

1 Quantifying Temperature-sliding Inconsistency in Thermomechanical Coupling: A
2 Comparative Analysis of Geothermal Heat Flux Datasets at Totten Glacier

3
4 Junshun Wang¹, Liyun Zhao¹, Michael Wolovick², John C. Moore³

5 ¹State Key Laboratory of Earth Surface Processes and Hazards Risk Governance
6 (ESPHR), Faculty of Geographical Science, Beijing Normal University, Beijing
7 100875, China

8 ²Glaciology Section, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
9 Meeresforschung, Bremerhaven, Germany

10 ³Arctic Centre, University of Lapland, Rovaniemi, Finland

11 *Correspondence:* Liyun Zhao (zhaoliyun@bnu.edu.cn), John C. Moore
12 (john.moore.bnu@gmail.com)

13
14
15
16 **Abstract.** Rapid sliding of ice sheets requires warm basal temperatures and lubricating
17 basal meltwater, whereas slow velocities typically correlate with a frozen bed. However,
18 ice sheet models often infer basal sliding by inverting surface velocity observations
19 with the vertical structure of temperature and hence rheology held constant. If the
20 inversion is allowed to freely vary sliding over the model domain, then inconsistencies
21 between the basal thermal state and ice motion can arise lowering simulation realism.
22 In this study, we propose a new method that quantifies inconsistencies when inferring
23 warmthawed and frozeneold bedded regions of ice sheets. This method can be used to
24 evaluate the quality of ice sheet simulation results without requiring any englacial or
25 subglacial measurements. We apply the method to evaluate simulation results for Totten
26 Glacier using an isotropic 3D full-Stokes ice sheet model with eight geothermal heat
27 flux (GHF) datasets and compare our evaluation results with inferences on basal
28 thermal state from radar specularity. The rankings of GHF datasets based on
29 inconsistency are closely aligned with those using the independent specularity content
30 data. Examples of the method utility are 1. an overcooling inconsistency characterizing
31 overcooling with all GHFs near the western boundary of Totten Glacier between 70°S-
32 72°S, where there is a bedrock canyon and fast surface ice velocities, which suggestings
33 that all GHFs areis low in all published datasets; 2. an overheating inconsistency in the
34 eastern Totten Glacier with all GHFs suggestingthat leads to overestimation of ice
35 temperature due, in this case, to an unrealistically warm surface temperature. Our
36 approach opens a new avenue for assessing the self-consistency and reliability of ice
37 sheet model results and GHF datasets, which may be widely applicable.

38 **1. Introduction**

39 Ice sheet models are an important tool for projections of ice sheet mass balance
40 and their contribution to sea level rise. Ice sheet models are usually initialized by “spin-
41 up” or data assimilation such that they reproduce the present-day geometry or surface
42 velocity of an ice sheet (Seroussi et al., 2019). Often ice sheet model simulations derive
43 ice dynamics using ice temperatures taken from other studies (e.g., Gillet-Chaulet et al.,
44 2012; Van Liefferinge and Pattyn, 2013; Cornford et al., 2015; Pittard et al., 2016;
45 Siahaan et al., 2022). In thermo-mechanically coupled ice sheet simulations, the ice
46 sheet model is usually spun up with idealized temperature-depth profiles and then run
47 in a thermo-mechanically coupled mode constrained by geothermal heat flux (GHF)
48 and surface ice temperature fields (Seroussi et al., 2019). While advances in satellite
49 and field observation technologies have led to a preliminary consensus on ice sheet
50 geometry and surface ice temperature, significant uncertainties persist in basal
51 boundary conditions, including GHF and basal friction, since reliable observational
52 data are scarce. These basal properties introduce significant uncertainty in the simulated
53 ice sheet dynamics, and thus ice sheet mass balance.

54 The GHF, the heat flow from the Earth's crust to the base of ice sheet, is a critical
55 variable in the basal boundary condition for simulating the ice temperature profile, and
56 hence ice rheology and flow dynamics (Fisher et al., 2015; Smith - Johnsen et al., 2020;
57 Reading et al., 2022). Several GHF datasets exist, derived in various ways from
58 geophysical observations and models, and they exhibit significant variability in both
59 spatial distribution and magnitude (e.g., An et al., 2015; Dziadek et al., 2017; Martos et
60 al., 2017; Shen et al., 2020; Stål et al., 2021). These GHF datasets have been widely
61 used in thermodynamic simulations of Antarctica (e.g., McCormack et al., 2022;
62 Shackleton et al., 2023; Park et al., 2024; Van Liefferinge et al., 2018). However,
63 assessing the GHF field accuracy is problematic because in situ measurements such as
64 boreholes are sparse. Few studies have assessed the quality and reliability of GHF
65 datasets over specific regions. Kang et al. (2022) employed a combination of forward
66 model and inversion using a 3D full-Stokes ice flow model to simulate the basal thermal
67 state in the Lambert–Amery Glacier region and evaluate different GHFs using the
68 locations of subglacial lakes, but the constraints used were asymmetric between
69 oldfrozen and warmthawed beds, and assigned inflated reliability to the warmer GHF
70 maps. Indirect estimates of basal conditions have used airborne radar specularity
71 content (Schroeder et al., 2013, 2015; Young et al., 2016) as proxies for basal
72 wetness/dryness and thermal regime (Dow et al., 2020). Huang et al. (2024) used an
73 inverse modeling approach similar to that of Kang et al. (2022) for Totten Glacier and
74 combined this with measured radar specularity content to derive a two-sided constraint
75 on the basal thermal state in addition to subglacial lakes locations. However, specularity
76 content is not yet available for many regions of Antarctica.

77 The basal friction field is another poorly known boundary condition in ice sheet
78 modeling, and a key source of uncertainty in the long-term projection of ice sheets and
79 glaciers. Although basal slip is crucial to the 3D ice flow, it is difficult to observe.
80 Several basal sliding parameterizations have been proposed and widely used
81 (Weertman, 1957; Kamb, 1970; Nye, 1970; Budd et al., 1979; Fowler, 1981; Schoof,
82 2005; Gagliardini et al., 2007; Gladstone et al., 2014; Tsai et al., 2015; Brondex et al.,
83 2017, 2019). The linear Weertman basal sliding parameterization is the most widely
84 used due to its simple form. Given prescribed or modelled ice temperatures and hence
85 ice viscosity, numerous studies have inferred the spatial distribution of basal friction
86 coefficient over grounded ice to best match observed present-day surface ice velocities
87 or ice sheet geometry using snapshot or time-dependent data assimilation and inverse
88 methods (MacAyeal, 1993; Morlighem et al., 2010; Rignot et al., 2011; Gillet-Chaulet
89 et al., 2012; Larour et al., 2012; Pollard and DeConto, 2012; Morlighem et al., 2013;
90 Perego et al., 2014; Pattyn, 2017; Albrecht et al., 2020; Lipscomb et al., 2021; Choi et
91 al., 2023). However, such inversions typically allow the friction coefficient to vary
92 freely to match the surface velocity observations. This can potentially lead to conflicts
93 with the temperature field used during the inversion, which we refer to as
94 “inconsistencies” in this study. For instance, relatively fast surface ice velocity may
95 demand basal sliding in areas where the basal temperatures are below the local pressure
96 melting point. These inconsistencies may be due to unrealistic ice temperatures or a
97 lack of complete physics in the ice sheet model. However, many studies overlook this
98 aspect, and use the inversion results to initialize ice sheet dynamics simulations and
99 estimate glacier mass balance and its contribution to sea level rise (Seroussi et al., 2019;
100 Peyaud et al., 2020; Schannwell et al., 2020; Payne et al., 2021).

101 To the best of our knowledge, there has been no study of such inconsistencies
102 between a sliding inversion and the temperature/rheology field used as an input to that
103 inversion simulated ice temperature and observed surface ice velocity. Here we develop
104 a novel and generally applicable method to estimate this inconsistency without relying
105 on basal observation data. We utilize the inconsistency of the modelled ice temperature
106 and observed velocity fields to evaluate the quality of ice flow model results. Notably,
107 this approach can also serve as a supplementary method for assessing geothermal heat
108 flux datasets, relying solely on surface ice velocity observations rather than additional
109 englacial or subglacial data.

110 We apply our method to Totten Glacier, a primary outlet of the Aurora subglacial
111 basin in East Antarctica (Greenbaum et al., 2015; Pritchard et al., 2009). The Totten
112 Glacier subregion experienced the largest mass loss among drainage basins in East
113 Antarctica during the period 1979-2017 and 2003-2020 (Kim et al., 2024; Rignot et al.,
114 2019) (Fig. 1a). We examine inconsistencies between simulated ice temperature and ice
115 velocity fields using a 3D full-Stokes model using the various GHFs included in Huang

116 et al. (2024) and use this analysis to rank the reliability of different GHF fields. This
117 GHF ranking closely resembles that reported by Huang et al. (2024), which used the
118 agreement between the modelled basal thermal regime and specularity content, which
119 we take as a validation of the method. Since the new method does not require any
120 englacial or subglacial data, it can be applied to many glaciers, particularly those
121 lacking observations. Our approach can provide a swift assessment of the plausibility
122 of basal temperature and velocity simulated by ice sheet models. Additionally, it can be
123 effectively utilized to map the spatial distribution of GHF over- or under-estimation.

124

125 2. Method

126 2.1 Methodology in this study

127 The inconsistencies defined in this study are essentially between the modelled
128 basal thermal state and observed surface ice flow motion.a sliding inversion and the
129 temperature/rheology field used as an input to that inversion. More specifically, the
130 inconsistencies are between modelled frozen bed and modelled basal sliding (which is
131 tuned to match the observed fast surface velocity during the inversion) and modelled
132 frozen bed, and between modelled warm bed and observed slow surface velocity (which
133 is most likely indicative of a non-slip basal condition) and modelled thawed bed. The
134 inconsistencies originate from multiple causes, including uncertainties in GHF, surface
135 ice temperature, ice sheet geometry, bed topography, surface velocity, ice density and
136 incomplete ice flow mechanics.

137 There is no direct correlation between basal temperature and surface velocity;
138 rather, they are linked through the basal thermal state - the basal temperature being at
139 or below the pressure melting point. The ice bottom in the study domain can be
140 partitioned into warmthawed and frozeneold beds depending on whether the simulated
141 basal ice temperature reaches the local pressure melting point. To effectively penalize
142 models exhibiting both localized overheating (bed too warm) and overcooling (bed too
143 cold), we establish overheating metrics within the warmthawed-bedded region and
144 overcooling metrics within the oldfrozen-bedded region to quantitatively assess the
145 inconsistency between the simulated temperature and velocity fields. Thus, we provide
146 two-sided constraints on the temperature field that penalize both too high and too low
147 ice temperature.

148 Overcooling occurs where basal temperature is underestimated. Crucially, in
149 regions with relatively fast observed surface velocity, the inverse method nevertheless
150 yields a nonzero basal velocity — a physically inconsistent result given the cold basal
151 temperature. When basal ice temperature is below the pressure melting point, the basal
152 modelled velocity is expected to approach zero. This inconsistency is larger for faster
153 simulated basal ice speed and for colder simulated basal temperatures. We therefore use
154 a formula that accounts for both variables to quantify overcooling:

155
$$AOC = (T_{melt} - T_{bm}) \times U_{bm}, \quad (1)$$

156 where AOC stands for absolute overcooling, T_{melt} is the basal pressure melting point,
 157 T_{bm} represents the simulated basal ice temperature and U_{bm} means the simulated basal
 158 ice speed.

159 For the overheating metric, since the first term of the right-hand side of Eq. (1)
 160 becomes zero at a warmthawed bed, we cannot use a similar formula as Eq. (1). It is
 161 not straightforward to quantify the inconsistencies between modelled warmthawed bed
 162 and expected slow basal speed given slow observed surface speed. We note the fact that
 163 modelled basal sliding speed must remain non-negative. If the ice is warm and soft
 164 enough to permit deformation such that the modelled surface speed is much faster than
 165 the observed, then a friction inversion will be ineffective to correct this misfit,
 166 producing a bias towards positive misfits (i.e., model velocities are too fast) in the
 167 inversion results. Therefore, we use the positive difference between the simulated
 168 surface ice speed and the observed speed to calculate the inconsistency caused by the
 169 overheating effect:

$$170 \quad AOH = \max(0, U_{sm} - U_{obs}), \quad (2)$$

171 where AOH refers to absolute overheating, U_{sm} represents the modelled surface ice
 172 speed and U_{obs} is the observed surface ice speed. We only calculated AOH for the
 173 warmthawed-bedded areas, i.e. $T_{bm} = T_{melt}$, because observed surface ice speed errors
 174 are proportionally much less in warmthawed-bedded areas (corresponding to fast flow
 175 regions) than in coldfrozen-bedded area (correspond to slow flow regions).

176 To mitigate the impact of substantial differences in observed surface ice speed
 177 across various areas, we also define "relative overheating" (ROH) and "relative
 178 overcooling" (ROC), dividing AOH and AOC by the observed surface ice speed
 179 respectively:

$$180 \quad ROH = \frac{\max(0, U_{sm} - U_{obs})}{U_{obs}}, \quad (3)$$

$$181 \quad ROC = (T_{melt} - T_{bm}) \times \frac{U_{bm}}{U_{obs}}. \quad (4)$$

182 Overheating and overcooling inconsistencies are calculated on warmthawed bed
 183 and coldfrozen bed, respectively. To evaluate the inconsistencies for the whole domain,
 184 we linearly normalized the overheating inconsistency and overcooling inconsistency to
 185 range from 0 to 1 and then sum them as:

$$186 \quad ACI = L_N(AOC) + L_N(AOH), \quad (5)$$

$$187 \quad RCI = L_N(ROC) + L_N(ROH), \quad (6)$$

188 where ACI means absolute combined inconsistency, RCI represents relative combined
 189 inconsistency, and L_N represents linear normalization. Taking AOC as an example, its
 190 linear normalization is:

$$191 \quad L_N(AOC) = \frac{AOC - AOC_{min}}{AOC_{max} - AOC_{min}}. \quad (7)$$

192 Therefore, we obtain 6 metrics consisting of three absolute inconsistencies (*AOH, AOC, 193 ACI*) and three relative inconsistencies (*ROH, ROC, RCI*).

194 These 6 indicators can comprehensively analyze the temperature-sliding
195 inconsistency in the inversion results of ice sheet model. For each metric, we rank the
196 eight GHF datasets from 1 (least inconsistent) to 8 (most inconsistent). The final score
197 for each dataset is the average of its ranks across the six metrics to ensure a
198 comprehensive evaluation, as a reasonable simulation result should perform well across
199 ~~warmthawed~~ bed, ~~oldfrozen~~ bed, and the whole region. We only consider grounded
200 ice and exclude points located at the domain boundary due to relatively poor model
201 performance there.

202 ~~The specific metrics that we use to quantify this inconsistency could be
203 adaptablechanged, for example by using a squared error term instead of the linear error
204 terms that we used. However, the general practice of emphasizinggearing about and
205 quantifying the inconsistency between a sliding inversion and the temperature/rheology
206 field used as an input to that inversion is novelis new.~~

207

208 **2.2 Methodology in Huang et al. (2024)**

209 Huang et al. (2024) employed thermo-mechanical coupled simulations using eight
210 GHF datasets to investigate the steady-state thermal regime of Totten Glacier. The
211 methodology comprised involved two interconnected modeling components:

- 212 1. Forward Modeling: An enhanced shallow-ice approximation model integrated with
213 a subglacial hydrology module was utilized to simulate englacial temperature profiles.
- 214 2. Inverse Problem: A full-Stokes ice flow model was applied to resolve basal friction
215 coefficients through inverse analysis, to minimize the misfit between simulated and
216 observed velocities while simultaneously generating velocity predictions.

217 A feedback loop was then established: the velocity outputs from the inverse model
218 were used to refine key parameters in the forward model - specifically constraining the
219 basal slip ratio, rheological properties, and shape functions. This bidirectional coupling
220 process underwent multiple iterations to achieve convergent steady-state solutions.

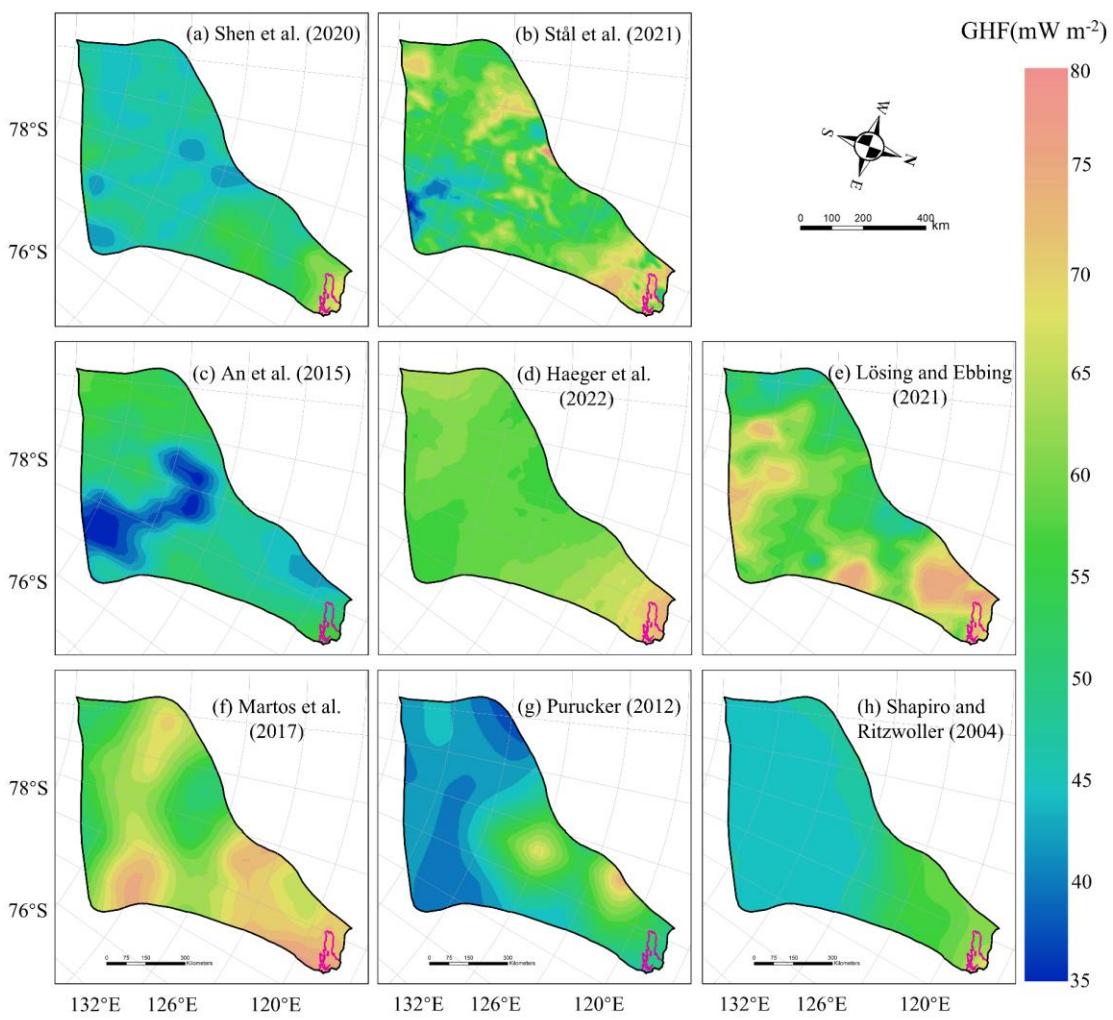
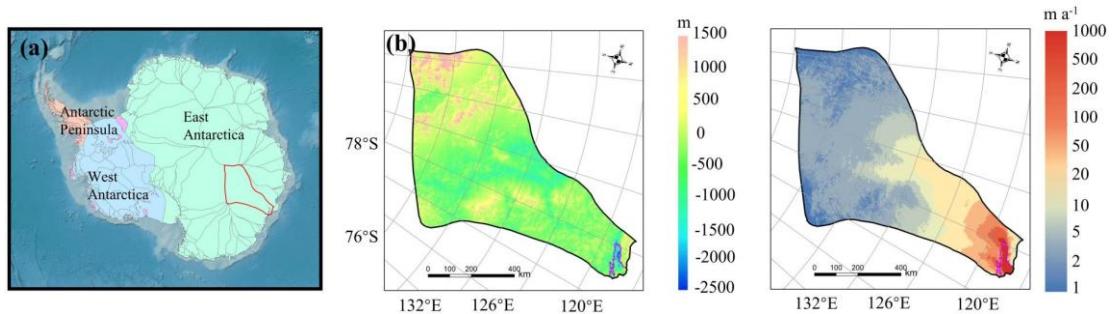
221 Huang et al. (2024) utilizedused some radar specularity content data to
222 differentiate localized wet (thawed) versus dry (frozen) basal conditions and used this
223 data as a two-sided constraint on the basal thermal state. They compared modeled basal
224 thermal states derived fromwith different GHFs to evaluate the reliability of the GHF
225 datasets.

226

227 **2.3 Distinction from Huang et al. (2024)**

228 In Huang et al. (2024), modelled surface velocity velocities are compared with
229 observations over the whole domain during the inversion for basal parameters for each
230 GHF dataset.~~is compared with the observed over the whole domain in the inversion for~~

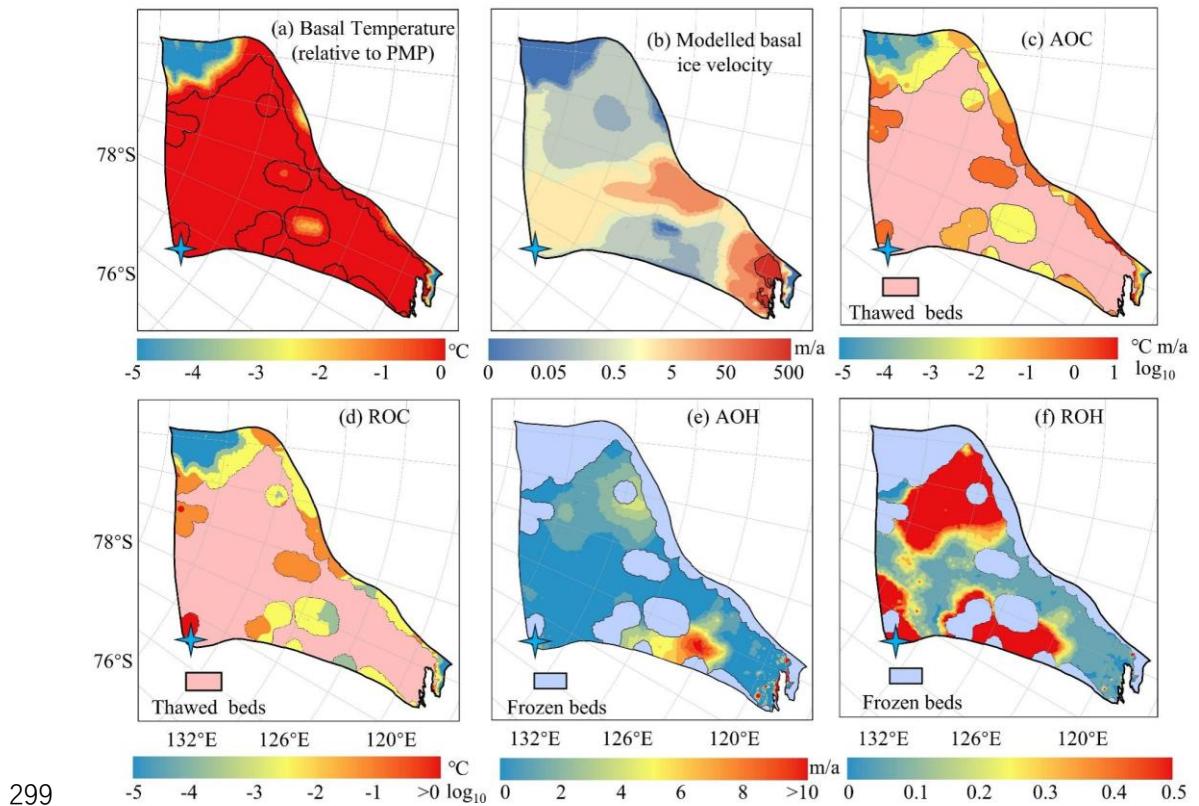
231 ~~basal parameters for each GHF data. Here, surface velocities act as the observational~~
232 ~~constraints for the mechanical inversion. The observational constraints for a mechanical~~
233 ~~inversion are surface velocities.~~



234 ~~Although the overheating metrics here use the surface velocities and can thus be~~
235 ~~considered thought of as a subset of the inversion residual, our overcooling metrics are~~
236 ~~based on the basal sliding velocity derived from the inversion, which does not part of~~
237 ~~enter into the residual of a mechanical inversion's residual. A mechanical inversion does~~
238 ~~not take into account the physical plausibility of the sliding result it produces. Therefore,~~
239 ~~it is not circular reasoning to compare two different parts of a model to each other;~~
240 ~~rather, it is a check of internal consistency, or lack thereof. A mechanical inversion may~~
241 ~~be able to fit the surface velocity observations equally well when forced with many~~
242 ~~different models of the ice sheet thermal structure and rheology; however, if some of~~
243 ~~these models require high sliding velocities in frozen-based regions, then they should~~
244 ~~be downweighted in comparison to models that show a good agreement between basal~~
245 ~~temperature and velocity.~~

246 ~~The method here does not require any additional observations beyond the surface~~
247 ~~velocities used in the mechanical inversion. However, there are "independent~~
248 ~~constraints" in the method here, which are not observations, but rather the a priori~~
249 ~~physical understandings that: 1) rapid sliding requires warm basal temperatures and~~
250 ~~subglacial water; 2) reducing the basal slip coefficient cannot prevent the ice from~~
251 ~~flowing by internal shear deformation. The inconsistency metrics developed in this~~
252 ~~paper are an attempt to quantify and rank the extent to which these basic (and~~
253 ~~uncontroversial) physical understandings are violated.~~

254 255 **3. Application to Totten Glacier with Different GHFs**

256 **3.1 Study domain and Data**


257 We apply our method to evaluate simulated ice temperature and ice velocity in
258 Totten Glacier ~~with eight GHF datasets by following~~ Huang et al. (2024) ~~and using~~
259 ~~eight GHF datasets~~. Huang et al. (2024) used the present-day surface ice temperature
260 (Le Brocq et al., 2010), ~~observed surface velocity from MEaSUREs InSAR-Based~~
261 ~~Antarctic Ice Velocity Map, version 2 (Rignot et al., 2017)~~ and ice sheet topography
262 data from BedMachine Antarctica, version 2 (Morlighem et al., 2020). The eight GHF
263 datasets were derived by various methodologies, resulting in significant differences in
264 both spatial distribution and magnitude (Fig. 2). GHF fields from Stål et al. (2021),
265 Haeger et al. (2022), Lösing and Ebbing (2021) and Martos et al. (2017) generally
266 exhibit higher magnitudes than the other GHFs.

275
276 The spatial distribution of modelled basal temperature using the 8 GHFs displays
277 both similarities and heterogeneity. In the northern part of Totten Glacier, there is a
278 consistent warmthawed-bedded pattern across all eight simulation results (Fig. S1),
279 which originates from the grounding line and extends upstream to approximately 71°S.
280 This warmthawed-bedded area is not contiguous with the lateral boundaries of Totten
281 Glacier but is instead bordered by coldfrozen bed. All 8 GHF datasets produce low basal
282 ice temperatures in the inland southwest, with Purucker et al. (2012), Shapiro and
283 Ritzwoller (2004), Shen et al. (2020) and Lösing and Ebbing (2021) being colder. The
284 basal ice velocities modelled from the 8 different GHF datasets produce similar spatial
285 distributions (Fig. S2), which can be expected as they were derived using the same
286 inverse method and constrained by the identical observed surface ice velocity. The
287 modelled basal ice velocity is fast near the grounding line and its upstream area. There
288 are also high velocities between 70°S and 72°S close to the western boundary of Totten
289 Glacier, which are associated with subglacial canyon features in the basal topography
290 (Fig. 1b) and observed fast surface ice velocity there.

291
292 **3.2 Spatial Distribution of Inconsistencies with one GHF dataset**

293 In this section, we show the spatial fields of the inconsistencyies metrics (Section
294 2.1) for the modelled result in Huang et al. (2024), usingwith Martos et al. (2017) GHF
295 as an example. This example illustrates the interpretation process before conducting a
296 comprehensive comparative analysis for the result with 8 GHF datasets.

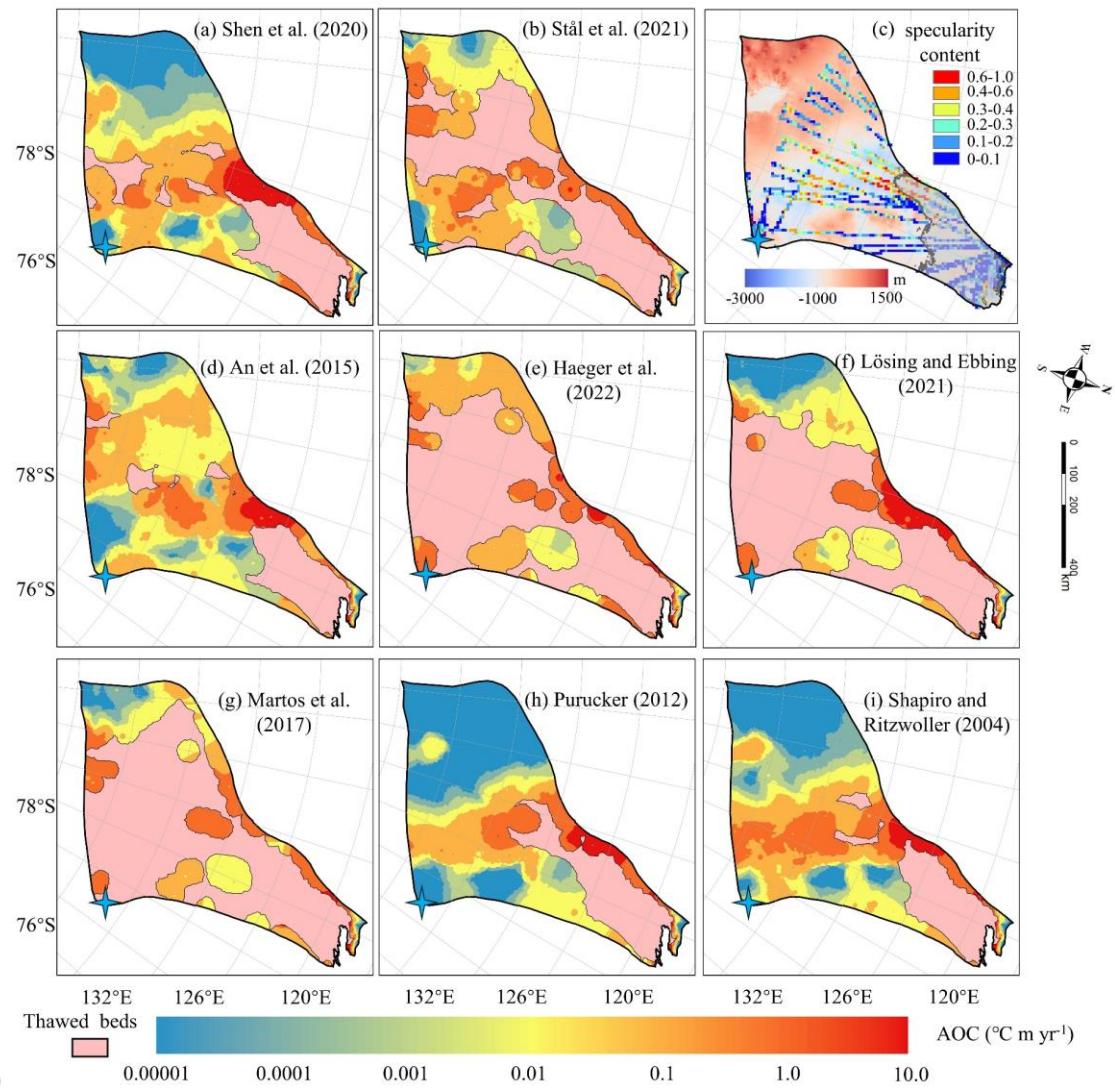
299 [Figure 3. Spatial distribution of modelled basal ice temperature \(a\), modelled basal ice](#)
 300 [speed \(b\), AOC \(c\), ROC \(d\) inconsistencies in modelled cold frozen-bedded regions,](#)
 301 [and AOH \(e\) and ROH \(f\) inconsistencies in modelled warmthawed-bedded regions](#)
 302 [associated with Martos et al. \(2017\) GHF. The colormap in \(c\) and \(d\) is on logarithmic](#)
 303 [scale. The pink region in \(c\) and \(d\) represents modelled thawed bed, while the blue](#)
 304 [region in \(e\) and \(f\) indicates frozen-bedded areas.](#)

305
 306
 307 The modelled result based on the Martos et al. (2017) GHF reveals extensive
 308 regions of thawed bed with limited areas of frozen bed. The frozen bed is predominantly
 309 located in the southern corner of the study domain, where the modelled basal ice speed
 310 approaches zero, consistent with cold basal ice temperature. Consequently, the AOC
 311 inconsistency at this marginal zone is negligible (Fig. 3). Along the western margin of
 312 Totten Glacier, basal ice temperature remains below the pressure melting point, albeit
 313 approaching it. However, localized regions exhibit high basal velocities of several tens
 314 of meters per year, contradicting the presence of a frozen bed and resulting in large
 315 AOC inconsistencies.

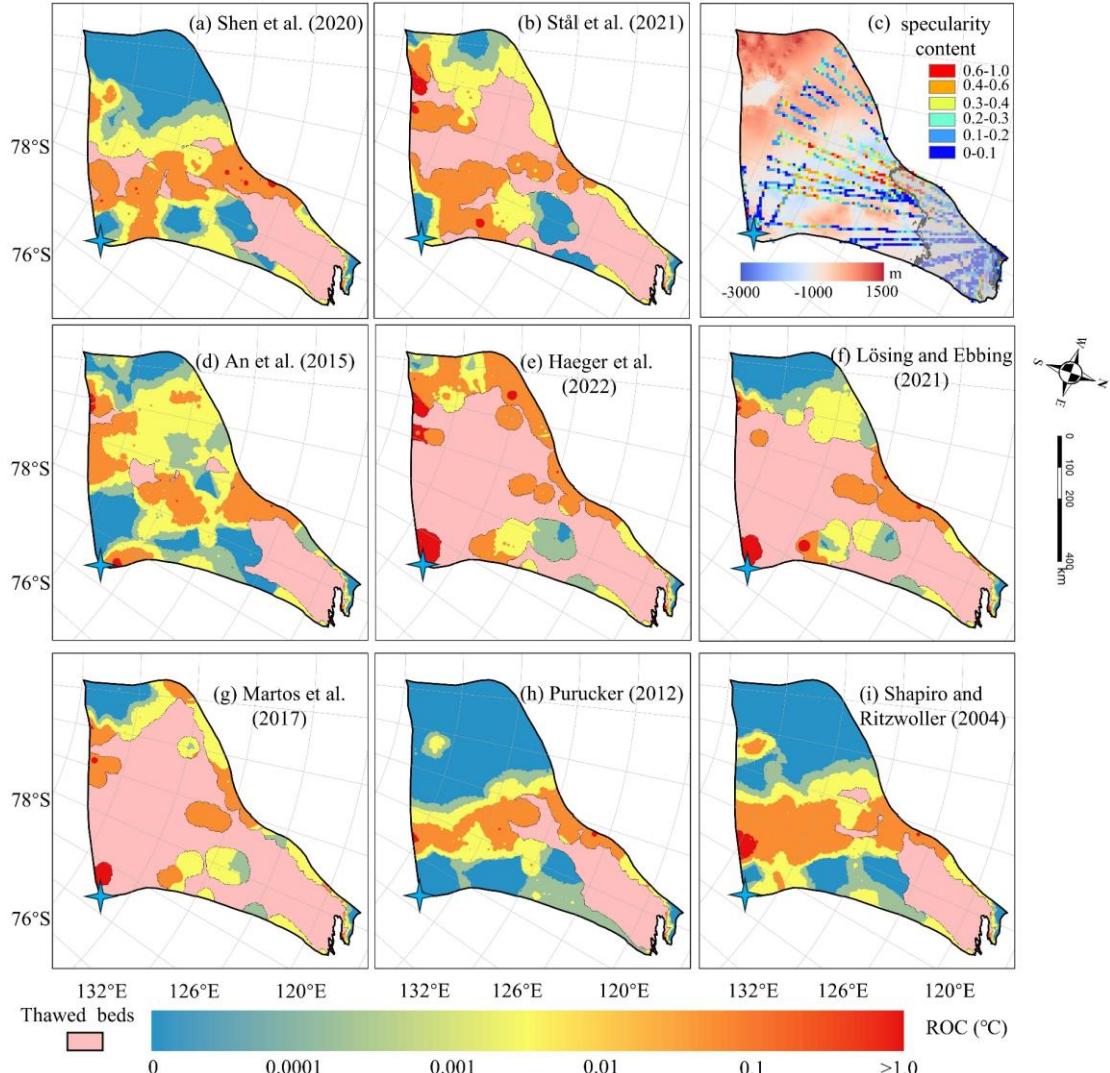
316 Conversely [On the other hand](#), large AOH values are observed between 69°S and 71°S
 317 in the eastern Totten Glacier region, where the simulated surface ice speed exceeds
 318 observational data by $>5 \text{ m a}^{-1}$ (Fig. 3e). In this area, the modelled basal ice temperature

319 reaches the pressure melting point, with the modelled basal ice speed at approximately
320 0.05 m a^{-1} . Basal friction inversion failed to reproduce observed surface ice speed due
321 to the model's overestimation of ice temperature and softness. This pronounced velocity
322 mismatch highlights a fundamental inconsistency in the eastern glacier region, likely
323 originating from discrepancies in the input datasets. Regions of high ROH and ROC
324 values coincide with areas of relatively high AOH and AROC, particularly where the
325 observed surface velocities are slow, as per their formulations.

326

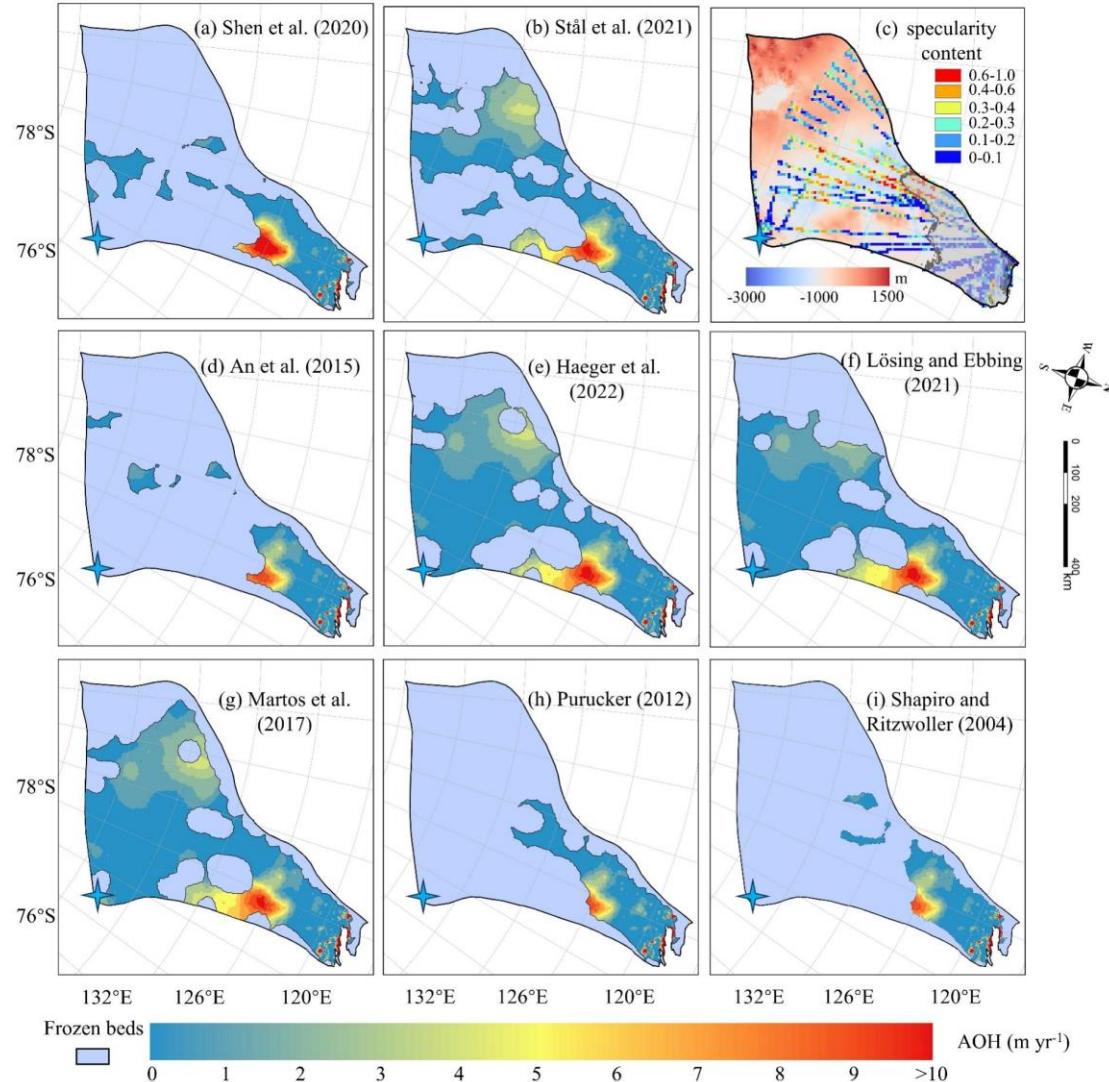

327 **3.23.3 Spatial Distribution of Inconsistencies with eight GHF datasets**

328 We calculate the absolute inconsistencies, AOH , in the ~~warmthawed~~ bed, and AOC
329 in the ~~coldfrozen~~ bed. The spatial distribution of AOC reveals that most GHF datasets
330 exhibit significant local overcooling inconsistencies at the subglacial canyon between
331 70°S and 72°S (Fig. 34). There is fast basal sliding in the inverse model results (Fig.
332 S2), however, the modelled basal ice temperatures inferred from most of the GHF
333 datasets are below the pressure melting point (Fig. S1). High specularity content in
334 radar data (Fig. 34c) suggests the presence of basal water in the subglacial canyons here
335 (Dow et al., 2020; Huang et al., 2024), which also suggests that the basal ice
336 temperature should be at the pressure melting point and confirms the inconsistency
337 between the modelled temperature and velocity fields.

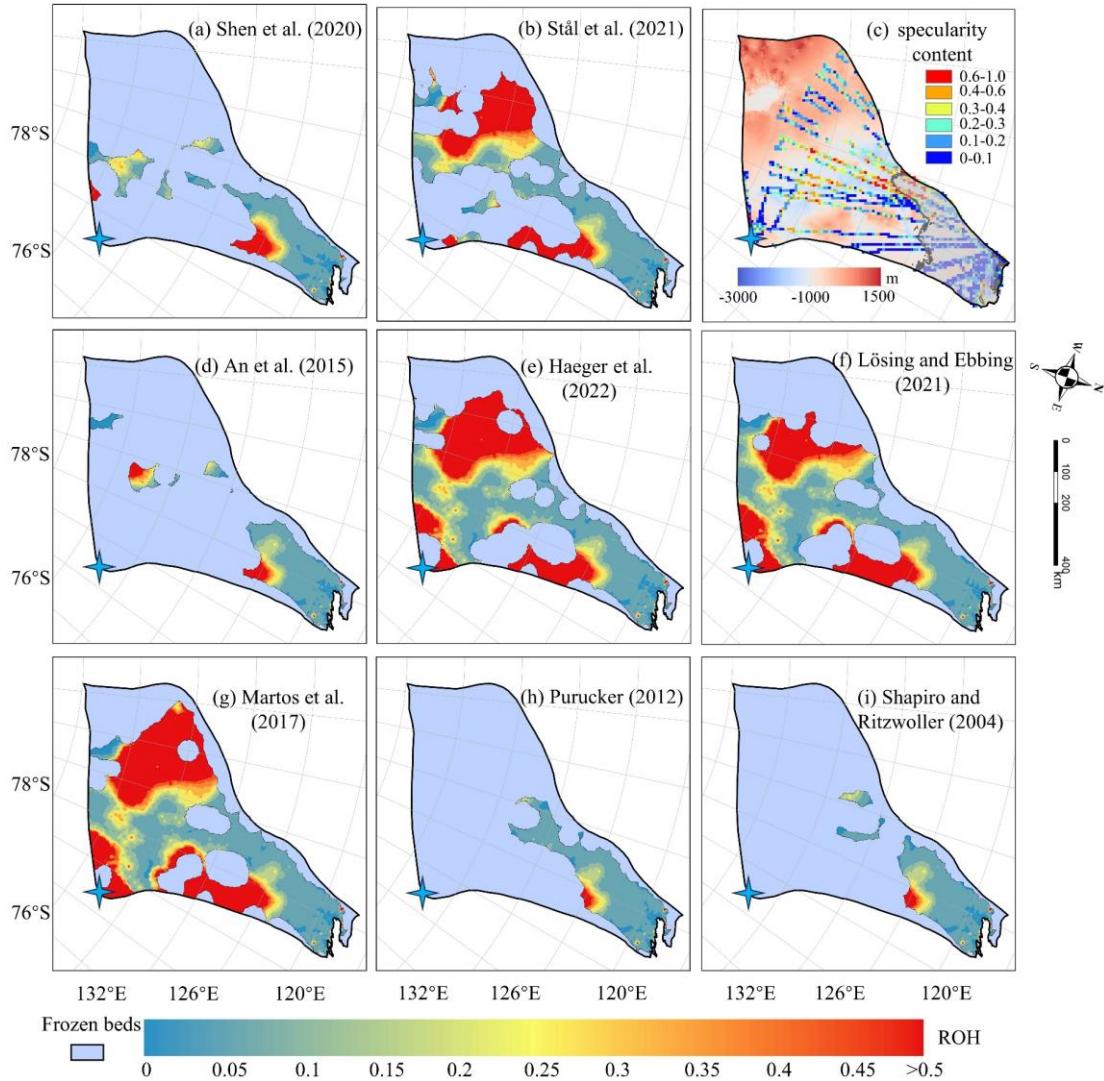

338 The area near the grounding line is characterized by fast ice flow and ~~warmthawed~~
339 bed (Fig. 34), yet some of the margin is ~~coldfrozen~~-bedded with modelled basal
340 temperature below the pressure melting point, resulting in high AOC . Overall, modelled
341 results with most GHF datasets show small overcooling inconsistencies. The modelled
342 results using GHF from Purucker et al. (2012), Shapiro and Ritzwoller (2004), Shen et
343 al. (2020), Lösing and Ebbing (2021) exhibit no overcooling inconsistency in
344 southwestern Totten Glacier (Fig. 34).

345 The spatial distribution of relative overcooling inconsistencies, ROC (Fig. 54),
346 differs from that of absolute inconsistencies, AOC , and is due to the spatial variability
347 in surface ice speed. The largest value of ROC across most GHF occurs at Dome C,
348 where the observed surface ice speed is close to zero.

349


351 **Figure 34.** Spatial distribution of AOC inconsistency in modelled ~~eoldfrozen~~-bedded
 352 regions (a-b, d-i) associated with the GHFs (a-h) in Fig. 2. The colormap is on
 353 logarithmic scale. The pink region represents modelled ~~warmthawed~~ bed. (c)
 354 Specularity content sourced from radar data collected by ICECAP (Dow et al., 2020)
 355 with the bed elevation in the background. Gray area in (c) corresponds to surface speed
 356 exceeding 30 m yr^{-1} . The blue star represents Dome C.

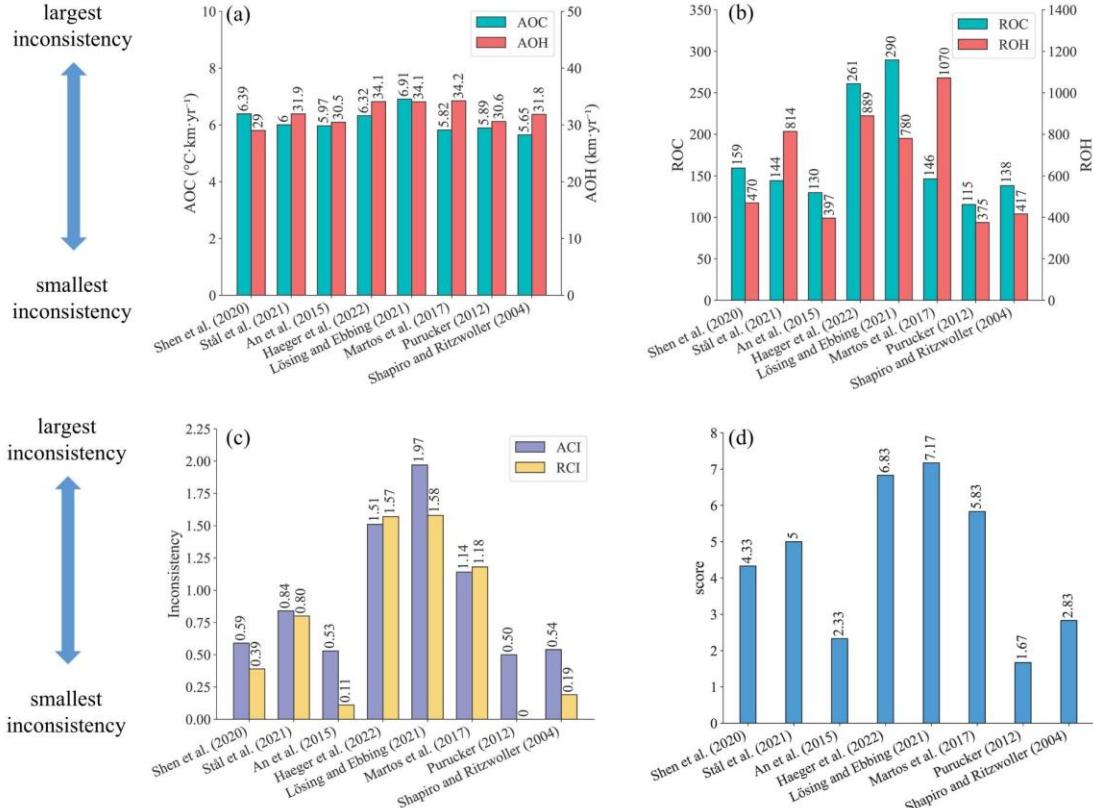
358 | Figure 54. The spatial distribution of relative overcooling (ROC) inconsistency in cool
 359 | beds with (a), (b) and (d) to (i) corresponding to the GHFs (a - h) in Figure 2. The pink
 360 | area represents the warmthawed beds. Dome C is marked by a blue star. (c) Locations
 361 | of specularity content derived from radar data collected by ICECAP (Dow et al., 2020)
 362 | and with the bed elevation in the background. The gray curve is the contour of the
 363 | surface speed of 30 m yr^{-1} . Note the colormap is non-linear.
 364 |
 365 |


366 | The GHF datasets of Stål et al. (2021), Haeger et al. (2022), Lösing and Ebbing
 367 | (2021) and Martos et al. (2017) which have higher than average GHF values provide
 368 | larger areas of warmthawed bed than the other 4 GHFs. The simulations with all 8 GHFs
 369 | yield similar spatial distributions of *AOH* (Fig. 65) on the common area of warmthawed
 370 | bed, and similar locations of high *AOH* values. A common high *AOH* area is located
 371 | between 69°S and 72°S in the eastern part of Totten Glacier, due to simulated surface

372 ice velocities greatly exceeding the observed surface ice velocities. Low specularity
 373 content from radar data (Fig. 65c) suggests there is no basal water in the area (Dow et
 374 al., 2020; Huang et al., 2024). Therefore, it is likely that the basal ice temperature is
 375 overestimated there. The simulations with all the 8 GHFs also yield similar spatial
 376 distribution of ROH (Fig. 76), but its largest values are mostly in the slow flowing
 377 region as one may expect from its formulation (Eq. (3)).

379 **Figure 65.** Spatial distribution of AOH in warmthawed-bedded regions with (a-b, d-i)
 380 corresponding to the GHFs (a-h) in Fig. 2. The blue region indicates oldfrozen-bedded
 381 areas. (c) Locations of specularity content, same as Fig. 34c. The blue star represents
 382 Dome C.

383


384
 385 Figure 76. The spatial distribution of relative overheating (ROH) inconsistency in
 386 warmthawed beds with (a), (b) and (d) to (i) corresponding to the GHFs (a - h) in Figure
 387 2. The light purple mask represents the oldfrozen beds. (c) Locations of specularity
 388 content (coloured points), same as Fig. 65.

390 **3.33.4 Evaluation of Model Inconsistency with Eight GHFs**

391 To assess the overall inconsistency of each geothermal heat flux dataset, we
 392 calculate the sum of each metric over all points. All inconsistency indices for the
 393 simulation results using the eight GHF datasets are illustrated in Fig. 87. The
 394 overheating inconsistency associated with Purucker et al. (2012) and Shapiro and
 395 Ritzwoller (2004) GHFs is predominantly localized in fast-flowing regions.
 396 Consequently, after normalization by the surface observed ice speed, their relative
 397 rankings improve (Fig. 87). The GHFs from Purucker et al. (2012), An et al. (2015),

398 Shapiro and Ritzwoller (2004), and Shen et al. (2020) demonstrate balanced
399 performance with respect to both overheating and overcooling inconsistency metrics,
400 thereby securing the top four positions in both *ACI* and *RCI*. Their *ACI* values exhibit
401 similarity, ranging from 0.50 to 0.59 (Fig. 87c). In contrast, simulation result utilizing
402 Martos et al. (2017) GHF exhibits low *AOC* but high *AOH*. Simulation results utilizing
403 Stål et al. (2021) GHF show low *ROC* but relatively high *ROH*. Notably, simulation
404 results employing GHFs from Martos et al. (2017), Haeger et al. (2022), and Lösing
405 and Ebbing (2021) demonstrate comparably high *AOH* values. These four GHF
406 datasets—Martos et al. (2017), Stål et al. (2021), Haeger et al. (2022), and Lösing and
407 Ebbing (2021)—are ranked in the bottom four positions for both *ACI* and *RCI* metrics.
408 Furthermore, the ranking order of the eight GHFs remains consistent between *ACI* and
409 *RCI*.

410 The final averaged ranking (Fig. 87d) across the indices is also the same as that of
411 *ACI* and *RCI*. Purucker et al. (2012), An et al. (2015) and Shapiro and Ritzwoller (2004)
412 GHFs occupy the top three positions. Following closely, Shen et al. (2020) and Stål et
413 al. (2021) GHFs secure the 4th and 5th positions, respectively. Martos et al. (2017),
414 Haeger et al. (2022) and Lösing and Ebbing (2021) GHFs are ranked as the bottom
415 three among the eight GHFs in Totten Glacier. The thermal state produced by the
416 optimal GHF result shows that ~~warmthawed~~ beds predominantly cluster around the
417 grounding line and its upstream regions. Conversely, the inland areas of Totten largely
418 exhibit cold temperatures, with relatively sparse ~~warmthawed~~-bedded areas.

419
420 **Figure 87.** Six inconsistency indicators and the final ranking of 8 GHF datasets. **(a)** the
421 absolute overcooling and overheating inconsistencies, AOC and AOH ; **(b)** the relative
422 overcooling and overheating inconsistencies, ROC and ROH ; **(c)** the absolute and
423 relative combined inconsistencies, ACI and RCI ; **(d)** the average of ranking scores from
424 1 to 8 using the six inconsistency indicators. The value of inconsistencies and scores
425 are labeled at the top of the bars.

4. Discussion

4.1 Causes of Inconsistencies and Sources of Uncertainty

426 Our method evaluates the quality of an ice sheet temperature field by quantifying
427 the inconsistency between that temperature field and the velocity field that is obtained
428 if that temperature field is used to compute the rheology in a mechanical inversion.
429 Because mechanical inversions use surface velocity observations as a constraint, we
430 have developed an indirect method for using surface velocity observations to check the
431 quality of an englacial temperature simulation. However, the mere fact that
432 inconsistencies exist does not by itself tell us what caused those inconsistencies.

433 Broadly speaking, the measured inconsistencies can come from two sources:
434 temperature or velocity. Uncertainties in any of the input datasets used to compute those
435 two fields can produce inconsistencies, as can simplifications in the model physics.

439 Here, we have tested the influence of one particular boundary condition, GHF, since
440 that field is particularly hard to constrain. Because all other inputs are kept constant,
441 the differences in the inconsistencies that we calculated between different simulations
442 can be attributed to the GHF fields. However, we also found that all of the models we
443 tested had non-zero inconsistency (Fig. 34; Fig. 65). The absolute inconsistencies, *AOH*
444 and *AOC*, had particularly small between-model variability in comparison to their mean
445 value. This could be because none of the input GHF fields correctly captured the true
446 GHF, but it could also indicate problems with other model inputs. For instance, the
447 surface temperature used in Huang et al. (2024) represents the present-day climate, but
448 the thermal structure of the ice sheet may reflect colder temperatures during the last
449 glacial cycle. We discuss an additional experiment we performed to test the influence
450 of uncertainty in surface temperature on our inconsistency metrics in Section 4.3 below.
451 By contrast, surface accumulation rate should have been lower during glacial periods,
452 which would have a warming influence on ice sheet temperatures. Uncertainties in bed
453 topography should influence both our thermal and our mechanical models, with deeper
454 ice being more likely to be warm, and with errors in ice thickness producing
455 compensating errors in basal sliding in our mechanical inversion. In the study of Huang
456 et al. (2024), BedMachine v2 was used for ice thickness and subglacial topography.
457 However, Bedmap3 (Pritchard et al., 2025) has better-resolved mountains and smoother
458 trough margins.

459 The simulation results we use from Huang et al. (2024) came from a 3D isotropic
460 full-Stokes ice flow model. While full-Stokes is generally considered the gold standard
461 of ice sheet mechanical modeling, the use of an isotropic rheology may not be valid in
462 some parts of the ice sheet, such as near ice divides or at the margin of an ice stream
463 where the history of past ice deformation creates anisotropic crystal fabric that affects
464 the present-day mechanical properties (Martín et al., 2009; Zhao et al., 2018b; Zwinger
465 et al., 2014). Isotropic flow laws often require the use of an “enhancement factor” for
466 vertical shear in the lower part of the ice column, an ad hoc correction that would have
467 a particularly large influence on our computed overcooling metrics. Thus the isotropic
468 flow law potentially introduces errors in modelled strain rates and, hence, bias in basal
469 sliding velocities obtained by inversion methods (Budd and Jacka, 1989; Gerber et al.,
470 2023; Rathmann and Lilien, 2022). Simulated surface ice velocities can be influenced
471 by other factors in addition to ice fabric; shear margins are also impacted by
472 accumulated rupture, such as damage along a shear margin (e.g., Benn et al., 2022;
473 Lhermitte et al., 2020; Schoof, 2004; Sun et al., 2017). Ice deposited during the last
474 glaciation has different chemistry (especially concentrations of chloride and possibly
475 sulphate ions) which leads to smaller crystals that develop a strong, near-vertical,
476 single-maximum fabric (Paterson, 1991). However, ice fabric data is sparse, known
477 from direct observations at ice cores (Azuma and Higashi, 1985) or inferred from

478 specialized radar measurements (Fujita and Mae, 1994; Jordan et al., 2022), and its
479 impact beyond the scope of this study as we refrain from incorporating additional
480 observational data relying only on widely-available surface ice velocities.

481 Our inconsistency metrics are designed to provide bidirectional constraints,
482 wherein the model is penalized for both overheating and overcooling. By adopting this
483 bidirectional constraint framework, we aim to mitigate the risk of unidirectional
484 constraints leading to excessively cold or warm outcomes being deemed optimal.
485 However, our inconsistency metrics only provide a bidirectional constraint when
486 viewed in a spatially integrated sense. Locally, we only have unidirectional constraints.
487 This is because our overheating metrics are only computed where the bed is at the
488 melting point, and our overcooling metrics are only computed where the bed is below
489 the melting point. This makes methodological sense, as we know for sure that sliding
490 must only occur where the bed is warmthawed. However, in reality it is entirely possible
491 that some of the areas where the modelled bed reaches the pressure melting point are
492 still too cold (the modelled melt rate is lower than the real melt rate), and conversely, it
493 is also possible that some of the areas where the modelled bed is below the pressure
494 melting point are still too warm (the real temperature is colder still). Our method cannot
495 identify these areas. Thus, our inconsistency metrics may underestimate variability in
496 the ice sheet thermal state: we have no way to penalize coldfrozen regions that are not
497 cold enough or warmthawed regions that are not warm enough. We leave the
498 development of these constraints to future work.

499

500 **4.2 Sensitivity of Inconsistencies to GHF Datasets**

501 Comparing the GHF dataset rankings between this study and Huang et al. (2024),
502 we find that the top 4 and the bottom 4 are the same in the two studies, albeit with slight
503 variations in ranking. The lower ranking of Shen et al. (2020) in this study may be
504 attributed to several factors. Firstly, Huang et al. (2024) excludes areas with ice speed
505 exceeding 30 m a^{-1} (Fig. 34c) because specularity content is an ambiguous indicator of
506 wet beds there. Secondly, the GHF from Shen et al. (2020) yields higher basal
507 temperature and also faster basal ice velocities in most of the coldfrozen bed of Totten
508 Glacier, hence exhibits greater overcooling inconsistency, compared with Purucker et
509 al. (2012), leading to a decrease in its rankings (Fig. S3). Lastly, Huang et al. (2024)
510 primarily relied on specularity content, while our study evaluated datasets based on
511 inconsistencies in the simulation results. Despite these methodological differences, both
512 studies identified four relatively well-performing GHF datasets for Totten Glacier,
513 which exhibit similar distributions of warmthawed and coldfrozen beds when compared
514 to the other four datasets (Fig. 34 and Fig. 65). This similarity underscores that the
515 warmthawed bed is concentrated near and upstream of the grounding line. Datasets

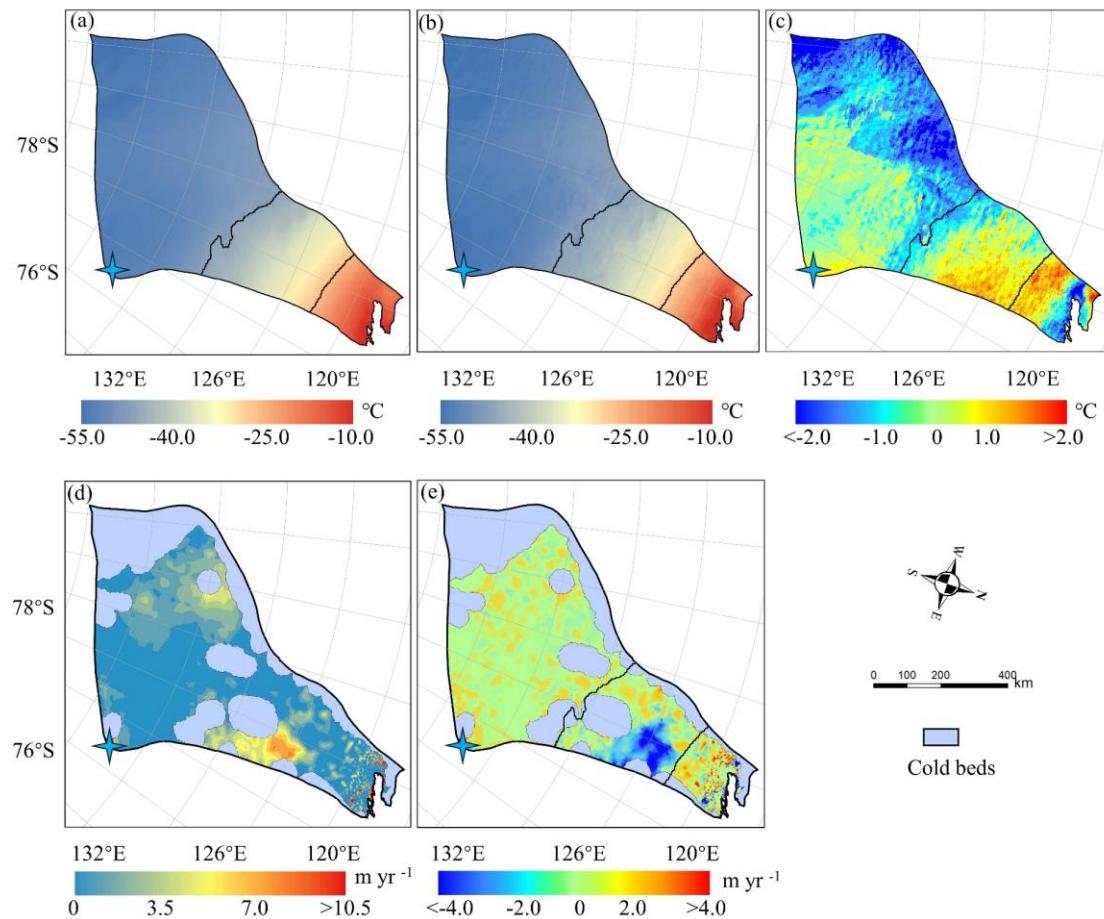
516 from Stål et al. (2021), Martos et al. (2017), Haeger et al. (2022), and Lösing and Ebbing
517 (2021) exhibit a tendency to overestimate GHF in central Totten Glacier.

518 Simulations employing GHF datasets from Stål et al. (2021), Martos et al. (2017),
519 Haeger et al. (2022), and Lösing and Ebbing (2021) yield more extensive ~~warm~~thawed
520 bedded regions and are expected to exhibit greater overheating inconsistency.
521 Nevertheless, these models also exhibit relatively high overcooling inconsistency
522 despite the limited extent of ~~cold~~frozen-bedded regions. We quantified the
523 discrepancies between these four GHF datasets and the Purucker et al. (2012) GHF in
524 terms of modelled basal velocity, basal temperature relative to the pressure melting
525 point, and *AOC* (Fig. S5). The Purucker et al. (2012) GHF yields lower basal ice
526 temperatures and slower basal velocities across most ~~cold~~frozen-bedded regions,
527 consequently resulting in lower *AOC* values compared to the other four GHF datasets.
528

529 **4.3 Implications for Ice Sheet Dynamics**

530 While evaluating inconsistencies highlights the spatial distribution of mismatches,
531 it does not inherently elucidate their underlying causes. Evaluating the inconsistencies
532 reveals where mismatches occur but not why they arise. The primary factors to
533 investigate are surface temperature, GHF, accumulation rate, and ice thickness,
534 representing the most critical boundary conditions. Furthermore, integrating multiple
535 sources of prior knowledge can help constrain model parameters:

536 1. High-resolution radar measurements: The availability of ice thickness data along
537 flight lines should be assessed to validate geometric boundary conditions. Check
538 availability of ice thickness data along flight lines to validate geometric boundary
539 conditions.


540 2. Paleoclimate context: Historical climate reconstructions indicate significantly colder
541 surface temperatures during glacial periods compared to present-day conditions, with
542 correspondingly lower accumulation rates. These paleo-temperature conditions likely
543 induced a long-term thermal memory within the ice column, potentially contributing to
544 observed discrepancies between modeled and measured basal properties.

545 Therefore, we recommend a systematic evaluation of: (1) The spatial distribution
546 of radar-derived ice thickness measurements; (2) The temporal consistency of surface
547 temperature boundary conditions; (3) The sensitivity of model results to GHF variations;
548 (4) Accumulation rate reconstructions during key climatic periods. This multi-faceted
549 approach helps isolate the causes of inconsistencies in ice sheet simulations.

550 There is a common area between 69°S and 72°S in the eastern part of Totten
551 Glacier with the largest *AOH* (Fig. 6) for all the GHFs varying from 48 to 70 mW m⁻²,
552 which suggests that the *AOH* inconsistency is from other ice sheet properties rather than
553 GHF. Zhang et al. (2022) reconstructed Antarctic near-surface air temperature based on
554 MODIS land surface temperature measurements and in situ air temperature records

555 from meteorological stations from 2001 to 2018. We compared the reconstruction of
 556 near-surface air temperature in the year 2001 (Zhang et al., 2022) and the ALBMAP v1
 557 dataset used in Huang et al. (2024). The surface air temperature in the area with large
 558 *AOH* from ALBMAP v1 is 0.6-3.1 °C higher than that from the reconstructed near-
 559 surface air temperature in 2001 (Fig. 98). The MODIS-based near-surface air
 560 temperature product shows warming in Totten Glacier from 2001 to 2018. Even so, the
 561 surface air temperature in the area with large *AOH* from ALBMAP v1 is still higher
 562 than that in 2018 but over a smaller area. Therefore, we infer that the large *AOH* may
 563 be attributed to the present-day ice surface temperature derived from ALBMAP v1 in
 564 this area being unrealistically warm. The englacial temperature will be lower than
 565 present-day ice sheet surface temperature used in the model but warmer than the
 566 average surface temperature during the last glacial-interglacial cycle. We lowered the
 567 surface ice temperature in this area by 1 °C, reran the simulation, and found that *AOH*
 568 with all the GHFs was halved (Fig. 98e).

569

570

571 **Figure 89.** Surface ice temperature from ALBMAP v1 (a) and MODIS-based near-
572 surface air temperature (b) in the year 2001, and their difference (c). (d) The AOH using
573 modified surface ice temperature by reducing the temperature between the two thick
574 black curves (contour lines of -44°C and -26°C) in (a) by 1°C and GHF of Martos
575 et al. (2017). (e) The difference between the AOH using cooler surface ice temperature
576 and the original AOH. The blue star represents Dome C.

577 Given that data assimilation and inverse methods are widely employed to infer
578 basal friction coefficients in ice sheet simulations, it is essential to acknowledge the
579 impact of the inconsistencies identified in our study on ice sheet dynamics. A ~~solid~~frozen
580 bed is supposed to provide substantial resistance and limit basal sliding; however, if the
581 basal temperature is overestimated, it may decrease viscosity and enhance basal sliding.
582 This overheating inconsistency would lead to an overestimation of ice flow speeds,
583 discharge, and the dynamic ice loss (Artemieva, 2022; Burton-Johnson et al., 2020).
584 Similarly, under representation of ~~warm~~thawed bedding would slow ice discharge
585 estimates, and hence potential ice sheet response to climate warming. The basal thermal
586 regime critically influences the stability of grounding lines and the behavior of ice
587 streams. In a warming climate, increases in geothermal or frictional heating can trigger
588 basal thawing in these areas, lowering basal friction and potentially initiating rapid
589 grounding line retreat—a key component of marine ice sheet instability (MISI) (Reese
590 et al., 2023; Ross et al., 2012). Without incorporating a self-consistent thermal model
591 into the inversion, projections may misrepresent the onset and extent of these dynamic
592 instabilities. Our findings underscore that a fully coupled inversion framework would
593 use not only surface velocity data but also incorporate direct or proxy observations of
594 basal temperature and subglacial hydrology. Such an approach would better constrain
595 the basal friction coefficient in a physically consistent manner, reducing the risk of
596 producing nonphysical states. This integration is especially critical for projections of
597 ice sheet evolution under climate change, as the dynamic response is sensitive to even
598 small changes in basal conditions.

600 601 5. Conclusion

602 We propose a novel and rapid method to quantify the inconsistencies between
603 modelled basal ice temperature and observed surface ice speed and assess the quality
604 of ice sheet model simulation results without using subglacial observation data.
605 Previously, it has been assumed that checking the quality of an ice sheet temperature
606 model required in situ observations, whether from ice cores or geophysical techniques
607 like ice penetrating radar. By using the ice temperature field to compute the rheology
608 structure needed for a mechanical inversion and then quantifying the inconsistency
609 between the inverted velocity field and the original ice temperature field, we are able

610 to use remotely sensed surface velocity observations as a check on the quality of
611 modelled englacial temperatures. Given the challenges in acquiring subglacial data, our
612 method can provide a streamlined and effective approach to evaluation.

613 We apply this method to the simulation results of Totten Glacier using a 3D full-
614 Stokes model with 8 different GHF datasets. Assuming the inconsistencies are mainly
615 due to unrealistic GHF datasets, we use the inconsistencies to assess the reliability of
616 those GHF datasets. We compare our GHF ranking with that by Huang et al. (2024)
617 which used specularity content to derive a two-sided constraint on the basal thermal
618 state. We find that the top 4 and the bottom 4 GHFs are the same in the two studies,
619 albeit with slight variations in ranking. Furthermore, we find that the simulations with
620 all GHF datasets underestimate the basal ice temperature in a canyon on the western
621 boundary of Totten Glacier, and we infer that the common high overheating
622 inconsistencies with all the GHF datasets in the eastern Totten Glacier between 69°S
623 and 72°S may be attributed to the unrealistically warm surface ice temperature used
624 there in the model. While we demonstrate that this approach works on simulation results
625 for Totten Glacier, testing of the method on other glaciers would be useful to assess if
626 the approach is worthwhile for revealing ambiguous conflicts in observations and
627 simulations.

628

629

630

631 *Data availability.* MEaSUREs BedMachine Antarctica, version 2, is available at
632 <https://doi.org/10.5067/E1QL9HFQ7A8M> (Morlighem, 2020). MEaSUREs InSAR-
633 Based Antarctic Ice Velocity Map, version 2, is available at
634 <https://doi.org/10.5067/D7GK8F5J8M8R> (Rignot et al., 2017). MEaSUREs Antarctic
635 Boundaries for IPY 2007–2009 from Satellite Radar, version 2, is available at
636 <https://doi.org/10.5067/AXE4121732AD> (Mouginot et al., 2017). ALBMAP v1 and the
637 GHF dataset of Shapiro and Ritzwoller (2004) are available at
638 <https://doi.org/10.1594/PANGAEA.734145> (Le Brocq et al., 2010b). The GHF dataset
639 of An et al. (2015) is available at
640 <http://www.seismolab.org/model/antarctica/lithosphere/AN1-HF.tar.gz> (last access: 11
641 April 2023). The GHF dataset of Shen et al. (2020) is available at
642 <https://sites.google.com/view/weisen/research-products?authuser=0> (last access: 11
643 April 2023). The GHF dataset of Martos (2017) is available at
644 <https://doi.org/10.1594/PANGAEA.882503>. The GHF dataset of Purucker (2012) is
645 available at
646 https://core2.gsfc.nasa.gov/research/purucker/heatflux_mf7_foxmaule05.txt (last
647 access: 11 April 2023).

648

649 *Author contributions.* LZ and JCM conceived the study. LZ, MW, and JCM designed
650 the methodology. JW and LZ analyzed the data and conducted visualization. JW
651 and LZ wrote the original draft, and all the authors revised the paper.

652

653 *Competing interests.* The contact author has declared that none of the authors has any
654 competing interests.

655

656 *Acknowledgements.* This work was supported by [National Natural Science Foundation](#)
657 [of China \(grant no. 42576280\)](#) ~~National Key Research and Development Program~~
658 ~~of China (grant no. 2021YFB3900105)~~ and Academy of Finland (grant no.
659 355572).

660

661 **References**

662 Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of the Antarctic Ice
663 Sheet with the Parallel Ice Sheet Model (PISM) – Part 1: Boundary conditions and climatic
664 forcing, *The Cryosphere*, 14, 599–632, <https://doi.org/10.5194/tc-14-599-2020>, 2020.

665 An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A., Kanao, M., Li, Y., Maggi, A., and Lévêque,
666 J.: Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate
667 inferred from seismic velocities, *J. Geophys. Res. Solid Earth*, 120, 8720–8742,
668 <https://doi.org/10.1002/2015JB011917>, 2015.

669 Artemieva, I. M.: Antarctica ice sheet basal melting enhanced by high mantle heat, *Earth-Sci. Rev.*,
670 226, 103954, <https://doi.org/10.1016/j.earscirev.2022.103954>, 2022.

671 Azuma, N. and Higashi, A.: Formation Processes of Ice Fabric Pattern in Ice Sheets, *Ann. Glaciol.*,
672 6, 130–134, <https://doi.org/10.3189/1985AoG6-1-130-134>, 1985.

673 Benn, D. I., Luckman, A., Åström, J. A., Crawford, A. J., Cornford, S. L., Bevan, S. L., Zwinger, T.,
674 Gladstone, R., Alley, K., Pettit, E., and Bassis, J.: Rapid fragmentation of Thwaites Eastern Ice
675 Shelf, *The Cryosphere*, 16, 2545–2564, <https://doi.org/10.5194/tc-16-2545-2022>, 2022.

676 Brondex, J., Gagliardini, O., Gillet-Chaulet, F., and Durand, G.: Sensitivity of grounding line
677 dynamics to the choice of the friction law, *J. Glaciol.*, 63, 854–866,
678 <https://doi.org/10.1017/jog.2017.51>, 2017.

679 Brondex, J., Gillet-Chaulet, F., and Gagliardini, O.: Sensitivity of centennial mass loss projections
680 of the Amundsen basin to the friction law, *The Cryosphere*, 13, 177–195,
681 <https://doi.org/10.5194/tc-13-177-2019>, 2019.

682 Budd, W. F. and Jacka, T. H.: A review of ice rheology for ice sheet modelling, *Cold Reg. Sci.
683 Technol.*, 16, 107–144, [https://doi.org/10.1016/0165-232X\(89\)90014-1](https://doi.org/10.1016/0165-232X(89)90014-1), 1989.

684 Budd, W. F., Keage, P. L., and Blundy, N. A.: Empirical Studies of Ice Sliding, *J. Glaciol.*, 23, 157–
685 170, <https://doi.org/10.3189/S0022143000029804>, 1979.

686 Burton-Johnson, A., Dziadek, R., and Martin, C.: Review article: Geothermal heat flow in
687 Antarctica: current and future directions, *The Cryosphere*, 14, 3843–3873,
688 <https://doi.org/10.5194/tc-14-3843-2020>, 2020.

689 Choi, Y., Seroussi, H., Morlighem, M., Schlegel, N.-J., and Gardner, A.: Impact of time-dependent
690 data assimilation on ice flow model initialization and projections: a case study of Kjer Glacier,
691 Greenland, *The Cryosphere*, 17, 5499–5517, <https://doi.org/10.5194/tc-17-5499-2023>, 2023.

692 Cornford, S. L., Martin, D. F., Payne, A. J., Ng, E. G., Le Brocq, A. M., Gladstone, R. M., Edwards,
693 T. L., Shannon, S. R., Agosta, C., Van Den Broeke, M. R., Hellmer, H. H., Krinner, G.,
694 Ligtenberg, S. R. M., Timmermann, R., and Vaughan, D. G.: Century-scale simulations of the
695 response of the West Antarctic Ice Sheet to a warming climate, *The Cryosphere*, 9, 1579–1600,
696 <https://doi.org/10.5194/tc-9-1579-2015>, 2015.

697 Dow, C. F., McCormack, F. S., Young, D. A., Greenbaum, J. S., Roberts, J. L., and Blankenship, D.
698 D.: Totten Glacier subglacial hydrology determined from geophysics and modeling, *Earth
699 Planet. Sci. Lett.*, 531, 115961, <https://doi.org/10.1016/j.epsl.2019.115961>, 2020.

700 Dziadek, R., Gohl, K., Diehl, A., and Kaul, N.: Geothermal heat flux in the Amundsen Sea sector
701 of West Antarctica: New insights from temperature measurements, depth to the bottom of the
702 magnetic source estimation, and thermal modeling, *Geochem. Geophys. Geosystems*, 18,
703 2657–2672, <https://doi.org/10.1002/2016GC006755>, 2017.

704 Fisher, A. T., Mankoff, K. D., Tulaczyk, S. M., Tyler, S. W., and Foley, N.: High geothermal heat
705 flux measured below the West Antarctic Ice Sheet, *Sci. Adv.*, 1(6), e1500093,
706 <https://doi.org/10.1126/sciadv.1500093>, 2015.

707 Fowler, A. C.: A theoretical treatment of the sliding of glaciers in the absense of cavitation, *Philos.
708 Trans. R. Soc. Lond. Ser. Math. Phys. Sci.*, 298, 637–681,
709 <https://doi.org/10.1098/rsta.1981.0003>, 1981.

710 Fujita, S. and Mae, S.: Strain in the ice sheet deduced from the crystal-orientation fabrics from bare
711 icefields adjacent to the Sør-Rondane Mountains, Dronning Maud Land, East Antarctica, *J.
712 Glaciol.*, 40, 135–139, <https://doi.org/10.3189/S002214300003907>, 1994.

713 Gagliardini, O., Cohen, D., Råback, P., and Zwinger, T.: Finite-element modeling of subglacial
714 cavities and related friction law, *J. Geophys. Res. Earth Surf.*, 112, F02027,
715 <https://doi.org/10.1029/2006JF000576>, 2007.

716 Gerber, T. A., Lilien, D. A., Rathmann, N. M., Franke, S., Young, T. J., Valero-Delgado, F., Ershadi,
717 M. R., Drews, R., Zeising, O., Humbert, A., Stoll, N., Weikusat, I., Grinsted, A., Hvidberg, C.
718 S., Jansen, D., Miller, H., Helm, V., Steinhage, D., O'Neill, C., Paden, J., Gogineni, S. P., Dahl-
719 Jensen, D., and Eisen, O.: Crystal orientation fabric anisotropy causes directional hardening of
720 the Northeast Greenland Ice Stream, *Nat. Commun.*, 14, 2653, [https://doi.org/10.1038/s41467-023-38139-8](https://doi.org/10.1038/s41467-
721 023-38139-8), 2023.

722 Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz, C., Zwinger, T., Greve,
723 R., and Vaughan, D. G.: Greenland ice sheet contribution to sea-level rise from a new-
724 generation ice-sheet model, *The Cryosphere*, 6, 1561–1576, [https://doi.org/10.5194/tc-6-1561-2012](https://doi.org/10.5194/tc-6-1561-
725 2012), 2012.

726 Gladstone, R., Schäfer, M., Zwinger, T., Gong, Y., Strozzi, T., Mottram, R., Boberg, F., and Moore,
727 J. C.: Importance of basal processes in simulations of a surging Svalbard outlet glacier, *The
728 Cryosphere*, 8, 1393–1405, <https://doi.org/10.5194/tc-8-1393-2014>, 2014.

729 Greenbaum, J. S., Blankenship, D. D., Young, D. A., Richter, T. G., Roberts, J. L., Aitken, A. R. A.,
730 Legresy, B., Schroeder, D. M., Warner, R. C., van Ommen, T. D., and Siegert, M. J.: Ocean
731 access to a cavity beneath Totten Glacier in East Antarctica, *Nat. Geosci.*, 8, 294–298,
732 <https://doi.org/10.1038/ngeo2388>, 2015.

733 Haeger, C., Petrunin, A. G., and Kaban, M. K.: Geothermal Heat Flow and Thermal Structure of the
734 Antarctic Lithosphere, *Geochem. Geophys. Geosystems*, 23, e2022GC010501,
735 <https://doi.org/10.1029/2022GC010501>, 2022.

736 Huang, Y., Zhao, L., Wolovick, M., Ma, Y., and Moore, J. C.: Using specularity content to evaluate
737 eight geothermal heat flow maps of Totten Glacier, *The Cryosphere*, 18, 103–119,
738 <https://doi.org/10.5194/tc-18-103-2024>, 2024.

739 Jordan, T. M., Martín, C., Brisbourne, A. M., Schroeder, D. M., and Smith, A. M.: Radar
740 Characterization of Ice Crystal Orientation Fabric and Anisotropic Viscosity Within an
741 Antarctic Ice Stream, *J. Geophys. Res. Earth Surf.*, 127, e2022JF006673,
742 <https://doi.org/10.1029/2022JF006673>, 2022.

743 Kamb, B.: Sliding motion of glaciers: Theory and observation, *Rev. Geophys.*, 8, 673–728,
744 <https://doi.org/10.1029/RG008i004p00673>, 1970.

745 Kang, H., Zhao, L., Wolovick, M., and Moore, J. C.: Evaluation of six geothermal heat flux maps
746 for the Antarctic Lambert–Amery glacial system, *The Cryosphere*, 16, 3619–3633,
747 <https://doi.org/10.5194/tc-16-3619-2022>, 2022.

748 Kim, B.-H., Seo, K.-W., Lee, C.-K., Kim, J.-S., Lee, W. S., Jin, E. K., and Van Den Broeke, M.:
749 Partitioning the drivers of Antarctic glacier mass balance (2003–2020) using satellite
750 observations and a regional climate model, *Proc. Natl. Acad. Sci.*, 121, e2322622121,
751 <https://doi.org/10.1073/pnas.2322622121>, 2024.

752 Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale, high order, high spatial
753 resolution, ice sheet modeling using the Ice Sheet System Model (ISSM), *J. Geophys. Res.*,
754 117, F01022, <https://doi.org/10.1029/2011JF002140>, 2012.

755 Le Brocq, A. M., Payne, A. J., and Vieli, A.: An improved Antarctic dataset for high resolution
756 numerical ice sheet models (ALBMAP v1), *Earth Syst. Sci. Data*, 2, 247–260,
757 <https://doi.org/10.5194/essd-2-247-2010>, 2010.

758 Lipscomb, W. H., Leguy, G. R., Jourdain, N. C., Asay-Davis, X., Seroussi, H., and Nowicki, S.:
759 ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution using the
760 Community Ice Sheet Model, *The Cryosphere*, 15, 633–661, <https://doi.org/10.5194/tc-15-633-2021>, 2021.

762 Lhermitte, S., Sun, S., Shuman, C., Wouters, B., Pattyn, F., Wu, J., Berthier, E., and Nagler, T.:
763 Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment, *Proc.
764 Natl. Acad. Sci.*, 117, 24735–24741, <https://doi.org/10.1073/pnas.1912890117>, 2020.

765 Lösing, M. and Ebbing, J.: Predicting Geothermal Heat Flow in Antarctica With a Machine Learning
766 Approach, *J. Geophys. Res. Solid Earth*, 126, e2020JB021499,
767 <https://doi.org/10.1029/2020JB021499>, 2021.

768 MacAyeal, D. R.: A tutorial on the use of control methods in ice-sheet modeling, *J. Glaciol.*, 39, 91–

769 98, <https://doi.org/10.3189/S0022143000015744>, 1993.

770 Martín, C., Gudmundsson, G. H., Pritchard, H. D., and Gagliardini, O.: On the effects of anisotropic
771 rheology on ice flow, internal structure, and the age-depth relationship at ice divides, *J.
772 Geophys. Res. Earth Surf.*, 111, F04001, <https://doi.org/10.1029/2008JF001204>, 2009.

773 Martos, Y. M., Catalán, M., Jordan, T. A., Golynsky, A., Golynsky, D., Eagles, G., and Vaughan, D.
774 G.: Heat Flux Distribution of Antarctica Unveiled, *Geophys. Res. Lett.*, 44, 11,417–11,426,
775 <https://doi.org/10.1002/2017GL075609>, 2017.

776 Maule, C. F., Purucker, M. E., Olsen, N., and Mosegaard, K.: Heat Flux Anomalies in Antarctica
777 Revealed by Satellite Magnetic Data, *Science*, 309, 464–467,
778 <https://doi.org/10.1126/science.1106888>, 2005.

779 McCormack, F. S., Roberts, J. L., Dow, C. F., Stål, T., Halpin, J. A., Reading, A. M., and Siegert, M.
780 J.: Fine-Scale Geothermal Heat Flow in Antarctica Can Increase Simulated Subglacial Melt
781 Estimates, *Geophys. Res. Lett.*, 49, e2022GL098539, <https://doi.org/10.1029/2022GL098539>,
782 2022.

783 Morlighem, M., Seroussi, H., Larour, E., and Rignot, E.: Inversion of basal friction in Antarctica
784 using exact and incomplete adjoints of a higher-order model, *J. Geophys. Res. Earth Surf.*, 118,
785 1746–1753, <https://doi.org/10.1002/jgrf.20125>, 2013.

786 Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli,
787 F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V.,
788 Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K.,
789 Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H.,
790 Smith, E. C., Steinhage, D., Sun, B., Broeke, M. R. V. D., Ommen, T. D. V., Wessem, M. V.,
791 and Young, D. A.: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of
792 the Antarctic ice sheet, *Nat. Geosci.*, 13, 132–137, <https://doi.org/10.1038/s41561-019-0510-8>, 2020.

793 Nye, J. F.: Glacier sliding without cavitation in a linear viscous approximation, *Proc. R. Soc. Lond.
794 Math. Phys. Sci.*, 315, 381–403, <https://doi.org/10.1098/rspa.1970.0050>, 1970.

795 Park, I.-W., Jin, E. K., Morlighem, M., and Lee, K.-K.: Impact of boundary conditions on the
796 modeled thermal regime of the Antarctic ice sheet, *The Cryosphere*, 18, 1139–1155,
797 <https://doi.org/10.5194/tc-18-1139-2024>, 2024.

798 Paterson, W. S. B.: Why ice-age ice is sometimes “soft,” *Cold Reg. Sci. Technol.*, 20, 75–98,
799 [https://doi.org/10.1016/0165-232X\(91\)90058-O](https://doi.org/10.1016/0165-232X(91)90058-O), 1991.

800 Pattyn, F.: Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales
801 with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0), *The
802 Cryosphere*, 11, 1851–1878, <https://doi.org/10.5194/tc-11-1851-2017>, 2017.

803 Payne, A. J., Nowicki, S., Abe-Ouchi, A., Agosta, C., Alexander, P., Albrecht, T., Asay-Davis, X.,
804 Aschwanden, A., Barthel, A., Bracegirdle, T. J., Calov, R., Chambers, C., Choi, Y., Cullather,
805 R., Cuzzone, J., Dumas, C., Edwards, T. L., Felikson, D., Fettweis, X., Galton-Fenzi, B. K.,
806 Goelzer, H., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T.,
807 Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Munneke, P. K.,
808

809 Larour, E., Le Clec'H, S., Lee, V., Leguy, G., Lipscomb, W. H., Little, C. M., Lowry, D. P.,
810 Morlighem, M., Nias, I., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Rückamp, M.,
811 Schlegel, N., Seroussi, H., Shepherd, A., Simon, E., Slater, D., Smith, R. S., Straneo, F., Sun,
812 S., Tarasov, L., Trusel, L. D., Van Breedam, J., Van De Wal, R., Van Den Broeke, M.,
813 Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: Future Sea Level Change Under
814 Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland
815 and Antarctic Ice Sheets, *Geophys. Res. Lett.*, 48, e2020GL091741,
816 <https://doi.org/10.1029/2020GL091741>, 2021.

817 Peyaud, V., Bouchayer, C., Gagliardini, O., Vincent, C., Gillet-Chaulet, F., Six, D., and Laarman,
818 O.: Numerical modeling of the dynamics of the Mer de Glace glacier, French Alps: comparison
819 with past observations and forecasting of near-future evolution, *The Cryosphere*, 14, 3979–
820 3994, <https://doi.org/10.5194/tc-14-3979-2020>, 2020.

821 Pittard, M. L., Roberts, J. L., Galton-Fenzi, B. K., and Watson, C. S.: Sensitivity of the Lambert-
822 Amery glacial system to geothermal heat flux, *Ann. Glaciol.*, 57, 56–68,
823 <https://doi.org/10.1017/aog.2016.26>, 2016.

824 Pollard, D. and DeConto, R. M.: A simple inverse method for the distribution of basal sliding
825 coefficients under ice sheets, applied to Antarctica, *The Cryosphere*, 6, 953–971,
826 <https://doi.org/10.5194/tc-6-953-2012>, 2012.

827 Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A.: Extensive dynamic thinning
828 on the margins of the Greenland and Antarctic ice sheets, *Nature*, 461, 971–975,
829 <https://doi.org/10.1038/nature08471>, 2009.

830 Pritchard, H.D., Fretwell, P.T., Freemand, A.C. et al. Bedmap3 updated ice bed, surface and thickness
831 gridded datasets for Antarctica. *Sci Data* 12, 414 (2025). <https://doi.org/10.1038/s41597-025-04672-y>

833 Purucker, M.: Geothermal heat flux data set based on low resolution observations collected by the
834 CHAMP satellite between 2000 and 2010, and produced from the MF-6 model following the
835 technique described in Fox Maule et al. (2005), Interactive System for Ice sheet Simulation
836 [data set], https://core2.gsfc.nasa.gov/research/purucker/heatflux_mf7_foxmaule05.txt (last
837 access: 24 December 2023), 2012.

838 Rathmann, N. M. and Lilien, D. A.: Inferred basal friction and mass flux affected by crystal-
839 orientation fabrics, *J. Glaciol.*, 68, 236–252, <https://doi.org/10.1017/jog.2021.88>, 2022.

840 Reading, A. M.: Antarctic geothermal heat flow and its implications for tectonics and ice sheets,
841 *Nat. Rev. Earth Environ.*, 3, 814–831, <https://doi.org/10.1038/s43017-022-00348-y>, 2022.

842 Reese, R., Garbe, J., Hill, E. A., Urruty, B., Naughten, K. A., Gagliardini, O., Durand, G., Gillet-
843 Chaulet, F., Gudmundsson, G. H., Chandler, D., Langebroek, P. M., and Winkelmann, R.: The
844 stability of present-day Antarctic grounding lines – Part 2: Onset of irreversible retreat of
845 Amundsen Sea glaciers under current climate on centennial timescales cannot be excluded,
846 *The Cryosphere*, 17, 3761–3783, <https://doi.org/10.5194/tc-17-3761-2023>, 2023.

847 Ross, N., Bingham, R. G., Corr, H. F. J., Ferraccioli, F., Jordan, T. A., Le Brocq, A., Rippin, D. M.,
848 Young, D., Blankenship, D. D., and Siegert, M. J.: Steep reverse bed slope at the grounding

849 line of the Weddell Sea sector in West Antarctica, *Nat. Geosci.*, 5, 393–396,
850 <https://doi.org/10.1038/ngeo1468>, 2012.

851 Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-Based Antarctica Ice Velocity Map,
852 Version 2, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed
853 Active Archive Center [data Set], <https://doi.org/10.5067/D7GK8F5J8M8R>, 2017.

854 Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M. J., and Morlighem,
855 M.: Four decades of Antarctic Ice Sheet mass balance from 1979–2017, *Proc. Natl. Acad. Sci.*,
856 116, 1095–1103, <https://doi.org/10.1073/pnas.1812883116>, 2019.

857 Schannwell, C., Drews, R., Ehlers, T. A., Eisen, O., Mayer, C., Malinen, M., Smith, E. C., and
858 Eisermann, H.: Quantifying the effect of ocean bed properties on ice sheet geometry over 40
859 000 years with a full-Stokes model, *The Cryosphere*, 14, 3917–3934,
860 <https://doi.org/10.5194/tc-14-3917-2020>, 2020.

861 Schoof, C.: On the mechanics of ice-stream shear margins, *J. Glaciol.*, 50, 208–218,
862 <https://doi.org/10.3189/172756504781830024>, 2004.

863 Schoof, C.: The effect of cavitation on glacier sliding, *Proc. R. Soc. Math. Phys. Eng. Sci.*, 461,
864 609–627, <https://doi.org/10.1098/rspa.2004.1350>, 2005.

865 Schroeder, D. M., Blankenship, D. D., and Young, D. A.: Evidence for a water system transition
866 beneath Thwaites Glacier, West Antarctica, *Proc. Natl. Acad. Sci.*, 110, 12225–12228,
867 <https://doi.org/10.1073/pnas.1302828110>, 2013.

868 Schroeder, D. M., Blankenship, D. D., Raney, R. K., and Grima, C.: Estimating Subglacial Water
869 Geometry Using Radar Bed Echo Specularity: Application to Thwaites Glacier, West
870 Antarctica, *IEEE Geosci. Remote Sens. Lett.*, 12, 443–447,
871 <https://doi.org/10.1109/LGRS.2014.2337878>, 2015.

872 Seroussi, H., Nowicki, S., Simon, E., Abe-Ouchi, A., Albrecht, T., Brondex, J., Cornford, S., Dumas,
873 C., Gillet-Chaulet, F., Goelzer, H., Golledge, N. R., Gregory, J. M., Greve, R., Hoffman, M. J.,
874 Humbert, A., Huybrechts, P., Kleiner, T., Larour, E., Leguy, G., Lipscomb, W. H., Lowry, D.,
875 Mengel, M., Morlighem, M., Pattyn, F., Payne, A. J., Pollard, D., Price, S. F., Quiquet, A.,
876 Reerink, T. J., Reese, R., Rodehacke, C. B., Schlegel, N.-J., Shepherd, A., Sun, S., Sutter, J.,
877 Van Breedam, J., Van De Wal, R. S. W., Winkelmann, R., and Zhang, T.: initMIP-Antarctica:
878 an ice sheet model initialization experiment of ISMIP6, *The Cryosphere*, 13, 1441–1471,
879 <https://doi.org/10.5194/tc-13-1441-2019>, 2019.

880 Shackleton, C., Matsuoka, K., Moholdt, G., Van Liefferinge, B., and Paden, J.: Stochastic
881 Simulations of Bed Topography Constrain Geothermal Heat Flow and Subglacial Drainage
882 Near Dome Fuji, East Antarctica, *J. Geophys. Res. Earth Surf.*, 128, e2023JF007269,
883 <https://doi.org/10.1029/2023JF007269>, 2023.

884 Shapiro, N.: Inferring surface heat flux distributions guided by a global seismic model: particular
885 application to Antarctica, *Earth Planet. Sci. Lett.*, 223, 213–224,
886 <https://doi.org/10.1016/j.epsl.2004.04.011>, 2004.

887 Shen, W., Wiens, D. A., Lloyd, A. J., and Nyblade, A. A.: A Geothermal Heat Flux Map of Antarctica
888 Empirically Constrained by Seismic Structure, *Geophys. Res. Lett.*, 47, e2020GL086955,

889 https://doi.org/10.1029/2020GL086955, 2020.

890 Siahaan, A., Smith, R. S., Holland, P. R., Jenkins, A., Gregory, J. M., Lee, V., Mathiot, P., Payne, A.

891 J., Ridley, J. K., and Jones, C. G.: The Antarctic contribution to 21st-century sea-level rise

892 predicted by the UK Earth System Model with an interactive ice sheet, *The Cryosphere*, 16,

893 4053 – 4086, https://doi.org/10.5194/tc-16-4053-2022, 2022.

894 Smith-Johnsen, S., Schlegel, N. -J., De Fleurian, B., and Nisancioglu, K. H.: Sensitivity of the

895 Northeast Greenland Ice Stream to Geothermal Heat, *J. Geophys. Res. Earth Surf.*, 125,

896 e2019JF005252, https://doi.org/10.1029/2019JF005252, 2020.

897 Stål, T., Reading, A. M., Halpin, J. A., and Whittaker, J. M.: Antarctic Geothermal Heat Flow Model:

898 *Aq1, Geochem. Geophys. Geosystems*, 22, e2020GC009428,

899 https://doi.org/10.1029/2020GC009428, 2021.

900 Sun, S., Cornford, S. L., Moore, J. C., Gladstone, R., and Zhao, L.: Ice shelf fracture

901 parameterization in an ice sheet model, *The Cryosphere*, 11, 2543–2554,

902 https://doi.org/10.5194/tc-11-2543-2017, 2017.

903 Tsai, V. C., Stewart, A. L., and Thompson, A. F.: Marine ice-sheet profiles and stability under

904 Coulomb basal conditions, *J. Glaciol.*, 61, 205–215, https://doi.org/10.3189/2015JoG14J221,

905 2015.

906 Van Liefferinge, B., Pattyn, F., Cavitte, M. G. P., Karlsson, N. B., Young, D. A., Sutter, J., and Eisen,

907 O.: Promising Oldest Ice sites in East Antarctica based on thermodynamical modelling, *The*

908 *Cryosphere*, 12, 2773–2787, https://doi.org/10.5194/tc-12-2773-2018, 2018.

909 Weertman, J.: On the Sliding of Glaciers, *J. Glaciol.*, 3, 33–38,

910 https://doi.org/10.3189/S0022143000024709, 1957.

911 Young, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D., and Quartini, E.: The distribution

912 of basal water between Antarctic subglacial lakes from radar sounding, *Philos. Trans. R. Soc.*

913 *Math. Phys. Eng. Sci.*, 374, 20140297, https://doi.org/10.1098/rsta.2014.0297, 2016.

914 Zhao, C., Gladstone, R. M., Warner, R. C., King, M. A., Zwinger, T., and Morlighem, M.: Basal

915 friction of Fleming Glacier, Antarctica – Part 1: Sensitivity of inversion to temperature and

916 bedrock uncertainty, *The Cryosphere*, 12, 2637–2652, https://doi.org/10.5194/tc-12-2637-

917 2018, 2018a.

918 Zhao, L., Moore, J. C., Sun, B., Tang, X., and Guo, X.: Where is the 1-million-year-old ice at Dome

919 A?, *The Cryosphere*, 12, 1651–1663, https://doi.org/10.5194/tc-12-1651-2018, 2018b.

920 Zhang, X., Dong, X., Zeng, J., Hou, S., Smeets, P., Reijmer, C. H., and Wang, Y.: Spatiotemporal

921 Reconstruction of Antarctic Near-Surface Air Temperature from MODIS Observations, *J.*

922 *Clim.*, 35, 5537–5553, 2022.

923 Zwinger, T., Schäfer, M., Martín, C., and Moore, J. C.: Influence of anisotropy on velocity and age

924 distribution at Scharffenbergbotnen blue ice area, *The Cryosphere*, 8, 607–621,

925 https://doi.org/10.5194/tc-8-607-2014, 2014.

926