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Abstract. Land surface models (LSMs) are essential for simulating terrestrial processes and their interactions with the 

atmosphere. However, parameter calibration in LSMs remains a major challenge owing to complex process coupling and 

parameter uncertainty. For example, key parameters, such as plant function type (PFT), are often estimated using field 

measurements or empirical relationships, which are characterized by limited accuracy, resulting in systematic biases and 15 

inconsistencies. In this study, we introduce multiple-task differentiable parameter learning (MdPL), a deep learning 

framework that combines a multitask surrogate model with a differentiable parameter generator for more accurate and 

efficient LSM parameter calibration. The multitask surrogate learns both shared and task-specific features to predict multiple 

fluxes, and the differentiable generator infers site-specific parameters from meteorological forcings and land surface 

attributes. Calibrated across 20 sites spanning four PFTs, the MdPL-calibrated Integrated Land Simulator (ILS) achieved a 20 

15% decrease in RMSE for both sensible and latent heat flux simulations. Further, benchmarking using the PLUMBER2 

dataset showed that the MdPL-calibrated ILS outperformed standard LSMs (CLM5, JULES, Noah, and GFDL), and its 

accuracy matched or exceeded those of LSTM-based approaches. The assessment of its transferability via leave-one-out 

cross-validation for evergreen forest, woodland, and cultivation sites showed reasonable applicability across sites for 

evergreen forests and woodlands, with parameter sets yielding close-to-optimal flux simulations, even without site 25 

specification. However, for cultivation sites, PFT parameters exhibited strong site specificity, with parameter sets from the 

same PFT not reliably transferred. Despite its reduced effectiveness of the framework for cultivation sites under fixed PFT 

settings, it offers a scalable and physically grounded approach for enhancing parameter calibration in complex LSMs. 

1 Introduction 

To address the unprecedented challenges posed by climate change, extreme weather, and biodiversity loss, it is critical to 30 

accurately forecast terrestrial ecosystem dynamics under these global change scenarios (Cardinale et al., 2012; Raoult et al., 

2024; Rivera et al., 2017). Land surface models (LSMs) are key components of Earth System Models that provide 
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mechanistic simulations of land-atmosphere interactions (Blyth et al., 2021). They also capture biogeochemical cycles, water 

fluxes, and energy exchanges. Thus, offer valuable insights into land management, water management, and agricultural 

production at the global scale for ecosystems (Nitta et al., 2020). However, ecosystem complexity, driven by spatial 35 

heterogeneity and nonlinear process couplings, introduce significant uncertainties in LSM parameterization (Fisher & 

Koven, 2020; Li et al., 2024). 

Further, LSM parameters often lack direct observational constraints (Famiglietti et al., 2021), exhibit multiscale 

dependencies, and interact nonlinearly within coupled systems. For example, soil hydraulic conductivity and minimum 

stomatal conductance are often estimated empirically or using sparse field measurements, which introduce biases and 40 

inconsistencies (Buotte et al., 2021; Exbrayat et al., 2014; Oberpriller et al., 2022). Moreover, simplifying model processes, 

such as radiation transfer or turbulent exchange schemes for wind speed, can introduce systematic biases, which can further 

complicate parameter calibration (Sawada, 2020). 

For a long time, manual parameter tuning was the only strategy for calibrating LSM parameters, and owing to the limited 

availability of computational resources and observational data, module parameters were primarily derived from existing 45 

knowledge (Blyth et al., 2021). However, over the past two decades, advances in computing power have enhanced parameter 

data assimilation (PDA), which combines observational data with model states to update parameters iteratively (Medvigy et 

al., 2009; Rayner et al., 2005). PDA also synergistically fuses observations and model forecasts within a probabilistic 

framework and thus, simultaneously quantifies data and models formulation uncertainties (Rayner et al., 2019). This 

approach has yielded substantial progress in the calibration of parameters related to crop, carbon, and hydrological cycles 50 

(Kaminski et al., 2002; Keenan et al., 2013; Peylin et al., 2016; Weng et al., 2011). However, it is associated with several 

limitations, particularly in the context of LSMs. Additionally, its high computational cost increases exponentially with the 

number of parameters. Thus, it is impractical for complex systems (Bacour et al., 2023; Raiho et al., 2021; Schürmann et al.,  

2016). Its stability and accuracy in converging optimal parameter sets are also affected by nonlinear processes, such as soil 

moisture feedback and energy exchange (Huang et al., 2018; Massoud et al., 2019). Moreover, its effectiveness is limited by 55 

its dependence on dense and high-quality observations, meanwhile existing observations are often sparse and noisy across 

space and time (Cameron et al., 2022; MacBean et al., 2016).  

Machine learning (ML) offers novel possibilities for addressing PDA-associated limitations. Notably, ML methods can be 

employed to accurately capture complex and nonlinear relationships and optimize high-dimensional parameter spaces, 

thereby offering new avenues for augmenting PDA workflow (Chen et al., 2022; Kolassa et al., 2017; Kwon et al., 2019; 60 

Rodríguez-Fernández et al., 2019). To date however, most ML efforts have served as adjuncts within PDA frameworks, 

rather than being the primary learning objective responsible for parameter estimation (McNeall et al., 2024). Tsai et al. 

(2021) introduced differentiable parameter learning (dPL), an end-to-end deep learning scheme that directly embeds 

parameter estimation within model training to enhance calibration efficiency. For efficient parameter inference, dPL, e.g., the 

variable infiltration capacity (VIC) model, leverages neural-network differentiability to couple process-based simulators 65 

(Liang et al., 1994) with gradient-based training. In this end-to-end workflow, the neural network, g_z (∙) uses forcings, 
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historical site data (forcings + flux observations), and static land surface properties to estimate the parameters of the VIC 

model. The predicted parameters were used to drive a neural surrogate of the VIC and the resulting outputs were then 

compared with observation data, enabling backpropagation-based calibration. Thus, dPL is highly advantageous across 

different datasets, such as soil moisture and runoff. Similarly, Feng et al. (2023) applied dPL to calibrate the parameters of 70 

the Hydrologiska Byråns Vattenbalansavdelning hydrological model (Tibangayuka et al., 2022). Their results showed 

notable improvements in the accuracy of soil and groundwater storage, snow accumulation, evapotranspiration, and baseflow 

simulations across different basins in the United States. Therefore, relative to PDA models, dPL is advantageous in that it 

offers the possibility to transform the parameter calibration problem into a multi-model problem and uses deep learning 

frameworks to optimize parameters efficiently via backpropagation and gradient descent algorithms (Shen et al., 2023). 75 

Consequently, the parameters for every site are learned in one pass, minimizing manual tuning and improving model 

transferability. Second, by exploiting model differentiability, dPL sidesteps costly repeated simulator runs and reduces 

calibration time by several orders of magnitude relative to the cost and time requirements associated with PDA (Tsai et al., 

2021). dPL’s gradient-based approach also adeptly learns nonlinear couplings, which are critical for processes such as snow-

soil interactions in hydrology (Feng et al., 2022). 80 

However, applying dPL in LSMs is associated with several limitations. First, surrogate fidelity sets the ceiling on parameter 

accuracy, and any mismatch between the neural surrogate and the true LSM increases calibration errors. Second, LSMs, 

unlike standalone hydrological simulators, integrate energy fluxes, carbon cycling, and vegetation physiology, resulting in a 

significant increase in emulation difficulty (MATSIRO6 Document Writing Team, 2021). This multidomain coupling and 

strong nonlinearity complicate surrogate architecture and training. Third, simultaneously calibrating multiple fluxes and 85 

states in LSMs requires the careful mapping of parameters to each target variable. Further, different parameters exhibit 

varying levels of sensitivity and impact on each output. The effects of coupling and interactions on different processes also 

amplify uncertainties in parameter calibration (Hou et al., 2015). Therefore, the key challenge associated with applying dPL 

in LSMs is the design of surrogate models and management of model complexity. 

To address the multi-process and multi-output complexity of LSMs with respect to dPL, in this study, we propose a multiple-90 

task differentiable parameter learning (MdPL) framework as a unified calibration framework for application in LSMs. The 

MdPL framework comprised two modules, namely, a multi-task surrogate and a differentiable parameter generator, g_z (∙). 

Based on multitask learning (Ruder, 2017), the multi-task surrogate uses shared bases to capture common dynamics, and 

thereafter employ separate task-specific branches to fine-tune the parameters of each target flux. We also integrated gate 

layers that filter and route parameter signals and automatically emphasize those relevant to each output, while suppressing 95 

irrelevant ones, thereby reducing overfitting. Further, the pipeline parallel, g_z (∙) was employed to generate parameters that 

drive the multi-task surrogate, and its predictions were compared against observed fluxes for end-to-end optimization. 

Before calibration, we pretrained the surrogate using data synthesized by perturbing the key parameters, ensuring that it 

learned their influence on flux outputs.  
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Compared with single-task dPL, our multitask design offered the possibility to reduce cross-output interference and handle 100 

integrated process complexity, providing a more efficient and robust approach for calibrating parameters in complex land 

surface models. Further, to validate the performance of the proposed framework, we used it to calibrate the Integrated Land 

Simulator (ILS) across 20 PLUMBER2 sites, representing four plant functional types (evergreen forest, woodland, cropland, 

and grassland) and thereafter, benchmarked the MdPL‐calibrated ILS against four leading LSMs, CLM5, JULES, Noah, and 

GFDL, and a Long Short-Term Memory (LSTM) model using half‐hourly sensible and latent heat observations. We also 105 

evaluated the transferability of the calibrated ILS across different PFTs via leave‐one‐out cross‐validation (LOOCV). 

Thus, we present MdPL as an efficient calibration framework that addresses process complexity, multi-output coupling, and 

parameter uncertainty, which limit LSM accuracy. Further, using the multitask learning-inspired surrogate model, we 

accurately captured nonlinear and coupled processes, reduced computational costs through gradient-based optimization, and 

mitigated the impact of sparse and noisy observational data. Together, these improvements boost the generalizability and 110 

reliability of LSMs, providing a scalable calibration strategy for ecosystem simulations under climate change. The rest of the 

manuscript is structured as follows. Section 2 provides details regarding the MdPL framework, evaluation metrics, data 

preprocessing, and the experiments performed. Sect. 3 provides results and discussion, and Sect. 4 provides a conclusion of 

the study, summarizing the key findings of the study and their implications. 
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2 Materials and Methods 115 

2.1 Framework outline 

 

Figure 1. Overview of the differentiable parameter learning (dPL) framework for land surface models (LSMs). The surrogate 

model emulated LSM outputs based on meteorological forcings and parameters. A secondary model, (gZ) inferred site-specific 

parameter priors using static land surface properties and historical site data (forcings + flux observations). Loss was computed by 120 
comparing surrogate predictions and observed fluxes. 

The MdPL framework is illustrated in Fig. 1(a), from which it is evident that the calibration of LSM parameters was 

performed in two main steps, the first being to train the multiple-task surrogate model for the LSM, as shown in Fig. 1(a1), 

ensuring that the surrogate model replicated the LSM outputs as closely as possible. 

𝑚𝑖𝑛
𝜃

1

𝑁
∑ ℒ(𝑓(𝑋𝑖 , 𝑃𝑖 , 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝐷𝑂𝑌); 𝜃), 𝑓(𝑋𝑖 , 𝑃𝑖))
𝑁
𝑖=1                                                                      (1) 125 

In Eq. (1), 𝑋𝑖 represents the meteorological forcing of the 𝑖-th sample, 𝑃𝑖  represents the calibration parameters of the 𝑖-th 

sample, 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝐷𝑂𝑌) represents the time positional encoding of the day of the year, 𝑓(𝑋𝑖 , 𝑃𝑖) denotes the LSM output, 

𝑓(𝑋𝑖 , 𝑃𝑖; 𝜃) denotes the predicted outputs of the surrogate model, with 𝜃 referring to the trainable parameters (e.g., weights 

and biases) of the neural network. Further, ℒ represents the loss function, typically expressed as the mean squared error 

(MSE), and 𝑁 represents the total number of training samples.  130 
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The surrogate model, which was trained using the same inputs as those in the LSM, i.e., meteorological forcing and 

calibration parameters, with LSM outputs as the target data, learned the LSM input-output mapping pattern by minimizing 

the error between predictions and targets. Further, surrogate models established based on differentiable functions, similar to 

neural networks, were employed to approximate LSM behavior and support automatic differentiation. Thus, they played 

critical roles in gradient-based optimization in MdPL. 135 

The second step involved learning the optimal LSM parameters using a parameter generation model, 𝑔𝑧, as shown in Fig. 

1(a2). Specifically, 𝑔𝑧  is a deep learning framework with meteorological forcing data, 𝑋  and auxiliary information, 𝐴 

(archived site-level data and land surface properties) as inputs and it provides calibration parameters as outputs. 

𝑚𝑖𝑛
∅

1

𝑁
∑ ℒ(𝑓(𝑋𝑗 , 𝑔𝑧(𝑋𝑗 , 𝐴𝑗; ∅), 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝐷𝑂𝑌); 𝜃̅), 𝑌𝑜𝑏𝑠,𝑗)
𝑁
𝑗=1                                                                     (2) 

In Eq. (2), 𝐴𝑗  represents archived site-level data and land surface properties for the 𝑗-th sample, 𝑔𝑧(𝑋𝑗 , 𝐴𝑗; ∅)  denotes 140 

calibration parameters generated by the parameter generation model, ∅ represents the trainable parameters in the parameter 

generation model, 𝜃̅ represents the frozen parameters of the surrogate model, and 𝑌𝑜𝑏𝑠,𝑗 represents the observed data for the 

𝑗-th sample. This learning process leverages the parameter generation model, 𝑔𝑧 to map the observational data and dynamic 

forcing inputs to the LSM parameter space, thereby enabling automated parameter calibration. 

2.2 Multiple-task Surrogate Model 145 

Details regarding the multiple-task surrogate model are shown in Fig. 1(b). Unlike dPL, which directly concatenates forcing 

data and calibration parameters as inputs, the multiple-task surrogate model adopts a different processing strategy. Direct 

concatenation may hinder the ability of the model to effectively differentiate between these two types of features, increase 

feature learning complexity, and reduce key process simulation accuracy (Leontjeva & Kuzovkin, 2016). Further, differences 

in scale and variation frequency between static and dynamic features can interfere with the extraction of critical parameter 150 

information, ultimately limiting the overall performance of the surrogate model (Han et al., 2022). 

To capture the influence of temporal variations on LSM parameters, we introduced time positional encoding (TPE) based on 

the "day of year" (DOY) (Foumani et al., 2024). This encoding method transformed temporal information into high-

dimensional feature representations, and thus, enhanced the ability of the model to perceive seasonal variability. The TPE 

was computed according to Eqs. (3) and (4) 155 

𝐷𝑂𝑌𝑟𝑎𝑑 = 𝐷𝑂𝑌 ∙
2𝜋

365
                                                                                                                  (3) 

𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝐷𝑂𝑌) = [𝑠𝑖𝑛(𝑓𝑙 ∙ 𝐷𝑂𝑌𝑟𝑎𝑑) , 𝑐𝑜𝑠⁡(𝑓𝑙 ∙ 𝐷𝑂𝑌𝑟𝑎𝑑)]𝑙=0
𝐿−1                                                                       (4) 

where 𝑓𝑙 = 2𝑙 represents the frequency of each encoding dimension, with 𝑙 ∈ {0,1, … , 𝐿 − 1}. TPE also captured multiscale 

temporal periodicity and provided a robust representation of seasonal effects on model parameters. 

In this study, to extract global features from dynamic inputs, we employed a LSTM network as a shared layer (Hochreiter & 160 

Schmidhuber, 1997). The output features of the LSTM, denoted as 𝐻shared, were expressed as shown in Eq. (5). 

𝐻shared = LSTMshared(𝑋combined)                                                                                      (5) 
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The dynamic forcing data, 𝑋forcing , time positional encoding, 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝐷𝑂𝑌) , and calibration parameters, 𝑃  were 

concatenated to form the combined feature representation, denoted 𝑋combined and expressed according to Eq. (6). 

𝑋combined = [𝑋forcing, Encoding(DOY), 𝑃]                                                                       (6) 165 

Further, to address task competition in multitask learning and reduce the influence of parameters that are irrelevant to 

specific outputs, a gate layer was introduced before the task-specific layers. This gate layer dynamically adjusted the flow of 

features based on the input as defined in Eqs. (7), (8), and (9). 

𝑔𝑖 = 𝜎(𝑊gate,𝑖 ∙ 𝑋combined + 𝑏gate,𝑖)                                                                       (7) 

𝑋gated,𝑖 = 𝑔𝑖⨀𝐻shared                                                                                                    (8) 170 

𝑌pre,𝑖 = 𝐿𝑆𝑇𝑀Task,𝑖(𝑋gated,𝑖)                                                                                     (9) 

where 𝑊gate,𝑖  and 𝑏gate,𝑖  represent the weights and biases of the gate layer for the 𝑖-th task, respectively, 𝜎  denotes the 

sigmoid activation function, and ⨀ represents element-wise multiplication. The gated features,⁡𝑋gated  were then fed into 

each task-specific layer to learn the features relevant to different output objectives. 𝑌pre,𝑖 represents the output of model task 

𝐿𝑆𝑇𝑀Task,𝑖 for the 𝑖-th task.  175 

The LSTM shared layer extracted global features from the time series and thus, provided a common representation for 

multitask learning. The task-specific layers, combined with the gate layer, effectively mitigated competition among tasks and 

enhanced the ability of the model to fit individual task objectives. Further, by dynamically controlling feature flow, the gate 

layer limited the impact of irrelevant information on the training process, thereby improving the stability and generalizability 

of the model. 180 

2.3 Evaluation Metrics 

To comprehensively assess the performance of the MdPL framework, we utilized a range of evaluation metrics to obtain 

insights regarding model accuracy, consistency, and predictive reliability. The metrics employed included the Root Mean 

Square Error (RMSE), which indicates the average difference between predicted and observed values, giving more weight to 

larger errors because of the squaring in its calculation. This metric was calculated according to Eq. (10) as shown below. 185 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1                                                                                    (10) 

where 𝑦𝑖 and 𝑦̂𝑖 represent observed and predicted values, respectively, and 𝑛 represents number of samples. Lower RMSE 

values were indicative of better model performance. The second metric used was standard deviation (STD), which provides a 

measure of the variability of the predicted values. It was determined according to Eq. (11) as follows: 

𝑆𝑇𝐷 = √
1

𝑛
∑ (𝑦𝑖̂ − 𝑦̂𝑖̅)

2𝑛
𝑖=1                                                                                                   (11) 190 
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where 𝑦̂𝑖̅ denotes the mean of the predicted values. A predicted STD closer to the observed STD implied that the model 

accurately captured the natural variability of the data. Further, correlation coefficient values, R, were calculated to capture 

the degree of linear correlation between the observed and predicted values. The values were calculated according to Eq. (12). 

𝑅 =
∑ (𝑦𝑖−𝑦̅𝑖)(𝑦𝑖̂−𝑦̂𝑖̅̅̅)
𝑛
𝑖=1

√∑ (𝑦𝑖−𝑦̅𝑖)
2𝑛

𝑖=1 √∑ (𝑦𝑖̂−𝑦̂𝑖̅̅̅)
2𝑛

𝑖=1

                                                                      (12) 

𝑅 values closer to 1 were indicative of a strong positive correlation, whereas values closer to -1 were indicative a strong 195 

negative correlation. Kling–Gupta efficiency (KGE), an advanced performance metric that combines correlation, bias, and 

variability into a single score (Gupta et al., 2009), was also employed in this study. It was determined according to Eq. (13). 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2                                                       (13) 

where 𝑟 represents correlation coefficient, 𝛽 represents the ratio of the mean predicted and observed values, and 𝛾 represents 

the ratio of the predicted and observed standard deviations. KGE values close to 1 were indicative of better performance. 200 

Nash–Sutcliffe efficiency (NSE), which provides a measure of how well predicted values match observed data relative to the 

baseline model, was also employed in this study. It was determined according to Eq. (14). 

NSE = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)
2𝑛

𝑖=1

                                                                                                  (14) 

NSE values close to 1 were indicative of a better fit, whereas negative values indicated that the mean of the observed data 

performs better than that of the model. 205 

2.4 Data and Experiments 

2.4.1 Data sources 

The PLUMBER2 dataset (PALS Land Surface Model Benchmarking Evaluation Project), a public framework for the 

standardized inter-comparison of LSMs and data-driven models, was used to simulate energy, water, and carbon fluxes 

across global ecosystems (Abramowitz et al., 2024). The dataset comprises: (1) meteorological forcings, (2) site attributes, 210 

(3) flux observations, and (4) model outputs spanning LSMs and data-driven methods (e.g., linear regression, ML, Deep 

Learning). Thus, it provides a comprehensive foundation for benchmarking. 

To ensure geographic and ecosystem diversity, we selected 20 globally distributed sites representing four PFTs: broadleaf 

evergreen forests (in this study, evergreen forests), mixed coniferous and broadleaf deciduous forests and woodlands 

(woodland), wooded and grassland (grassland), and cultivation sites (Details regarding these PFTs are provided in Table 1. 215 

Available half-hourly flux measurements, averaging 3 years of continuous data for each site, were also used. Site attributes 

included soil texture, vegetation classification, and geographic coordinates. To unify the influences of various variables on 

the neural network, the forcing and outputs were standardized using means and STDs. 

 

Table 1. Summary of the characteristics of the observation sites for different plant function types. 220 
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Plant function 

type 

Site 

name 

Location 

(lon, lat) 

Observation 

period 
Climate 

Country 

and region 

Broadleaf 

evergreen 

forest 

CN-Din 23.17, 112.54 2003 - 2005 Humid Subtropical China 

ID-Pag -2.32, 113.90 2002 - 2003 Tropical rain forest Indonesia 

PT-Esp 38.64, -8.60 2002 - 2004 SubTropical Portugal 

PT-Mi1 38.54, -8.00 2005 - 2005 SubTropical Portugal 

Mixed 

coniferous & 

broadleaf 

deciduous 

forest & 

woodland 

AR-SLu -33.46, -66.46 2010 -2010 SubTropical Argentina 

CN-Cha 42.40, 128.10 2003 - 2005 Temperate China 

DE-Meh 51.28, 10.66 2004 - 2006 Temperate Germany 

JP-SMF 35.26, 137.08 2003 - 2006 SubTropical Japan 

US-Bar 44.06, -71.29 2005 - 2005 Temperate USA 

Wooded & 

grassland 

AU-Emr -23.86, 148.47 2012 - 2013  Australia 

CN-Dan 30.85, 91.08 2004 - 2005 Arctic China 

CN-Du2 42.05, 116.28 2007 - 2008 Temperate China 

DK-Lva 55.68, 12.08 2005 - 2006 Temperate Denmark 

IE-Dri 51.99, -8.75 2003 - 2005 Temperate Ireland 

PL-wet 52.76, 16.31 2004 - 2005 Temperate Poland 

Cultivation 

land 

DE-Seh 50.87, 6.45 2008 - 2010 Temperate Germany 

DK-Fou 56.48, 9.59 2005 - 2005 Temperate Denmark 

IE-Ca1 52.86, -6.92 2004 - 2006 Temperate Ireland 

IT-BCi 40.52, 14.96 2005 - 2010 SubTropical Italy 

IT-CA2 42.38, 12.03 2012 - 2013 SubTropical Italy 

Note: The data shown are sourced from FLUXNET2015 (FLUXNET 2015 dataset for micrometeorological measurements), LaThuile 

(FLUXNET LaThuile 2007 synthesis dataset), and OzFlux (Australian and New Zealand flux research and monitoring networks) 

(Pastorello et al., 2020). Site names follow the FLUXNET/ICOS convention, using two-letter country codes and three-letter site 

abbreviations (e.g., CN-Din = Dinghushan, China). The climate classifications are based on the Köppen climate classification system: 

humid subtropical, Cfa/Cwa; tropical rainforest, Af; subtropical, Csa/Csb; temperate, Cfb/Cfa; and arctic, ET. Coordinates are presented as 225 

(longitudes and latitudes) in decimal degrees.  

 

We performed one-factor-at-a-time sensitivity analysis to identify model parameters with the most significant effects on heat 

fluxes. We tested all the PFT parameters included in the LSM ILS based on previously reported parameter ranges (Poulter et 

al., 2011, 2015). Each parameter was sampled at four uniformly spaced levels across its plausible range, and with all other 230 
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parameters held constant, each parameter was individually perturbed to drive 1-year ILS simulations of sensible and latent 

heat fluxes. Further, we computed the RMSE between default and perturbed flux simulations to rank parameter sensitivities, 

as shown in Fig. 2. Via this analysis, we identified the 12 parameters with the most significant impact on the outputs selected 

for calibration. 

 235 

Table 2. Key plant functional type parameters and their definitions, default values, and ranges. 

Parameters Explanation 
Default Value 

(Evergreen Forest) 

Default Value 

(Woodland) 

Default Value 

(Grassland) 

Default Value 

(Cultivation) 
Unit Range 

vegh Vegetation height 35 20 1 1 m [0.5, 40] 

rlfv Leaf albedo (visible) 0.1 0.07 0.11 0.11 - 
[0.05, 

0.3] 

rlfn 
Leaf albedo(near-

infrared) 
0.45 0.4 0.58 0.58 - 

[0.3, 

0.7] 

tlfn 
Leaf trans. (near-

infrared) 
0.25 0.15 0.25 0.25 - 

[0.1, 

0.5] 

vgcov Vegetation coverage 1 1 1 1 - [0.1, 1] 

cdl 
Leaf Exchange 

coefficient (vapor) 
0.11 0.111 9.82d-2 0.098 s m-2 

[0.01, 

0.5] 

chl 
Leaf Exchange 

coefficient (thermal) 
0.0274 0.0277 2.46d-2 0.0246 s m-2 

[0.01, 

0.1] 

vmax0 
Maximum Rubisco 

capacity 
6.00E-05 6.00E-05 6.00E-05 6.00E-05 

mol m-

2 s-1 

[1e-6, 

1e-4] 

gradm 
Stomatal conductance 

slope 
9 7.5 4 9 - [1, 20] 

binter 
Minimum stomatal 

conductance 
0.01 0.01 0.04 0.01 

mol m-

2 s-1 

[0.001, 

0.1] 

effcon 
Intrinsic quantum 

efficiency 
0.08 0.08 0.05 0.08 

Mol 

mol-1 

[0.01, 

0.2] 

psicr 
Critical water 

potential 
-200 -200 -200 -200 kPa 

[-500, -

50] 
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Figure 2. Comparison of average RMSEs between default and perturbed flux simulations for sensible and latent heat fluxes across 

PFT parameters(PLUMBER2, ES-LgS Site). The parameters in bold indicate calibration targets. 240 

 

A pre-training dataset was generated using the same perturbation strategy that was applied in the sensitivity analysis to 

enable the surrogate model better capture parameter information. We perturbed the 12 calibration parameters listed in Table 

2 and concatenated the simulation results from this perturbed dataset with those generated using the default parameter set. 

MdPL training was performed using the PyTorch framework on an NVIDIA A100 GPU. The LSM simulations were 245 

supported by an Intel Xeon Gold 6126 CPU utilizing six nodes for parallel processing.  

2.4.2 ILS 

The land surface model used in this study was an ILS specifically designed to simulate the interactions between the 

terrestrial surface and the atmosphere (Guo et al., 2021; Nitta et al., 2020). This ILS offered the possibility to evaluate the 

performance of the calibrated parameters and was used to conduct sensitivity analysis experiments. 250 

2.4.3 Experiments 

To comprehensively validate the performance and interpretability of the proposed multitask surrogate model in terms of 

accuracy and adaptability, we designed two experiments focusing on parameter calibration. Further, to evaluate its 

transferability, we applied LOOCV, with each site excluded from validation while training the remaining sites (Lumumba et 

al., 2024).  255 
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Experiment 1 was performed to verify the performance of the multiple-task surrogate model with respect to parameter 

calibration. We this experiment involved 20 PLUMBER2 sites spanning four PFTs: evergreen forest, woodland, grassland, 

and cultivation. Further, a subset of four evergreen forest sites was used to compare the multitask surrogate with a single-

task dPL surrogate. The models were trained within the dPL framework but with different architectures. 

Multiple-task surrogate model: 260 

• Shared layer: 4-layer LSTM with a hidden size of 128. 

• Task-specific layer: 2-layer LSTM with a hidden size of 128. 

• Time sequence length: 48-time steps (representing 2 days of data). 

• Total trainable parameters: 1,096,962. 

Single-task surrogate model 265 

• 6-layer LSTM with a hidden size of 190. 

• Time sequence length: 48-time steps. 

• Total trainable parameters: 980,400. 

Parameter generator, 𝑔𝑧  

• 4-layer LSTM with a hidden size of 128. 270 

• Time sequence length: 48-time steps. 

As described in Sect. 2.4.1, we combined default and perturbed-parameter ILS outputs to obtain a surrogate training dataset. 

Both surrogate models were trained for 200 epochs using the Adam optimizer, with the learning rate (lr) set at 0.005. For the 

multiple-task surrogate model, a rolling training strategy in which the learning rate for the shared layer was set to one-third 

of the base learning rate (i.e., 0.005/3), was employed. 275 

To train 𝑔𝑧, forcing, flux observations, and site attributes were used as inputs, employing the same optimizer settings (Adam 

optimizer lr = 0.005 and 2000 epochs) as were employed for the surrogate models. The calibrated parameters were then fed 

into the ILS to simulate sensible and latent heat fluxes, which thereafter, were compared to observational data using RMSE 

and Pearson’s R to quantify calibration gains. This experiment highlighted the ability of the MdPL to enhance calibration 

across PFTs by leveraging shared representations without sacrificing task-specific accuracy. 280 

Experiment 2 was performed to benchmark the MdPL-calibrated ILS against standard LSMs and data-driven approaches. 

The goals of this experiment was to: (1) test whether a deep-learning-calibrated physical model can exceed pure ML 

accuracy and (2) evaluate MdPL-calibrated ILS against established LSMs. Thus, we used the PLUMBER2 outputs from 16 

sites to perform this comparison. Four sites (AR-SLu, CN-Din, PT-Mi1, and JP-SMF) without LSTM benchmarks were 

omitted. Thus, we evaluated: 285 

1. ILS_MdPL (MdPL-calibrated ILS) 

2. ILS_ORI (default ILS) 

3. CLM5 (NCAR, 2020) 
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4. JULES (McNeall et al., 2024) 

5. GFDL (Shevliakova et al., 2024) 290 

6. Noah (Ek et al., 2003) 

7. LSTM (Hochreiter & Schmidhuber, 1997) 

For SFE, a total of 10 sites (DE-Meh, DK-Lva, IE-Dri, DK-Fou, DE-Seh, IE-Ca1, AU-Emr, PL-wet, IT-BCi, and IT-CA2) 

were used for comparison given that the method requires observed ground heat flux data to calculate latent and sensible heat 

fluxes, which are not available for all sites in the PLUMBER2 dataset. The calibrated and default versions of the ILS and 295 

other models were evaluated using the same inputs and outputs (sensible and latent heat fluxes) for direct comparison. 

Additionally, by comparing ILS_dPL with other LSMs and LSTM, we demonstrated the potential of the calibrated LSM to 

outperform purely deep-learning approaches. 

Additionally, in experiment 3 we evaluated the transferability of MdPL via leave-one-out cross-validation within each of the 

three PFT categories (evergreen forest, woodland and cropland). In each iteration, one site was withheld and the calibrated 300 

parameter vectors from all other sites of the same PFT were averaged to form an ensemble mean. To avoid bias from 

parameters exhibiting large inter-site variability (namely vegh and vgcov), these two were held at their default values rather 

than the ensemble mean. Finally, this hybrid parameter set was used to drive ILS at the held-out site, and the resulting 

performance quantified the extent to which an ensemble-derived mean can be transferred to an ungauged location within that 

PFT category. 305 

3 Results and discussion 

3.1 Site-specific Parameter Calibration 

The calibrated parameters were fed into the ILS to simulate sensible and latent heat fluxes, and the simulation results before 

and after calibration were compared with observation data. Fig. 3 shows Taylor diagrams for the normalized RMSEs, R 

values, and normalized STDs for all sites against observation data. The parameter calibration results for each site are 310 

presented in Table A1-A4. 
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Figure 3. Taylor diagrams showing normalized RMSEs, R, and normalized STDs for sensible heat and latent heat 

outputs across all sites. (a) Sensible heat simulations for four PFT sites. (b) Latent heat simulations. OBS, 

observations of sensible and latent heat; ILS_ORI, outputs from ILS with default PFT parameters; ILS_MdPL, 315 

outputs from ILS with PFT parameters corrected using MdPL; ∆, percentage change. 

Considering default PFT parameters across all sites, Fig. 3(a) shows that MdPL calibration significantly improved model 

performance. The most significant decrease in RMSE was observed for evergreen forest sites, with the average reduction 

rate at 24%, whereas a minor reduction rate was observed for grassland sites, with the RMSE only decreasing slightly at 

7.72%. Further, cultivation sites exhibited the highest improvement in R (3.02%), whereas woodland showed the lowest 320 

increase (1.2%). Furthermore, the normalized STDs for sensible heat outputs at most sites were closer to the observed 

values, demonstrating that the MdPL significantly enhanced the performance of the complex model in sensible heat 

simulations. 

Figure 3(b) shows latent heat simulation results. From this figure, it is evident that RMSEs decreased across all sites, with 

evergreen forest sites showing the most significant reduction (20.01%), whereas woodland sites only showed minor 325 

reduction (8.74%). Further, while other PFTs showed improvements in R values (e.g., 7.05%, 2.66%, and 1.2% for 

evergreen forest, woodland, and grassland sites, respectively), the R value for cultivation sites decreased significantly (-

4.77%). This observation could be explained as follows: 

1. Model parameters for R were not optimized given that the model did not explicitly include the loss function during 

calibration. 330 

2. Human activities and seasonal changes strongly influence PFT parameters at cultivation sites. Given that the ILS 

model uses fixed PFT parameters rather than dynamic parameters over time, it failed to accurately capture the 

temporal variability of latent heat fluxes. 

Nevertheless, the overall trend demonstrated that the MdPL framework consistently showed improved performance across 

most sites and output variables, confirming its efficacy in parameter calibration in LSMs. Additionally, relative to previous 335 

studies that primarily focused on a single watershed or specific vegetation types, the MdPL framework employed in this 

study covered four major PFTs and 20 sites, demonstrating its robustness across diverse scenarios. 

3.2 Comparison of Multiple Task and Single Task Surrogate Models 

To validate the superior performance of the Multiple Task surrogate model (ILS_MdPL) relative to the Single Task 

surrogate model (ILS_dPL), we selected four evergreen forest sites and performed parameter calibration using both 340 

approaches. The evaluation metrics obtained (Table 3) indicated that both models outperformed the default parameter set in 

terms of RMSE and R. For sensible heat, the average RMSE obtained for ILS_MdPL was slightly higher than that obtained 

for the ILS_dPL. However, ILS_MdPL showed a lower RMSE for latent heat than ILS_dPL. For R, ILS_MdPL 

outperformed ILS_dPL in terms of both sensible and latent heat fluxes. These observations indicated that even after sharing 
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parameters across multiple tasks, ILS_MdPL still maintained strong collaborative effects between key variables, excelling in 345 

latent heat flux simulations. The parameter calibration results for each site are presented in Table S5. 

 

Table 3. Evaluation metrics (RMSE and R) for parameter calibration performance based on the ILS_MdPL and ILS_dPL 

frameworks at four evergreen forest sites.  

Site 

Name 

ILS_ORI ILS_MdPL ILS_dPL 

RMSE R RMSE R RMSE R 

Sensible 

heat 

(W m-2) 

Latent 

heat 

(W m-2) 

Sensible 

heat 

Latent 

heat 

Sensible 

heat 

(W m-2) 

Latent 

heat 

(W m-2) 

Sensible 

heat 

Latent 

heat 

Sensible 

heat 

(W m-2) 

Latent 

heat 

(W m-2) 

Sensible 

heat 

 

Latent 

heat 

 

CN-Din 47.49 58.06 0.84 0.78 37.26 48.3 0.84 0.81 37.21 54.73 0.82 0.74 

ID-Pag 52.38 60.26 0.85 0.87 24.37 39.78 0.92 0.96 23.74 40.46 0.91 0.95 

PT-Esp 70.09 43.62 0.78 0.77 66.65 39.11 0.82 0.80 63.15 40.24 0.83 0.78 

PT-Mi1 55.43 27.12 0.92 0.63 43.01 24.03 0.92 0.71 41.61 22.57 0.92 0.62 

Mean 56.35 47.26 0.85 0.76 42.82 37.8 0.88 0.82 41.43 39.5 0.87 0.77 

Note: The comparison of model performance with respect to the simulation of sensible heat and latent heat fluxes was relative to the 350 

default parameter set (ILS_ORI). 
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Figure 4. Cumulative distribution functions (CDFs) of daily NSE and KGE for sensible and latent heat outputs across all sites. (a) 

NSE- and (b) KGE-based sensible heat flux performance comparison between multi-task (ILS_MdPL) and single-task (ILS_dPL) 355 

surrogate models. (c) NSE- and (d) KGE-based latent heat flux performance comparison between multi-task (ILS_MdPL) and 

single-task (ILS_dPL) surrogate models. The curves on the right in both panels represent better performing models. 

 

To assess the performance of the models with respect to hydrological metrics, we plotted a graph to show the cumulative 

distribution function (CDF) of daily NSE and KGE, as shown in Fig. 4. Regarding sensible heat, the performances of 360 

ILS_MdPL and ILS_dPL were relatively similar. Specifically, in the low NSE range (-0.2 to 0.45) and low KGE range (-0.2 

to 0.2), ILS_MdPL outperformed ILS_dPL, indicating superior robustness for ILS_MdPL in lower-accuracy simulations. 

For latent heat, the performance of ILS_dPL was lower than that of the default parameter set, ILS_ORI. However, the CDF 

curves of ILS_MdPL shifted further to the right, implying that it exhibited good scalability and could adapt to multiple 

variable requirements. Thus, it showed an enhanced ability to comprehensively fit complex systems. 365 
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In summary, the multiple-task surrogate model was advantageous in terms of parameter calibration, particularly in multi-

output scenarios, showing higher stability and flexibility and demonstrating a high potential for application in parameter 

calibration in complex LSMs. 
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3.3 Comparative Evaluation of Calibrated ILS and Widely Used LSMs Against LSTM 

 370 

Figure 5. Comparison of RMSEs for sensible and latent heat fluxes across methods and resolutions. (a) Box plots of RMSE 

distributions for sensible heat flux. The number of LSM and SFE sites were 16 and 10, respectively. (b) Box plots showing the 
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distribution of RMSEs for latent heat flux. The number of LSM and SFE sites were 16 and 10, respectively. The yellow line 

represents the median. The upper and lower box boundaries indicate 75% and 25% interquartile ranges, respectively. 

Figure 5 shows the distribution of RMSEs across different time resolutions. In this study, we primary focused on comparing 375 

the calibrated land surface model (ILS_MdPL) with the deep learning-based surrogate model (LSTM), as this comparison 

provided more insightful implications than those obtained by merely comparing calibrated and uncalibrated LSMs. 

At the finest time resolution (30 min), ILS_MdPL and LSTM exhibited nearly identical RMSEs, but as the temporal 

resolution became coarser (from hourly to yearly time intervals), the advantages of the ILS_MdPL became more 

pronounced. Notably, it consistently outperformed the LSTM, showing lower RMSEs for both sensible and latent heat 380 

fluxes, highlighting the robustness of this physically constrained calibration approach, particularly at larger temporal scales. 

The difference in latent heat flux was even more substantial. At temporal resolution of 30 min, ILS_MdPL achieves a lower 

RMSE (41.45 W m-2) than LSTM (44.02 W m-2), and this difference widened as the time resolution increased, emphasizing 

the strength of ILS_MdPL in capturing the complex variability of latent heat via physically meaningful calibration. 

Regarding sensible heat, the accuracy of SFE was similar to that of ILS_MdPL. However, for latent, it performed poorly at 385 

high-frequency resolutions (e.g., 30 min), but shows considerable improvement as the resolution increased. Specifically, at 

the monthly scale, its performance in predicting sensible heat ranked second only to that of ILS_MdPL, implying that it 

outperformed all the other traditional LSMs. This observation suggested that even purely empirical models, such as SFE, can 

be competitive at aggregated scales, possibly owing to their ability to exploit large-scale patterns without physical 

complexity. 390 

In summary, all the evaluation metrics and time resolutions consistently demonstrated the effectiveness and robustness of the 

proposed MdPL calibration method. Relative to the default parameter set and several widely used LSMs, the ILS_MdPL 

framework showed a significantly improved model accuracy, particularly in reproducing both sensible and latent heat fluxes. 

While LSTM showed competitive performance at fine temporal resolutions, its advantages diminished at coarser scales, with 

the physically constrained ILS_MdPL showing superior performance by a notable margin. Even though empirical methods, 395 

such as the SFE, show limited performance in capturing high-frequency dynamics, their performance at aggregated time 

scales suggested that they have potential for use in simplified large-scale assessments. Overall, the proposed approach 

balanced physical interpretability, multi-output calibration capability, and computational efficiency, offering a promising 

direction for advancing land surface modeling and parameter calibration frameworks. 

3.4 Transferability of MdPL Parameter Calibrations 400 

To assess the transferability and generalizability of MdPL-derived parameter calibrations, we separately performed leave-

one-out cross-validation (ILS_MdPL_LOOCV) for three PFT classes: evergreen forest (n = 4; PT-Mi1, CN-Din, ID-Pag, 

PT-Esp), Woodland (n = 5; AR-SLu, DE-Meh, US-Bar, JP-SMF, UK-PL3), and Cultivation land (n = 3; DK-Fou, IE-Ca1, 

DE-Seh), and reported all monthly KGE results as mean ± STD over the corresponding n experiments. Thereafter, each 

LOOCV-derived parameter set was used to drive ILS simulations, and the resulting mean ± STD values of monthly KGE for 405 
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sensible heat and latent heat fluxes were compared against the KGE values obtained for both the original ILS 

parameterization (ILS_ORI) and site-specific MdPL parameterization (ILS_MdPL), as summarized in Table 4. 

 

Table 4. Mean ± STD of KGE values for sensible heat and latent heat fluxes simulated using the: (1) original ILS parameter set 

(ILS_ORI), (2) leave-one-out–calibrated MdPL (ILS_MdPL_LOOCV), and (3) site-specific MdPL (ILS_MdPL), averaged over 410 

LOOCV experiments (n = 4 for Evergreen forest; n = 5 for Woodland; n = 3 for Cultivation sites). 

 Sensible heat Latent heat 

 ILS_ORI 
ILS_MdPL_L

OOCV 
ILS_MdPL ILS_ORI 

ILS_MdPL_LOOC

V 
ILS_MdPL 

Evergreen 

Forest (n 

= 4) 

-0.05±0.98 0.32±0.40 0.42±0.47 0.30±0.40 0.63±0.17 0.73±0.05 

Woodland 

(n = 5) 
0.29±0.24 0.32±0.18 0.45±0.38 0.65±0.21 0.54±0.20 0.63±0.18 

Cultivatio

n (n = 3) 
-0.29±0.66 -0.40±0.39 0.49±0.13 -0.38±1.03 -0.65±1.28 0.42±0.42 

 

For evergreen forest sites, LOOCV-derived parameters generated higher monthly KGE values than ILS_ORI for both 

sensible (0.32 vs. -0.05) and latent (0.63 vs. 0.3) heat fluxes, even though both remained below the ILS_MdPL-based values. 

Woodland sites exhibited comparable KGE values between ILS_MdPL_LOOCV and ILS_ORI for both fluxes (0.32 vs. 0.29 415 

for sensible heat; 0.54 vs. 0.65 for latent heat). In contrast, cultivation sites showed a negative mean KGE under both 

ILS_ORI and LOOCV, whereas ILS_MdPL achieved values higher than 0.4, demonstrating poor transferability for this PFT. 

These findings indicated that MdPL-derived parameters transfer effectively among relatively stable and natural PFTs 

(Evergreen forest and Woodland), but are hindered in heavily managed systems, such as cultivation, characterized by greater 

environmental and management heterogeneity (Martin & Isaac, 2018). 420 
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Figure 6. Comparison of monthly-scale KGE values for ILS_ORI, ILS_MdPL_LOOCV, and ILS_MdPL across Evergreen Forest 

site PT-Mi1, Woodland site AR-SLu, and Cultivation Site DE-Seh. 

Figure 6 shows monthly KGE curves for ILS_ORI, ILS_MdPL_LOOCV, and ILS_MdPL across the three PFT sites 

considered. For evergreen forests and woodlands, the performance ranking consistently followed the trend: ILS_ORI < 425 

LOOCV < MdPL, with LOOCV showing a narrow gap between observations, and MdPL providing the closest fit. 

Conversely, for cultivation sites, ILS_ORI and LOOCV curves overlapped in the negative-KGE regime, while the sensible 

heat simulation performance of MdPL increased to approximately 0.4, underscoring the difficulty of parameter transfer in 

agricultural systems. This systematic decline in transferability from forests to cultivation land could be attributed to land 

management heterogeneity, phenological variability, and environmental heterogeneity, which limit model generalization 430 

(Hoppe et al., 2024). Overall, these findings underscore the fact that the benefits of data-driven calibration are contingent on 

the intrinsic transferability of the site characteristics embedded within the training data. 

Despite these promising results, this study had some limitations. First, the current calibration primarily targeted energy 

fluxes (sensible and latent heat), whereas other critical LSM outputs, such as surface temperature and soil moisture content, 

were not evaluated. Additionally, the ILS model employed fixed PFT parameters, which may not adequately reflect temporal 435 

variability in vegetation, particularly for cultivation sites influenced by human management activities. The increased 

complexity of the multitask surrogate model, even though beneficial in terms of performance, may also pose challenges in 

terms of computational cost and overfitting in data-scarce regions. Finally, the systematic decline in transferability from 

forests to cultivation sites highlighted a key limitation of the MdPL: the benefits of data-driven calibration depend critically 

on the intrinsic similarity of the site characteristics represented in the training data. 440 

https://doi.org/10.5194/egusphere-2025-3301
Preprint. Discussion started: 21 August 2025
c© Author(s) 2025. CC BY 4.0 License.



23 

 

4. Conclusion 

In this study, we introduced MdPL, a deep-learning-based calibration framework that couples a multitask neural surrogate 

with a differentiable parameter generator to improve LSM performance. The application to this framework to 20 

PLUMBER2 sites spanning four PFTs (evergreen forest, woodland, grassland, cultivation) achieved substantial gains: a 15% 

reduction in RMSE for sensible and latent heat fluxes relative to the default model, and accuracy similar to or superior to 445 

those of leading LSMs (CLM5, JULES, Noah, GFDL), and an LSTM benchmark. Via one-factor-at-a-time sensitivity 

analysis, the 12 most influential parameters were identified, and LOOCV experiments showed robust transferability for 

forests and woodlands. However, transferability performance for cultivation sites was limited by fixed PFT representations. 

Regardless of this limitation, the proposed model offers a scalable and efficient approach for enhancing parameter 

calibration in LSMs. In future, it will be necessary to focus on integrating dynamic vegetation processes, expand calibrated 450 

outputs to include hydrological and thermal variables, and evaluate the model generalizability under extreme climatic events 

and broader spatial domains. Additionally, reducing computational cost while maintaining interpretability and physical 

consistency will be key to operationalizing this framework in large-scale Earth system modeling efforts. 

 

Appendix A 455 

Table A1. MdPL parameter calibration results for Evergreen Forest. Numbers shown in bold font exceed the specified lower or upper 

limits and have been set to the corresponding bound. 

  
Evergreen Forest default CN-Din ID-Pag PT-Esp PT-Mi1 

vegh 35 20.22 16.30 6.60 0.5 

rlfv 0.1 0.03 0.05 0.05 0.16 

rlfn 0.45 0.42 0.36 0.34 0.63 

tlfn 0.25 0.33 0.19 0.14 0.25 

vgcov 1 0.96 0.79 0.11 0.84 

cdl 0.11 0.37 0.36 0.29 0.41 

chl 0.0274 0.01 0.01 0.01 0.0131 

vamx0 6.00E-05 1.23E-05 -9.35E-06 4.36E-05 2.15E-06 

gradm 9 10.93 1.40 1 3.98 

binter 0.01 0.001 0.07 0.02 0.01 

effcon 0.08 0.01 0.01 0.03 0.06 

psicr -200 -272.41 -541.77 -313.03 -115.21 
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Table A2. MdPL parameter calibration results for Cultivation. Numbers shown in bold font exceed the specified lower or upper limits and 

have been set to the corresponding bound. 460 

  

Cultivation default DK-Fou DE-Seh IE-Ca1 IT-CA2 DK-Ris IT-Bci 

vegh 1 0.5 2.06 2.19 0.5 1.66 1.13 

rlfv 0.11 0.11 0.14 0.07 0.18 0.04 0.04 

rlfn 0.58 0.23 0.45 0.22 0.33 0.32 0.30 

tlfn 0.25 0.19 0.30 0.1 0.23 0.1 0.13 

vgcov 1 0.49 0.78 0.86 0.86 0.39 0.82 

cdl 0.098 0.212 0.310 0.442 0.252 0.261 0.110 

chl 0.0246 0.0324 0.0152 0.01 0.0268 0.0124 0.0432 

vamx0 6.00E-05 2.73E-05 6.57E-05 1.00E-6 5.41E-05 3.72E-05 5.04E-05 

gradm 9 4.69 13.30 9.54 10.61 7.10 11.01 

binter 0.01 0.001 0.07 0.001 0.05 0.01 0.05 

effcon 0.08 0.06 0.01 0.04 0.06 0.11 0.03 

psicr -200 -370.56 -237.23 -367.18 -171.21 -317.93 -215.11 
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Table A3. MdPL parameter calibration results for Grassland. Numbers shown in bold font exceed the specified lower or upper limits and 

have been set to the corresponding bound. 

 

 465 

 

 

 

 

 470 

 

 

 

 

 475 

 

 

 

 

 480 

  

Grassland default AU-Emr DK-Lva PL-wet CN-Dan CN-Du2 IE-Dri 

vegh 1 0.5 6.59 3.01 0.63 0.5 0.61 

rlfv 0.11 0.05 0.17 0.05 0.05 0.05 0.12 

rlfn 0.58 0.3 0.41 0.3 0.43 0.33 0.43 

tlfn 0.25 0.1 0.27 0.1 0.15 0.1 0.20 

vgcov 1 0.40 0.59 0.53 0.57 0.57 0.71 

cdl 9.82d-2 0.01 0.270 0.081 0.242 0.146 0.207 

chl 2.46d-2 0.01 0.0600 0.01 0.0106 0.0327 0.01 

vamx0 6.00E-05 1.00E-6 1.00E-6 2.81E-05 4.85E-05 4.51E-05 2.22E-05 

gradm 4 4.67 1.05 5.51 9.84 8.62 5.05 

binter 0.04 0.001 0.02 0.04 0.04 0.04 0.06 

effcon 0.05 0.02 0.12 0.08 0.07 0.04 0.07 

psicr -200 -490.19 -258.58 -484.86 -243.03 -327.12 -269.51 
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Table A4. MdPL parameter calibration results for Woodland. Numbers shown in bold font exceed the specified lower or upper limits and 

have been set to the corresponding bound.  

Woodland default AR-SLu JP-SMF UK-PL3 CN-Cha DE-Meh US-Bar 

vegh 20 5.60 27.23 0.5 1.28 4.44 27.86 

rlfv 0.07 0.05 0.05 0.05 0.05 0.12 0.05 

rlfn 0.4 0.3 0.40 0.36 0.42 0.42 0.42 

tlfn 0.15 0.25 0.1 0.1 0.19 0.1 0.12 

vgcov 1 0.63 0.71 0.60 0.99 1.00 0.90 

cdl 0.111 0.134 0.387 0.206 0.108 0.275 0.337 

chl 0.0277 0.01 0.01 0.0110 0.0216 0.0291 0.0320 

vamx0 6.00E-05 1.00E-6 6.25E-05 2.47E-05 5.83E-05 3.17E-05 7.73E-06 

gradm 7.5 7.65 3.99 4.80 10.35 3.63 1 

binter 0.01 0.001 0.05 0.02 0.03 0.02 0.01 

effcon 0.08 0.14 0.03 0.04 0.04 0.07 0.01 

psicr -200 -123.19 -187.25 -581.03 -244.42 -496.00 -389.32 
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Table A5. dPL parameter calibration results for Evergreen Forest. Numbers shown in bold font exceed the specified lower or upper limits 

and have been set to the corresponding bound. 485 

Evergreen Forest 

From dPL 
default CN-Din ID-Pag PT-Esp PT-Mi1 

vegh 35 24.26 3.21 20.87 3.88 

rlfv 0.1 0.08 0.15 0.02 0.14 

rlfn 0.45 0.41 0.41 0.34 0.41 

tlfn 0.25 0.26 0.19 0.21 0.27 

vgcov 1 0.61 0.82 0.22 0.58 

cdl 0.11 0.39 0.21 0.35 0.44 

chl 0.0274 0.01 0.01 0.0155 0.0123 

vamx0 6.00E-05 5.55E-05 1.55E-05 6.51E-05 -8.14E-07 

gradm 9 3.82 1 6.09 0.66 

binter 0.01 0.01 0.05 0.03 0.00 

effcon 0.08 0.01 0.01 0.07 0.08 

psicr -200 -294.71 -556.66 -276.42 -410.23 

 

Data Availability 

The PLUMBER2 benchmarking dataset used for model evaluation is publicly available at the Australian Research Data 

Commons: https://researchdata.edu.au/plumber2-forcing-evaluation-surface-models/1656048. The underlying 

FLUXNET2015, LaThuile and OzFlux tower data are provided at https://fluxnet.org/. All data generated and analyzed 490 

during this study are publicly available in the Zenodo repository at https://doi.org/10.5281/zenodo.15753067. Detailed 

instruction are provided in the repository README. These resources are released under a CC-BY 4.0 license. 

 

Code Availability 

All custom code for data preprocessing, model training, ILS simulation, calibration experiments, and figure generation is 495 

publicly available at Zenodo: https://doi.org/10.5281/zenodo.15748737. Detailed instructions, environment specification, 

and scripts are provided in the repository README. 
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