

1 Quantifying Temperature-sliding Inconsistency in Thermomechanical Coupling: A
2 Comparative Analysis of Geothermal Heat Flux Datasets at Totten Glacier

3
4 Junshun Wang¹, Liyun Zhao¹, Michael Wolovick^{2,3}, John C. Moore⁴

5 ¹State Key Laboratory of Earth Surface Processes and Hazards Risk Governance
6 (ESPHR), Faculty of Geographical Science, Beijing Normal University, Beijing
7 100875, China

8 ²Center for Industrial Mathematics (ZeTeM), University of Bremen, Bremen, Germany

9 ³Glaciology Section, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
10 Meeresforschung, Bremerhaven, Germany

11 ⁴Arctic Centre, University of Lapland, Rovaniemi, Finland

12 *Correspondence:* Liyun Zhao (zhaoliyun@bnu.edu.cn), John C. Moore
13 (john.moore.bnu@gmail.com)

14
15
16
17 **Abstract.** Rapid sliding of ice sheets requires warm basal temperatures and lubricating
18 basal meltwater, whereas slow velocities typically correlate with a frozen bed. However,
19 ice sheet models often infer basal sliding by inverting surface velocity observations
20 with the vertical structure of temperature and hence rheology held constant. If the
21 inversion is allowed to freely vary sliding over the model domain, then inconsistencies
22 between the basal thermal state and ice motion can arise lowering simulation realism.
23 In this study, we propose a new method that quantifies inconsistencies when inferring
24 thawed and frozen-bedded regions of ice sheets. This method can be used to evaluate
25 the quality of ice sheet simulation results without requiring any englacial or subglacial
26 measurements. We apply the method to evaluate simulation results for Totten Glacier
27 using an isotropic 3D full-Stokes ice sheet model with eight geothermal heat flux (GHF)
28 datasets and compare our evaluation results with inferences on basal thermal state from
29 radar specularity. The rankings of GHF datasets based on inconsistency are closely
30 aligned with those using the independent specularity content data. Examples of the
31 method utility are 1. an overcooling inconsistency with all GHFs near the western
32 boundary of Totten Glacier between 70°S-72°S, where there is a bedrock canyon and
33 fast surface ice velocities, suggesting that all GHFs are low; 2. an overheating
34 inconsistency in the eastern Totten Glacier with all GHFs suggesting overestimation of
35 ice temperature due, in this case, to a warm bias in the surface temperature. Our
36 approach opens a new avenue for assessing the self-consistency and reliability of ice
37 sheet model results and GHF datasets, which may be widely applicable.

38 **1. Introduction**

39 Ice sheet models are an important tool for projections of ice sheet mass balance
40 and their contribution to sea level rise. Ice sheet models are usually initialized by “spin-
41 up” or data assimilation such that they reproduce the present-day geometry or surface
42 velocity of an ice sheet (Seroussi et al., 2019). Often ice sheet model simulations derive
43 ice dynamics using ice temperatures taken from other studies (e.g., Gillet-Chaulet et al.,
44 2012; Cornford et al., 2015; Pittard et al., 2016; Siahaan et al., 2022). In thermo-
45 mechanically coupled ice sheet simulations, the ice sheet model is usually spun up with
46 idealized temperature-depth profiles and then run in a thermo-mechanically coupled
47 mode constrained by geothermal heat flux (GHF) and surface ice temperature fields
48 (Seroussi et al., 2019). While advances in satellite and field observation technologies
49 have led to a preliminary consensus on ice sheet geometry and surface ice temperature,
50 significant uncertainties persist in basal boundary conditions, including GHF and basal
51 friction, since reliable observational data are scarce. These basal properties introduce
52 significant uncertainty in the simulated ice sheet dynamics, and thus ice sheet mass
53 balance.

54 The GHF, the heat flow from the Earth's crust to the base of ice sheet, is a critical
55 variable in the basal boundary condition for simulating the ice temperature profile, and
56 hence ice rheology and flow dynamics (Fisher et al., 2015; Smith - Johnsen et al., 2020;
57 Reading et al., 2022). Several GHF datasets exist, derived in various ways from
58 geophysical observations and models, and they exhibit significant variability in both
59 spatial distribution and magnitude (e.g., An et al., 2015; Dziadek et al., 2017; Martos et
60 al., 2017; Shen et al., 2020; Stål et al., 2021). These GHF datasets have been widely
61 used in thermodynamic simulations of Antarctica (e.g., McCormack et al., 2022;
62 Shackleton et al., 2023; Park et al., 2024; Van Liefferinge et al., 2018). However,
63 assessing the GHF field accuracy is problematic because in situ measurements such as
64 boreholes are sparse. Few studies have assessed the quality and reliability of GHF
65 datasets over specific regions. Kang et al. (2022) employed a combination of forward
66 model and inversion using a 3D full-Stokes ice flow model to simulate the basal thermal
67 state in the Lambert–Amery Glacier region and evaluate different GHFs using the
68 locations of subglacial lakes, but the constraints used were asymmetric between frozen
69 and thawed beds, and assigned inflated reliability to the warmer GHF maps. Indirect
70 estimates of basal conditions have used airborne radar specularity content (Schroeder
71 et al., 2013, 2015; Young et al., 2016) as proxies for basal wetness/dryness and thermal
72 regime (Dow et al., 2020). Huang et al. (2024) used an inverse modeling approach
73 similar to that of Kang et al. (2022) for Totten Glacier and combined this with measured
74 radar specularity content to derive a two-sided constraint on the basal thermal state in
75 addition to subglacial lakes locations. However, specularity content is not yet available
76 for many regions of Antarctica.

77 The basal friction field is another poorly known boundary condition in ice sheet
78 modeling, and a key source of uncertainty in the long-term projection of ice sheets and
79 glaciers. Although basal slip is crucial to the 3D ice flow, it is difficult to observe.
80 Several basal sliding parameterizations have been proposed and widely used
81 (Weertman, 1957; Kamb, 1970; Nye, 1970; Budd et al., 1979; Fowler, 1981; Schoof,
82 2005; Gagliardini et al., 2007; Gladstone et al., 2014; Tsai et al., 2015; Brondex et al.,
83 2017, 2019). The linear Weertman basal sliding parameterization is the most widely
84 used due to its simple form. Given prescribed or modelled ice temperatures and hence
85 ice viscosity, numerous studies have inferred the spatial distribution of the basal friction
86 coefficient over grounded ice to best match observed present-day surface ice velocities
87 or ice sheet geometry using snapshot or time-dependent data assimilation and inverse
88 methods (MacAyeal, 1993; Gillet-Chaulet et al., 2012; Larour et al., 2012; Pollard and
89 DeConto, 2012; Morlighem et al., 2013; Pattyn, 2017; Albrecht et al., 2020; Lipscomb
90 et al., 2021; Choi et al., 2023). However, such inversions typically allow the friction
91 coefficient to vary freely to match the surface velocity observations. This can
92 potentially lead to conflicts with the temperature field used during the inversion. For
93 instance, relatively fast surface ice velocity may demand basal sliding in areas where
94 the basal temperatures are below the local pressure melting point. However, many
95 studies overlook this aspect, and use the inversion results to initialize ice sheet
96 dynamics simulations and estimate glacier mass balance and its contribution to sea level
97 rise (Seroussi et al., 2019; Peyaud et al., 2020; Schannwell et al., 2020; Payne et al.,
98 2021).

99 For this study, we define the inconsistencies as differences between a sliding
100 inversion and the temperature/rheology field used as an input to that inversion. More
101 specifically, the inconsistencies are between modelled basal sliding (which is tuned to
102 match the observed fast surface velocity during the inversion) and modelled frozen bed,
103 and between observed slow surface velocity (which is most likely indicative of a non-
104 slip basal condition) and modelled thawed bed. The inconsistencies originate from
105 multiple causes, including uncertainties in GHF, surface ice temperature, ice sheet
106 geometry, bed topography, surface velocity, ice density and incomplete ice flow
107 mechanics.

108 To the best of our knowledge, there has been no study of such inconsistencies.
109 Here we develop a novel and generally applicable method to estimate this inconsistency
110 without relying on basal observation data. We utilize this approach to evaluate the
111 quality of ice flow model results. Notably, this approach can also serve as a
112 supplementary method for assessing geothermal heat flux datasets, relying solely on
113 surface ice velocity observations rather than additional englacial or subglacial data.

114 We apply our method to Totten Glacier, a primary outlet of the Aurora subglacial
115 basin in East Antarctica (Greenbaum et al., 2015; Pritchard et al., 2009). The Totten

116 Glacier subregion experienced the largest mass loss among drainage basins in East
117 Antarctica during the period 1979-2017 and 2003-2020 (Kim et al., 2024; Rignot et al.,
118 2019) (Fig. 1a). We examine inconsistencies between simulated ice temperature and ice
119 velocity fields from Huang et al. (2024) using a 3D full-Stokes model with the various
120 GHFs, and we use this analysis to rank the reliability of different GHF fields. This GHF
121 ranking closely resembles that reported by Huang et al. (2024), which used the
122 agreement between the modelled basal thermal regime and specularity content, which
123 we take as a validation of the method. Since the new method does not require any
124 englacial or subglacial data, it can be applied to many glaciers, particularly those
125 lacking observations. Our approach can provide a swift assessment of the plausibility
126 of basal temperature and velocity simulated by ice sheet models. Additionally, it can be
127 effectively utilized to map the spatial distribution of GHF over- or under-estimation.
128

129 **2. Method**

130 **2.1 Methodology in this study**

131 **2.1.1 Definition of Metrics**

132 There is no direct correlation between basal temperature and surface velocity;
133 rather, they are linked through the basal thermal state - the basal temperature being at
134 or below the pressure melting point. The ice bottom in the study domain can be
135 partitioned into thawed and frozen beds depending on whether the simulated basal ice
136 temperature reaches the local pressure melting point. To effectively penalize models
137 exhibiting both localized overheating (bed too warm) and overcooling (bed too cold),
138 we establish overheating metrics within the thawed-bedded region and overcooling
139 metrics within the frozen-bedded region to quantitatively assess the inconsistency
140 between the simulated temperature and velocity fields. Thus, we provide two-sided
141 constraints on the temperature field that penalize both too high and too low ice
142 temperature.

143 Overcooling occurs where basal temperature is underestimated. Crucially, in
144 regions with relatively fast observed surface velocity, the inverse method nevertheless
145 yields a nonzero basal velocity — a physically inconsistent result given the cold basal
146 temperature. When basal ice temperature is below the pressure melting point, the basal
147 modelled velocity is expected to approach zero. This inconsistency is larger for faster
148 simulated basal velocity magnitude and for colder simulated basal temperatures. We
149 therefore use a formula that accounts for both variables to quantify overcooling:

$$150 \quad AOC = (T_{melt} - T_{bm}) \times U_{bm}, \quad (1)$$

151 where AOC stands for absolute overcooling, T_{melt} is the basal pressure melting point,
152 T_{bm} represents the simulated basal ice temperature and U_{bm} means the simulated basal
153 velocity magnitude.

154 It is not straightforward to quantify the inconsistencies between modelled thawed

155 bed and expected slow basal velocity magnitude given slow observed surface velocity
 156 magnitude. We note the fact that modelled basal sliding velocity magnitude must
 157 remain non-negative. If the ice is warm and soft enough to permit deformation such
 158 that the modelled surface velocity magnitude is much faster than the observed, then a
 159 friction inversion will be ineffective to correct this misfit, producing a bias towards
 160 positive misfits (i.e., model velocities are too fast) in the inversion results. Therefore,
 161 we use the positive difference between simulated and observed surface velocity
 162 magnitude to calculate the inconsistency caused by the overheating effect:

$$AOH = \max(0, U_{sm} - U_{obs}), \quad (2)$$

163 where AOH refers to absolute overheating, U_{sm} represents the modelled surface
 164 velocity magnitude and U_{obs} is the observed surface velocity magnitude. We only
 165 calculated AOH for the thawed-bedded areas, i.e. $T_{bm} = T_{melt}$, because observed surface
 166 velocity magnitude errors are proportionally much less in thawed-bedded areas
 167 (corresponding to fast flow regions) than in frozen-bedded area (correspond to slow
 168 flow regions).

169 To mitigate the impact of substantial differences in observed surface velocity
 170 magnitude across various areas, we also define "relative overheating" (ROH) and
 171 "relative overcooling" (ROC), dividing AOH and AOC by the observed surface velocity
 172 magnitude respectively:

$$ROH = \frac{\max(0, U_{sm} - U_{obs})}{U_{obs}}, \quad (3)$$

$$ROC = (T_{melt} - T_{bm}) \times \frac{U_{bm}}{U_{obs}}. \quad (4)$$

176

177 2.1.2 Normalization and ranking

178 Overheating and overcooling inconsistencies are calculated on thawed bed and
 179 frozen bed, respectively. To evaluate the inconsistencies for the whole domain, we
 180 linearly normalized the overheating inconsistency and overcooling inconsistency to
 181 range from 0 to 1 and then sum them as:

$$ACI = L_N(AOC) + L_N(AOH), \quad (5)$$

$$RCI = L_N(ROC) + L_N(ROH), \quad (6)$$

182 where ACI means absolute combined inconsistency, RCI represents relative combined
 183 inconsistency, and L_N represents linear normalization. Taking AOC as an example, its
 184 linear normalization is:

$$L_N(AOC) = \frac{AOC - AOC_{min}}{AOC_{max} - AOC_{min}}. \quad (7)$$

185 Therefore, we obtain three absolute inconsistencies (AOH, AOC, ACI) and three
 186 relative inconsistencies (ROH, ROC, RCI), with which we can comprehensively
 187 analyze the temperature-sliding inconsistency in the inversion results of ice sheet model.

191 For each metric, we rank the eight GHF datasets from 1 (least inconsistent) to 8 (most
192 inconsistent). The final score for each dataset is the average of its ranks across the six
193 metrics to ensure a comprehensive evaluation, as a reasonable simulation result should
194 perform well across thawed bed, frozen bed, and the whole region. We only consider
195 grounded ice and exclude points located at the domain boundary due to relatively poor
196 model performance there.

197 The specific metrics that we use to quantify this inconsistency could be adaptable,
198 for example by using a squared error term instead of the linear error terms that we used.
199 However, the general practice of emphasizing and quantifying the inconsistency
200 between a sliding inversion and the temperature/rheology field used as an input to that
201 inversion is novel.

202

203 **2.2 Methodology in Huang et al. (2024)**

204 In this study, we validate our method by comparing our ranking of GHF datasets
205 to the observationally constrained ranking established by Huang et al. (2024). For
206 readers not familiar with this paper, we provide here a brief summary of their method
207 and, in the next section, clarify the distinction between their paper and the present study.

208 Huang et al. (2024) employed thermo-mechanical coupled simulations using eight
209 GHF datasets to investigate the steady-state thermal regime of Totten Glacier. The
210 methodology comprised two interconnected modeling components:

- 211 1. Forward Modeling: An enhanced shallow-ice approximation model integrated with
212 a subglacial hydrology module was utilized to simulate englacial temperature profiles.
- 213 2. Inverse Problem: A full-Stokes ice flow model was applied to resolve the basal
214 friction coefficients through inverse analysis, to minimize the misfit between simulated
215 and observed velocities while simultaneously generating velocity predictions.

216 A feedback loop was then established: the velocity outputs from the inverse model
217 were used to refine key parameters in the forward model - specifically constraining the
218 basal slip ratio, rheological properties, and shape functions. This bidirectional coupling
219 process underwent multiple iterations to achieve convergent steady-state solutions.

220 Huang et al. (2024) utilized radar specularity content data to differentiate localized
221 wet (thawed) versus dry (frozen) basal conditions and used this data as a two-sided
222 constraint on the basal thermal state. They compared modeled basal thermal states
223 derived from different GHFs to evaluate the reliability of the GHF datasets.

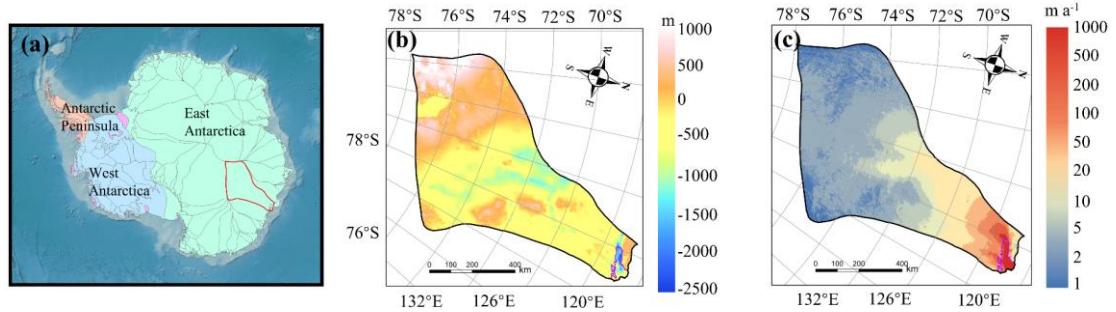
224

225 **2.3 Distinction from Huang et al. (2024)**

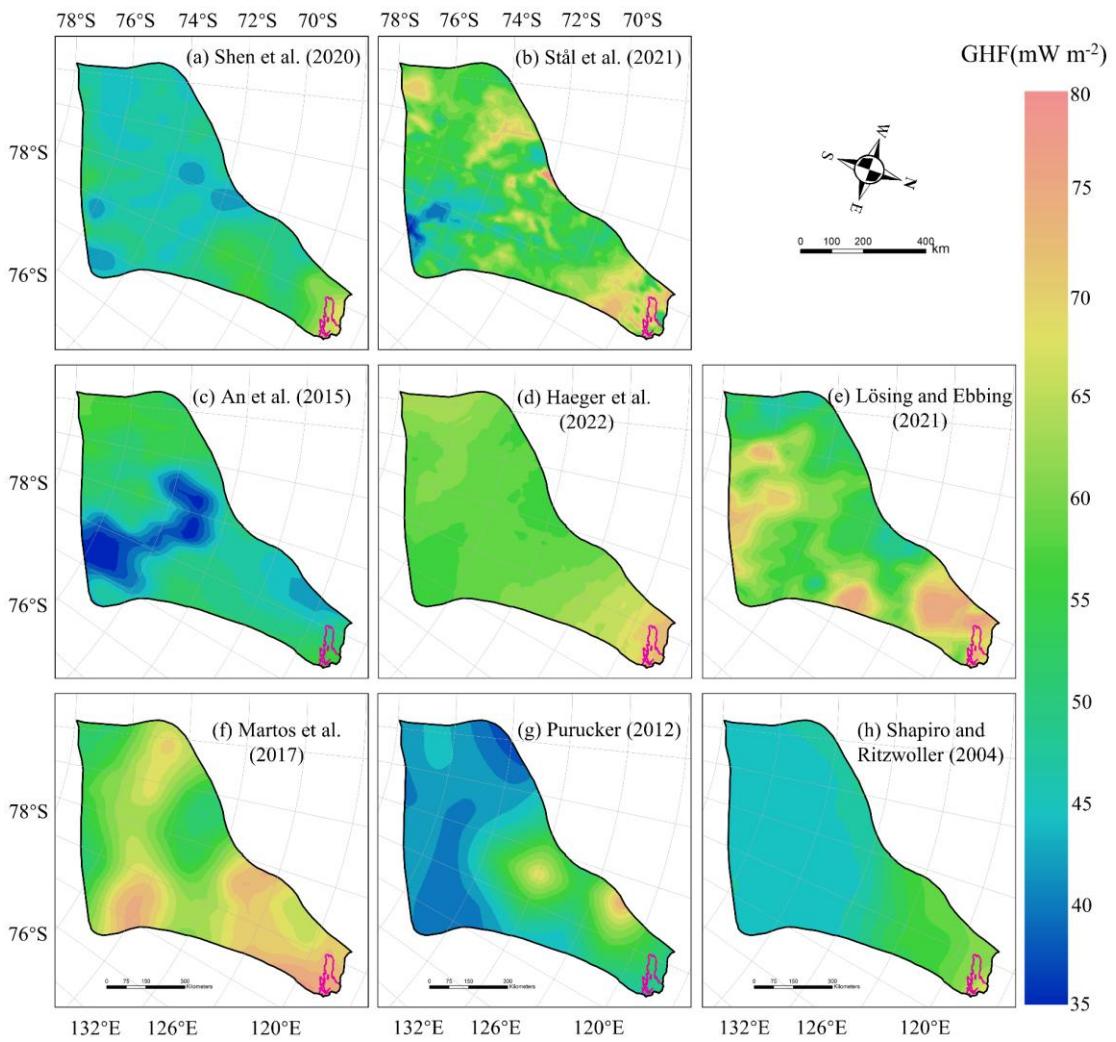
226 In Huang et al. (2024), modelled surface velocity velocities are compared with
227 observations over the whole domain during the inversion for basal parameters for each
228 GHF dataset. Here, surface velocities act as the observational constraints for the
229 mechanical inversion.

230 Although the overheating metrics here use the surface velocities and can thus be
231 considered a subset of the inversion residual, our overcooling metrics are based on the
232 basal sliding velocity derived from the inversion, which is not part of the mechanical
233 inversion's residual. A mechanical inversion does not take into account the physical
234 plausibility of the sliding result it produces. Therefore, it is not circular reasoning to
235 compare two different parts of a model to each other; rather, it is an assessment of
236 internal consistency, or lack thereof. A mechanical inversion may fit the surface velocity
237 observations equally well when forced with many different models of the ice sheet
238 thermal structure and rheology; however, if some models require high sliding velocities
239 in frozen-based regions, then they should be downweighted in comparison to models
240 that show a good agreement between basal temperature and velocity.

241 The method here does not require any additional observations beyond the surface
242 velocities used in the mechanical inversion. However, there are “independent
243 constraints” in the method here, which are not observations, but rather the a priori
244 physical understandings that: 1) rapid sliding requires warm basal temperatures and
245 subglacial water; 2) reducing the basal slip coefficient cannot prevent the ice from
246 flowing by internal shear deformation. The inconsistency metrics developed in this
247 paper are an attempt to quantify and rank the extent to which these basic (and
248 uncontroversial) physical understandings are violated.


249

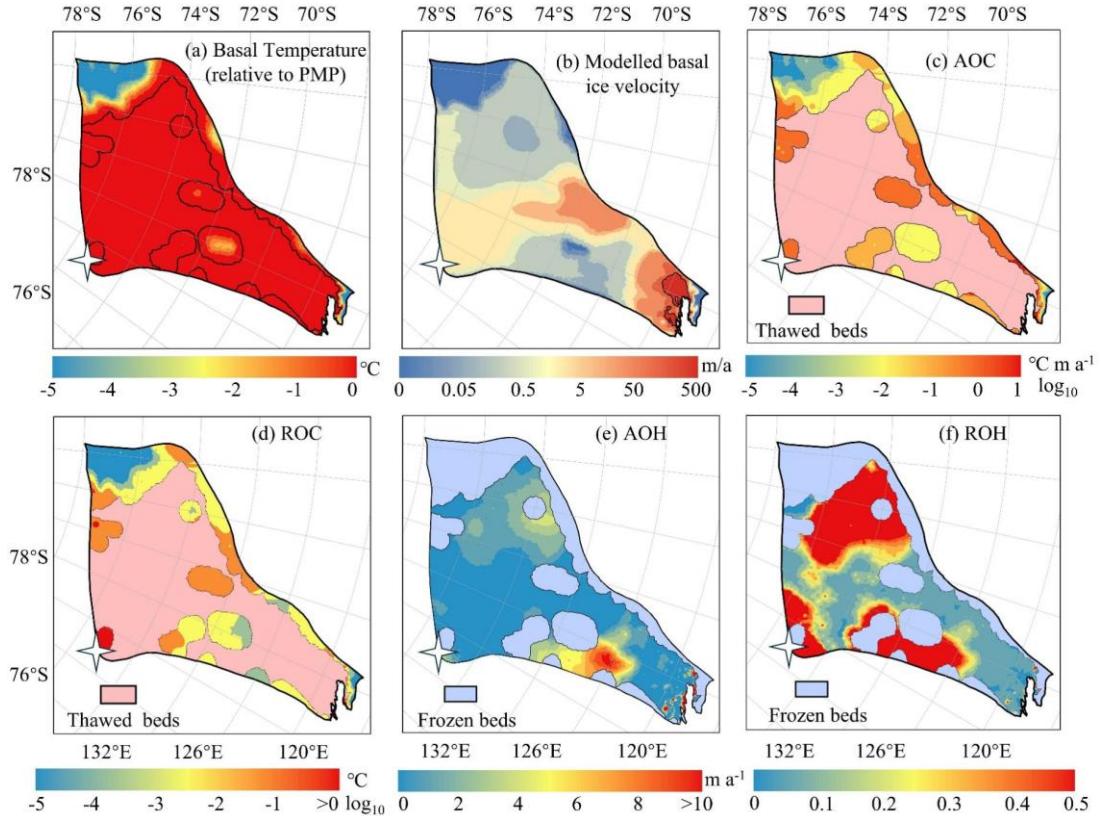
250 **3. Application to Totten Glacier with Different GHFs**


251 **3.1 Study domain and Data**

252 We apply our method to evaluate simulated ice temperature and ice velocity in
253 Totten Glacier with eight GHF datasets by Huang et al. (2024). Huang et al. (2024) used
254 the present-day surface ice temperature (Le Brocq et al., 2010), observed surface
255 velocity from MEaSUREs InSAR-Based Antarctic Ice Velocity Map, version 2 (Rignot
256 et al., 2017) and ice sheet topography data from BedMachine Antarctica, version 2
257 (Morlighem et al., 2020). The eight GHF datasets were derived by various
258 methodologies, resulting in significant differences in both spatial distribution and
259 magnitude (Fig. 2). GHF fields from Stål et al. (2021), Haeger et al. (2022), Lösing and
260 Ebbing (2021) and Martos et al. (2017) generally exhibit higher magnitudes than the
261 other GHFs. Table S1 summarizes the input datasets, which follows the configuration
262 described in Huang et al. (2024).

263

264
265 **Figure 1.** (a) Geographic location of Totten Glacier (red outline) in Antarctica; (b) bed
266 elevation of Totten Glacier, the purple curve represents the grounding line; (c) observed
267 surface velocity.
268



269
270 **Figure 2.** The spatial distribution of the 8 GHF datasets for Totten Glacier (a-h) used
271 as input data in Huang et al. (2024). The purple line depicts the grounding line.

272 The spatial distribution of modelled basal temperature using the 8 GHFs displays
273 both similarities and heterogeneity. In the northern part of Totten Glacier, there is a
274 consistent thawed-bedded pattern across all eight simulation results (Fig. S1), which
275 originates from the grounding line and extends upstream to approximately 71°S. This
276 thawed-bedded area is not contiguous with the lateral boundaries of Totten Glacier but
277 is instead bordered by frozen bed. All 8 GHF datasets produce low basal ice
278 temperatures in the inland southwest, with Purucker et al. (2012), Shapiro and
279 Ritzwoller (2004), Shen et al. (2020) and Lösing and Ebbing (2021) being colder than
280 the other four GHF products. The basal ice velocities modelled from the 8 different
281 GHF datasets produce similar spatial distributions (Fig. S2), which can be expected as
282 they were derived using the same inverse method and constrained by the identical
283 observed surface ice velocity. The modelled basal ice velocity is fast near the grounding
284 line and its upstream area. There are also high velocities between 70°S and 72°S close
285 to the western boundary of Totten Glacier (Fig. 1c), which are associated with
286 subglacial canyon features in the basal topography (Fig. 1b) and observed fast surface
287 ice velocity there.
288

290 **3.2 Spatial Distribution of Inconsistencies with one GHF dataset**

291 In this section, we show the spatial fields of the inconsistency metrics (Section 2.1)
292 for the modelled result in Huang et al. (2024), using Martos et al. (2017) GHF as an
293 example. This example illustrates the interpretation process before conducting a
294 comprehensive comparative analysis for the result with 8 GHF datasets.
295

296 **Figure 3.** Spatial distribution of modelled basal ice temperature (a), modelled basal ice
297 velocity magnitude (b), AOC (c), ROC (d) inconsistencies in modelled frozen-bedded
298 regions, and AOH (e) and ROH (f) inconsistencies in modelled thawed-bedded regions
299 associated with Martos et al. (2017) GHF. The colormap in (c) and (d) is on logarithmic
300 scale. The pink region in (c) and (d) represents modelled thawed bed, while the blue
301 region in (e) and (f) indicates frozen-bedded areas. The white star represents Dome C.
302
303

304 The modelled result based on the Martos et al. (2017) GHF reveals extensive
305 regions of thawed bed with limited areas of frozen bed. The frozen bed is predominantly
306 located in the southern corner of the study domain, where the modelled basal velocity
307 magnitude approaches zero, consistent with cold basal ice temperature. Consequently,
308 the AOC inconsistency at this marginal zone is negligible (Fig. 3). Along the western
309 margin of Totten Glacier, basal ice temperature remains below the pressure melting
310 point, albeit approaching it. However, localized regions exhibit high basal velocities of
311 several tens of meters per year, contradicting the presence of a frozen bed and resulting
312 in large AOC inconsistencies.

313 Conversely, large AOH values are observed between 69°S and 71°S in the eastern
314 Totten Glacier region, where the simulated surface velocity magnitude exceeds
315 observational data by >5 m a⁻¹ (Fig. 3e). In this area, the modelled basal ice temperature

316 reaches the pressure melting point, with the modelled basal velocity magnitude at
317 approximately 0.05 m a^{-1} . Basal friction inversion failed to reproduce observed surface
318 velocity magnitude due to the model's overestimation of ice temperature and softness.
319 This pronounced velocity mismatch highlights a fundamental inconsistency in the
320 eastern glacier region, likely originating from discrepancies in the input datasets.
321 Regions of high ROH and ROC values coincide with areas of relatively high AOH and
322 AOC, particularly where the observed surface velocities are slow, as per their
323 formulations.

324

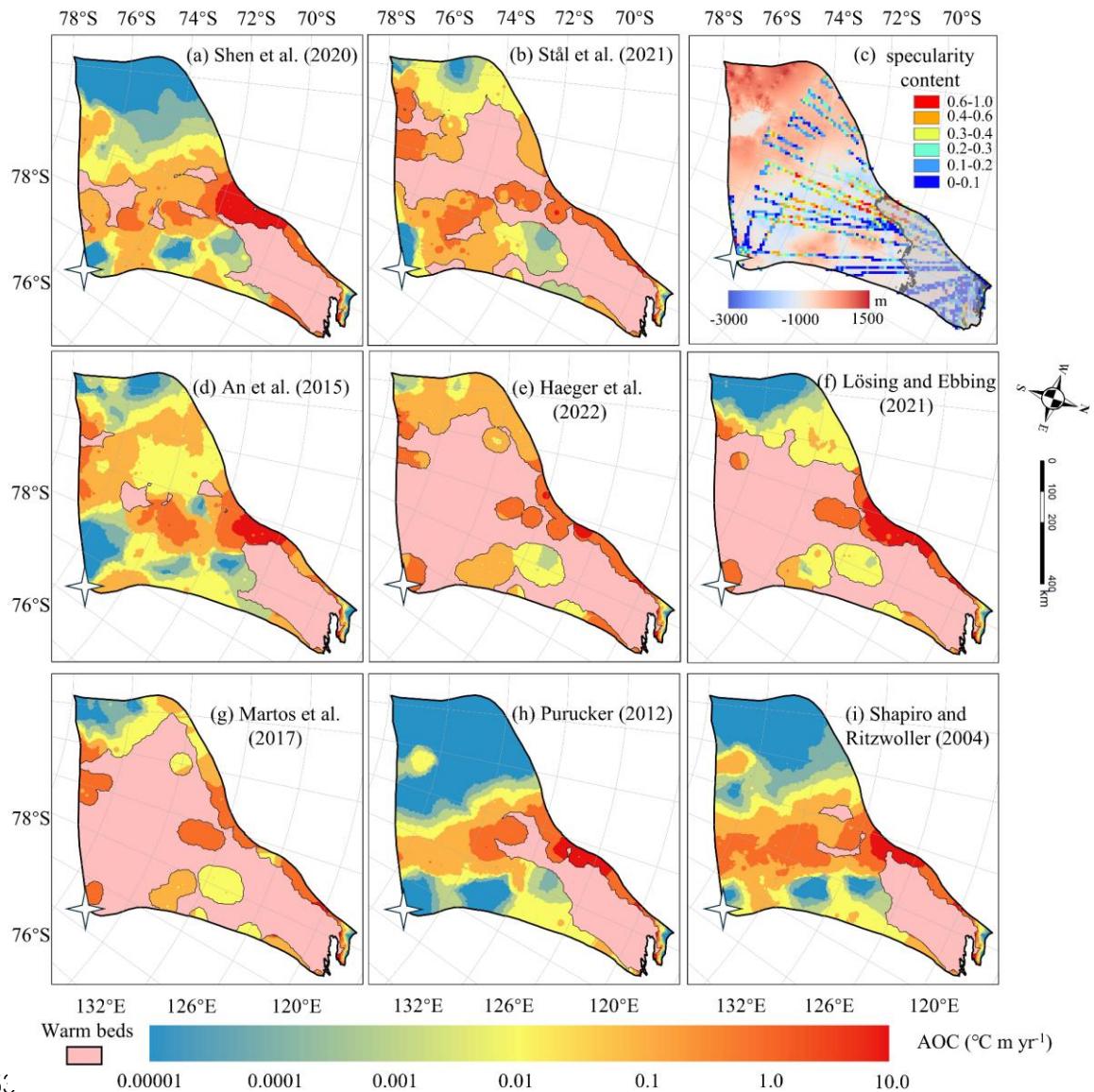
325 **3.3 Spatial Distribution of Inconsistencies with eight GHF datasets**

326

327 **3.3.1 Overcooling Inconsistency on Frozen Beds**

328 We calculated the inconsistency metrics for the thawed and frozen beds
329 respectively, and summed the values over the corresponding regions. The results are
330 shown in Table 1. To visualize the spatial heterogeneity of these inconsistencies, we
331 mapped the distribution of the metrics. The spatial distribution of AOC reveals that
332 most GHF datasets exhibit significant local overcooling inconsistencies at the
333 subglacial canyon between 70°S and 72°S (Fig. 4). There is fast basal sliding in the
334 inverse model results (Fig. S2), however, the modelled basal ice temperatures inferred
335 from most of the GHF datasets are below the pressure melting point (Fig. S1). High
336 specularity content in radar data (Fig. 4c) suggests the presence of basal water in the
337 subglacial canyons here (Dow et al., 2020; Huang et al., 2024), which also suggests that
338 the basal ice temperature should be at the pressure melting point and confirms the
339 inconsistency between the modelled temperature and velocity fields.

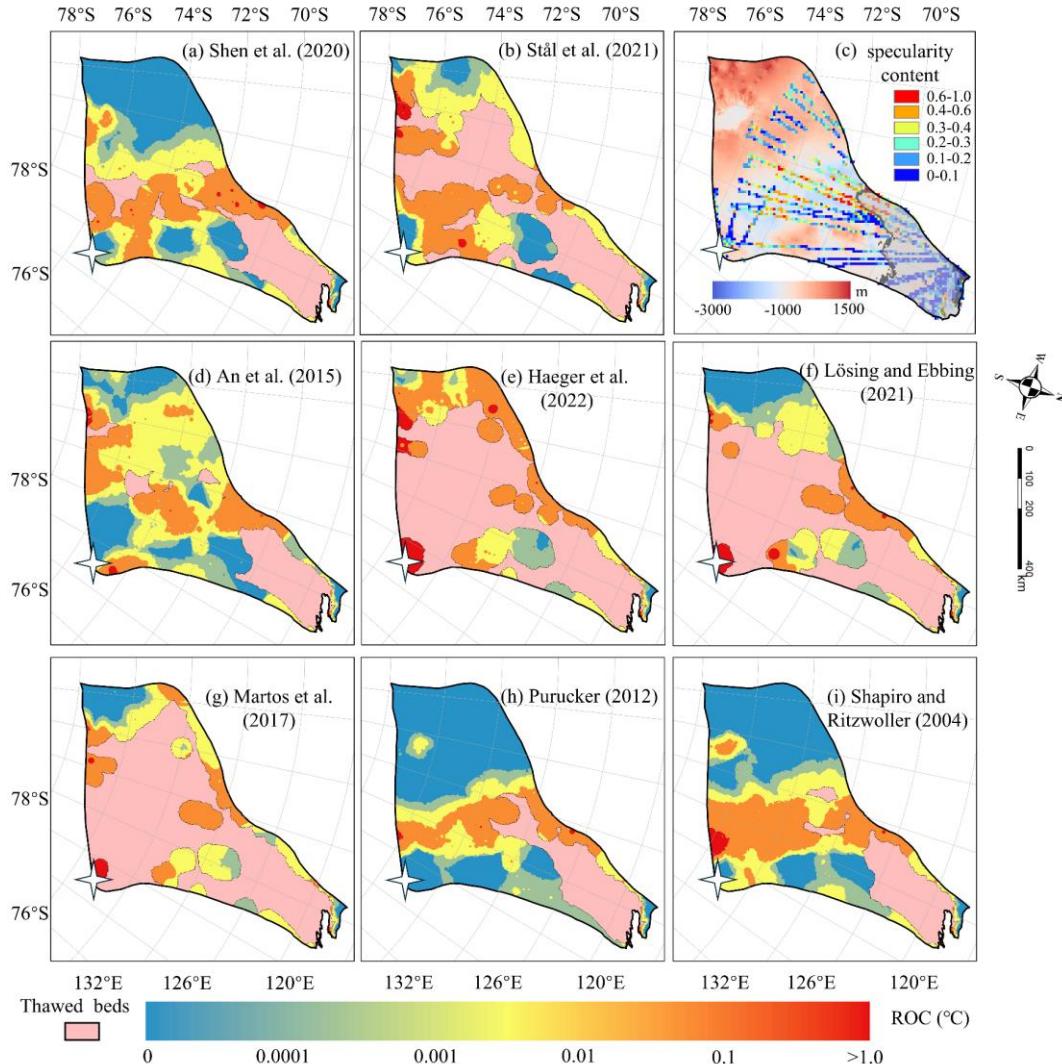
340 The area near the grounding line is characterized by fast ice flow (Fig. S2) and
341 thawed bed (Fig. 4), yet some of the margin is frozen-bedded with modelled basal
342 temperature below the pressure melting point, resulting in high AOC. Overall, modelled
343 results with most GHF datasets show small overcooling inconsistencies. The modelled
344 results using GHF from Purucker et al. (2012), Shapiro and Ritzwoller (2004), Shen et
345 al. (2020), Lösing and Ebbing (2021) exhibit no overcooling inconsistency in
346 southwestern Totten Glacier (Fig. 4). The largest value of ROC across most GHF occurs
347 at Dome C (white star in Figure 5), where the observed surface ice velocity magnitude
348 is close to zero (Fig. 1c).


349

350 **Table 1. Summary of inconsistency metrics for different GHF maps.**

GHF maps	AOC ($^\circ\text{C km yr}^{-1}$)	AOH (km yr^{-1})	ROC ($^\circ\text{C}$)	ROH	ACI	RCI
Shen et al. (2020)	6.39	29	159	470	0.59	0.39
Stål et al. (2021)	6	31.9	144	814	0.84	0.8

An et al. (2015)	5.97	30.5	130	397	0.53	0.11
Haeger et al. (2022)	6.32	34.1	126	889	1.51	1.57
Lösing and Ebbing (2021)	6.91	34.1	290	780	1.97	1.58
Martos et al. (2017)	5.82	34.2	146	1072	1.14	1.18
Purucker (2012)	5.89	30.6	115	375	0.5	0
Shapiro and Ritzwoller (2004)	5.65	31.8	138	417	0.54	0.19

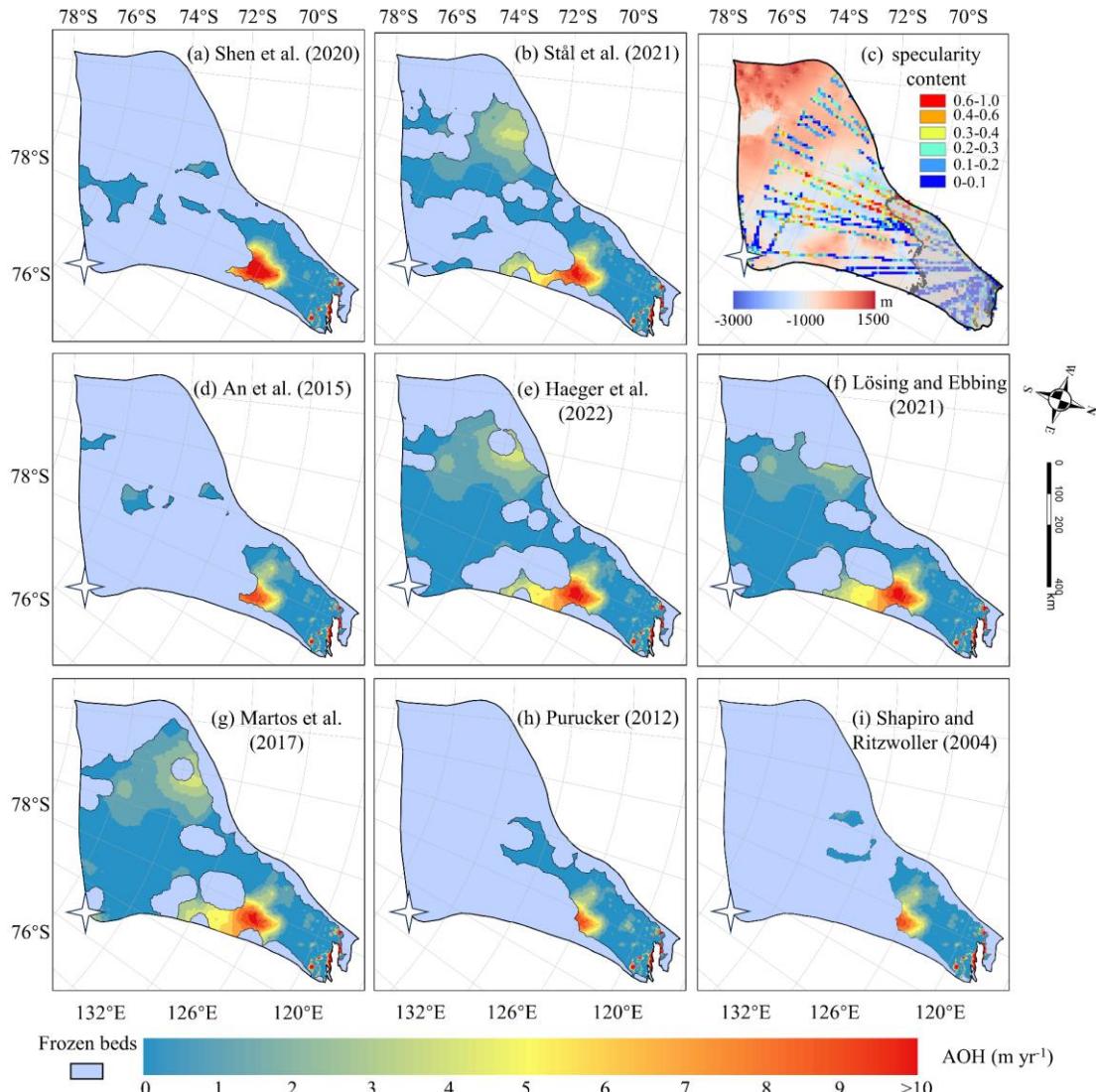

351
352

353
354 **Figure 4.** Spatial distribution of AOC inconsistency in modelled frozen-bedded regions
355 (a-b, d-i) associated with the GHFs (a-h) in Fig. 2. The colormap is on logarithmic
356 scale. The pink region represents modelled thawed bed. (c) Specularity content sourced

357 from radar data collected by ICECAP (Dow et al., 2020) with the bed elevation in the
 358 background. Gray area in (c) corresponds to surface velocity magnitude exceeding 30
 359 m yr^{-1} . The white star represents Dome C. Note the colormap is logarithmic.

360

361


362 Figure 5. The spatial distribution of relative overcooling (ROC) inconsistency in cool
 363 beds with (a), (b) and (d) to (i) corresponding to the GHFs (a - h) in Figure 2. The pink
 364 area represents the thawed beds. Dome C is marked by a white star. (c) Locations of
 365 specularity content derived from radar data collected by ICECAP (Dow et al., 2020)
 366 and with the bed elevation in the background. The gray curve is the contour of the
 367 surface velocity magnitude of 30 m yr^{-1} . Note the colormap is logarithmic.

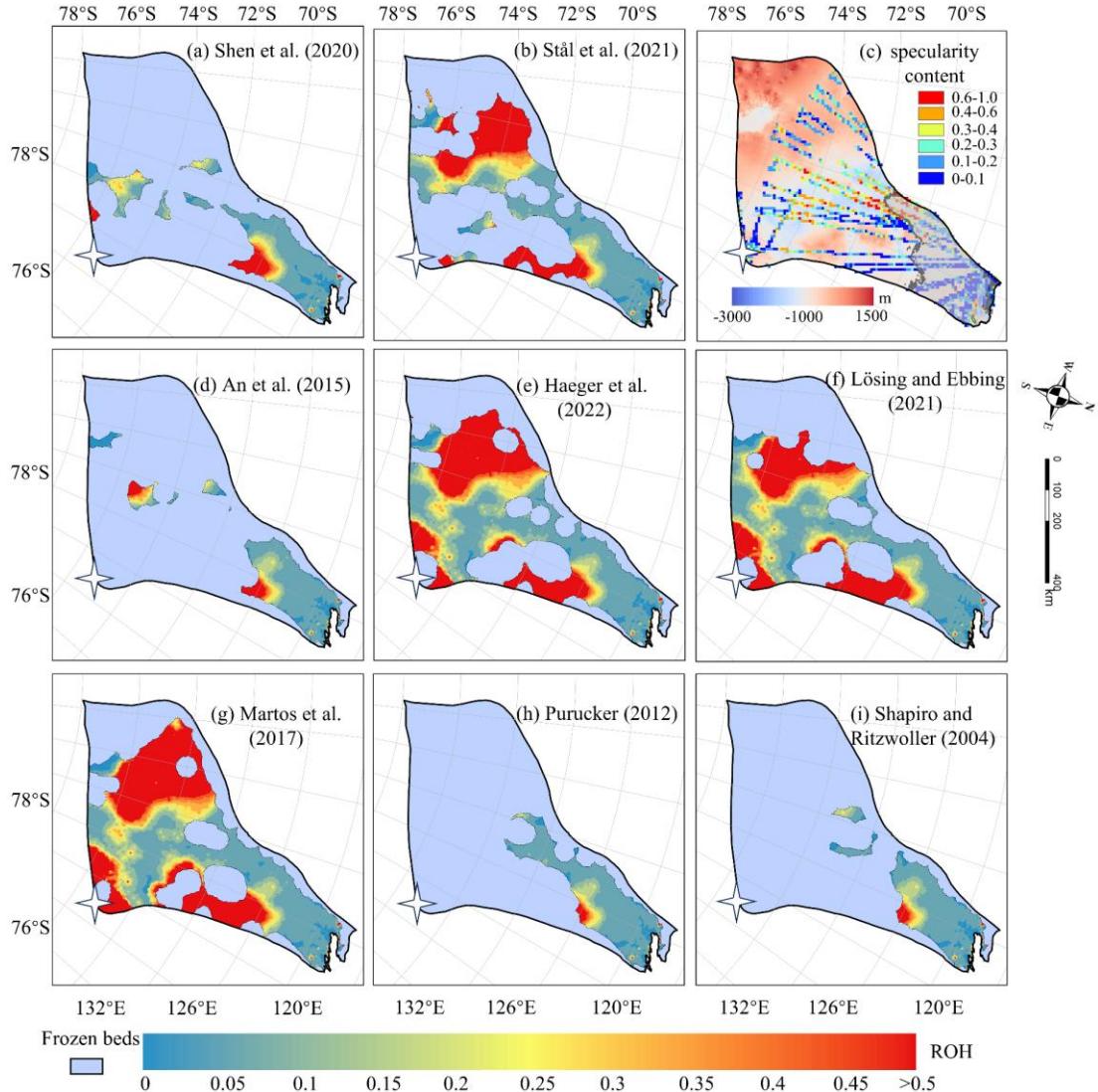
368

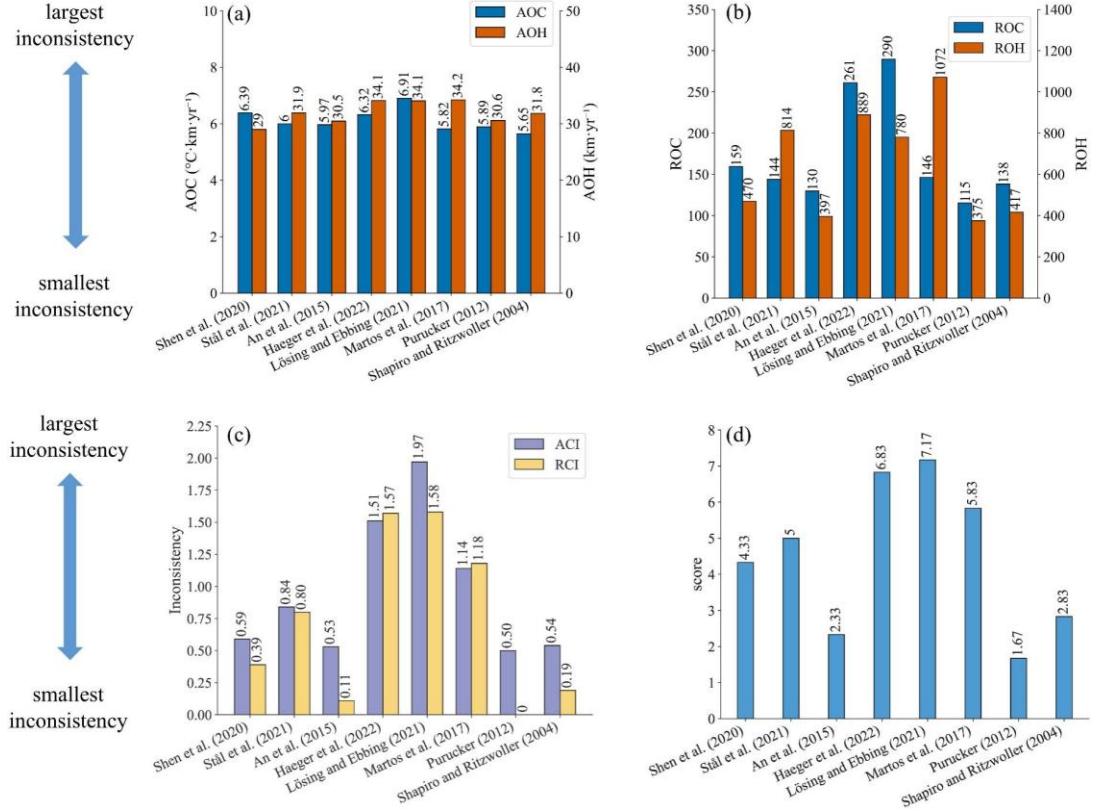
369 3.3.2 Overheating Inconsistency on Thawed Beds

370 The simulations with all 8 GHFs yield similar spatial distributions of AOH (Fig.

371 6) on the common area of thawed bed, and similar locations of high AOH values. A
 372 common high AOH area is located between 69°S and 72°S in the eastern part of Totten
 373 Glacier, due to simulated surface ice velocities greatly exceeding the observed surface
 374 ice velocities. Low specularity content from radar data (Fig. 6c) suggests there is no
 375 basal water in the area (Dow et al., 2020; Huang et al., 2024). Therefore, it is likely that
 376 the basal ice temperature is overestimated there. The simulations with all the 8 GHFs
 377 also yield similar spatial distribution of ROH (Fig. 7), but its largest values are mostly
 378 in the slow flowing region as one may expect from its formulation (Eq. (3)).

379 **Figure 6.** Spatial distribution of AOH in thawed-bedded regions with **(a-b, d-i)**
 380 corresponding to the GHFs **(a-h)** in Fig. 2. The blue region indicates frozen-bedded
 381 areas. **(c)** Locations of specularity content, same as Fig. 4c. The white star represents
 382 Dome C.




Figure 7. The spatial distribution of relative overheating (ROH) inconsistency in thawed beds with (a), (b) and (d) to (i) corresponding to the GHFs (a - h) in Figure 2. The light purple mask represents the frozen beds. (c) Locations of specularity content (coloured points), same as Fig. 6. The white star represents Dome C.

3.4 Evaluation of Model Inconsistency with Eight GHFs

To assess the overall inconsistency of each geothermal heat flux dataset, we calculate the sum of each metric over all points. All inconsistency indices for the simulation results using the eight GHF datasets are illustrated in Fig. 8. The overheating inconsistency associated with Purucker et al. (2012) and Shapiro and Ritzwoller (2004) GHFs is predominantly localized in fast-flowing regions. Consequently, after

397 normalization by the observed surface velocity magnitude, their relative rankings
398 improve (Fig. 8). The GHFs from Purucker et al. (2012), An et al. (2015), Shapiro and
399 Ritzwoller (2004), and Shen et al. (2020) demonstrate balanced performance with
400 respect to both overheating and overcooling inconsistency metrics, thereby securing the
401 top four positions in both ACI and RCI. Their ACI values exhibit similarity, ranging
402 from 0.50 to 0.59 (Fig. 8c). In contrast, simulation result utilizing Martos et al. (2017)
403 GHF exhibits low AOC but high AOH. Simulation results utilizing Stål et al. (2021)
404 GHF show low ROC but relatively high ROH. Notably, simulation results employing
405 GHFs from Martos et al. (2017), Haeger et al. (2022), and Lösing and Ebbing (2021)
406 demonstrate comparably high AOH values. These four GHF datasets—Martos et al.
407 (2017), Stål et al. (2021), Haeger et al. (2022), and Lösing and Ebbing (2021)—are
408 ranked in the bottom four positions for both ACI and RCI metrics. Furthermore, the
409 ranking order of the eight GHFs remains consistent between ACI and RCI.

410 The final averaged ranking (Fig. 8d) across the indices is also the same as that of
411 ACI and RCI. Purucker et al. (2012), An et al. (2015) and Shapiro and Ritzwoller (2004)
412 GHFs occupy the top three positions. Following closely, Shen et al. (2020) and Stål et
413 al. (2021) GHFs secure the 4th and 5th positions, respectively. Martos et al. (2017),
414 Haeger et al. (2022) and Lösing and Ebbing (2021) GHFs are ranked as the bottom
415 three among the eight GHFs in Totten Glacier. The thermal state produced by the
416 optimal GHF result shows that thawed beds predominantly cluster around the
417 grounding line and its upstream regions. Conversely, the inland areas of Totten largely
418 exhibit cold temperatures, with relatively sparse thawed-bedded areas.

419
420 **Figure 8.** Six inconsistency indicators and the final ranking of 8 GHF datasets. **(a)** the
421 absolute overcooling and overheating inconsistencies, AOC and AOH; **(b)** the relative
422 overcooling and overheating inconsistencies, ROC and ROH; **(c)** the absolute and
423 relative combined inconsistencies, ACI and RCI; **(d)** the average of ranking scores from
424 1 to 8 using the six inconsistency indicators. The value of inconsistencies and scores
425 are labeled at the top of the bars.

426

427 4. Discussion

428 4.1 Sensitivity of Inconsistencies to GHF Datasets

429 Comparing the GHF dataset rankings between this study and Huang et al. (2024),
430 we find that the top 4 and the bottom 4 are the same in the two studies, albeit with slight
431 variations in ranking. The lower ranking of Shen et al. (2020) in this study may be
432 attributed to several factors. Firstly, Huang et al. (2024) excludes areas with ice velocity
433 magnitude exceeding 30 m a^{-1} (Fig. 4c) because specularity content is an ambiguous
434 indicator of wet beds there. Secondly, the GHF from Shen et al. (2020) yields higher
435 basal temperature and also faster basal ice velocities in most of the frozen bed of Totten
436 Glacier, hence exhibits greater overcooling inconsistency, compared with Purucker et
437 al. (2012), leading to a decrease in its rankings (Fig. S3). Lastly, Huang et al. (2024)
438 primarily relied on specularity content, while our study evaluated datasets based on

439 inconsistencies in the simulation results. Despite these methodological differences, both
440 studies identified four relatively well-performing GHF datasets for Totten Glacier,
441 which exhibit similar distributions of thawed and frozen beds when compared to the
442 other four datasets (Fig. 4 and Fig. 6). This similarity underscores that the thawed bed
443 is concentrated near and upstream of the grounding line. Datasets from Stål et al. (2021),
444 Martos et al. (2017), Haeger et al. (2022), and Lösing and Ebbing (2021) exhibit a
445 tendency to overestimate GHF in central Totten Glacier.

446 Simulations employing GHF datasets from Stål et al. (2021), Martos et al. (2017),
447 Haeger et al. (2022), and Lösing and Ebbing (2021) yield more extensive thawed-
448 bedded regions and are expected to exhibit greater overheating inconsistency.
449 Nevertheless, these models also exhibit relatively high overcooling inconsistency
450 despite the limited extent of frozen-bedded regions. We quantified the discrepancies
451 between these four GHF datasets and the Purucker et al. (2012) GHF in terms of
452 modelled basal velocity, basal temperature relative to the pressure melting point, and
453 AOC (Fig. S4). The Purucker et al. (2012) GHF yields lower basal ice temperatures and
454 slower basal velocities across most frozen-bedded regions, consequently resulting in
455 lower AOC values compared to the other four GHF datasets.

456

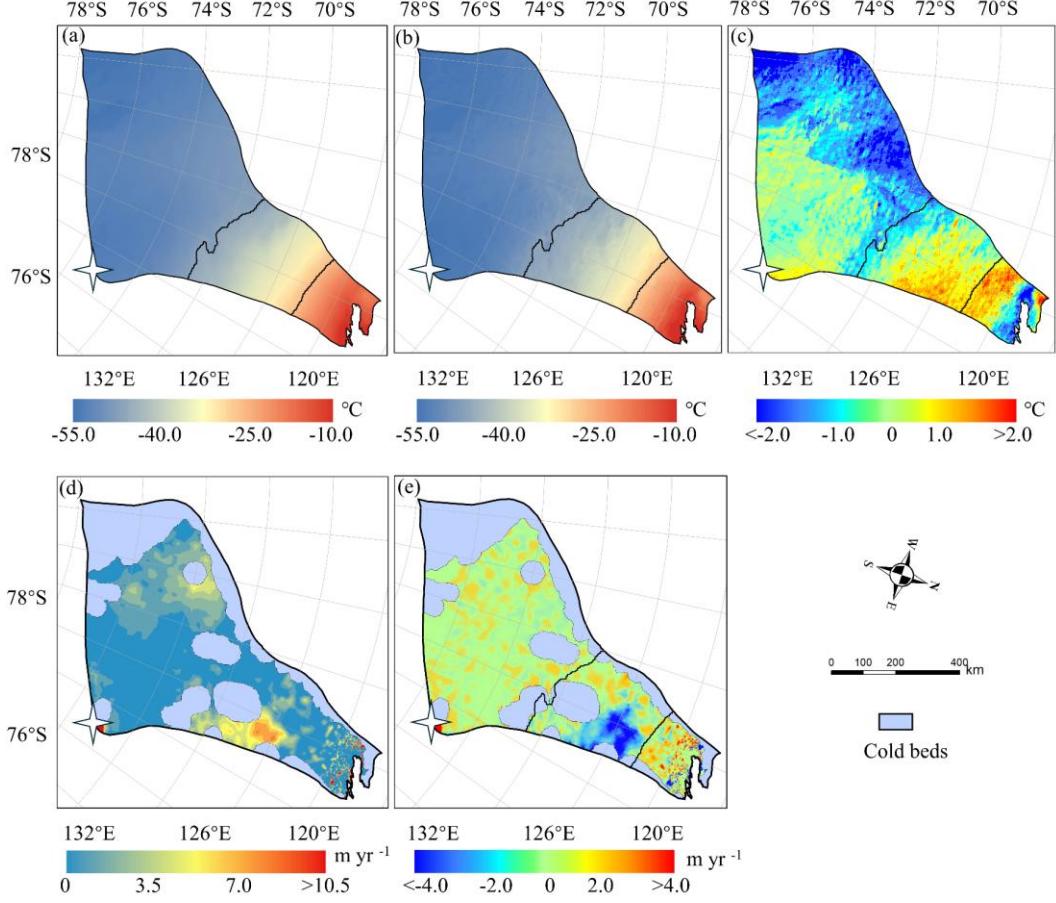
457 **4.2 Causes of Inconsistencies and Sources of Uncertainty**

458 We have developed an indirect method that utilizes surface velocity observations
459 to assess the quality of simulated basal temperature. However, the mere fact that
460 inconsistencies exist does not by itself tell us what caused those inconsistencies.
461 Broadly speaking, the measured inconsistencies can come from two sources:
462 temperature or velocity. Uncertainties in any of the input datasets used to compute those
463 two fields can produce inconsistencies, as can simplifications in the model physics.
464 Here, we have tested the influence of one particular boundary condition, GHF, since
465 that field is particularly hard to constrain. Because all other inputs are kept constant,
466 the differences in the inconsistencies that we calculated between different simulations
467 can be attributed to the GHF fields. However, we also found that all of the models we
468 tested had non-zero inconsistency (Fig. 4; Fig. 6). The absolute inconsistencies, AOH
469 and AOC, had particularly small between-model variability in comparison to their mean
470 value. This could be related to uncertainties or limitations in the input GHF fields, but
471 it may also indicate sensitivities to other model inputs. For instance, the surface
472 temperature used in Huang et al. (2024) represents the present-day climate, but the
473 thermal structure of the ice sheet may reflect colder temperatures during the last glacial
474 cycle. We discuss an additional experiment we performed to test the influence of
475 uncertainty in surface temperature on our inconsistency metrics in Section 4.3 below.
476 While the cooler surface temperatures during the glacial period exerted a cooling effect
477 on ice sheet temperature, lower surface accumulation rates over the same period

478 induced a warming effect. Uncertainties in bed topography should influence both our
479 thermal and our mechanical models, with deeper ice being more likely to be warm, and
480 with errors in ice thickness producing compensating errors in basal sliding in our
481 mechanical inversion. In the study of Huang et al. (2024), BedMachine v2 was used for
482 ice thickness and subglacial topography. However, Bedmap3 (Pritchard et al., 2025)
483 has better-resolved mountains and smoother trough margins.

484 The simulation results we use from Huang et al. (2024) came from a 3D isotropic
485 full-Stokes ice flow model. While full-Stokes is generally considered an ice sheet model
486 with the most complete physical processes to date, the use of an isotropic rheology may
487 not be valid in some parts of the ice sheet, such as near ice divides or at the margin of
488 an ice stream where the history of past ice deformation creates anisotropic crystal fabric
489 that affects the present-day mechanical properties (Martín et al., 2009; Zhao et al., 2018;
490 Zwinger et al., 2014). Isotropic flow laws often require the use of an “enhancement
491 factor” for vertical shear in the lower part of the ice column, an ad hoc correction that
492 would have a particularly large influence on our computed overcooling metrics. Thus
493 the isotropic flow law potentially introduces errors in modelled strain rates and, hence,
494 bias in basal sliding velocities obtained by inversion methods (Budd and Jacka, 1989;
495 Gerber et al., 2023; Rathmann and Lilien, 2022). Simulated surface ice velocities can
496 be influenced by other factors in addition to ice fabric; shear margins are also impacted
497 by accumulated rupture, such as damage along a shear margin (e.g., Benn et al., 2022;
498 Lhermitte et al., 2020; Schoof, 2004; Sun et al., 2017). Ice deposited during the last
499 glaciation has different chemistry (especially concentrations of chloride and possibly
500 sulphate ions) which leads to smaller crystals that develop a strong, near-vertical,
501 single-maximum fabric (Paterson, 1991). However, ice fabric data is sparse, known
502 from direct observations at ice cores (Azuma and Higashi, 1985) or inferred from
503 specialized radar measurements (Fujita and Mae, 1994; Jordan et al., 2022), and its
504 impact is beyond the scope of this study as we refrain from incorporating additional
505 observational data relying only on widely-available surface ice velocities.

506 Our inconsistency metrics are designed to provide bidirectional constraints,
507 wherein the model is penalized for both overheating and overcooling. By adopting this
508 bidirectional constraint framework, we aim to mitigate the risk of unidirectional
509 constraints leading to excessively cold or warm outcomes being deemed optimal.
510 However, our inconsistency metrics only provide a bidirectional constraint when
511 viewed in a spatially integrated sense. Locally, we only have unidirectional constraints.
512 This is because our overheating metrics are only computed where the bed is at the
513 melting point, and our overcooling metrics are only computed where the bed is below
514 the melting point. This makes methodological sense, as sliding is generally expected to
515 occur where the bed is thawed. However, in reality it is entirely possible that some of
516 the areas where the modelled bed reaches the pressure melting point are still too cold


517 (the modelled melt rate is lower than the real melt rate), and conversely, it is also
518 possible that some of the areas where the modelled bed is below the pressure melting
519 point are still too warm (the real temperature is colder still). Our method cannot identify
520 these areas. Thus, our inconsistency metrics may underestimate variability in the ice
521 sheet thermal state: we have no way to penalize frozen regions that are not cold enough
522 or thawed regions that are not warm enough. We leave the development of these
523 constraints to future work.

524

525 **4.3 Impact of Input Datasets**

526 There is a common area between 69°S and 72°S in the eastern part of Totten
527 Glacier with the largest AOH (Fig. 6) for all the GHFs varying from 48 to 70 mW m⁻²,
528 which suggests that the AOH inconsistency is from other ice sheet properties rather than
529 GHF. Zhang et al. (2022) reconstructed Antarctic near-surface air temperature based on
530 MODIS land surface temperature measurements and in situ air temperature records
531 from meteorological stations from 2001 to 2018. We compared the reconstruction of
532 near-surface air temperature in the year 2001 (Zhang et al., 2022) and the ALBMAP v1
533 dataset used in Huang et al. (2024). The surface air temperature in the area with large
534 AOH from ALBMAP v1 is 0.6-3.1 °C higher than that from the reconstructed near-
535 surface air temperature in 2001 (Fig. 9). The MODIS-based near-surface air
536 temperature product shows warming in Totten Glacier from 2001 to 2018. Even so, the
537 surface air temperature in the area with large AOH from ALBMAP v1 is still higher
538 than that in 2018 but over a smaller area. Therefore, we infer that the large AOH may
539 be attributed to a warm bias in the present-day ice surface temperature derived from
540 ALBMAP v1 in this area. The englacial temperature will be lower than present-day ice
541 sheet surface temperature used in the model but warmer than the average surface
542 temperature during the last glacial-interglacial cycle. We lowered the surface ice
543 temperature in this area by 1 °C, reran the simulation, and found that AOH with all the
544 GHFs was halved (Fig. 9e).

545

546 **Figure 9.** Surface ice temperature from ALBMAP v1 (a) and MODIS-based near-
547 surface air temperature (b) in the year 2001, and their difference (c). (d) The AOH using
548 modified surface ice temperature by reducing the temperature between the two black
549 lines (contour lines of -44°C and -26°C) in (a) by 1°C and GHF of Martos et al.
550 (2017). (e) The difference between the AOH using cooler surface ice temperature and
551 the original AOH. The white star represents Dome C.

554 4.4 Implications for Ice Sheet Dynamics

555 While evaluating inconsistencies highlights the spatial distribution of mismatches,
556 it does not inherently elucidate their underlying causes. The primary factors to
557 investigate are surface temperature, GHF, accumulation rate, and ice thickness,
558 representing the most critical boundary conditions. Furthermore, integrating multiple
559 sources of prior knowledge can help constrain model parameters:

560 1. High-resolution radar measurements: The availability of ice thickness data along
561 flight lines should be assessed to validate geometric boundary conditions.
562 2. Paleoclimate context: Historical climate reconstructions indicate significantly colder
563 surface temperatures during glacial periods compared to present-day conditions, with

564 correspondingly lower accumulation rates. These paleo-temperature conditions likely
565 induced a long-term thermal memory within the ice column, potentially contributing to
566 observed discrepancies between modeled and measured basal properties.

567 Therefore, we recommend a systematic evaluation of: (1) The spatial distribution
568 of radar-derived ice thickness measurements; (2) The temporal consistency of surface
569 temperature boundary conditions; (3) The sensitivity of model results to GHF variations;
570 (4) Accumulation rate reconstructions during key climatic periods. This multi-faceted
571 approach helps isolate the causes of inconsistencies in ice sheet simulations.

572 Given that data assimilation and inverse methods are widely employed to infer
573 basal friction coefficients in ice sheet simulations, it is essential to acknowledge the
574 impact of the inconsistencies identified in our study on ice sheet dynamics. A frozen
575 bed is supposed to provide substantial resistance and limit basal sliding; however, if the
576 basal temperature is overestimated, it may decrease viscosity and enhance basal sliding.
577 This overheating inconsistency would lead to an overestimation of ice flow speeds,
578 discharge, and dynamic ice loss (Artemieva, 2022; Burton-Johnson et al., 2020).
579 Similarly, underrepresentation of thawed bed conditions will lead to an underestimation
580 of ice discharge and, consequently, an underestimation of ice sheet's response to climate
581 warming. The basal thermal regime critically influences the stability of grounding lines
582 and the behavior of ice streams (Dawson et al., 2022; Robel et al., 2014). In a warming
583 climate, increases in geothermal or frictional heating can trigger basal thawing in these
584 areas, lowering basal friction and potentially initiating rapid grounding line retreat—a
585 key component of marine ice sheet instability (MISI) (Reese et al., 2023; Ross et al.,
586 2012). Without incorporating a self-consistent thermal model into the inversion,
587 projections may misrepresent the onset and extent of these dynamic instabilities. Our
588 findings underscore that a fully coupled inversion framework would use not only
589 surface velocity data but also incorporate direct or proxy observations of basal
590 temperature and subglacial hydrology. Such an approach would better constrain the
591 basal friction coefficient in a physically consistent manner, reducing the risk of
592 producing nonphysical states. This integration is especially critical for projections of
593 ice sheet evolution under future climate change scenarios, as the dynamic response is
594 sensitive to even small changes in basal conditions.

595

596 **5. Conclusion**

597 We propose a novel and rapid method to quantify the inconsistencies between
598 modelled basal ice temperature and observed surface velocity magnitude and assess the
599 quality of ice sheet model simulation results without using subglacial observation data.
600 Previously, it has been assumed that assessing the quality of an ice sheet temperature
601 model required in situ observations, whether from ice cores or geophysical techniques
602 like ice penetrating radar. By using the ice temperature field to compute the rheology

603 structure needed for a mechanical inversion and then quantifying the inconsistency
604 between the inverted velocity field and the original ice temperature field, we are able
605 to use remotely sensed surface velocity observations as a means to assess on the quality
606 of modelled basal temperatures. Given the challenges in acquiring subglacial data, our
607 method can provide a streamlined and effective approach to evaluation.

608 We apply this method to evaluate the steady-state simulation results of Totten
609 Glacier presented by Huang et al. (2024), which were derived using a 3D full-Stokes
610 model with 8 different GHF datasets. Assuming the inconsistencies are mainly due to
611 quality issues of GHF datasets, we use the inconsistencies to assess the reliability of
612 those GHF datasets. We compare our GHF ranking with that by Huang et al. (2024)
613 which used specularity content to derive a two-sided constraint on the basal thermal
614 state. We find that the top 4 and the bottom 4 GHFs are the same in the two studies,
615 albeit with slight variations in ranking. Furthermore, we find that the simulations with
616 all GHF datasets underestimate the basal ice temperature in a canyon on the western
617 boundary of Totten Glacier, and we infer that the common high overheating
618 inconsistencies with all the GHF datasets in the eastern Totten Glacier between 69°S
619 and 72°S may be attributed to a warm bias in the prescribed surface ice temperature
620 used in the model. While we demonstrate that this approach works on simulation results
621 for Totten Glacier, testing of the method on other glaciers would be useful to assess if
622 the approach is worthwhile for revealing ambiguous conflicts in observations and
623 simulations.

624
625 *Data availability.* MEaSUREs BedMachine Antarctica, version 2, is available at
626 <https://doi.org/10.5067/E1QL9HFQ7A8M> (Morlighem, 2020). MEaSUREs InSAR-
627 Based Antarctic Ice Velocity Map, version 2, is available at
628 <https://doi.org/10.5067/D7GK8F5J8M8R> (Rignot et al., 2017). MEaSUREs Antarctic
629 Boundaries for IPY 2007–2009 from Satellite Radar, version 2, is available at
630 <https://doi.org/10.5067/AXE4121732AD> (Mouginot et al., 2017). ALBMAP v1 and the
631 GHF dataset of Shapiro and Ritzwoller (2004) are available at
632 <https://doi.org/10.1594/PANGAEA.734145> (Le Brocq et al., 2010). The GHF dataset
633 of An et al. (2015) is available at
634 <http://www.seismolab.org/model/antarctica/lithosphere/AN1-HF.tar.gz> (last access: 11
635 April 2023). The GHF dataset of Shen et al. (2020) is available at
636 <https://sites.google.com/view/weisen/research-products?authuser=0> (last access: 11
637 April 2023). The GHF dataset of Martos (2017) is available at
638 <https://doi.org/10.1594/PANGAEA.882503>. The GHF dataset of Purucker (2012) is
639 available at
640 https://core2.gsfc.nasa.gov/research/purucker/heatflux_mf7_foxmaule05.txt (last
641 access: 11 April 2023).

642
643 *Author contributions.* LZ and JCM conceived the study. LZ, MW, and JCM designed
644 the methodology. JW and LZ analyzed the data and conducted visualization. JW
645 and LZ wrote the original draft, and all the authors revised the paper.
646
647 *Competing interests.* The contact author has declared that none of the authors has any
648 competing interests.
649
650 *Acknowledgements.* This work was supported by National Natural Science Foundation
651 of China (grant no. 42576280) and Academy of Finland (grant no. 355572).
652
653 **References**
654 Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of the Antarctic Ice
655 Sheet with the Parallel Ice Sheet Model (PISM) – Part 1: Boundary conditions and climatic
656 forcing, *The Cryosphere*, 14, 599–632, <https://doi.org/10.5194/tc-14-599-2020>, 2020.
657 An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A., Kanao, M., Li, Y., Maggi, A., and Lévêque,
658 J.: Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate
659 inferred from seismic velocities, *J. Geophys. Res. Solid Earth*, 120, 8720–8742,
660 <https://doi.org/10.1002/2015JB011917>, 2015.
661 Artemieva, I. M.: Antarctica ice sheet basal melting enhanced by high mantle heat, *Earth-Sci. Rev.*,
662 226, 103954, <https://doi.org/10.1016/j.earscirev.2022.103954>, 2022.
663 Azuma, N. and Higashi, A.: Formation Processes of Ice Fabric Pattern in Ice Sheets, *Ann. Glaciol.*,
664 6, 130–134, <https://doi.org/10.3189/1985AoG6-1-130-134>, 1985.
665 Benn, D. I., Luckman, A., Åström, J. A., Crawford, A. J., Cornford, S. L., Bevan, S. L., Zwinger, T.,
666 Gladstone, R., Alley, K., Pettit, E., and Bassis, J.: Rapid fragmentation of Thwaites Eastern Ice
667 Shelf, *The Cryosphere*, 16, 2545–2564, <https://doi.org/10.5194/tc-16-2545-2022>, 2022.
668 Brondex, J., Gagliardini, O., Gillet-Chaulet, F., and Durand, G.: Sensitivity of grounding line
669 dynamics to the choice of the friction law, *J. Glaciol.*, 63, 854–866,
670 <https://doi.org/10.1017/jog.2017.51>, 2017.
671 Brondex, J., Gillet-Chaulet, F., and Gagliardini, O.: Sensitivity of centennial mass loss projections
672 of the Amundsen basin to the friction law, *The Cryosphere*, 13, 177–195,
673 <https://doi.org/10.5194/tc-13-177-2019>, 2019.
674 Budd, W. F. and Jacka, T. H.: A review of ice rheology for ice sheet modelling, *Cold Reg. Sci.
675 Technol.*, 16, 107–144, [https://doi.org/10.1016/0165-232X\(89\)90014-1](https://doi.org/10.1016/0165-232X(89)90014-1), 1989.
676 Budd, W. F., Keage, P. L., and Blundy, N. A.: Empirical Studies of Ice Sliding, *J. Glaciol.*, 23, 157–
677 170, <https://doi.org/10.3189/S0022143000029804>, 1979.
678 Burton-Johnson, A., Dziadek, R., and Martin, C.: Review article: Geothermal heat flow in
679 Antarctica: current and future directions, *The Cryosphere*, 14, 3843–3873,
680 <https://doi.org/10.5194/tc-14-3843-2020>, 2020.
681 Choi, Y., Seroussi, H., Morlighem, M., Schlegel, N.-J., and Gardner, A.: Impact of time-dependent

682 data assimilation on ice flow model initialization and projections: a case study of Kjær Glacier,
683 Greenland, *The Cryosphere*, 17, 5499–5517, <https://doi.org/10.5194/tc-17-5499-2023>, 2023.

684 Cornford, S. L., Martin, D. F., Payne, A. J., Ng, E. G., Le Brocq, A. M., Gladstone, R. M., Edwards,
685 T. L., Shannon, S. R., Agosta, C., Van Den Broeke, M. R., Hellmer, H. H., Krinner, G.,
686 Ligtenberg, S. R. M., Timmermann, R., and Vaughan, D. G.: Century-scale simulations of the
687 response of the West Antarctic Ice Sheet to a warming climate, *The Cryosphere*, 9, 1579–1600,
688 <https://doi.org/10.5194/tc-9-1579-2015>, 2015.

689 Dawson, E. J., Schroeder, D. M., Chu, W., Mantelli, E., and Seroussi, H.: Ice mass loss sensitivity
690 to the Antarctic ice sheet basal thermal state, *Nat. Commun.*, 13, 4957,
691 <https://doi.org/10.1038/s41467-022-32632-2>, 2022.

692 Dow, C.: Aurora Subglacial Basin GlaDs inputs, outputs and geophysical data, Zenodo [data set],
693 <https://doi.org/10.5281/zenodo.3525474>, 2019.

694 Dow, C. F., McCormack, F. S., Young, D. A., Greenbaum, J. S., Roberts, J. L., and Blankenship, D.
695 D.: Totten Glacier subglacial hydrology determined from geophysics and modeling, *Earth
696 Planet. Sci. Lett.*, 531, 115961, <https://doi.org/10.1016/j.epsl.2019.115961>, 2020.

697 Dziadek, R., Gohl, K., Diehl, A., and Kaul, N.: Geothermal heat flux in the Amundsen Sea sector
698 of West Antarctica: New insights from temperature measurements, depth to the bottom of the
699 magnetic source estimation, and thermal modeling, *Geochem. Geophys. Geosystems*, 18,
700 2657–2672, <https://doi.org/10.1002/2016GC006755>, 2017.

701 Fisher, A. T., Mankoff, K. D., Tulaczyk, S. M., Tyler, S. W., and Foley, N.: High geothermal heat
702 flux measured below the West Antarctic Ice Sheet, *Sci. Adv.*, 1(6), e1500093,
703 <https://doi.org/10.1126/sciadv.1500093>, 2015.

704 Fowler, A. C.: A theoretical treatment of the sliding of glaciers in the absense of cavitation, *Philos.
705 Trans. R. Soc. Lond. Ser. Math. Phys. Sci.*, 298, 637–681,
706 <https://doi.org/10.1098/rsta.1981.0003>, 1981.

707 Fujita, S. and Mae, S.: Strain in the ice sheet deduced from the crystal-orientation fabrics from bare
708 icefields adjacent to the Sør-Rondane Mountains, Dronning Maud Land, East Antarctica, *J.
709 Glaciol.*, 40, 135–139, <https://doi.org/10.3189/S002214300003907>, 1994.

710 Gagliardini, O., Cohen, D., Råback, P., and Zwinger, T.: Finite-element modeling of subglacial
711 cavities and related friction law, *J. Geophys. Res. Earth Surf.*, 112, F02027,
712 <https://doi.org/10.1029/2006JF000576>, 2007.

713 Gerber, T. A., Lilien, D. A., Rathmann, N. M., Franke, S., Young, T. J., Valero-Delgado, F., Ershadi,
714 M. R., Drews, R., Zeising, O., Humbert, A., Stoll, N., Weikusat, I., Grinsted, A., Hvidberg, C.
715 S., Jansen, D., Miller, H., Helm, V., Steinhage, D., O'Neill, C., Paden, J., Gogineni, S. P., Dahl-
716 Jensen, D., and Eisen, O.: Crystal orientation fabric anisotropy causes directional hardening of
717 the Northeast Greenland Ice Stream, *Nat. Commun.*, 14, 2653, [https://doi.org/10.1038/s41467-023-38139-8](https://doi.org/10.1038/s41467-
718 023-38139-8), 2023.

719 Gillet-Chalet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz, C., Zwinger, T., Greve,
720 R., and Vaughan, D. G.: Greenland ice sheet contribution to sea-level rise from a new-
721 generation ice-sheet model, *The Cryosphere*, 6, 1561–1576, <https://doi.org/10.5194/tc-6-1561->

722 2012, 2012.

723 Gladstone, R., Schäfer, M., Zwinger, T., Gong, Y., Strozzi, T., Mottram, R., Boberg, F., and Moore,
724 J. C.: Importance of basal processes in simulations of a surging Svalbard outlet glacier, *The
725 Cryosphere*, 8, 1393–1405, <https://doi.org/10.5194/tc-8-1393-2014>, 2014.

726 Greenbaum, J. S., Blankenship, D. D., Young, D. A., Richter, T. G., Roberts, J. L., Aitken, A. R. A.,
727 Legresy, B., Schroeder, D. M., Warner, R. C., van Ommen, T. D., and Siegert, M. J.: Ocean
728 access to a cavity beneath Totten Glacier in East Antarctica, *Nat. Geosci.*, 8, 294–298,
729 <https://doi.org/10.1038/ngeo2388>, 2015.

730 Haeger, C., Petrunin, A. G., and Kaban, M. K.: Geothermal Heat Flow and Thermal Structure of the
731 Antarctic Lithosphere, *Geochem. Geophys. Geosystems*, 23, e2022GC010501,
732 <https://doi.org/10.1029/2022GC010501>, 2022.

733 Huang, Y., Zhao, L., Wolovick, M., Ma, Y., and Moore, J. C.: Using specularity content to evaluate
734 eight geothermal heat flow maps of Totten Glacier, *The Cryosphere*, 18, 103–119,
735 <https://doi.org/10.5194/tc-18-103-2024>, 2024.

736 Jordan, T. M., Martín, C., Brisbourne, A. M., Schroeder, D. M., and Smith, A. M.: Radar
737 Characterization of Ice Crystal Orientation Fabric and Anisotropic Viscosity Within an
738 Antarctic Ice Stream, *J. Geophys. Res. Earth Surf.*, 127, e2022JF006673,
739 <https://doi.org/10.1029/2022JF006673>, 2022.

740 Kamb, B.: Sliding motion of glaciers: Theory and observation, *Rev. Geophys.*, 8, 673–728,
741 <https://doi.org/10.1029/RG008i004p00673>, 1970.

742 Kang, H., Zhao, L., Wolovick, M., and Moore, J. C.: Evaluation of six geothermal heat flux maps
743 for the Antarctic Lambert–Amery glacial system, *The Cryosphere*, 16, 3619–3633,
744 <https://doi.org/10.5194/tc-16-3619-2022>, 2022.

745 Kim, B.-H., Seo, K.-W., Lee, C.-K., Kim, J.-S., Lee, W. S., Jin, E. K., and Van Den Broeke, M.:
746 Partitioning the drivers of Antarctic glacier mass balance (2003–2020) using satellite
747 observations and a regional climate model, *Proc. Natl. Acad. Sci.*, 121, e2322622121,
748 <https://doi.org/10.1073/pnas.2322622121>, 2024.

749 Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale, high order, high spatial
750 resolution, ice sheet modeling using the Ice Sheet System Model (ISSM), *J. Geophys. Res.*,
751 117, F01022, <https://doi.org/10.1029/2011JF002140>, 2012.

752 Le Brocq, A. M., Payne, A. J., and Vieli, A.: An improved Antarctic dataset for high resolution
753 numerical ice sheet models (ALBMAP v1), *Earth Syst. Sci. Data*, 2, 247–260,
754 <https://doi.org/10.5194/essd-2-247-2010>, 2010.

755 Lipscomb, W. H., Leguy, G. R., Jourdain, N. C., Asay-Davis, X., Seroussi, H., and Nowicki, S.:
756 ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution using the
757 Community Ice Sheet Model, *The Cryosphere*, 15, 633–661, <https://doi.org/10.5194/tc-15-633-2021>, 2021.

758 Lhermitte, S., Sun, S., Shuman, C., Wouters, B., Pattyn, F., Wuite, J., Berthier, E., and Nagler, T.:
759 Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment, *Proc.
760 Natl. Acad. Sci.*, 117, 24735–24741, <https://doi.org/10.1073/pnas.1912890117>, 2020.

762 Lösing, M. and Ebbing, J.: Predicting Geothermal Heat Flow in Antarctica With a Machine Learning
763 Approach, *J. Geophys. Res. Solid Earth*, 126, e2020JB021499,
764 <https://doi.org/10.1029/2020JB021499>, 2021.

765 MacAyeal, D. R.: A tutorial on the use of control methods in ice-sheet modeling, *J. Glaciol.*, 39, 91–
766 98, <https://doi.org/10.3189/S002214300015744>, 1993.

767 Martín, C., Gudmundsson, G. H., Pritchard, H. D., and Gagliardini, O.: On the effects of anisotropic
768 rheology on ice flow, internal structure, and the age-depth relationship at ice divides, *J.*
769 *Geophys. Res. Earth Surf.*, 1114, F04001, <https://doi.org/10.1029/2008JF001204>, 2009.

770 Martos, Y. M., Catalán, M., Jordan, T. A., Golynsky, A., Golynsky, D., Eagles, G., and Vaughan, D.
771 G.: Heat Flux Distribution of Antarctica Unveiled, *Geophys. Res. Lett.*, 44, 11,417–11,426,
772 <https://doi.org/10.1002/2017GL075609>, 2017.

773 Maule, C. F., Purucker, M. E., Olsen, N., and Mosegaard, K.: Heat Flux Anomalies in Antarctica
774 Revealed by Satellite Magnetic Data, *Science*, 309, 464–467,
775 <https://doi.org/10.1126/science.1106888>, 2005.

776 McCormack, F. S., Roberts, J. L., Dow, C. F., Stål, T., Halpin, J. A., Reading, A. M., and Siegert, M.
777 J.: Fine-Scale Geothermal Heat Flow in Antarctica Can Increase Simulated Subglacial Melt
778 Estimates, *Geophys. Res. Lett.*, 49, e2022GL098539, <https://doi.org/10.1029/2022GL098539>,
779 2022.

780 Morlighem, M., Seroussi, H., Larour, E., and Rignot, E.: Inversion of basal friction in Antarctica
781 using exact and incomplete adjoints of a higher-order model, *J. Geophys. Res. Earth Surf.*, 118,
782 1746–1753, <https://doi.org/10.1002/jgrf.20125>, 2013.

783 Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli,
784 F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V.,
785 Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K.,
786 Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H.,
787 Smith, E. C., Steinhage, D., Sun, B., Broeke, M. R. V. D., Ommen, T. D. V., Wessem, M. V.,
788 and Young, D. A.: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of
789 the Antarctic ice sheet, *Nat. Geosci.*, 13, 132–137, <https://doi.org/10.1038/s41561-019-0510-8>, 2020.

790 Nye, J. F.: Glacier sliding without cavitation in a linear viscous approximation, *Proc. R. Soc. Lond.*
791 *Math. Phys. Sci.*, 315, 381–403, <https://doi.org/10.1098/rspa.1970.0050>, 1970.

792 Park, I.-W., Jin, E. K., Morlighem, M., and Lee, K.-K.: Impact of boundary conditions on the
793 modeled thermal regime of the Antarctic ice sheet, *The Cryosphere*, 18, 1139–1155,
794 <https://doi.org/10.5194/tc-18-1139-2024>, 2024.

795 Paterson, W. S. B.: Why ice-age ice is sometimes “soft,” *Cold Reg. Sci. Technol.*, 20, 75–98,
796 [https://doi.org/10.1016/0165-232X\(91\)90058-O](https://doi.org/10.1016/0165-232X(91)90058-O), 1991.

797 Pattyn, F.: Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales
798 with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0), *The*
799 *Cryosphere*, 11, 1851–1878, <https://doi.org/10.5194/tc-11-1851-2017>, 2017.

800 Payne, A. J., Nowicki, S., Abe-Ouchi, A., Agosta, C., Alexander, P., Albrecht, T., Asay-Davis, X.,

802 Aschwanden, A., Barthel, A., Bracegirdle, T. J., Calov, R., Chambers, C., Choi, Y., Cullather,
803 R., Cuzzone, J., Dumas, C., Edwards, T. L., Felikson, D., Fettweis, X., Galton-Fenzi, B. K.,
804 Goelzer, H., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T.,
805 Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Munneke, P. K.,
806 Larour, E., Le Clec'H, S., Lee, V., Leguy, G., Lipscomb, W. H., Little, C. M., Lowry, D. P.,
807 Morlighem, M., Nias, I., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Rückamp, M.,
808 Schlegel, N., Seroussi, H., Shepherd, A., Simon, E., Slater, D., Smith, R. S., Straneo, F., Sun,
809 S., Tarasov, L., Trusel, L. D., Van Breedam, J., Van De Wal, R., Van Den Broeke, M.,
810 Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: Future Sea Level Change Under
811 Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland
812 and Antarctic Ice Sheets, *Geophys. Res. Lett.*, 48, e2020GL091741,
813 <https://doi.org/10.1029/2020GL091741>, 2021.

814 Peyaud, V., Bouchayer, C., Gagliardini, O., Vincent, C., Gillet-Chaulet, F., Six, D., and Laarman,
815 O.: Numerical modeling of the dynamics of the Mer de Glace glacier, French Alps: comparison
816 with past observations and forecasting of near-future evolution, *The Cryosphere*, 14, 3979–
817 3994, <https://doi.org/10.5194/tc-14-3979-2020>, 2020.

818 Pittard, M. L., Roberts, J. L., Galton-Fenzi, B. K., and Watson, C. S.: Sensitivity of the Lambert-
819 Amery glacial system to geothermal heat flux, *Ann. Glaciol.*, 57, 56–68,
820 <https://doi.org/10.1017/aog.2016.26>, 2016.

821 Pollard, D. and DeConto, R. M.: A simple inverse method for the distribution of basal sliding
822 coefficients under ice sheets, applied to Antarctica, *The Cryosphere*, 6, 953–971,
823 <https://doi.org/10.5194/tc-6-953-2012>, 2012.

824 Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.: Extensive dynamic thinning
825 on the margins of the Greenland and Antarctic ice sheets, *Nature*, 461, 971–975,
826 <https://doi.org/10.1038/nature08471>, 2009.

827 Pritchard, H.D., Fretwell, P.T., Freemand, A.C. et al. Bedmap3 updated ice bed, surface and thickness
828 gridded datasets for Antarctica. *Sci Data* 12, 414 (2025). <https://doi.org/10.1038/s41597-025-04672-y>

829 Purucker, M.: Geothermal heat flux data set based on low resolution observations collected by the
830 CHAMP satellite between 2000 and 2010, and produced from the MF-6 model following the
831 technique described in Fox Maule et al. (2005), Interactive System for Ice sheet Simulation
832 [data set], https://core2.gsfc.nasa.gov/research/purucker/heatflux_mf7_foxmaule05.txt (last
833 access: 24 December 2023), 2012.

834 Rathmann, N. M. and Lilien, D. A.: Inferred basal friction and mass flux affected by crystal-
835 orientation fabrics, *J. Glaciol.*, 68, 236–252, <https://doi.org/10.1017/jog.2021.88>, 2022.

836 Reading, A. M.: Antarctic geothermal heat flow and its implications for tectonics and ice sheets,
837 *Nat. Rev. Earth Environ.*, 3, 814–831, <https://doi.org/10.1038/s43017-022-00348-y>, 2022.

838 Reese, R., Garbe, J., Hill, E. A., Urruty, B., Naughten, K. A., Gagliardini, O., Durand, G., Gillet-
839 Chaulet, F., Gudmundsson, G. H., Chandler, D., Langebroek, P. M., and Winkelmann, R.: The
840 stability of present-day Antarctic grounding lines – Part 2: Onset of irreversible retreat of
841

842 Amundsen Sea glaciers under current climate on centennial timescales cannot be excluded,
843 *The Cryosphere*, 17, 3761–3783, <https://doi.org/10.5194/tc-17-3761-2023>, 2023.

844 Ross, N., Bingham, R. G., Corr, H. F. J., Ferraccioli, F., Jordan, T. A., Le Brocq, A., Rippin, D. M.,
845 Young, D., Blankenship, D. D., and Siegert, M. J.: Steep reverse bed slope at the grounding
846 line of the Weddell Sea sector in West Antarctica, *Nat. Geosci.*, 5, 393–396,
847 <https://doi.org/10.1038/ngeo1468>, 2012.

848 Robel, A. A., Schoof, C., and Tziperman, E.: Rapid grounding line migration induced by internal
849 ice stream variability, *J. Geophys. Res. Earth Surf.*, 119, 2430 – 2447,
850 <https://doi.org/10.1002/2014JF003251>, 2014.

851 Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-Based Antarctica Ice Velocity Map,
852 Version 2, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed
853 Active Archive Center [data Set], <https://doi.org/10.5067/D7GK8F5J8M8R>, 2017.

854 Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M. J., and Morlighem,
855 M.: Four decades of Antarctic Ice Sheet mass balance from 1979–2017, *Proc. Natl. Acad. Sci.*,
856 116, 1095–1103, <https://doi.org/10.1073/pnas.1812883116>, 2019.

857 Schannwell, C., Drews, R., Ehlers, T. A., Eisen, O., Mayer, C., Malinen, M., Smith, E. C., and
858 Eisermann, H.: Quantifying the effect of ocean bed properties on ice sheet geometry over 40
859 000 years with a full-Stokes model, *The Cryosphere*, 14, 3917–3934,
860 <https://doi.org/10.5194/tc-14-3917-2020>, 2020.

861 Schoof, C.: On the mechanics of ice-stream shear margins, *J. Glaciol.*, 50, 208–218,
862 <https://doi.org/10.3189/172756504781830024>, 2004.

863 Schoof, C.: The effect of cavitation on glacier sliding, *Proc. R. Soc. Math. Phys. Eng. Sci.*, 461,
864 609–627, <https://doi.org/10.1098/rspa.2004.1350>, 2005.

865 Schroeder, D. M., Blankenship, D. D., and Young, D. A.: Evidence for a water system transition
866 beneath Thwaites Glacier, West Antarctica, *Proc. Natl. Acad. Sci.*, 110, 12225–12228,
867 <https://doi.org/10.1073/pnas.1302828110>, 2013.

868 Seroussi, H., Nowicki, S., Simon, E., Abe-Ouchi, A., Albrecht, T., Brondex, J., Cornford, S., Dumas,
869 C., Gillet-Chaulet, F., Goelzer, H., Golledge, N. R., Gregory, J. M., Greve, R., Hoffman, M. J.,
870 Humbert, A., Huybrechts, P., Kleiner, T., Larour, E., Leguy, G., Lipscomb, W. H., Lowry, D.,
871 Mengel, M., Morlighem, M., Pattyn, F., Payne, A. J., Pollard, D., Price, S. F., Quiquet, A.,
872 Reerink, T. J., Reese, R., Rodehacke, C. B., Schlegel, N.-J., Shepherd, A., Sun, S., Sutter, J.,
873 Van Breedam, J., Van De Wal, R. S. W., Winkelmann, R., and Zhang, T.: initMIP-Antarctica:
874 an ice sheet model initialization experiment of ISMIP6, *The Cryosphere*, 13, 1441–1471,
875 <https://doi.org/10.5194/tc-13-1441-2019>, 2019.

876 Shackleton, C., Matsuoka, K., Moholdt, G., Van Liefferinge, B., and Paden, J.: Stochastic
877 Simulations of Bed Topography Constrain Geothermal Heat Flow and Subglacial Drainage
878 Near Dome Fuji, East Antarctica, *J. Geophys. Res. Earth Surf.*, 128, e2023JF007269,
879 <https://doi.org/10.1029/2023JF007269>, 2023.

880 Shapiro, N.: Inferring surface heat flux distributions guided by a global seismic model: particular
881 application to Antarctica, *Earth Planet. Sci. Lett.*, 223, 213–224,

882 https://doi.org/10.1016/j.epsl.2004.04.011, 2004.

883 Shen, W., Wiens, D. A., Lloyd, A. J., and Nyblade, A. A.: A Geothermal Heat Flux Map of Antarctica
884 Empirically Constrained by Seismic Structure, *Geophys. Res. Lett.*, 47, e2020GL086955,
885 https://doi.org/10.1029/2020GL086955, 2020.

886 Siahaan, A., Smith, R. S., Holland, P. R., Jenkins, A., Gregory, J. M., Lee, V., Mathiot, P., Payne, A.
887 J., Ridley, J. K., and Jones, C. G.: The Antarctic contribution to 21st-century sea-level rise
888 predicted by the UK Earth System Model with an interactive ice sheet, *The Cryosphere*, 16,
889 4053 – 4086, https://doi.org/10.5194/tc-16-4053-2022, 2022.

890 Smith-Johnsen, S., Schlegel, N. -J., De Fleurian, B., and Nisancioglu, K. H.: Sensitivity of the
891 Northeast Greenland Ice Stream to Geothermal Heat, *J. Geophys. Res. Earth Surf.*, 125,
892 e2019JF005252, https://doi.org/10.1029/2019JF005252, 2020.

893 Stål, T., Reading, A. M., Halpin, J. A., and Whittaker, J. M.: Antarctic Geothermal Heat Flow Model:
894 Aq1, *Geochem. Geophys. Geosystems*, 22, e2020GC009428,
895 https://doi.org/10.1029/2020GC009428, 2021.

896 Sun, S., Cornford, S. L., Moore, J. C., Gladstone, R., and Zhao, L.: Ice shelf fracture
897 parameterization in an ice sheet model, *The Cryosphere*, 11, 2543–2554,
898 https://doi.org/10.5194/tc-11-2543-2017, 2017.

899 Tsai, V. C., Stewart, A. L., and Thompson, A. F.: Marine ice-sheet profiles and stability under
900 Coulomb basal conditions, *J. Glaciol.*, 61, 205–215, https://doi.org/10.3189/2015JoG14J221,
901 2015.

902 Van Liefferinge, B., Pattyn, F., Cavitte, M. G. P., Karlsson, N. B., Young, D. A., Sutter, J., and Eisen,
903 O.: Promising Oldest Ice sites in East Antarctica based on thermodynamical modelling, *The
904 Cryosphere*, 12, 2773–2787, https://doi.org/10.5194/tc-12-2773-2018, 2018.

905 Weertman, J.: On the Sliding of Glaciers, *J. Glaciol.*, 3, 33–38,
906 https://doi.org/10.3189/S0022143000024709, 1957.

907 Young, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D., and Quartini, E.: The distribution
908 of basal water between Antarctic subglacial lakes from radar sounding, *Philos. Trans. R. Soc.
909 Math. Phys. Eng. Sci.*, 374, 20140297, https://doi.org/10.1098/rsta.2014.0297, 2016.

910 Zhao, L., Moore, J. C., Sun, B., Tang, X., and Guo, X.: Where is the 1-million-year-old ice at Dome
911 A?, *The Cryosphere*, 12, 1651–1663, https://doi.org/10.5194/tc-12-1651-2018, 2018.

912 Zhang, X., Dong, X., Zeng, J., Hou, S., Smeets, P., Reijmer, C. H., and Wang, Y.: Spatiotemporal
913 Reconstruction of Antarctic Near-Surface Air Temperature from MODIS Observations, *J.
914 Clim.*, 35, 5537–5553, 2022.

915 Zwinger, T., Schäfer, M., Martín, C., and Moore, J. C.: Influence of anisotropy on velocity and age
916 distribution at Scharffenbergbotnen blue ice area, *The Cryosphere*, 8, 607–621,
917 https://doi.org/10.5194/tc-8-607-2014, 2014.

918