON

::::::
2-Mom

:::::
against

::::::
Vaisala

::::
RS41

:::::::::
radiosonde

:::::::::::
measurements.

:::
The

:::::::
analysis

:::::
covers

:::
data

::::
from

:::
the

:::::::
Northern

:::::::::
Hemisphere

:::::
within

:::
the

::::
most

:::::::
frequently

:::::
flown

::::::
altitude

::::
range

::
of

::::::::
8.5-–12.5

::
km

::::::::::
geopotential

:::::
height,

::::
over

:
a
:::::::::
verification

:::::
period

::
of

:::
11.5

::::::
months

::::
(June

:::
15,

::::
2024

::
–
::::
May

::
31,

:::::
2025).

::::::::
Forecasts

::
are

::::::::
initialized

::
at

::
00

:::
and

:::
12

::::
UTC

:::
with

::
a
:::
lead

::::
time

::
of

::
12

::
h.
:::::::::::
Observational

:::::
profiles

:::
are

::::::
linearly

:::::::::
interpolated

::
to

::::
ICON

:::::
model

:::::
levels

::::
(∼13

:::::
levels

:::::
within

::
the

:::::
target

:::::
altitude

::::::
range),

::::::
yielding

:::::::::::
approximately

::::::
680 000

:::::::
samples,

:::
with

:::
ice

:::::::::::
supersaturation

::::::
present

::
in

:::
∼13

::
%

::
of

:::::
cases.

:::::
Panels

::::
show

::::::::
categorical

:::::
scores

:::
for

::
ice

::::::::::::
supersaturation

:::::
events:

::
(a)

::::
FBI;

:::
(b)

::::
POD;

:::
(c)

::::
FPR;

::
(d)

::::::::
precision;

::
(e)

:::::
MCC;

::
(f)

:::::::
Number

::
of

:::::
Vaisala

:::::
RS41

::::::::
radiosonde

::::
RHice:::::

event
::::::::::
observations.
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Moving on to the Probability of Detection (POD ), also known as sensitivity, which is the proportion of observed events

correctly identified by the model:

POD =
TP

TP+FN
,490

we find that,
::::
The

::::
POD

:
for ISSR events , the POD increases from about

:::::::::::
(RHice > 100

:::
%)

:::::::
increases

:::::
from

::::::::::::
approximately 0.4 for

ICON 1-Mom to about
:::::
around

:
0.6 for ICON 2-Momand is almost constant over

:
,
::::::::
remaining

::::::
nearly

:::::::
constant

:::::
across

:
the altitude

range in both cases
::::::::::::
configurations. For events defined by higher RHice thresholds, the two-moment scheme

:::::
ICON

:::::::
2-Mom

retains some detection capability, with the POD
::::
POD

:::::
values

:
gradually decreasing to about 0.15

:
–-0.2 for RHice > 120 %. In

contrast, as also indicated by the FBI , the one-moment scheme
::::::::
consistent

::::
with

:::
the

::::
FBI

::::::
results,

::::::
ICON

::::::
1-Mom

:
fails to detect495

RHice values above 105 %, yielding POD values near zero across the altitude range
:::::::::
throughout

:::
the

:::::::
vertical

::::::
domain.

To complement the probability of detection, also known as sensitivity, we additionally consider the False Positive Rate (FPR

= 1 - specificity), which quantifies the proportion of actually observed non-events that are incorrectly classified by the model

as positive events:

FPR =
FP

TN+FP
.500

The false positive rate is relatively low in
:::
The

:::::
FPR

:::::::
remains

::::::::
relatively

:::
low

::::::
across all cases, reaching a maximum of

:::::::
peaking

slightly above 0.1 for the two-moment scheme and RHice > 100
:::::
ICON

:::::::
2-Mom

::
at

::::::::::
RHice > 100

:
% (Fig. ??

:
4(c)).

:
,
::::::::
indicating

::
a

::::::
limited

:::::::
tendency

::::::
toward

:::::
false

::::::
alarms.

POD and FPR are both computed relative to the ground truth: the former with respect to the number of observed events, and

the latter with respect to the number of observed non-events. It may also be informative to examine the proportion of predicted505

events that are actually correct, quantified by the precision:

precision =
TP

TP+FP
.

For the ISSR event, both
::::
Both

:
schemes yield similar precision values between 0.5 and 0.55

::
for

:::::
ISSR

::::::
events across the en-

tire altitude range (see Fig. ??
:::
Fig.

::
4(d)). For events with higher RHice thresholds, the precision of ICON 2-Mom decreases

successively
::::::
declines

::::::::::::
progressively, reaching values as low as 0.2 for RHice > 120 %. In contrast, ICON 1-Mom yields

:::::::
produces510

very few or even no positive predictions in these regimes, making
::::::::
rendering precision largely undefined; accordingly, it is omit-

ted for these cases.

In the context of flight planning, accurate prediction of non-ISSR conditions is also
::::::
equally

:
critical, as false negatives in

this category can lead to unnecessary re-routing and, consequently, avoidable increases in CO2 :
2 emissions. When considering

::::::
treating

:
the complementary events (RHice ≤ threshold) as "positive" “positive” events, the model exhibits high precision, with515

average values exceeding 0.9 across all threshold levels. Combined with the low false positive rate observed for RHice >

threshold events, this high precision further supports the conclusion that
::::::::::
underscores

:::
the

::::::::
reliability

::
of

:
ICON 2-Mom is quite

reliable in detecting
::
in

::::::::
correctly

:::::::::
identifying non-ISSR conditions.
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Another way to account for the class imbalance in our dataset (13 % ISSR events) and the practical relevance of both event

categories is to employ the Matthews Correlation Coefficient (MCC) as a balanced performance metric. Unlike single-aspect520

measures, the MCC incorporates all four elements of the confusion matrix simultaneously into a single scalar value, making it

particularly suitable for evaluating classification performance under skewed data distributions:

MCC =
TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
.

The MCC ranges from −1 to +1, where +1 indicates perfect discrimination between events and non-events, 0 reflects random

predictive skill, and −1 represents complete misclassification. The results of our analysis are shown in Figure ??
:::
The

:::::
MCC525

:::::
shown

::
in

::::
Fig.

::
4(e)

:::::::::
summarizes

::::::
overall

:::::::::::
classification

:::::::::::
performance. For ISSR/non-ISSR classification (blue curves), ICON 2-

Mom achieves an average MCC of 0.47across all altitudes, while ,
:::::::::
indicating

::::::::
moderate

::::::::
predictive

:::::
skill.

::
In

::::::::::
comparison,

:
ICON

1-Mom yields
::::::::::
consistently lower values between 0.38 and 0.39. At higher RHice thresholds, the MCC for

::
of ICON 2-Mom

decreases successively
:::::::
declines

:::::::::::
progressively, reaching a minimum of approximately 0.16. In contrast, the MCC

::::
MCC

::::::
values

for ICON 1-Mom approaches zero (or is
:::::::
approach

::::
zero

:::
or

:::::::
become undefined where the numerator vanishes), indicating no530

predictive skill,
::::::::
reflecting

::
a
::::
lack

::
of

::::::::
predictive

:::::::::
capability

::
in

::::
these

:::::::
regimes.

In summary, for ISSR events, ICON 2-Mom achieves a moderate MCC of nearly 0.5 and a
::::
POD

:::
that

::
is

::::::::::::
approximately

:
50 %

higher POD compared to
:::
than

:::
that

:::
of the operational ICON 1-Mom, while maintaining a relatively low false positive rate

::::
FPR

below 0.1 at
:::::
across most altitudes. Nevertheless

::::::
Despite

:::
this

::::::::::::
improvement, a POD of 0.6 suggests that further improvements

are possible, and
::::::::
indicates

:::
that

::
a
:::::::::
substantial

:::::::
fraction

::
of

::::::
events

:::::::
remains

::::::::::
undetected.

:::
To

::::::
address

::::
this,

:
we continue to explore535

:::::::::
investigate potential gains from the ensemble setup introduced in Section 2.2.

5.2 Verification of Ensemble Prediction System ICON 2-Mom EPS

Before examining categorical verification metrics for our ensemble configuration (ICON 2-Mom EPS), we begin this section

:::
We

:::::
begin

:
with a general assessment of the full (continuous) ensembleoutput and the ensemble spread as a measure of

uncertainty. The first question we address is whether the ensemble spread adequately captures the variability observed in540

the data. Although the ensemble captures some of the variability present in the observations, it remains underdispersive, as

indicated by the U-shaped rank histogram (Fig. ??(c
::::::::
evaluation

::
of

:::
the

::::::::::
ensemble’s

:::::
ability

:::
to

::::::::
represent

:::::
RHice :::::::::

variability,
:::::
using

::
the

:::::
rank

::::::::
histogram

:::
as

:
a
:::::::::
diagnostic

::::
tool.

::::
The

::::
rank

:::::::::
histogram

::
is

::::::::::
constructed

::
by

:::::::
ranking

:::
the

::::::::
observed

:::::
value

::::::
relative

:::
to

:::
the

:::
ten

:::::
sorted

::::::::
ensemble

::::::::
forecasts

:::
and

::::::::
recording

::
its

:::::::
position

::::::
across

::
all

:::::::::::::
spatio-temporal

::::::::
matching

::::::::
samples.

:::
Fig.

::::
2(c)

:::::
shows

:::
the

::::::::
resulting

::::::::
histogram

:::
for

:::
the

::::::
subset

::
of

:::::::
samples

:::::
where

:::
the

::::::::
observed

:::::
RHice ::

is
:::::
above

::
50

:::
%.

:::
We

:::::::
consider

::::
this545

:::::::
restricted

::::
rank

:::::::::
histogram

::::::
because

::::::
ICON

::::
tends

::
to

::::::::::::
underestimate

::::
very

:::
low

::::::::
humidity

::::::
values,

:::::
which

:::
are

:::
not

:::
the

::::::
subject

::
of

:::
this

:::::
study

:::
but

:::::
would

:::::::
obscure

:::
the

:::::::
relevant

:::::::
behavior

::::
(also

::::::::
reflected

::
by

:::
the

:::::
RHice:::::::::

histogram
::
in

:::
Fig.

::::
1(b,

::::::
bottom)). This underdispersioncan,

in part, be attributed to the inherent
::::
The

::::::::
histogram

:::::::
exhibits

::
a

:::::::
U-shape,

:::::::::
indicating

::::::::::::::
underdispersion,

:::
i.e.,

:::
the

:::::::::
ensemble

::::
fails

::
to

::::::
capture

:::
the

:::
full

:::::::::
variability

::::::
present

:::
in

:::
the

:::::::::::
observations.

::::
This

:::::::
behavior

::
is
::::::
partly

:::
due

::
to

:
spatial averaging over model grid cells,

which tends to smooth out extremes. From a physical modeling perspective, key contributing factors may include the absence550

::::::::
However,

:::::::::::
counteracting

::::
this,

::::::::
so-called

:::::::::
upscaling

::::::
effects

::
of

:::
the

::::::
model

::::
tend

::
to
:::::::

display
::::::::::
small-scale

:::::::
physical

::::::::
behavior

:::
on

:::
the
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Figure 5. Ensemble
::::::::
verification metrics targeting

::::::::
illustrating the ability

::::::::::
discriminatory

::::
skill of the model to discriminate

::::
ICON

::::::
2-Mom

::::
EPS

:
in
:::::::::::
distinguishing between events and non-events (e.g., ISSR and non-ISSR

:
,
:::::
shown in blue); .

:::
The

:
verification period

::::
spans

:
14 months :

:
(April

2024 -
:
–
:
May 2025), leading to ∼ 820000

::::::
yielding

:::::::::::
approximately

::::::
820 000 samples. (a) Discrimination diagram: Conditional distributions

of EPS forecast probabilities; conditioned on ,
:::::
given that the event was actually observed

::
and

:::
not

:::::::
observed

:
in the measurement dataand

conditioned on that it was not observed. (b) Receiver Operating Characteristics
::::::::::
Characteristic

:
(ROC) curve: Probability of detection

::::
POD

versus false positive rate of
::::
FPR

::
for

:
ice supersaturation eventsfor varying ",

:::::::
evaluated

:::::
across

::
a
::::
range

::
of
::::::::::::
threshold-based

:
decision " models

(pseudo-deterministic models received
:::::
derived

:
from the EPS

:
.
::::
These

::::::::::::::::
pseudo-deterministic

:::::
models

:::
are

::::::::
constructed

:
by applying various

::::::
varying

probability threshold conversions)
:::::::
thresholds

::
to

::
the

::::::::
ensemble

:::::
output.

:::::
model

:::::
scale.

:::::
Thus,

::::::::::
insufficient

::::::::
parameter

:::::::::::
perturbations

::::
may

::
be

:::::::
another

::::::
reason,

:::::::
together

::::
with

:::
the

::::
lack

:
of subgrid-scale gravity

waves in the model configuration and the use of
:::::::::::::
climatologically

:
prescribed aerosol fieldsfrom climatology, both of which

limit
::::::::
constrain variability in ice nucleation conditions. We also observe a more pronounced negative bias within

::::::::
Moreover,

:
the rank histogram , indicating that the model tends to underestimate

:::::
reveals

::
a
:::::
slight

:::::::
negative

::::
bias,

::::
with

::::::::
observed555

RHice more often than it overestimates
:::::
values

:::::
more

:::::
often

::::::::
exceeding

::::
the

::::::::
ensemble

:::::::
forecast

:::::
range

::::
than

::::::
falling

:::::
below

:::
it.

::::
This

:::::::
suggests

:
a
:::::::::
systematic

::::::::::::::
underestimation

::
of

:
RHice . Thus, further post-processing of the EPS model forecasts may be useful for

predicting RHice and, in particular, for identifying ISSR or higher ice supersaturation
::
by

:::
the

:::::::
model,

::
at

::::
least

:::
in

::::
parts

:::
of

:::
the

:::::::::::
RHice > 50%

::::::
regime.

::::
We

:::::
found

::::
that

:::
this

::::::
mainly

::::::
occurs

::
at
:::

ice
:::::::::::::

supersaturated
:::::::::
conditions.

::::::::
However,

::::
the

::::
rank

::::::::
histogram

:::::
does

:::
not

::::::
provide

:::
any

::::::::::
information

:::::
about

::::::::::
magnitudes.

:::::
Thus,

:::
we

::::::
further

:::::::
analyze

:::
the

:::::::::
ensemble’s

::::::
ability

::
to

::::::
classify

:::::
ISSR

:::
and

:::::::::
non-ISSR560

::::::::
conditions

::::::
below.
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5.2.1 Prediction of ISSRand Higher Ice Supersaturation
:::::::::
/non-ISSR

:::::::::::::
Discrimination

:::::::
Ability

Again, in the context of flight routing, the most important property of the EPS is its
::
To

:::::::
evaluate

:::
the

::::::::::
ensemble’s ability to

distinguish between ISSR and non-ISSR conditions(or higher supersaturation), as both have significant practical implications.

Therefore, we again consider binary events such as ice supersaturation (RHice > 100 %) and higher supersaturation (RHice ≫ 100565

%): The ensemble inherently provides probabilistic forecasts for these events via the proportion of members with the corresponding

event. We start by considering two
:
,
:::
we

:::::::
consider

:::
the

::::::::::::
discrimination

:::::::
diagram

:::::::::
introduced

:::
in

::::::
Section

::::
4.3.

:::::
Figure

::::
5(a)

::::::
shows

:::
the

conditional distributions of the supersaturation forecast probabilities ; the first conditional on the event actually being observed

in the measurement data, and the second conditional on the event not being observed in the measurement data. In both cases,

the corresponding relative frequencies of the EPS forecast probabilities are plotted in a histogram, the discrimination diagram570

(Fig. ??(a)). Little overlap between the two conditional distributions indicates good discriminability. More specifically, the "not

observed" distribution has a dominant peak at zero , indicating that the ensemble members tend to agree when no ISSR or higher

ice
::::::
forecast

:::::::::::
probabilities

:::
for

:::::::
observed

::::
and

:::::::::::
non-observed

::::::
events

::::::
(events

:::
are

::::::
defined

:::
as

:::::
RHice :

>
::::
100

:::
%,

:::
and

::::::
higher

::::::::::
thresholds).

:::
For

::::
ISSR

::::::
events,

:::
the

:
“not observed”

:::::::::
distribution

:::::
peaks

:::::::
sharply

::
at

:::
zero

::::
and

:::::::
declines

::::::
rapidly,

:::::::::
indicating

:::::
strong

:::::::::
agreement

::::::
among

::::::::
ensemble

::::::::
members

::::
when

:::
no

:
supersaturation is present. For increasing forecast probabilities, the "not observed" distribution575

decreases rapidly and is of the same order of magnitude as the "observed" distribution for values of 0.1 and 0.2, before dropping

almost to zero for higher forecast probabilities. In contrast, the "observed" distribution is much more uniform, increasing only

slightly from low to high prediction probabilities in the case of ISSR (blue). For higher RHice thresholds, its shape changes from

a more uniform to a more pronounced left-sloping distribution , gradually overlapping more and more with the "not observed"

distribution. This shows that the ability of the model to discriminate between events and non-events decreases significantly580

for events with higher ice supersaturation“observed”
:::::::::
distribution

::
is

::::::::
relatively

:::::::
uniform,

:::::::::
suggesting

::::
that

:::
the

::::::::
ensemble

::::::
assigns

::
a

:::::
broad

::::
range

::
of

:::::::::::
probabilities

::
to

:::::
actual

::::::
events.

::
As

:::
the

::::::::
threshold

:::
for

::::::::::::
supersaturation

:::::::::
increases,

::
the

:
“observed”

:::::::::
distribution

::::::::
becomes

::::
more

::::::::::
left-skewed

:::
and

::::::::::
increasingly

::::::::
overlaps

::::
with

:::
the “not observed”

::::::::::
distribution,

:::::::::
indicating

:
a
::::::
decline

::
in

::::::::::::
discriminative

::::
skill

:::
for

::::
more

:::::::
extreme

::::::
events.

Focusing on
::
To

::::::::
conclude,

:::
for

:
the ISSR event, the corresponding discrimination diagram shows that the

:::::::
diagram

::::::
shows585

::::
little overlap between the two conditional distributions becomes small for forecast probabilities above approximately

:::::::
forecast

:::::::::
probability

::::::::::
distributions

::::::
below

:::
and

:::::
above

::
∼0.3. This observation motivates the next step: identifying an appropriate threshold

to convert forecast probabilities into binary predictions (0 or 1), thereby enabling a "yes"/"no" decision for the presence of ISSR

or higher ice supersaturation. Such a ,
:::::::::
suggesting

::::
that

:
a threshold-based conversion yields what we term a "pseudo-deterministic"

model. Throughout this study, we
::::::::
conversion

:::
of

:::::::
forecast

::::::::::
probabilities

::::::
aimed

::
at

::::::::::
classifying

:::::
ISSR

:::::
versus

:::::::::
non-ISSR

::::
may

:::
be590

::::::::::
appropriate.

5.2.2
:::::::::::::::::::
Threshold-Dependent

:::::::::::
Performance

::
As

::::::
ICON

:::::::
2-Mom

::::
EPS

:::::::
consists

::
of

:::
ten

:::::::::
ensemble

::::::::
members,

:::::
ISSR

:::::::
forecast

:::::::::::
probabilities

:::
can

:::
be

::::::::::::::
0,0.1,0.2, . . . ,1.

:::::
Thus,

:::::
these

:::::
values

::::::::
represent

:::
the

:::::::
relevant

::::::::
potential

:::::::::
thresholds

::
to
::::

turn
::::

the
:::::
event

:::::::
forecast

:::::::::
probability

::::
into

:::
an

:::::
event

:::::::::
prediction

:
–
::::::::

yielding
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::::::::::
classification

:::::::
models

::
as

:::::::::
introduced

:::
in

::::::
section

::::
4.3.

:::
We

:
refer to these

::::::::::
classification

:
models as decision models, characterized595

by their underlying conversion thresholds. Specifically, the k-out-of-10 decision model defines
::::
with

:::
the

:::::::::
k-out-of-10

::::::::
decision

:::::
model

:::
(or

::::::
simply

:::::::
decision

::::::
model

::
k)

::::::::
defining the threshold as k/10. That is, :

:
if at least k out of the 10 ensemble members

predict the event, the model outputs a positive prediction. Formally, for each forecast probability p produced by the original

EPS, the deterministic forecast pconv is given by:

k-out-of-10 decision model : pconv =

1, if p≥ k
10 ,

0, otherwise.
600

:
:

k-out-of-10 decision model : pconv =

1, if p≥ k
10 ,

0, otherwise.
:::::::::::::::::::::::::::::::::::::::::::

We also refer to this model simply as decision model k.

The challenge of finding a "good" decision model can be addressed using the Receiver Operating Characteristic (ROC)

curve, which plots the POD versus the FPR of all potential decision models. The construction of
::
To

:::::::
evaluate

:::
the

:::::::::::
performance605

::
of

::::
these

:::::::::::::::::
pseudo-deterministic

:::::::
decision

:::::::
models,

:::
we

:::
use the ROC curve for a binary event is as follows: For increasing probability

thresholds, here 0.0, 0.1, 0.2, up to 1.0, the EPS forecast probabilities are converted to 0 or 1 depending on whether they are

below or above the threshold as defined in (??
:::::::
(Section

:::
4.3). For the resulting pseudo-deterministic decision models, the POD

and FPR can be calculated with respect to the observed data and plotted on a curve. For the ISSR eventthis results in the blue

curve in Fig. ??
::::
ISSR

::::::
event,

:::
the

:::::
ROC

:::::
curve

::::
(Fig.

::
5(b). In general, the closer a point on the curve is to the left corner, the610

better, as this indicates high POD versus low FPR. In the case of ISSR, when probability
:
)
:::::
shows

::::::
strong

::::::::::::
discriminative

::::
skill

::
for

:
thresholds of 0.2 or

:::
and 0.3 are applied (resulting in decision model

:::::::
(decision

::::::
models

:
2 or

:::
and 3), the POD is greater than

::::
with

::::
POD

::
> 0.8 while the FPR remains less than

:::
and

::::
FPR

::
< 0.17. However, depending on the false positive cost (which would

result from a potential re-routing despite the non-ISSR condition) and the false negative cost (which would result from ISSR

passing), a conversion threshold (aka a decision model) can be chosen to obtain an appropriate trade-off between POD and615

FPR. In the hypothetical (but unrealistic) case of identical costs, the Youden Index could be used to determine the point(s) on

the ROC curve with the optimal trade-off between POD and FPR:

Youden Index = POD−FPR,

by maximizing it across all possible conversion thresholds (decision models ). The range of possible outcomes is from −1 to

+1, where 1 indicates a perfect model performance, 0 corresponds to no better than random chance, and negative values reflect620

performance worse than random guessing. The results corresponding to the ROC curve in Fig. ??(b) are summarized in Table

??.
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RHice

threshold

max Youden Index

EPS(Det)

decisionmodel
Youden Index (YI) for the ISSR event and for events with higher ice supersaturation;

the maximum YI of the EPS based decision models is shown together with the YI of the deterministic ICON 2-Mom model

(single members) in brackets. The second column shows the index of the decision model(s) which correspond to the maximum625

YI.

Comparing the scores of potential decision models based on the EPS, as shown in the ROC curve in Fig. ??
::
A

::::::::::
comparison

:::::::
between

:::
the

:::::
scores

::
of

:::
the

::::::::::
EPS-based

:::::::
decision

::::::
models

::::
and

:::
the

:::::::::::
deterministic

:::::
ICON

:::::::
2-Mom

:::::
model

:::::
(inset

::
of
::::

Fig.
::
5(b), with the

results of the deterministic ICON 2-Mom model (inset) , reveals that the EPS can significantly increase the
:
)
:::::
shows

::
a
:::::::::
substantial

:::::::::::
improvement

::
in

:::
the

:
POD for ISSR detection from

:::::
events,

:::::
from

::::::::::::
approximately

:
0.6

:
in

:::
the

:::::::::::
deterministic

::::
case

:
to 0.8-0.9. This630

improvement comes with a moderate rise
::::
–0.9

:::::
when

::::
using

::::::::::::::
ensemble-based

:::::::
decision

::::::
models.

:::::
This

:::
gain

::
in
:::::
POD

::
is

:::::::::::
accompanied

::
by

:
a
::::::::
moderate

:::::::
increase

:
in the FPRfrom approximately ,

::::::
rising

::::
from

::
∼0.1 to

:::::
values

:::::::
between

:
0.13 -0.23

:::
and

::::
0.23, depending on

the decision model employed. Notably, the Youden index also improves substantially (see Table ??)
::::::
chosen

::::::::
threshold.

::::::
These

:::::
results

::::::::
highlight

:::
the

:::::
added

:::::
value

::
of

::::::::
ensemble

::::::::
forecasts

::
in

:::::::::
enhancing

::::
event

::::::::
detection

::
or

:::::::::::
classification.

To complement this view , and following the discussion in Section 5.1.3,635

:::::
While

:::
the

::::
ROC

:::::
curve

::::::::
provides

:
a
:::::::::::::
comprehensive

::::
view

::
of
:::::::::::

classification
:::::::::::

performance
::::::
across

:::::::::
thresholds,

::
it

:::::
treats

::::
both

::::::
classes

::::::
equally

::::
and

::::
may

:::::::
obscure

:::::::::::
performance

:::::::
nuances

::
in

:::
the

::::::::
presence

::
of

:::::
class

::::::::::
imbalance.

:::::::::
Therefore,

:::
we

::::
also

:::::::
evaluate

:
the preci-

sion–recall curve offers an alternative perspective that
::::
(PR)

:::::
curve,

::::::
which focuses specifically on the model’s performance for

:
’s
:::::::::::
performance

::
on

:
the positive classin the context of an unbalanced dataset. It plots the POD (also referred to as recall) against

the precision, thereby emphasizing the accuracy of positive predictions when the positive event is relatively rare.640

Similarly to the ROC curve, in Figure ??
:
.
::::::::
Similarly

::
to

:::
the

:::::::::::
construction

::
of

:::
the

:::::
ROC

:::::
curve,

::::
the

:::
PR

:::::
curve

::::
plots

::::
the

:::::
recall

:::::::::
(equivalent

::
to

:::::
POD)

:::::::
against

::::::::
precision.

::
In

::::::
Figure

::
6(a), the recall-precision point for each decision model based on the EPS is

plotted on a curve. For further comparison, the values of the individual ensemble members are shown. The closer a point is

to the upper
:::
each

:::::::::
EPS-based

::::::::
decision

:::::
model

::
is
::::::::::

represented
:::
as

:
a
:::::
point

:::
on

:::
the

:::
PR

:::::
curve.

::::
The

:::::
closer

::::
the

:::::
points

:::
are

::
to
::::

the
:::
top

right corner, the better the trade-off between
:::::
higher

:::
the recall and precision. Overall, the

::::::::
Although

:::::
recall

:::::::
remains

::::
high

::::
even

:::
for645

::::::::::
intermediate

:::::::::
thresholds,

::::::
overall

:
precision is only moderate and gets worse for higher ice

:::::::::
deteriorates

::::::
further

:::
for

:::::
more

:::::::
extreme

supersaturation events. In Figure ??(b) we also show the F1 score, which takes into account both precision and recall, making

it a useful scalar measure for determining the balance between the two:

F1 = 2× precision× recall
precision+ recall

.

The F1 score ranges from 0 to 1. For the ISSR event , the maximum F1 score is 0.61, obtained from decision models 3, 4, and650

5. The corresponding F1 scores of the single members (deterministic models) range from 0.54 to 0.55. For events with higher

ice supersaturation, decision models 2 or 3 perform best. In all cases, the corresponding F1 score increases by about 0.06 and

0.08 compared to the deterministic models represented by the single members.
::::
This

::::::
reflects

:::
the

::::::::
increasing

::::::::
difficulty

::
of

:::::::
making

:::::::
accurate

::::::
positive

::::::::::
predictions

::
as

:::
the

:::::
event

::::::::
definition

:::::::
becomes

:::::
more

::::::::
stringent.
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As the precision-recall curve and the F1 score are not symmetric with respect to what we define as the "positive" event,
:::
We655

:::
also

:::::::
conduct

:
a
:::::::::::::
complementary

:::::::
analysis

:::
by

::::::
treating

:::
the

:::::::::::::
complementary

:::::::::
conditions

:
(e.g.ISSR or non-ISSR, we perform a similar

analysis by defining ,
:
non-ISSR)

:
as the positive event. In the context of flight routing, the correct identification of non-ISSR

is also critical, as false negatives of this event could lead to unnecessary re-routing, resulting in additional CO2 emissions. For

the non-ISSR event, the maximum F1 score is 0.94 and is given for the decision models that require at least 1-6 members with

non-ISSR. Note that the trivial model, which always predicts non-ISSR (corresponding to decision model 0), also has a high660

F1 score of 0.93. In all four event cases, the scores of decision models 0–5 (note again the adapted definition of the decision

models with respect to the non-ISSR event)are very similar. Compared to the deterministic model results, the highest-scoring

decision models show an increase in F1 of 0.01-0.02
::::::
events,

::
as

:::
this

::::::::::
perspective

::
is

::::::
equally

:::::::
relevant

::
for

:::::
flight

::::::
routing

:::::::::::
applications.

:::
The

:::
PR

:::::
curve

:::::::::
approaches

:::
the

:::
top

:::::
right

::::::
corner,

::::::::
reflecting

::::
both

::::
high

::::
POD

:::
and

:::::::::
precision,

:::
and

:
a
::::::::::
zoomed-in

::::
view

::::::::
providing

::::::
details

::
of

:::
this

::::::
region

:
is
::::::
shown

::
in

:::::::::
Appendix

::
D

:::
Fig.

:::::
D1(a).665

We

::
To

:
conclude this subsectionby shifting the focus from model performance on specifically defined positive events

:
,
:::
we

::::
shift

to a more holistic evaluation using the Matthews Correlation Coefficient for the EPS-based decision models. As discussed in

Section 5.1.3, the
:::::
model

:::::::::
assessment

:::::
using

:::
the

:::::
MCC,

:::
as

:::::::::
introduced

::
in

:::::::
Section

:::
4.2.

::::
The MCC provides a balanced assessment

of model skill for
:::::::
measure

::
of

:::::::::::
classification

::::
skill

::::::
across both event and non-event classifications, similar to the ROC curve, and670

is particularly informative
:::::::::
categories,

::::::
making

::
it
::::::::::
particularly

:::::::
valuable in the context of imbalanced datasets. In the case of

:::
For

:::
the

:
ISSR/non-ISSR classification, decision models 1-7 achieve higher MCC values than

:::::::::
EPS-based

:::::::
decision

:::::::
models

:::
1–7

::::::::::
consistently

::::::::::
outperform their deterministic counterparts (i.e., individual ensemble members), with decision models 3 and

4 reaching a maximum MCC of
::::::::
achieving

:::
the

::::::
highest

:::::
MCC

:::::
values

:::
of

::::::::::::
approximately 0.55. By

::
In

:
contrast, the MCC values for

the deterministic models remain
:::::::::::
deterministic

::::::
models

::::
yield

:::::
MCC

::::::
scores around 0.47 (see Fig. ??

:
6(c)).

::::
These

::::::
results

::::::::
reinforce675

::
the

:::::::::
advantage

::
of

:::::::::::::
ensemble-based

::::::::
decision

::::::::
strategies

::
in

::::::::
capturing

::::
both

::::
sides

::
of

:::
the

:::::::::::
classification

::::
task

:::::
more

:::::::::
effectively.

RHice

threshold

max MCC EPS

(Det)

decision

model

POD FPR

100% 0.55 (0.47)
3
4

0.80
0.73

0.13
0.10

105% 0.46 (0.37)
2
3

0.77
0.68

0.14
0.11

110% 0.37 (0.28) 2 0.64 0.11

120% 0.25 (0.16) 2 0.62 0.11

Table 1. For each RHice threshold event, the maximum MCC value of the decision models based on the EPS is shown (rounded to the second

decimal place), together with the indices of the corresponding decision model(s). The MCC of the deterministic model (single members) is

given in brackets. The last two columns show the ROC values (POD versus FPR) of the decision model(s) with the maximum MCC.
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Table 1 shows
::::::::::
summarizes the maximum MCC for each RHice thresholdevent

:::::
values

::::::::
achieved

:::
for

::::
each

:::
ice

:::::::::::::
supersaturation

:::::::
threshold, along with the indices of the corresponding

:::::::::
EPS-based decision models. For comparison with the ROC results, the

::::::::
reference,

:::::
MCC

:::::
values

:::
of

:::
the

:::::::::::
deterministic

:::::::::::::
(single-member)

:::::::
models

:::
are

:::::
shown

::
in

::::::::
brackets.

::::
The

::::
final

:::::::
columns

:::::
report

:::
the

:
asso-

ciated POD and FPR valuesof these models are also provided. ,
:::::::
enabling

::::::
direct

:::::::::
comparison

:::::
with

:::::::::
ROC-based

::::::::::::
performance.

::
In680

::::
most

:::::
cases,

:::
the

:::::::
decision

::::::
models

::::
with

::::::
highest

:::::
MCC

::::
also

::::
show

::::::::
favorable

:::::::::
POD–FPR

::::::::::::
combinations,

:::::::::::
underscoring

::::
their

:::::::::
robustness

:::::
across

:::::::
metrics.

:::
For

:::
the

:::::::::
remainder

::
of

:::
this

::::::
study,

::
we

:::::
focus

:::
on

::::::::::
ROC-based

::::::::
evaluation

:::::
using

::
its

:::::::::
associated

::::::
scores,

:::::
POD

:::
and

:::::
FPR,

::
as

:
a
::::::::::::
representative

:::::::::
framework

:::
for

::::::::
assessing

:::::::
decision

:::::
model

:::::::::::
performance.

:

To summarise this subsection, we have evaluated a range of ensemble verification metrics to assess how well our EPS model,

ICON 2-Mom EPS, can distinguish between ISSR and non-ISSR conditions (or higher ice supersaturation). These metrics685

emphasize different diagnostic aspects: POD and FPR in the ROC curve; precision and recall (POD) in the precision–recall

curve as well as in the F1 score; and all entries of the confusion matrix in the MCC. Across all metrics considered, we observe

substantial improvements in the performance of decision models based on the ensemble setup compared to the deterministic

model. Depending on user requirements, a particular metric or a trade-off among metrics can be used to select the most

appropriate decision model for a given application. Although the specific ID of the best ISSR decision model depends on the690

metric used, it consistently falls below 5 in all cases. For the remainder of this study, we limit our evaluation to the ROC curve

and its associated scores, POD and FPR

5.2.3
:::::::::::
Comparison

::::
with

:::::::
IAGOS

::::
Data

:::
The

:::::
RHice::::::

density
::
of

:::
the

::::::
IAGOS

:::::
data,

::::::
limited

::
to

::
the

::::::::
Northern

::::::::::
Hemisphere

:::
for

:::::
better

:::::::::
comparison

::::
with

:::
our

::::::::::
radiosonde

::::::::::
verification,

:::::::
confirms

:::
the

:::::::::::
characteristic

:::::::
bimodal

:::::
shape

::
of

:::
the

:::::
RHice:::::::

density
:::
(see

:::::
inset

::
of

::::
Fig.

::
7).

:::::::::
Compared

::
to

:::
the

::::::
ICON

::::
data,

:::
the

:::
first

:::::
peak695

::
in

:::
the

::::::
IAGOS

:::::::
density

::::::
appears

::::::
shifted

::
to
::::

the
::::
right,

::::::::::
suggesting

:::::
fewer

::::::::
near-zero

:::::
RHice::::::

values
::
in

:::
the

::::::
IAGOS

::::::
dataset

:::::
than

::
in

:::
the

:::::
ICON

::::
data.

::::
The

::::
peak

::::::
around

:::::::::::
RHice ≈ 100

::
%

::
is
::::::
shifted

::
to

:::
the

::::
left

:::
and

::
is

::::
less

::::::::::
pronounced

::
in

:::
the

::::::
IAGOS

:::::
data.

::
It

:::
also

:::::
does

:::
not

::::
reach

:::
the

:::::
same

::::
high

:::::
RHice::::::

values
::
as

::::::
ICON.

:::::::::::
Nevertheless,

::
up

::
to

:::::::::::
RHice > 120

::
%,

:::
the

:::::
shape

::
of

:::
the

::::
ROC

::::::
curves

::::
(see

:::
Fig.

::
7)

:::::::
derived

::::
from

:::
the

::::::
IAGOS

::::
data

::::::
closely

:::::::::
resembles

::::
those

:::::::
derived

::::
from

:::
the

:::::::::
radiosonde

::::
data

::::::::
(compare

:::
Fig.

:::::
5(b)).

::::::
These

::::::
findings

:::::::::
strengthen

:::
our

::::::::::
verification

:::::::
insights

:::::
across

::::::::
different,700

::::::::::
independent

::::::::::
observation

::::::
systems.

5.2.4 Longer Forecast Lead Times

So far we have focused on ICON data with a forecast lead time of 12 hours. For
::::::::
Although

:::
for many flights 12 hour forecasts

are sufficient. However, in general, longer forecasts should be provided. Therefore, we considered
:
,
:::
we

::::
now

:::::::
consider lead time

increments from 12 hours up to a maximum of 48 hours, which is the standard time horizon of weather forecasts for flight705

planning(see Figure ??) . As .
::::::
Figure

::
8)

::::::
shows

:::
that

::
–
::
as

:
the lead time increases ,

:
– the ROC curves shift slightly to the right,

indicating higher false positive rates
::::
FPR. In contrast, no downward shift of the ROC curves is observed for high POD values

of around 0.8 for the first 36 hours . The
:::
and

:::
the

:
POD only starts to decrease after 36 hours. Overall, the degradation is not that

severe, and at least up to 36 hours, the potential scores remain roughly in the range of POD> 0.8 and FPR< 0.2.
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Figure 6. Scores that take into account the unbalanced dataset with respect to the ISSR event or higher ice supersaturation events in two

different ways: The precision-recall
:::
(PR)

:
curve and the F1 score by focusing on the performance of the model with respect to what is defined

as the ’positive’ event, and the Matthews correlation coefficient
::::
MCC by providing a balanced evaluation measure with respect to all four

categories of the confusion matrix. (a) Precision-recall
:::
PR curve for the EPS: For increasing prediction probability conversion thresholds,

the recall (POD) is plotted against the precision (1-FDR) of the corresponding decision model, both with respect to the ’positive’ events

{RHice > threshold} (bold crosses) or {RHice ≤ threshold} (stars). In both cases, the scores from the decision model with the maximum F1

score are highlighted in purple (compare (b) and note that, when F1 is rounded to two decimal places, more decision models are optimal as

discussed in Section 5.2.1). For the single ensemble members, recall is similarly plotted against precision for both types of events (diamond

and thin diamond). A zoom showing the details of the top right corner is provided in the Appendix, Fig. ??
::
D1.

:
(b) F1 scores, both for the

positive events {RHice > threshold} and {RHice ≤ threshold} and for 1) the EPS decision models and 2) for the single members, for which

the range is shown as transparent lines. Note that the decision model index in the ISSR case is with respect to the required minimum number

of ISSR events in the ensemble, while the decision model index in the non-ISSR case is with respect to the required minimum number

of non-ISSR events in the ensemble. (c) Matthews Correlation Coefficient (MCC ) for the EPS decision models as well as for the single

members
:::::::::
(transparent

::::
lines).
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Figure 7.
::::
ROC

::::
curve

::
of

:::::
ICON

::::::
2-Mom

:::
EPS

:::
and

::::::
IAGOS

::::
data,

:::
the

:::
inset

:::::
figure

:::::
shows

::
the

:::::::::::
corresponding

:::::
RHice :::::::

densities.
::::::::
Evaluation

::::::::
performed

:::
with

:::
625

::::::
flights

::::
from

:::
four

::::::
months

:::::::
(August

::::
2024,

:::::::
October

::::
2024,

::::::::
December

:::::
2024,

::::::
January

:::::
2025)

::
on

:::
the

:::::::
Northern

::::::::::
Hemisphere,

::::::
leading

::
to

:::::::
∼200 000

::::::::::::
spatio-temporal

:::::::
samples.
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Figure 8. ROC curves for increasing forecast lead times and increasing RHice thresholds; time period five months: 1.1.2025- 31.5
::::
–31.5.2025;

ICON initial times 0 UTC and 12 UTC; Northern Hemisphere.
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Figure 9. Event RHice > 100 %: Inclusion of the ensemble spread of RHice, measured by the standard deviation (std) of RHice/100%. (a)

ROC stratification along the
:::::
curves

::
on

::::::
sample

:::::
subsets

:::::::
grouped

:::
and

:::::::::
color-coded

::
by

::::
their standard deviation ; the

:::
(std)

::::::
values.

:::
The inset shows

the histogram of the standard deviation
::
std

:
of RHice/100%and ,

:::::
which also serves as a legend for the ROCs on

::::
ROC

:::::
curves

:::::::::::
corresponding

:
to
:

EPS subsets with associated std; the .
::::
The black ROC is

::::::::
represents the original one without std stratification

::::
curve

::::
based

:::
on

::
all

::::::
samples.

(b) Standard deviation and RMSE for 10 % bins of the predicted RHice mean; the coral coloured boxes represent the interquartile range

(IQR) (middle 50 % of the std data) and the black horizontal line inside the boxes represents the median. The bottom of the box is Q1 (25th

percentile) and the top is Q3 (75th percentile). The vertical lines extending from the boxes represent the variability of the data outside Q1 and

Q3. They typically reach the minimum and maximum values within 1.5× IQR. All data points outside 1.5× IQR from Q1 or Q3 are plotted

individually as outliers. Blue crosses indicate the RMSE between the ensemble mean and the observed data points. (c) Full histograms of

observed and predicted RHice values and histograms conditioned on std≤0.1are shown; in the observation case, the corresponding std values

were defined by the corresponding spatio-temporally matching EPS values. In the EPS model case, the counts were divided by 10 to obtain

a similar range of values to the observations.

5.2.5 Incorporating the Ensemble Spread710

The results of the ROC curve are statistical in nature, in our case from an 14-month verification period. As discussed, we aim

to use them to achieve high scoring future forecasts of {RHice > threshold} through appropriate interpretation of the EPS (via

decision models). Here, we
::
We

:
further incorporate ensemble spread information in order to get more reliable scores in more

specific situations. In general, the
:::
The

:
ensemble spread should be an indication of the confidence in a forecast

:::
and

::
is
::::::::
typically

::::::::
measured

::
by

:::
the

:::::::
standard

::::::::
deviation

::::
(std). Therefore, in the context of RHice:::::

ISSR forecasts, we further stratify
::::::::::
differentiate the715

ROC curve in terms of the underlying ensemble spread
:::::
based

::
on

:::
the

:::::::::
underlying

:::
std

:
at each grid point, particularly to achieve a

lower FPR. Ensemble spread is typically measured by the standard deviation.

The inset of Figure ??
:
9(a) shows a histogram of the standard deviation of RHice/100%; more than 50 % of the ensemble

forecasts have a std below 0.1, with a peak near zero, and only a small proportion have std values greater than 0.2. The colored

bins in the histogram serve as a legend for the ROC curves in the main Figure ??
:
9(a): The EPS forecasts are partitioned with720
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respect to their std and the corresponding ROC curves are shown in the same color. The general trend is consistent with our

expectation; the lower the std, the closer the corresponding ROC curve is to the upper left corner, and vice verse, the higher

the std, the closer the ROC curve is to the diagonal, indicating that the model has low skill in these cases. In more detail,

::::::::
particular,

::
a

::::::::::
significantly

:::::::::
improved

::::
ROC

::::::
shape

::
is

:::::::
obtained

:
in more than half of the cases a significantly improved ROC is

obtained with POD between
:
–
::::
with

:::::
POD

::
of

:
0.9and 1 and

::
-1

::::
and FPR ≤ 0.1 for the ISSR condition with decision models 1-2.725

::
via

::::::::
decision

::::::
models

::::
1–2.

:
In case the std is greater than 0.1, the ROC curves tend more and more to the diagonal and at least

five or six members should indicate ice supersaturation to achieve an FPR of ≤ 0.1(indicated by the vertical magenta line). In

these cases ,
:
–
:::::::::

depending
:::
on

:::
the

:::::::
specific

::
std

::
–
:
only a lower POD

:
of

:::::::
0.3–0.8 can be obtained, between 0.8 and 0.3, depending

on the underlying std.

As the shape of the ROC curves varies significantly along
:::::
Given

:::
the

:::::::::
significant

:::::::
variation

::
in

:::::
ROC

::::
curve

::::::
shapes

::::::
across different730

std regimes, we were also interested in
::::::
analyze the std values of different RHice regimes, particularly when RHice is around or

above 100 %. In Fig. ??
:
9(b), summary statistics of std are shown for increasing 10 % bins of RHice. Following an increase in

std values, they
::
the

::::
bins

:
fall before 100 % and reach another local minimum in the RHice regime of 100-110

:::::::
100–110

:
% with

a median around 0.1. The relative mean squared error (RMSE) shows a similar qualitative behavior for
::
up

:::
to RHice < 120 %.

For higher RHice regimes, the RMSE increases to its maximum over the whole RHice value range
::::
range

:::
of

:::::
values.735

We take another perspective in Fig. ??
::
In

::::
Fig.

::
9(c), where the full RHice histograms of the observations and the ensemble

forecasts are shown, as well as both conditioned on std≤0.1; in the case of the observations this is done by assigning the std-

value of the corresponding spatio-temporal EPS matching
::::::::::::::
spatio-temporally

:::::::
matched

::::
EPS point. For low std-values (std≤0.1),

the corresponding conditional RHice histograms show a large peak for low humidity values in the same range as the full uncon-

ditioned histograms. Another peak is observed for RHice values around 100 %, which is approximately one order of magnitude740

lower than that of the unconditioned histograms. This difference persists in the supersaturation tail
::::::
regime of the histograms,

where the maximum RHice values reached in the conditional case are around 130 %, based on the 820 000 verification points

(where all counts below 100 were cut in this plot). When comparing the conditional histograms of the model and the ob-

servations, the observation histogram exhibits a slightly lower peak around 100 %, similar to the difference observed in the

full histograms. In conclusion, even when the model exhibits high confidence, as reflected by a low standard deviation
::
std, the745

histogram still displays intermediate supersaturation. This suggests that certain ISSRs can be well predicted.

The results shown in Figures ??(b) and ??(c) are similar to the findings of Borella et al. (2024) who parameterized the

subgrid-scale distribution of water vapour in the UTLS using IAGOS data. They identified mostly quadratic behavior of the

standard deviation of RHice relative to the mean value of RHice itself, with a maximum peak between 70 % and ∼110 %

depending on temperature, before exhibiting an upward trend for even higher RHice values. Their temperature analysis revealed750

that this peak becomes lower and moves to larger RHice values as the temperature decreases. Our ROC stratification approach

does not consider temperature, but may do so in further studies.

The increased predictability in the regime around RHice ≈ 100 % can be explained by a more stable microphysical behavior

in this near-thermodynamic equilibrium state, which is captured by the model. In this regime, mature cirrus clouds are dominant

compared to young or short-lived cirrus clouds which often form in regions of high ice supersaturation, driven by upward mo-755
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tion from gravity waves or deep convection. These young clouds experience rapid crystal growth due to significant mesoscale

temperature fluctuations (MTFs) caused by gravity waves, which create high spatio-temporal variability in supersaturation.

The fluctuating vertical motions and ice crystal concentrations make forecasting cloud evolution difficult. As a result, young

and short-lived cirrus clouds introduce significant uncertainty in predicting supersaturation, as the microphysical processes are

highly dynamic and rapidly changing. In contrast, mature cirrus clouds, approaching thermodynamic equilibrium (RHice ≈ 100760

%), display weak supersaturation conditions, typically linked to slow, steady-state ascent. Under these conditions, ice crystals

grow and gradually deplete ambient water vapour
:::::
vapor, creating a balanced system that enhances the predictability of ice

crystal evolution and overall cloud dynamics.

In clear-sky regions, where clouds and associated microphysical processes are absent, the predictability of RHice is governed

primarily by large-scale thermodynamic and dynamical processes. Supersaturation can persist in these regions due to the765

lack of ice nuclei. Observations show that clear-sky supersaturation is often associated with weak vertical motions and low

temperatures in the upper troposphere, particularly in mid- and high-latitude regions (Kahn et al., 2009). However, MTFs

::::::::
mesoscale

::::::::::
temperature

::::::::::
fluctuations

:
caused by gravity waves can still occur, challenging predictability, particularly for models

that do not resolve mesoscale temperature or humidity fluctuations. Overall, while the absence of cloud feedbacks simplifies

the microphysical environment, potential variability in temperature, humidity, and vertical motion still introduces uncertainty,770

i.e., the predictability of RHice in clear skies depends on the given specific large- and mesoscale thermodynamic and dynamical

processes.

5.2.6 Comparison with IAGOS Data

ROC curve of ICON 2-Mom EPS and IAGOS data, the inset figure shows the corresponding RHice densities. Evaluation

performed with 625 flights from four months (August 2024, October 2024, December 2024, January 2025) on the Northern775

Hemisphere, leading to ∼200 000 spatio-temporal samples.

6
:::::::::
Discussion

The

6.1
::::::::

Observed
::::::::
Standard

:::::::::
Deviation

::
of

:::::
RHice

:::
The

::::::
results

:::::
shown

::
in

:::::::
Figures

:::
9(b)

::::
and

:::
9(c)

:::::
share

::::::
notable

:::::::::
similarities

::::
with

:::
the

:::::::
findings

::
of

::::::::::::::::
Borella et al. (2024)

:
,
::::
who

:::::::::::
parameterized780

::
the

::::::::::::
subgrid-scale

::::::::::
distribution

::
of
::::::

water
:::::
vapor

::
in
::::

the
::::::
UTLS

:::::
using

:::::::
IAGOS

::::
data.

:::::
They

::::::::
observed

::
a
::::::::::::
predominantly

:::::::::
quadratic

:::::::::
relationship

::::::::
between

:::
the

::::::::
standard

::::::::
deviation

::
of

:
RHice density of the IAGOS data, limited to the Northern Hemisphere for

better comparison with our radiosonde verification, confirms the characteristic bimodal shape of the
:::
and

:::
its

:::::
mean,

::::
with

:
a
:::::
peak

::::::::
occurring

:::::::
between

:::
70

::
%

::::
and

::::::::::::
approximately

::::
110

:::
%,

:::::::::
depending

:::
on

:::::::::::
temperature.

::::::
Beyond

::::
this

::::::
range,

:::
the

::::::::
standard

::::::::
deviation

:::::::
exhibited

:::
an

::::::
upward

:::::
trend

::
at

::::
even

::::::
higher

:
RHice density (see inset of Fig. ??). Compared to the ICON (and radiosonde) data,785

the first peak in the IAGOS density appears shifted to the right, suggesting fewer near-zero RHice valuesin the IAGOS dataset
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than in the ICON data. The peak around RHice ≈ 100 % is shifted to the left and is less pronounced in the IAGOS data. It also

does not reach the same high
:
.
:::::
Their

::::::::::::::::::
temperature-dependent

:::::::
analysis

::::::
further

:::::::
revealed

::::
that

:::
this

::::
peak

:::::::::
decreases

::
in

::::::::
magnitude

::::
and

::::
shifts

::::::
toward

::::::
higher

:
RHice values as ICON. Nevertheless, at least up to the event RHice > 120 % the shape of the ROC curves

closely resembles that of the radiosonde data (see Fig. ??).
:::::::::
temperature

:::::::::
decreases.

:::::
While

:::
our

::::::::
approach

::
to

::::::::
grouping

::::
ROC

::::::
curves790

::
by

::::::::
ensemble

::::::
spread

::::
does

:::
not

::::::::
currently

::::::
account

:::
for

:::::::::::
temperature,

:::::::::::
incorporating

::
it

::::
may

::
be

:
a
::::::::
valuable

:::::::
direction

:::
for

:::::
future

:::::
work.

:

7 Summary and Discussion

6.1
:::::::::

Comparing
::::::::::::::::::
Microphysics-Based

::::
and

:::::::::
Statistical

::::::::::
Approaches

::
to

:::
Ice

:::::::::::::::
Supersaturation

Below we discuss the interrelationships of our results and their implications, particularly in the context of climate-optimized

flight routing. We also consider the ROC curve of the ICON 1-Mom EPS to see what we can gain from an ensemble setup795

in case of the one-moment
:::
The

::::::
results

::
of

:::
our

:::::
study

:::::::::::
demonstrate

:::
that

:::
the

:::::::::::
two-moment

:
cloud ice microphysics scheme . We

compare our results with those of a recent study and discuss promising approaches, such as neighborhood inclusion and, more

generally, machine learning approaches, to build more sophisticated meta-models with improved scores.

6.2 Interrelationships of Results and Application Implications

For the RHice > 100 % event, the two-moment ice microphysics scheme introduced here significantly improves the POD800

compared to the operational one-moment scheme. The trade-off is a slightly higher FPR; as seen in the FBI, the scheme

identifies slightly more events than are actually observed by radiosondes. However, the Matthews correlation coefficient, which

is a more balanced measure for all four categories TP, FP, FN, TN, is also increased by ICON
:::::::::::
implemented

::
in

:::::
ICON

::::::::
provides

:
a
:::::::::::::
microphysically

:::::
based

:::::::::
alternative

::
to
:::::::::
prognostic

:::::
cloud

:::::
cover

::::::::
schemes

:
–
::::
such

::
as
:::

the
:::::::::

Tompkins
::::::
scheme

:::::
used

::
in

:::
the

:::
IFS

::::::
model

:::::::::::::::::::
(Tompkins et al., 2007)

:
–
::::
that

:::::
infer

:::
ice

:::::::::::::
supersaturation

::::
from

::::::::::::
subgrid-scale

::::::::
humidity

:::::::::::
distributions.

::::
The

:::::::::
Tompkins

::::::::
approach805

:::::
offers

:::::
some

:::::::::
advantages

:::
for

::::::::::
operational

:::::::
weather

::::::::::
forecasting

:::
due

:::
to

::
its

:::::::::::::
computational

::::::::
efficiency

::::
and

::
its

::::::
ability

:::
to

::::::::
represent

:::::::::::
subgrid-scale

:::::::
humidity

:::::::::
variability.

::::
This

:::
can

:::
be

:::::::::::
advantageous

:::
for

::::::
realistic

:::::
cloud

:::::::
fraction

::::::::
estimates

::
on

::::::
coarse

::::
grids.

::::::::
However,

::::
this

::::::
scheme

::::
does

:::
not

::::::::
explicitly

::::::::
prognose

:::::::
specific

:::
ice

::::
mass

:::
or

:::
ice

::::::
particle

:::::::
number

:::::::
density,

:::
and

:::::
phase

:::::::::
relaxation

::::
time

::
is

:::::::::
effectively

:::
zero

:::::::
because

::::
the

::::::
scheme

:::::::
assumes

::::::::::::
instantaneous

:::::::
in-cloud

:::::::::::
equilibrium.

::::::
Indeed,

::::
the

::::::
current

:::::
cloud

:::::::
scheme

::
of

:::
IFS

::::::::
assumes

:::
ice

::::::::::::
supersaturation

:::::
only

::
in

:::
the

:::::::::
cloud-free

:::::::
portion

::
of

:::
the

::::
grid

::::
box

:::::::::::::::
(ECMWF, 2024),

::::::
which

:::
can

:::::
lead

::
to

:::
an

:::::::::::::
underestimation

:::
or810

::::::::
smoothing

:::
of

:::
ice

::::::::::::
supersaturation

::::::
under

::::::
certain

:::::::::
conditions.

::
In

::::::::
contrast,

:::::
ICON

:
2-Mom compared to ICON 1-Mom.

::::::::
prognoses

::::
both

::::::
specific

:::
ice

::::
mass

::::
and

:::
ice

::::::
particle

:::::::
number

::::::
density,

::::::::
allowing

:::::
phase

::::::::
relaxation

:::::
time

::
to

::::::
emerge

::::::::
naturally

::::
from

::::::::::::
microphysical

:::::::::::
relationships.

::::
This

:::::::
enables

:
a
:::::
more

:::::
direct,

:::::::::::::::::
microphysics-based

:::::::::
simulation

::
of

:::
the

:::::
onset

::::
and

:::::::::
persistence

::
of

:::
ice

::::::::::::::
supersaturation,

:::::
which

::
is

:::::::::
particularly

:::::::
relevant

:::
for

::::::::::
applications

::::::::
requiring

:::::::
detailed

:::
RHi

::::::::
forecasts,

:::::
such

::
as

::::::
contrail

:::::::::
avoidance.

::::::
While

:::
this

::::::::
approach

:::::
offers

::::::::
improved

:::::::
physical

:::::::
realism

:::
and

::::::::::
consistency,

::
it
::::::
comes

::::
with

::::::::
increased

::::::::::::
computational

::::
cost

:::
and

:::::::::
sensitivity

::
to

:::::::::::
assumptions815

::::
about

:::::::::
nucleation

::::
and

::::::
particle

::::
size

:::::::::::
distributions.

::::::::::::
Consequently,

::::::
careful

:::::
tuning

::::
and

::::::::
validation

:::
are

:::::::::
necessary,

::::::::
especially

::
in

::::::
global

::::::::::
applications.

:
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For events with larger RHice thresholds, the one-moment scheme breaks down almost completely, while the performance

of the two-moment scheme deteriorates only moderately. The introduction of a 10-member ensemble setup with k-out-of-10

decision models allows fine-grained control of the balance between POD and FPR. The deterministic ICON 2-Mom model820

has a POD of about 0.6 and an FPR of about 0.1 for the RHice > 100 % event, while the ensemble setup covers a wide range

depending on the decision model. For example, if the goal is to detect as many ISSR events as possible, decision model 1

offers a POD of over 0.9 at an FPR of 0.25. At the other end of the range, decision model 9 has a POD of just under 0.3 but

an FPR of almost 0. For most applications, the optimal decision model may lie somewhere in between. If adopted by aviation,

the right balance would be found by quantifying the exact costs of false positives (unnecessary diversions) and false negatives825

(condensation trails). The ability to predict RHice events well above 100 % may prove helpful in estimating costs.

6.2
:::::

Model
::::::::::
Resolution

:::
and

:::::::::::::
Neighborhood

:::::::::::::
Consideration

If the ensemble spread is also taken into account, even finer control of POD or FPR is possible. Stratifying the ROC curve

by the standard deviation of RHice reveals that situations where ensemble members are in strong agreement tend to yield

good categorical scores (ROC curve near the upper-left corner), whereas situations with large ensemble standard deviations830

result in values that are only marginally better than random chance (ROC curve near the diagonal). Notably, this stratification

requires only the ensemble data itself and can therefore be incorporated into the meta-model. For instance, if the primary

objective is to keep the FPR below 0.1, decision model 1 suffices for low-spread data, whereas decision models 5 or 6 are

more appropriate when dealing with high-spread conditions. This approach opens the possibility of constructing more refined

models with improved scores by combining the basic decision models.835

6.3 Ensemble Verification of ICON 1-Mom EPS

We also evaluated the ensemble data of the operational ICON 1-Mom EPS with respect to RHice. We wanted to compare the

improvement of results such as the POD due to the ensemble setup when the microphysical scheme has not been adapted to a

two-moment scheme. Therefore, we considered the ROC curve for the operational 40-member EPS as well as for 10-member

subsets, compare Appendix Figure B1. By similarly defining decision models for ISSR, the POD can be increased to more840

than 0.8 with an FPR remaining below 0.2, which holds true for both the 40- and 10-member EPS. The full EPS yields a more

fine-grained curve with slightly higher POD values in the top left corner than the 10-member EPS. Overall, the potential of an

ensemble is highlighted in both cases, especially with respect to a possible increase in POD. However, the operational 1-Mom

EPS still fails to predict events with higher RHice values (see inset in Fig. B1), as it relies on an NWP model with insufficient

physical parameterization for larger RHice values. This finding again confirms that a high quality model is a fundamental part845

of the success of an EPS (Wang et al., 2018; Du et al., 2018).

Finally, we wanted to confirm that the specific selection of ten members from the original 40 had little or no effect on the

scores due to the way the ensemble is generated. Therefore, we performed a 10-out-of-40 bootstrap and considered the mean

and standard deviation of the corresponding points of the ROC curves of each subset EPS. The resulting standard deviation is

negligibly small, encouraging us to transfer this finding to our ICON 2-Mom EPS, using the first ten members.850
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6.3 Model Resolution and Neighborshood Consideration

Several leading high-resolution NWP models have been validated with respect to RHice using radiosonde data in Thompson

et al. (2024). The radiosonde data used were from 2022, covering ten months, and included data from radiosondes of lower

or unknown quality than the Vaisala RS41 radiosondes. Model data were interpolated onto radiosonde data, which differs

from our approach of interpolating radiosonde data onto model data. The most comparable results are the POD and FPR for855

RHice > 99.99 % events, where (POD, FPR) values of (0.46, 0.09) were obtained for the S-WRF model, (0.19, 0.02) for the

GFS, and (0.50, 0.10) for the IFS. In all cases, the deterministic model was evaluated.

The study also introduced a 3D neighborhood verification, where the number of ISSR events of horizontal and vertical

grid point neighborss
::::::::
neighbors affects the identification (definition) of true positives, false positives, false negatives and true

negatives. Although in this study neighborhood incorporation is used for model comparison verification, it could also be used860

to define another meta-model -
:
–
:
in this case not based on an EPS model, but on a deterministic NWP model. Of course, a

similar definition could also be introduced based on an EPS model. However, although the concept of including neighbors into

a model to identify ISSRs is worth exploring, the neighborhood verification presented in the study corresponds to two different

models, where the one to be used is individually selected for each radiosonde observation, depending on whether ISSR was

actually observed or not. This conditioning on the observation may improve the verification results, as the knowledge of the865

observation determines the decision of which model to use. For our purpose, which is to define a model for future predictions,

it is not appropriate to condition this decision on the observation. But even when including only model neighbor values into

a meta-model, the grid resolution we currently use (about 26 km horizontally and about 200-300
:::::::
200–300

:
m vertically in the

height range of interest) may be too low to adequately account for horizontal neighbors.
::
We

::::::
expect

:::
that

:::::
using

::
a
::::
finer

::::
grid

:::
for

:::::
ICON

:::::::::
predictions

::::
may

::::::
enable

::::
such

::
an

:::::::::
approach,

:::
and

:::::
most

:::::
likely

:::::::
improve

:::
the

::::::
overall

:::::::::
verification

::::::
scores.

:
870

6.3 Prediction Improvement via Machine Learning

7
:::::::
Outlook

As evidenced by the ad hoc nature of decision models in both prior studies and this work, there is value in pursuing a more

general approachto post-processing NWP data. While the k-out-of-10

:::::::::
Prediction

::::::::::::
Improvement

:::
via

::::::::
Machine

::::::::
Learning875

:::::
While

:::
the

::::::::::
k-out-of-10 decision models are based on intuitive thresholds, they are ultimately heuristic in nature- comparable to

, for example, a binary deep neural network ,
::::::::::
comparable

::
to

:
a
::::::
binary

:
classifier trained and validated on model and radiosonde

data. Due to the small amount of data (∼ 820 000 samples), we chose to use the gradient boosting
:::
tree

:
library CatBoost

in classification mode. The results are shown in Appendix Fig. 10. The
::::
ROC

:::::
curve

::
of

:::
the

:
CatBoost model shows a slight

improvement in the upper left region of interest compared to the k-out-of-10
:::::::::
k-out-of-10

:
decision models. In addition, the880

ROC curve is almost continuous and at high RHice gives access to POD values that are unattainable even for the 1-out-of-10
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Figure 10.
::::::::

Comparison
::

of
:::::

ROC
:::::
curves

::
of

::::::::
EPS-based

::::::::
CatBoost

:::
and

::::::::
EPS-based

:::::::
decision

::::::
models.

::::::::
CatBoost

::::
input

::::::
features

::::
were

:::
the

:::::
RHice

:::::
values

::
of

::
all

:::
ten

:::::::
members.

::::
Solid

::::
blue

::::
ROC

::::::
curves:

:::::::
Training

:::
and

:::::::
validation

:::::
period

::::
from

:::::
April

::
to

::::::::
December

::::
2024;

:::
test

::::
data

::::
from

::::::
January

::
to

:::::
March

::::
2025;

:::::
ROC

:::::::
calculated

:::
for

:::
the

:::
test

:::
data

::::::
period.

::::
Light

::::
blue

::::
ROC

::::::
curves:

::::
ROC

:::
for

:::
the

::::::::
EPS-based

::::::
decision

::::::
model,

:::::::
evaluated

::::
over

:::
the

:::
test

:::
data

::::::
period.

::::
Solid

:::
and

::::
light

:::::
orange

::::::
curves

::::::
indicate

:::
the

::::
same

:::::
setting

:::
but

::::
with

:
a
:::::::
different

::::::
training

:::
and

::::::::
validation

:::
data

:::::
period

:::::
(July

::::
2024

:
to
::::::

March
::::
2025)

::::
and

:
a
:::::::
different

:::
test

:::
data

:::::
period

:::::::::
(April–June

::::::
2024).

:::::
Except

:::
for

:
a
:::::
larger

:::
tree

:::::
depth

::
of

:::
10,

::
all

:::::::
CatBoost

::::::
settings

::::
were

::::
kept

::
at

:::::
default,

:::
and

:::::::
training

:::
took

:::::
about

::
30

::::::
seconds

:::
per

::::
RHice::::::::

threshold.

model, giving a greater degree of control over the desired balance between POD and FPR. Thus, the model reduces the need to

run an EPS with many members (but more members slightly improve the predictions; see the one-moment
:::::::::
40-member

::::::
ICON

::::::
1-Mom

::::
EPS

:
case in Fig. B1). Another advantage of the model is that more features than just RHice itself can easily be added

as model inputs. Even extending the feature vector with physical quantities of neighboring cells is equally feasible. The results885

are very promising and more complex models are being investigated.

8 Conclusions

This study demonstrates the great potential of an EPS model for ISSRprediction
:::::
strong

::::::::
potential

::
of

::::::::::
EPS-based

:::::::::::
classification

::::::
models

:::
for

::::
ISSR, based on the ICON NWP model with an adapted

:::::::
enhanced

::::
with

::
a two-moment ice microphysics scheme. The

two-moment scheme
:::::::::
Compared

::
to

:::::
ICON

:::::::
1-Mom,

::::::
ICON

::::::
2-Mom

:
more accurately captures the physical conditions associated890

with (higher) ice supersaturation, which many one-moment schemes struggle to represent or fail to identify. Prior to evaluating

the ensemble setup, the two-moment scheme underwent a careful verification process to confirm its suitability to represent
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ice supersaturation in NWP applications
:::::
where

::
it

::::::::::
significantly

:::::::::
improves

:::
the

::::
POD

::::::
while

::::::::::
maintaining

:
a
:::::::::

moderate
::::
FPR.

:::::
This

:::::::::::
improvement

:
is
::::
also

::::::::
reflected

::
by

:::
the

:::::
MCC,

:::::::::
indicating

:::::
better

::::::
overall

:::::::::::
classification

::::
skill.

The EPS model itself,
::::::
ICON

:::::::
2-Mom

::::
EPS,

:
has served as the foundation for further meta-model developments aimed at895

constructing deterministic models of ISSR/non-ISSR classification and higher ice supersaturation. These models are designed

to provide flight planners with well-scored predictive tools that support actionable decision-making.

Simple k-out-of-N
::::::
Simple

::::::::::
k-out-of-10 decision models spanned a wide range of POD-FPR values

:::::::::::
combinations, with many

of them achieving a significantly higher POD than the original deterministic NWP model while having only slightly worse

FPRs. The k-out-of-N models were further used to define another meta-model by adaptively choosing k according to the900

ensemble spread, where situations with strong agreement of all members use a smaller k, and situations with disagreement use

a larger k, in order to keep the FPR below a certain target level.
::::::::::::
outperforming

::
the

:::::::::::
deterministic

::::::
ICON

::::::
2-Mom

::::::
model

::
in

:::::
terms

::
of

::::
POD

:::::
while

::::::::::
maintaining

::::::::::
comparable

:::::
FPRs.

:::
For

:::::::::::
RHice > 100

::
%,

::::::
ICON

::::::
2-Mom

:::::::
achieves

::
a
::::
POD

::
of

:::::
∼0.6

:::
and

:::
an

::::
FPR

::
of

:::::
∼0.1,

:::::::
whereas

:::::
ICON

:::::::
2-Mom

::::
EPS

:::::
allows

:::
for

:::::
finer

::::::
control:

::::::::
decision

:::::
model

::
1

:::::
yields

::
a

::::
POD

::
>

:::
0.9

::
at

::
an

:::::
FPR

::
of

::::
0.25,

:::::
while

::::::::
decision

:::::
model

::
9

:::::
offers

::::::::
near-zero

::::
FPR

::::
with

:::::::
reduced

:::::
POD.

::::
This

::::::::
flexibility

::::::
enables

:::::
users

::
to

:::::
select

:::::::
decision

:::::::
models

:::::
based

::
on

::::::::::
operational905

:::
cost

::::::::
trade-offs

::::::::
between

::::
false

:::::::
positives

:::::
(e.g.,

::::::::::
unnecessary

::::::::::
diversions)

:::
and

::::
false

::::::::
negatives

:::::
(e.g.,

::::::
contrail

::::::::::
formation).

These approaches were statistical in nature, meaning that we used classical statistical methods and verification results to

define a
::::::
Further

:::::::::
refinement

::::
was

:::::::
achieved

:::
by

:::::::::::
incorporating

::::::::
ensemble

::::::
spread

::::
into

:::
the

:::::::
decision

:::::::
making.

::::::::
Grouping

:::::
ROC

::::::
curves

::
by

:::
the

:::::::
standard

::::::::
deviation

::
of

:::::
RHice :::::::

revealed
:::
that

::::::::::
low-spread

::::::::
conditions

::::::::::
correspond

:
to
::::
high

::::::::::
categorical

::::
skill,

:::::::
whereas

::::::::::
high-spread

:::::::
scenarios

::::
tend

::::::
toward

:::::::
random

:::::::::::
performance.

::::
This

::::::
insight

::::
was

::::
used

::
to

::::::
define

::
an

:::::::
adaptive

:
meta-model that functions as a newly910

developed forecast model .
:::::
selects

::
k
:::::
based

:::
on

::::::::
ensemble

::::::
spread,

:::::::
keeping

::::
FPR

:::::
below

::
a
:::::
target

:::::
level.

::::
This

::::::::
approach

::::
relies

::::::
solely

::
on

::::::
model

::::
data

::::
and

:::
can

::
be

::::::::::
seamlessly

::::::::
integrated

::::
into

::::
more

::::::::
advanced

:::::::
models.

:

Building on this methodology, we trained
::::::::
statistical

::::::::::
framework,

:
a gradient boosting tree classifier representing a more

advanced
:::
was

::::::
trained

::
as

:
a
:::::
more

:::::::::::
sophisticated meta-model. Despite being trained in under a minute using

:::::::
minimal

:::::::
training

::::
time

:::
and default hyperparameters, the model outperformed the k-out-of-N

:
it
::::::::::::
outperformed

:::
the

::::::::::
k-out-of-10 models in the POD–FPR915

region of interest. Additional advantages of this model include an almost
::::::
include

:
a
::::::
nearly continuous ROC curve and its ability

to integrate additional features in a straightforward manner
:::
the

:::::
ability

::
to

::::::::::
incorporate

::::::::
additional

:::::::
features

::::
with

::::
ease.

While these investigations on the characteristics of the ICON 2-Mom EPS system were ongoing, a contrail avoidance trial

based on the ensemble mean of this system rerouted more than
:::::
ICON

:::::::
2-Mom

:::
EPS

::::::::
rerouted

::::
over 100 flights

:
,
::::::::::::
demonstrating

:::
the

:::::::::
operational

::::::::
relevance

::
of

::::
this

:::::::::
forecasting

::::::::
approach. The results presented in this study demonstrate

:::
here

:::::
show that EPS-based920

meta-models bring us even closer to reliably identifying the potential for
:::::::::
conditions

::::::::
conducive

::
to

:
persistent contrail formation.

The results of this study can also be informative for
::::::
Finally,

:::::
these

:::::::
findings

:::::
may

::::::
inform

:
the European Union’s recently

established
::
’s Monitoring, Reporting and Verification (MRV) system, where

:::::
which

::::
uses climate response models are used to

quantify the trade-off
:
to

::::::::
quantify

::::::::
trade-offs between contrails, CO2 emissions,

:
and other greenhouse gases. Climate response

models require up to 15 meteorological parameters, such as humidity, temperature, pressure and wind fields, of which RHice925

is of utmost importance for the contrail component, and it is RHice that is often
:
a
::::::
critical

:::::
input

:::
for

:::::::
contrail

:::::::::
modeling,

:::
yet

::::::
remains

:
poorly predicted by state-of-the-art operational NWP models

::::
many

::::::::::
operational

:::::
NWP

:::::::
systems. This study is a step
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towards improved prediction of ISSR and
::::::::
represents

::
a

:::
step

::::::
toward

:::::
more

:::::::
accurate

:
RHice :::::::::

forecasting
:::
and

::::::::
improved

:::::::
support

:::
for

::::::::::::::
climate-conscious

:::::::
aviation

::::::::
strategies.

Code and data availability. The verification code and data are available under Zenodo (https://doi.org/10.5281/zenodo.15881140).930
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Appendix A: The Two-Moment
::::::
History

::::
and

::::::
Details

::
of

::::
the

::::::::::::
One-Moment Cloud Ice Scheme

The two-moment cloud ice scheme in ICON is an extension of the operational one-moment cloud ice scheme. It adds a

prognostic equation for cloud ice number density and includes explicit ice nucleation processes. The original one-moment

scheme is a legacy code developed by Günther Doms at DWD in the 1990s for the COSMO model, which was then known

as the Lokalmodell (LM), and operated at a horizontal grid spacing of 7 km (Steppeler et al., 2003). In the 2000s, the same935

one-moment scheme was used in the operational global model GME, the predecessor of ICON (Majewski et al., 2002). A

detailed description of the original one-moment cloud ice scheme is provided in Doms et al. (2021). It shares many similarities

with the one-moment schemes by Lin et al. (1983) and Rutledge et al. (1986), both originally developed for mesoscale models.

Over the past 25 years, the operational one-moment cloud ice scheme has undergone many modifications, documented in

Section 5.8 of the COSMO 6.0 documentation. Notable updates include warm-rain processes based on Seifert and Beheng940

(2001), snow particle geometry following Wilson and Ballard (1999), and snow size distributions derived from empirical

relationships by Field et al. (2005). Ice crystal concentration is parameterized using the empirical formula by Cooper (1986).

In the two-moment scheme, the diagnostic ice particle number concentration is replaced by a prognostic equation. Examples

of similar hybrid schemes include those by Reisner et al. (1998) and Thompson et al. (2004), though these originally used

purely temperature-dependent ice initiation. Köhler and Seifert (2015) present a two-moment scheme that accounts for deposition945

nucleation based on ice supersaturation, and includes homogeneous freezing of sulfate aerosol droplets at low temperatures.

The version of the two-moment scheme used in this study is a simplified and updated version of Köhler and Seifert (2015, hereafter KS15)

. The two-mode representation in KS15 is omitted for computational efficiency, as are the timestep refinements for homogeneous

nucleation.

In a two-moment scheme, sources and sinks of ice particles must be explicitly parameterized. The three primary sources of950

ice particles are homogeneous nucleation, heterogeneous nucleation, and detrainment of ice from deep convective clouds.

A1 Deep Moist Convection

ICON parameterizes moist convection using a bulk mass flux convection scheme (Tiedtke, 1989; Bechtold et al., 2008). For

cloud ice detrainment from convection, a mean particle diameter of Di,conv = 200 µm is assumed, corresponding to a mean

mass of mi,conv = 10−9 kg. A smaller mean mass would increase the number of detrained ice particles in the upper troposphere,955

leading to shorter phase relaxation times in convective anvils and reduced ice supersaturation. The assumed size also affects

the effective radius of anvil clouds explicitly represented in the model.

A1 Homogeneous Ice Nucleation

For homogeneous ice nucleation, the parameterization by Kärcher et al. (2006) is used. It accounts for the presence of pre-existing

ice particles and is applied using grid-scale vertical velocity and ice supersaturation. However, this neglects subgrid-scale960

variability, which may lead to an underestimation of nucleation events. The impact on cloud ice number concentration is less
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straightforward. While nucleation events in nature occur on much smaller spatial scales, the model assumes that nucleated

particles are evenly distributed across the grid box once the event is triggered.

A1 Heterogeneous Ice Nucleation

Heterogeneous nucleation is represented using the INAS (Ice Nucleating Active Sites) approach of Ullrich et al. (2017), which965

includes parameterizations for deposition and immersion freezing on mineral dust and soot. Since prognostic aerosol fields are

not available in ICON, but only in ICON-ART, a constant dust number concentration of Ndust = 1× 103 m−3 is assumed in

the upper troposphere above p0 = 200 hPa. Below that pressure height the profile increases following

Ndust(p) =Ndust,0 max

{
min [exp

(
γdust

p

p0

)
,200 ],1

}

with γdust = 1× 10−3. The dust surface area S̄dust is calculated based on a lognormal particle size distribution with a mean970

diameter of 1 µm and a standard deviation of 2.5. The number of nucleated ice particles is then diagnosed as:

N∗
i =Ndust

{
1− exp

[
−S̄dustnS(T,Si)

]}
Here, nS is the INAS density in m−2, parameterized according to Eq. (7) for deposition and Eq. (5) for immersion freezing in

Ullrich et al. (2017).

In numerical models, newly formed ice particles are typically diagnosed each timestep using ∆Ni =N∗
i −N pre

i , where N pre
i975

is the number of pre-existing ice particles. However, this can overestimate heterogeneous nucleation since N pre
i is reduced by

sedimentation or aggregation, while Ndust remains constant. This effectively creates an unlimited reservoir of ice-nucleating

particles. To avoid this artifact, a budget variable is introduced as described in KS15. A relaxation timescale of two hours is

applied to simulate the recovery of nucleating particle availability due to atmospheric mixing.
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Appendix B: Ensemble Setup of Operational ICON980

Appendix B:
::::::::
Ensemble

:::::::::::
Verification

::
of

:::::
ICON

:::::::
1-Mom

::::
EPS

Fig. B1 compares the ROC curves of the ICON 1-Mom EPSand the ICON 2-Mom EPS for RHice > 100 % events. The
:::
We

:::
also

::::::::
evaluated

::::
the

::::::::
ensemble

::::
data

::
of

:::
the

::::::::::
operational

::::::
ICON 1-Mom EPS is noteworthy as it is the operational ICON model.

The 1-Mom 10-member data was obtained by resampling. Overall,
:::
EPS

:::::
with

::::::
respect

::
to

::::::
RHice.

:::
We

:::::::
wanted

::
to

::::::::
compare

:::
the

:::::::::::
improvement

::
of

::::::
results

::::
such

::
as

:::
the

::::
POD

::::
due

::
to

:::
the

::::::::
ensemble

:::::
setup

:::::
when

:::
the

:::::::::::
microphysical

:::::::
scheme

:::
has

:::
not

::::
been

:::::::
adapted

::
to

::
a985

::::::::::
two-moment

:::::::
scheme.

:::::::::
Therefore,

:::
we

:::::::::
considered

:::
the

::::
ROC

:::::
curve

:::
for the 2-Mom 10-member EPSperforms as well as the 1-Mom

:::::::::
operational

:
40-member EPS, while the 1-Mom

::::
EPS

::
as

::::
well

::
as

:::
for

:
10-member EPS performs slightly but significantly worse.

For larger RHice thresholds, the
::::::
subsets,

::::::::
compare

::::::::
Appendix

::::::
Figure

::::
B1.

:::
By

:::::::
similarly

::::::::
defining

:::::::
decision

::::::
models

:::
for

::::::
ISSR,

:::
the

::::
POD

:::
can

:::
be

::::::::
increased

::
to

:::::
more

::::
than

:::
0.8

::::
with

::
an

:::::
FPR

::::::::
remaining

::::::
below

:::
0.2,

::::::
which

:::::
holds

:::
true

:::
for

::::
both

:::
the

:::
40-

::::
and

::::::::::
10-member

::::
EPS.

::::
The

:::
full

::::
EPS

:::::
yields

:
a
:::::
more

::::::::::
fine-grained

:::::
curve

::::
with

:::::::
slightly

:::::
higher

:::::
POD

:::::
values

::
in
:::
the

:::
top

::::
left

:::::
corner

::::
than

:::
the

::::::::::
10-member990

::::
EPS.

:::::::
Overall,

:::
the

:::::::
potential

:::
of

::
an

::::::::
ensemble

::
is

::::::::::
highlighted

::
in

::::
both

:::::
cases,

:::::::::
especially

::::
with

::::::
respect

::
to

:
a
::::::::
possible

:::::::
increase

::
in

:::::
POD.

::::::::
However,

:::
the

:::::::::
operational

:
1-Mom EPS breaks down, as shown in the inset.

:::
EPS

::::
still

::::
fails

::
to

::::::
predict

::::::
events

::::
with

::::::
higher

:::::
RHice

:::::
values

::::
(see

::::
inset

::
in

::::
Fig.

::::
B1),

::
as

::
it

:::::
relies

::
on

::
an

:::::
NWP

::::::
model

::::
with

:::::::::
insufficient

::::::::
physical

::::::::::::::
parameterization

::
for

::::::
larger

:::::
RHice ::::::

values.

::::
This

::::::
finding

:::::
aligns

:::::
with

::::::
studies

:::
that

::::::::::
emphasize

:::
the

:::::::::
importance

:::
of

:::::
model

:::::::
quality

::
as

:
a
::::

key
:::::
factor

::
in
::::

the
::::::
success

:::
of

::::::::
ensemble

::::::::
prediction

:::::::
systems

:::::::::::::::::::::::::::::
(Wang et al., 2018; Du et al., 2018).

:
995

::::::
Finally,

:::
we

::::::
wanted

::
to
:::::::

confirm
::::
that

:::
the

:::::::
specific

:::::::
selection

:::
of

:::
ten

::::::::
members

::::
from

:::
the

:::::::
original

::
40

::::
had

::::
little

::
or

:::
no

:::::
effect

:::
on

:::
the

:::::
scores

:::
due

:::
to

:::
the

:::
way

:::
the

:::::::::
ensemble

:
is
:::::::::
generated.

:::::::::
Therefore,

:::
we

:::::::::
performed

:
a
:::::::::::
10-out-of-40

::::::::
bootstrap

::::
and

:::::::::
considered

:::
the

:::::
mean

:::
and

:::::::
standard

::::::::
deviation

::
of

:::
the

::::::::::::
corresponding

::::::
points

::
of

:::
the

::::
ROC

::::::
curves

::
of

::::
each

::::::
subset

::::
EPS.

::::
The

::::::::
resulting

:::::::
standard

::::::::
deviation

::
is

::::::::
negligibly

:::::
small,

:::::::::::
encouraging

::
us

::
to

:::::::
transfer

:::
this

::::::
finding

::
to
::::
our

:::::
ICON

::::::
2-Mom

:::::
EPS,

:::::
using

:::
the

:::
first

:::
ten

:::::::::
members.
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Figure B1. ROC curves for the ICON 2-Mom EPS (orange), the operational ICON 1-Mom EPS with 40 members (blue) and for the

corresponding ICON 1-Mom EPS subsets with 10 members (green). For the latter, we randomly selected 1000 10-member EPS subsets,

calculated the ROC curve for each and plotted the mean and standard deviation of the corresponding points on the curve. The inset figure

shows ROC curves for the ICON 1-Mom 40-member EPS for higher RHice thresholds up to 106 %. Evaluation for three months (August

2024, October 2024, January 2025); ICON initial times 0 and 12 UTC; ICON forecast lead time 12 h; Northern Hemisphere.

Appendix C: Calculation of RHice1000

C1 Computation of RHice for radiosonde data

In the TEMP BUFR files, as disseminated through the Global Telecommunication System (GTS), the dew point tempera-

ture (Td) is provided, which allows us to compute the water vapour
:::::
vapor partial pressure (e) using the formula from Hardy

(1998), ensuring consistency with the processing applied by radiosonde manufacturers, such as Vaisala. We further calculate

the saturation vapour
:::::
vapor pressure over ice (ei) consistently with the formula used in ICON which is given by1005

ei = b1
exp(b2i(T − b3))

T − b4i
(C1)

with coefficients

b1 = 610.78, b2i = 21.87, b3 = 273.16, b4i = 7.66.
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and referred to as the Magnus-Tetens-Murray approximation (Magnus, 1844; Tetens, 1930; Murray, 1967). Therewith, we

receive1010

RHice =
e

ei
100 %. (C2)

C2 Computation of RHice for ICON Data

First we calculate the water vapour
:::::
vapor partial pressure e by

e= rv T ρ qv,

where the temperature T (in K), the density of moist air ρ (in kg/m3), and the specific water vapour
::::
vapor

:
content qv (in kg/kg)1015

are output variables of ICON, and rv = 461.51 is the gas constant for water vapour
:::::
vapor. Finally, we calculate ei again with

C1 and RHice with C2.

Note that recently, as of May 2025, the coefficients in the C1 formula for the saturation vapour
::::
vapor

:
pressure over ice in

the operational ICON model have been updated. We still use the old version of the coefficients given in C1 in our dedicated

system and therefore in our verification analysis. However, at −37 °C, the error is only about 2 %.1020

C3 Computation of RHice for IAGOS Data

In the IAGOS NRT dataset, RHice is already included and has been calculated using the formula from Sonntag (1994), which

is very similar to the Hardy formula.
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Appendix D: Details of Precision-Recall Curve for non-ISSR

In Fig. ??
::
D1

:
a zoom of the top right of Fig. ??

:
6
:
is provided, where the details of the precision-recall

:::
PR curve for the non-1025

ISSR event and for the events {RHice ≤ threshold} with threshold in {105%,110%,120%} can be seen. Note that decision

model k here refers to the decision model which requires at least k events with {RHice ≤ threshold}
:
k
::::::::
ensemble

::::::::
members

::::
with

::
the

:::::
event

::::::::::::::::::
{RHice ≤ threshold}.
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Figure D1. Precision-recall curve of events {RHice ≤ threshold} with threshold in {100 %, 105 %, 110 %, 120 %} (zoom of top right of

Figure ??
:
6). Stars on the lines indicate the scores corresponding to the decision models based on the EPS. The pink cross highlights decision

model 4 for which the maximum F1 score is obtained. Thin diamonds inidcate the scores of the single ensemble members.
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Appendix E: Binary Classification Models: CatBoost

CatBoost is a machine learning library based on gradient boosting on decision trees, where input features are either real values1030

or categorical values. Prediction can happen either as regression or classification. For the task at hand, CatBoost was used in

classification mode, with the cross-entropy loss J used for training:

J(y,p) =− 1

N

N∑
i=1

[yi log(pi)+ (1− yi) log(1− pi)]

where N is the total number of samples (spatio-temporal matching points of model and observation), yi is 1 if an event was

observed, otherwise 0, and pi is the prediction probability of the model. The samples were divided into 75 % training and1035

validation data and 25 % test data. The test data were taken from different months than the training/validation data to minimise

::::::::
minimize the effect of potential correlations in the data. Figure 10 shows the performance of the model on the test data,

compared to the EPS-based decision models of this study applied to the test data period.

Comparison of ROC curves of EPS-based CatBoost and EPS-based decision model. CatBoost input features were the RHice

values of all ten members and the mean temperature. Solid blue ROC curves: Training and validation period from April to1040

December 2024; test data from January to March 2025; ROC calculated for the test data period. Light blue ROC curves: ROC

for the EPS-based decision model, evaluated over the test data period. Solid and light orange curves indicate the same setting

but with a different training and validation data period (July 2024 to March 2025) and a different test data period (April-June

2024). Except for a larger tree depth of 10, all CatBoost settings were kept at default, and training took about 30 seconds per

RHice threshold.1045
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