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Abstract. Blooms of filamentous cyanobacteria are recurrent phenomena in the brackish Baltic Sea. These blooms often 

include toxin producing species, however, predicting and modeling the toxins spatial distribution poses great challenges. In 

addition, projected rising temperature due to climate change is expected to increase the occurrence of cyanobacterial blooms, 

making it vital to understand the distribution of the blooms and the associated cyanotoxins across ecosystems. Herein, we 15 

integrated measured concentration of the cyanotoxin nodularin, abundance of the toxin producer Nodularia spumigena, and 

environmental variables using Empirical Bayesian Kriging (EBK) regression prediction, ensemble learning, and stacked 

species distribution modeling (SSDM). This setup was used to predict and interpret the current and future area distribution of 

N. spumigena and nodularin across the Baltic Sea. Predictions were based on results from biogeochemical models describing 

current and projected future concentrations of near surface chlorophyll, nitrate, phosphate, salinity, and temperature along 20 

with nitrate-to-phosphate ratio and a geographical variable of distance to shore. Prediction for the future distribution was 

performed using projected climate change scenarios in the year 2100. Findings show that the predicted area distribution of 

nodularin is determined by concentrations and interaction effects of salinity, temperature, phosphate, nitrate to phosphate 

ratio, and distance to shore, and is associated with the predicted area distribution of N. spumigena. Predicted site distribution 

shows increased nodularin occurrences in the Eastern and Western Gotland Sea, the Northern Baltic Proper, southern parts 25 

of the Bothnian Sea, and in the Arkona basin. By the year 2100, area distribution of nodularin is predicted to increase in the 

northern part of the Eastern Gotland Sea, Northern Baltic Proper, Åland Sea, southern parts of the Bothnian Sea, Arkona 

Basin, and slightly into the Bothnia Bay in response to projected climate change scenarios. Our developed modeling 

approach is useful for risk assessment and management of cyanotoxins where toxicological data are insufficient. 
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1 Introduction 

Blooms of filamentous cyanobacteria occur regularly in the Baltic Sea during summer (Kahru et al., 2020; Kahru and 

Elmgren, 2014; Karlson et al., 2022), mainly from end of June until August, and are dominated by the diazotrophic 

filamentous cyanobacterial species Nodularia spumigena, Aphanizomenon flos-aquae, and Dolichospermum spp. (Carlsson 

and Rita, 2019; Klawonn et al., 2016; Olofsson et al., 2020). The toxicity of these blooms is mainly attributed to the 35 

hepatotoxin nodularin, produced by N. spumigena. The chemical structure and toxicity of nodularin are similar to 

microcystins (Lundholm et al., 2009). The toxicity of cyanobacterial blooms is known to cause economic losses to the 

surrounding societies of the Baltic Sea (Jonasson et al., 2008) with negative effects on the food chain dynamics on several 

trophic levels (Karjalainen et al., 2007). How cyanobacteria and their toxins respond to the ongoing and future climate 

change in the Baltic Sea is, however, not well known. Therefore, an understanding of what influences and predicts the spatial 40 

occurrence of cyanobacteria and related toxins is needed for efficient management of the Baltic Sea. 

The spatial and temporal distribution of cyanobacteria in the Baltic Sea area has been investigated using several different 

approaches. Monitoring data based on microscope analyses (Karlson et al., 2022; Olofsson et al., 2020), satellite remote 

sensing of ocean color where high reflectance at wavelengths in the red part of the spectrum is indicative of near surface 

accumulations of filamentous cyanobacteria (Hansson and Hakansson, 2007; Kahru and Elmgren, 2014; Karlson et al., 45 

2022), and several modelling approaches have been applied to describe the blooms (Hense et al., 2013; Hieronymus et al., 

2021; Löptien and Dietze, 2022; Munkes et al., 2021). From these, several hypotheses have developed for what could 

influence the expansion and increase the occurrence of filamentous cyanobacterial blooms. For instance, availability of 

inorganic nitrogen and phosphorus (Andersen et al., 2020; Carpenter, 2005; Lu et al., 2019; Paerl et al., 2018; Wurtsbaugh et 

al., 2019; Yang et al., 2008), the ratio of nitrogen to phosphorus (Burford et al., 2023; Pliński et al., 2007), chlorophyll-a 50 

concentration (Budakoti, 2024), salinity (Lehtimäki et al., 1994; Moisander et al., 2002; Silveira and Odebrecht, 2019), 

temperature (Stal, 2009; Walls et al., 2018), and also a combination of salinity and temperature (Olofsson et al., 2020). In 

addition to promoting cyanobacterial growth, environmental drivers such as temperature, light, and nutrient availability can 

also modulate the production of cyanotoxins. For instance, nodularin production in Baltic Sea species has been shown to 

vary with nitrogen availability and physiological state (Lehtimaki et al., 1997). Similarly, oxidative stress conditions have 55 

been linked to microcystin release, potentially as part of a programmed cell death response (Ross et al., 2006). These 

findings suggest that bloom toxicity is not solely a function of biomass, but also of stress-related cellular responses. Despite 

the available knowledge on cyanobacterial blooms, little is known regarding what factors control spatial occurrence of N. 

spumigena and the production of nodularin across the Baltic Sea. Maps of bloom intensity cannot be assumed to translate to 

cyanotoxin distribution. The fact that cyanotoxin cannot be directly measured by satellite and remote sensing along with lack 60 

of standardized modeling approaches poses great challenges to make predictions about current and future occurrence of 

cyanotoxins in aquatic ecosystems. 
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To mitigate this methodological gap we integrated the results of a geostatistical interpolation method, the Empirical 

Bayesian Kriging (EBK) regression prediction (Gribov and Krivoruchko, 2020), and ensemble learning algorithms 

(Dietterich, 2000), to predict and interpret the spatial distribution of nodularin occurrence across the Baltic Sea. Kriging 65 

algorithms in EBK regression prediction are advanced geostatistical prediction methods and known as best linear unbiased 

estimators producing robust estimates at unsampled locations (Goovaerts, 1997; Krivoruchko and Gribov, 2019). EBK 

regression prediction methods are also known to generate robust and better accuracy than other kriging techniques both for 

small datasets and even when data is locally moderately non-stationary (Gribov and Krivoruchko, 2020; Krivoruchko, 2012). 

The relationships between explanatory and dependent variables could alter in several locations; yet the EBK regression 70 

prediction is able to accurately simulate these regional variations and takes regional influences into consideration (Deutsch 

and Journel, 1992; Gribov and Krivoruchko, 2020; Krivoruchko and Gribov, 2019; Pyrcz and Deutsch, 2014). 

There are also cases where the spatial estimation of continuous variables could be a challenging task when EBK regression 

prediction does not determine the relevance of the explanatory variables that affect the predictive variables or the 

independent variables that are highly correlated with the response variables (Olea, 1999; Wang et al., 2019). This could be 75 

due to the phenomenon being sampled, may be produced by nonlinear processes, and the data may exhibit complex 

multivariate features, non-Gaussianity, and non-stationarity. In such a situation, the power of machine-learning algorithms in 

ensemble modeling allows identity of the patterns in the complex datasets and to make estimation and prediction with no 

requirement for rigid statistical assumptions, such as stationarity and linearity (Ghannam and Techtmann, 2021; Sathya and 

Abraham, 2013). Machine-learning algorithms also allow the inclusion of multivariable, coping with missing values, and 80 

being able to reveal the hidden relationships between predictors (Abdelgadir et al., 2023; Beery et al., 2021; Jiang et al., 

2022; Thompson et al., 2019). In addition, stacked species distribution modeling SSDM (Schmitt et al., 2017) is an advanced 

approach combining several ensemble outputs to model species assemblages into one forecast.  

Herein we integrated the results of the EBK regression prediction, ensemble learning algorithms and SSDM, using 139 

nodularin concentration measurements, abundance of the cyanobacteria N. spumigena, and model-based raster layers on 85 

environmental and geographical variables to predict and interpret the spatial occurrence of nodularin across the Baltic Sea. 

The overall aim was to understand what factors drive the spatial occurrence of nodularin, and how the spatial occurrence of 

this cyanotoxin will be affected by the projected climate change scenarios in the year 2100 across the Baltic Sea.     

2 Materials and methods 

2.1 Data collection 90 

Data was compiled for 139 samples in 54 locations across the Baltic Sea, the Kattegat, and the Skagerrak, sampled June to 

September 2023 (Fig. 1). The dataset comprised locations in longitude and latitude with corresponding nodularin in biomass 

(µg l-1), collected onto 47 mm GFC filters and analyzed using enzyme-linked immunoassay (ELISA) for 
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microcystins/nodularins from Gold Standard Diagnostics, following the manufacturer's instructions; and the abundance of 

Nodularia spumigena (units l-1) based on Olenina et al., (2006).  95 

   

Figure 1: Map of the Baltic Sea indicating sampling locations from where nodularin was analyzed. Sub-basins described in this 
study are abbreviated on the map as follows: BB= Bothnian Bay, QU= The Quark, BS= Bothnian Sea, ÅS= Åland Sea, NBP= 
Northern Baltic Proper, WGS= Western Gotland Sea, EGS= Eastern Gotland Sea, BoB= Bornholm Basin, AB= Arkona Basin, 
and K= Kattegat 100 

 

2.2 Environmental parameters 

Prediction and geostatistical interpolation of spatial occurrence of nodularin was investigated using different environmental 

and geographical variables. In this study we used data from samples collected in monitoring programs and results from 

modelled concentrations of chlorophyll-a in surface water (mg m-3) from the Baltic Sea Biogeochemistry Analysis and 105 

Forecast (ERGOM) https://doi.org/10.48670/moi-00009 (Neumann et al., 2021). Concentration of inorganic dissolved 

nutrients: phosphate PO4, nitrate NO3 (µmol m-3) originate from results of a Baltic Sea Biogeochemistry Reanalysis by 

SMHI https://doi.org/10.48670/moi-00012. Salinity and sea surface temperature (℃) are based on Global Ocean Physics 

Analysis and Forecast https://doi.org/10.48670/moi-00016. Salinity was derived from the Baltic Sea Physics Reanalysis by 

SMHI https://doi.org/10.48670/moi-00013. The data was downloaded from E.U. Copernicus Marine Service Information 110 

https://doi.org/10.5194/egusphere-2025-3290
Preprint. Discussion started: 11 August 2025
c© Author(s) 2025. CC BY 4.0 License.



5 
 

(European Union-Copernicus Marine Service, 2016, 2018b, a, 2019). Downloaded modelled data with a horizontal 

resolution of 1 nm (nautical mile) and vertical depth layers varying between 1-24 meters were limited to the period of 

sampling from June to September 2023 at a depth range of 0.5 to 10 meters. Data was downloaded as NetCDF-4 format and 

transformed to ESRI raster grid file format ‘GeoTIFF’ in QGIS Desktop 3.34.13 (QGIS Development Team, 2022).  

The model data from Copernicus were compared with data from measurements made in the National Swedish Marine 115 

Monitoring Program, including mean values of chlorophyll, NO3, PO4, salinity, and temperature, downloaded from the 

Swedish National Oceanographic Data Centre (NODC) at SMHI https://shark.smhi.se. A comparison of the derived satellite 

remote sensing data or modelled data and the observations in the monitoring program are presented in the results and 

supplementary data.  

Furthermore, prediction of nodularin concentration and N. spumigena spatial distribution modeling were tested using results 120 

from modelled data available at Copernicus, i.e., mean sea surface temperature, chlorophyll, salinity, PO4, NO3, distance to 

shore (m), and future climate change scenarios developed under the Shared Socioeconomic Pathway (SSP) scenarios of 

future climate change. Data layers reflecting future conditions following the Paris Agreement of reduced greenhouse gas 

emissions, to the “fossil-fueled development” SSP5-8.5 scenario of high emissions and low challenges to adaptation (Assis 

et al., 2024). Raster layers were derived from Atmosphere-Ocean General Circulation Model (AOGCM) as raster grids at 2.5 125 

arc-minute spatial resolution, approximately 5 km2 grid cell sizes at the equator corresponding to future greenhouse gas 

concentrations in the year 2100. All environmental data and climate change scenarios were downloaded as raster GeoTIFF 

from Bio-ORACLE project v3.0 (Assis et al., 2024) using ‘sdmpredictors’ package (Bosch and Fernandez, 2022) in RStudio 

(RStudio Team, 2020). All raster layers were cropped to the spatial extent of the Baltic Sea (latitude/longitude: min 10, max 

30/min 53, max 66) and coordinate reference system (CRS) EPSG: 5845-SWEREF99 TM. 130 

Environmental data corresponding to each sampling location (XY coordinates) and time point were extracted in RStudio 

equipped with R v.4.4.0 (R Core Team, 2021) using the function implemented in the packages ‘raster’ (Etten, 2012; Hijmans 

& Etten, 2012),‘sp’ (Bivand et al., 2013; Pebesma and Bivand, 2005) and ‘tidyverse’ (Wickham et al., 2019). Data holding 

all information in ‘csv’ format was exported to ESRI Shapefile ‘shp’ in QGIS to be used for the analysis. 

 135 

2.3 Interpolation and ensemble modeling flow 

Geostatistical interpolation and ensemble learning modeling flow are illustrated in Fig. 2.  

 

2.3.1 Geostatistical interpolation analysis 

Analysis and prediction of nodularin occurrence was performed using the Empirical Bayesian Kriging (EBK) Regression 140 

Prediction based on Gaussian process regression (see Oliver & Webster, 1990). How well the interpolation model fits the 

data was examined using the cross-validation method ‘leave-one-out resampling’ (Dubrule, 1983; Zhang and Wang, 2010). 

In brief, regression prediction was performed using nodularin concentration as dependent variable and the environmental 

variables (in raster format) as independent. The EBK regression predictions were validated using 1000 simulations as cross-
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validation. Prediction for nodularin occurrence in response to N. spumigena abundance was performed using CoKriging 145 

(Goovaerts, 1997, 1998). Furthermore, spatial interpolation of nodularin in response to the mean values measured by 

National Swedish Marine Monitoring to was performed using co-kriging by applying nearest neighbor as proximal 

interpolation method. Geostatistical interpolation analysis was performed in QGIS and by Esri. ArcGIS® and ArcMap™. 

 

2.3.2 Ensemble prediction of nodularin occurrence and Nodularia spumigena distribution  150 

Prediction for current and future occurrence of nodularin was performed using Ensemble learning method (Araújo and New, 

2007), and modeling occurrence of N. spumigena performed using Stacked Species Distribution Modeling SSDM (Schmitt 

et al., 2017). Models were built using six different machine-learning algorithms including Classification Tree Analysis CTA 

(Steinberg, 2009), Maximum-Entropy learning MAXENT (Phillips et al., 2006), Multivariate Adaptive Regression Spline 

MARS (Friedman, 1991), Random Forest RF (Breiman, 2001), Generalized Boosting regression Model GBM (Friedman, 155 

2002), and Generalized Linear Model GLM (Guisan et al., 2002). 

In brief, models were built by creating two data objects with the ‘sdmData’ function in the “sdm” package (Dietterich, 2000; 

Naimi and Araújo, 2016). The first data object for nodularin ensemble prediction was created by having the occurrence as 

presence “1” and absence “0”, measured concentrations and all environmental variables. Second data object for the species 

ensemble and stacked distribution modeling was created by having all occurrence records of N. spumigena, environmental 160 

variables, and 10,000 pseudoabsence datapoints randomly generated within the spatial extent of the study area as a 

background (Barbet-Massin et al., 2012). The two prediction models were tested with 10-fold bootstrapping (Harrell et al., 

2005; Lima et al., 2019) as the replication technique and validated in a repeated split-samples procedure, i.e., 70% of the 

occurrence dataset was used for model training and the remaining 30% as test data repeated over 10-fold cross validation 

(Roberts et al., 2017).   165 

Models were assessed for prediction success, omission rate (Franklin, 2010; Phillips et al., 2006), accuracy and performance 

based on Area Under the Curve AUC (Hanley and McNeil, 1982), True Skill Statistics TSS (Monserud and Leemans, 1992), 

Cohen's KAPPA coefficient (Allouche et al., 2006), and Jaccard coefficient (Jaccard, 1912). Predicted variables of 

importance and percentage of contribution were assessed using AUC, Pearson Correlation coefficient (Benesty et al., 2009) 

and Jackknife test (Efron, 1982). 170 
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 171 

Figure 2: A diagram showing the modeling flow used to predict the present and future spatial occurrence of 172 
cyanobacteria and the toxin nodularin in the Baltic Sea. 173 
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2.4 Statistical analysis 175 

The effect of both environmental variables and abundance of N. spumigena on the predicted nodularin concentrations were 

quantified using Bayesian linear regression (see Clyde et al., 2011), analysis of variance ANOVA and general linear model 

GLM. The effect and interaction effects between predictors on nodularin concentration were assessed using Bayes factor 

BF10, p-value (at p<0.05), coefficient of determination R2 and Pearson correlation coefficient. Assessment of the EBK 

regression prediction models was performed using cross-validation statistics with a regression function calculated using a 180 

robust regression procedure. Statistical analyses were performed in RStudio, and open software jamovi v.2.3.21 (The jamovi 

project, 2023) and JASP v.0.19.3 (JASP Team, 2025).  

3 Results 

3.1 Results of geostatistical interpolation analysis 

In pharetra massa dictum gravida scelerisque. Sed vitae purus eget purus tincidunt accumsan ut at magna. Prediction of 185 

nodularin spatial occurrence was first tested using environmental predictors from the European Copernicus dataset of Baltic 

Sea Biogeochemistry Analysis and Forecast (ERGOM). Results of the Bayesian linear regression show that there were 

significant interaction effects between concentrations of salinity, temperature and distance to shore (BF10 > 1, R²=0.23, 

regression function: 0.70* x + 0.004), and between PO4, salinity, temperature, and distance to shore (BF10 > 1, R²=0.23, 

regression function:0.70 * x + 0.008) and the abundance of Nodularia spumigena (BF10 > 1, R²=0.1) on predicted spatial 190 

occurrence of nodularin (Table 1a&b, Fig 3 & Table S1). This finding is also supported by the regression function of the 

EBK regression prediction (distance to shore: 0.74* x + 0.001; salinity: 0.73 * x + 0.003; temperature: 0.76 * x + 0.003), 

see Fig 4 & Fig S1. Analysis of ordinary and multiple linear regression shows that there was significant positive linear 

regression of temperature, and distance to shore (p < 0.05), and negative with salinity (p < 0.001), (linear regression R2=0.3, 

multiple R2=0.2). Analysis of variance ANOVA shows that there was significant effect of salinity (ANOVA, F=11.11, 195 

p< 0.001), PO4 (ANOVA, F=6.6, p< 0.01), NO3:PO4 ratio(ANOVA, F=5.03, p< 0.05), distance to shore (ANOVA, F=4.73, 

p< 0.05), temperature (ANOVA, F=3.93, p< 0.05) with interaction effects between chlorophyll, temperature (ANOVA, 

F=7.27, p< 0.01), NO3, temperature (ANOVA, F=6.70, p< 0.05), and between chlorophyll and distance-to-shore (ANOVA, 

F=4.59, p< 0.05), Fig 3 &Table S2&3a&b.    

 200 

Table 1: First panel (a) shows the best 10 models for Bayesian linear regression analysis between nodularin concentration as 
dependent and environmental variables and Nodularia spumigena abundances as predictors, and second panel (b) posterior 
summaries of coefficients. The Bayes factor BF10 is a ratio which quantifies evidence in favor of an effect (represented by 
“1”) versus no effect (represented by “0”). If BF10 > 1 indicates evidence in favor of an effect. 0 < BF10 < 1 indicates 
evidence in favor of no effect. The P(M) indicates that the prior probabilities of the other models are equal, P(M|data) refers 205 
to the posterior probability of each model after seeing the data while BFM compares each model to the average P(M|data) of 
the other models. For all Bayesian linear regression models and effects refer to Table S1. 
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(B) 

      95% Credible 

Interval 

 

Coefficient Mean SD P(incl) P(incl|data

) 

BFinclusio

n 

Lower Upper  

Intercept 0.08 0.01 1.00 1.00 1.00 0.06 0.10 Environmental 

variables Salinity -0.01 0.00 0.50 0.97 34.17 -0.02 -0.01 

Temperature 0.02 0.01 0.50 0.71 2.50 0.00 0.03 

Dist-to-shore 0.00 0.00 0.50 0.90 9.43 0.00 0.00 

Intercept 0.09 0.01 1.00 1.00 1.00 0.07 0.11 Cyanobacteria 

Nodularia 

spumigena 

0.01 0.00 0.50 0.89 8.30 0.00 0.02 

(A) 

Models P(M) P(M|data) BFM BF10 R² Predictors 

Null model 0.01 0.00 0.01 1.00 0.00  

 

 

 

 

 

Environmental 

variables  

Salinity + Temperature + Dist-to-shore 0.01 0.16 24.00 1682.35 0.24 

PO4 + Salinity + Temperature + Dist-to-shore 0.01 0.10 13.67 1028.65 0.25 

Salinity + Temperature + NP + Dist-to-shore 0.01 0.06 7.79 611.65 0.24 

NO3 + Salinity + Temperature + Dist-to-shore 0.01 0.05 6.46 512.13 0.24 

Salinity + Chlorophyll + Temperature + Dist-to-

shore 

0.01 0.05 6.38 506.52 0.24 

Salinity + NP + Dist-to-shore 0.01 0.04 5.82 463.69 0.21 

PO4 + Salinity + Temperature + NP + Dist-to-

shore 

0.01 0.04 5.65 450.61 0.25 

PO4 + Salinity + Chlorophyll + Temperature + 

Dist-to-shore 

0.01 0.04 5.00 401.24 0.25 

NO3 + PO4 + Salinity + Temperature + Dist-to-

shore 

0.01 0.03 4.57 367.78 0.25 

NO3 + Salinity + Temperature + NP + Dist-to-

shore 

0.01 0.03 3.51 284.87 0.25 

Null model 0.50 0.11 0.12 1.00 0.00 Cyanobacteria  

Nodularia spumigena 0.50 0.89 8.30 8.30 0.06 
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Intercept 0.09 0.01 1.00 1.00 1.00 0.07 0.11 

 

Geostatistical interpolation based on the interaction effects between predictors indicated area increases of nodularin into the 

Eastern Gotland Sea, Northern Baltic Proper, Bornholm and Arkona basin (Fig 3a, b, c & e) Western Gotland Sea Fig 3a&b 210 

as result of interactions between salinity, temperature, distance to shore, PO4, and chlorophyll. There is an area increase of 

nodularin into the Bothnian Sea in response to interaction between salinity, temperature, and chlorophyll with distance to 

shore (Fig 3a&e). The northern parts of the Baltic Sea at Bothnian Bay and southern parts at Kattegat predicted low or no 

increase in nodularin. 

 215 

 

Figure 3: Empirical Bayesian kriging (EBK) regression prediction of the model‐predicted concentration and area distribution of 
nodularin (ug l-1) at different sampling sites across the Baltic Sea. Predicted area distribution and concentrations of nodularin are 
based on the coefficient of determination R2 of Bayesian linear regression in (Table S1) and significant  interaction effects of 
ANOVA at p<0.05 (Table S3) between (a) salinity, temperature and distance to shore (b) PO4, salinity, temperature and distance 220 
to shore (c) chlorophyll and temperature, (d) NO3 and temperature and between (e) chlorophyll and distance to shore. The 
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regression function of kriging describes the relationship between nodularin concentration and interaction effect between 
independence variables. Grading colors in key legend corresponds to predicted concentrations of nodularin (ug l-1). Significant 
interaction effects in (a) and (b) were quantified using Bayesian linear regression while (c), (d) and (e) were assessed in ANOVA. 
Geostatistical interpolations are performed using nodularin concentration as dependent variable and environmental variables in 225 
raster GeoTIFF format as independents. Environmental data was retrieved from E.U. Copernicus Marine Service Information 
during the period of sampling from June to September 2023 at a depth range of 0.5 to 10 meters.  
 

Predicted sites and area distribution show that there are area increases of nodularin occurrence into Eastern Gotland Sea and 

Northern Baltic Proper in response to PO4, salinity temperature, and in response to distance to shore (Fig. 4c, e, f & g); and 230 

into Bothnian Sea and Åland Sea in response to Chlorophyll, NO3:PO4 ratio, and temperature (Fig. 4a, d, f). There are 

increases in area distribution of nodularin in Arkona Basin and Bornholm Basin in response to chlorophyll, PO4, salinity, 

NO3:PO4 ratio, temperature and in response to distance to shore (Fig. 4a, c, d, e, f &g). Despite measured occurrences of 

nodularin, Kattegat and some parts of the Bothnian bay are predicted to have no or low area distribution of nodularin.  

 235 
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Figure 4: Empirical Bayesian kriging (EBK) regression and co-kriging prediction of the model‐predicted concentration and area 
distribution of nodularin (µg l-1) at different sampling sites across the Baltic Sea. Predicted area distribution and concentrations of 240 
nodularin are based on sea surface concentrations of (a) chlorophyll mg m-3 (b) nitrate NO3 µmole m-3, (c) phosphate PO4 µmole m-

3, (d) NO3:PO4 ratio, (e) salinity, (f) temperature ℃ and (g) distance to shore (m). The regression function of kriging describes the 
relationship between nodularin concentration and each independent variable. Grading colors in key legend corresponds to 
predicted concentrations of nodularin (µg l-1). Geostatistical interpolations are performed using nodularin concentration as 
dependent variable and environmental variables in raster GeoTIFF format as independents. Environmental data was retrieved 245 
from E.U. Copernicus Marine Service Information during the period of sampling from June to September 2023 at a depth range 
of 0.5 to 10 meters.  
 

There was a conformity in area distribution of nodularin in response to measured abundances of N. spumigena. (Fig. 5). 

Predicted area distribution shows a slight increase in nodularin occurrence into Western Gotland Sea, Eastern Gotland Sea, 250 

Arkona Basin and smaller areas into southern and northern parts of Bothnian Sea. Predicted area distribution of nodularin 

was significantly driven by abundances of N. spumigena. (ANOVA, F=8.51, p< 0.001, BF10 > 1, R²=0.1) see Tables 1& 

S3b. Predicted area distribution in response to measured abundances of N. spumigena show increases in occurrence of 

nodularin into Northern Baltic Proper and Eastern Gotland Sea, see Fig. 5 and regression function.  
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 255 

Figure 5: Spatial prediction map of Co-kriging interpolation (left) and distributions of the cross-validation statistics (right), 
estimated using kernel density, show the prediction regression scatterplot, the regression function of the concentration and 
predicted area distribution of nodularin (µg l-1) at different sampling sites across the Baltic Sea. Grading colors in key legend 
corresponds to predicted concentrations of nodularin (µg l-1). The blue and red lines correspond to the measured and predicted 
values of nodularin (µg l-1). Predicted area distribution and concentrations of nodularin are based on the measured abundances of 260 
Nodularia spumigena. 
 

Prediction and geostatistical interpolation of nodularin based on measured mean values obtained from Swedish National 

Oceanographic Data Centre (NODC) at SMHI shows that there were significant interaction effects between temperature and 

distance-to-shore and between salinity, PO4, temperature and distance-to-shore on predicted spatial occurrence of nodularin 265 

(BF10 > 1, R²=0.1), Table S4. Prediction of occurrence of nodularin based on mean values measured by Swedish National 

Oceanographic Data Centre (NODC) showed that they are occurring at the Eastern and Western Gotland Sea, Northern 

Baltic Proper, Bothnian Sea, The Quark and Arkona basin. Predicted area distribution of nodularin based on NODC values 

showed similar distribution patterns as the prediction made with full location dataset using Copernicus values (see Fig S2).     

 270 

Future predictions of nodularin occurrence based on projected climate change scenarios (SSP5-8.5) in year 2100 show that 

there are areas increases of occurrence into the Eastern Gotland Sea, Northern Baltic Proper, the Bothnian Sea, the Quark, 
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and Arkona Basin in response to chlorophyll, NO3, PO4, salinity and temperature (regression function: 0.73 * x + 0.005), 

(Fig. 6). Bayesian linear regression shows that there is area increase of nodularin in response to NO3 (ANOVA, F=25.33, 

p< 0.0001, BF10 > 1, R²=0.25,), Fig. S3, Table S5a. There was a significant linear regression revealed by multiple linear 275 

regression (Multiple R = 0.5, Multiple R2=0.2, 95% CI [5, 127]) with negative coefficient observed in NO3 (p< 0.05), see 

Table S5b.  

 

Figure 6: Empirical Bayesian kriging (EBK) regression prediction of the model‐predicted concentration and area distribution of 
nodularin (µg l-1) (estimated using kernel density) show area distribution and regression function of the concentration predicted at 280 
different sampling sites across the Baltic Sea. Grading colors in key legend corresponds to predicted concentrations of nodularin 
(µg l-1). Predicted area distributions are based on projected future concentrations of chlorophyll, NO3, PO4, salinity and 
temperature. Predicted area distribution and concentrations of nodularin are based on Shared Socioeconomic Pathway (SSP5-8.5) 
scenarios of future climate change corresponding to future greenhouse gas concentrations in the year 2100. Climate change 
scenarios were downloaded as raster GeoTIFF from Bio-ORACLE project v3.0. Geostatistical interpolations are performed using 285 
nodularin concentration as dependent variables and SSP5-8.5 variables in raster GeoTIFF format as independents. Models are 
validated using 1000 simulations as cross-validation. 
 

3.2 Ensemble prediction of nodularin occurrence and Nodularia spumigena distribution 

After removing collinear environmental layers with Pearson correlation coefficient ≥ 0.7, that is NO3:PO4, six predictors 290 

were used in the ensemble modeling. Since we applied pseudoabsence points as background, data points in areas predicted 
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by Kriging with no nodularin occurrence, particularly on the west coast, were removed from the ensemble modeling to avoid 

overestimation. The overall ensemble model performance was excellent (Current: Threshold=0.35, AUC=0.84, proportion 

of correct prediction= 0.72; Future: Threshold=0.40, AUC=0.80, proportion of correct prediction= 0.71), see Table S6. 

The average performance of the six algorithms was excellent (Current: AUC=0.75±0.05, TSS= 0.48±0.11; Future: 295 

AUC=0.77±0.07, TSS= 0.52±0.12), in which RF, GBM, MAXENT, GLM and MARS had highest AUC values (between 

0.73-0.87) indicating excellent performance, Fig. S4. Response curves of ensemble learning modeling illustrating the effects 

of the predicted variables and projected climate change scenarios on nodularin occurrence can be found in Fig. S5. 

 

Variables predicted with highest contribution to current nodularin occurrence were NO3 (AUC=0.2, Pearson 300 

coefficient=0.4), temperature (AUC=0.1, Pearson coefficient=0.4), , Distance to shore (AUC=0.1, Pearson coefficient=0.4), 

PO4 (AUC=0.1, Pearson coefficient=0.3), and salinity (AUC=0.1, Pearson coefficient=0.2), see bar chart in Fig. 7a. 

Predicted climate change scenarios with highest contribution were NO3 (AUC= 0.2, Pearson coefficient = 0.4), salinity 

(AUC=0.1, Pearson coefficient=0.3), and temperature (AUC=0.1, Pearson coefficient=0.3), see bar chart in Fig. 7b.    

 305 
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Figure 7: Binary maps show the ensemble learning prediction for nodularin occurrence in response to (a) current environmental 
variables and (b) future climate change scenarios SSP5-8.5 in 2100. The bar charts show variable contributions to predicted 
distribution as revealed by the ensemble model. The scale bar from 0.1-0.8 shows predicted suitable areas where dark green colors 310 
correspond to areas predicted to have high nodularin occurrence. Models are assessed using area under curve AUC and Pearson 
correlation coefficient. AUC values close to 1.0 indicate excellent model performance. 
 

There was conformity in predicted area distribution of nodularin between Ensemble learning and EBK regression prediction 

method. There is an increase in nodularin occurrence predicted into the Eastern Gotland Sea, Arkona Basin and Kattegat in 315 

response to the six environmental variables (Figs. 6a and 7a). Area increases of nodularin occurrence in response to future 

scenarios in 2100 are predicted into the Eastern, Western Gotland Sea, Northern Baltic Proper, Arkona Basin, Kattegat and 

southern parts of Bothnian Bay in the Quark area Figs. 6b and 7b.  

 

There is also a conformity in the predicted area increase of nodularin and predicted distribution for N. spumigena. Predicted 320 

areas revealed by SSDM are the coastal sites along the Eastern Gotland Sea, and Northern Baltic Proper, along with Western 

Gotland Sea, Arkona Basin and Kattegat (Kappa=1.0±0.23), Figs 8a. Predicted area distribution of N. spumigena in 

response to future climate change scenarios are Eastern, Western Gotland Sea, Northern Baltic Proper, Arkona Basin, 

Kattegat and southern parts of Bothnian Bay in the Quark area (Kappa=1.0±0.16), Figs 8b.  

https://doi.org/10.5194/egusphere-2025-3290
Preprint. Discussion started: 11 August 2025
c© Author(s) 2025. CC BY 4.0 License.



17 
 

 325 

 

Figure 8: Binary maps show the predicted distribution of Nodularia spumigena estimated by stacked species distribution modeling 
SSDM in response to (a) current environmental variables and (b) projected climate change scenarios SSP5-8.5 in the year 2100. 
The bar charts show variable contributions to predicted distribution as revealed by SSDM in Mean±SD. The scale bar from 0.2 -
1.2 unit represents the degree of suitability in which warmer colors correspond to highly predicted suitable areas. Model 330 
performances are assessed using Cohen's kappa as Mean±SD, in which Kappa values close to 1.0 indicate excellent model 
performance.  
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4 Discussion 

Blooms of toxic cyanobacteria are a global issue, and it's challenging to make predictions of toxin occurrence as the 335 

connections to organism abundance are not straightforward. Therefore, understanding bloom formation and toxicity of 

cyanobacterial blooms in the Baltic Sea is difficult using observational data alone. Here, models can be very effective in 

increasing spatial and temporal resolution and the interconnection between abundance and toxicity. We integrated and 

compared the results of two different modeling approaches to understand and interpret the current and future spatial 

expansion of nodularin occurrence across the Baltic Sea, and our findings show conformities between the approaches. 340 

Although there are no expectations on substantial variations in degree of accuracy between geostatistical and ML-based 

predictions, there has in recent years been a general move from geostatistics to machine learning (Veronesi and Schillaci, 

2019). According to the same study, the number of documents mentioning ML algorithms-based predictions has rapidly 

increased, surpassing kriging-based algorithms in the last decade. Our findings suggest the efficiency of both kriging and 

ML algorithms given that the overall geographical estimations and maps produced by the kriging and ensemble-based 345 

models in this study are aligned despite the differences of approaches. 

Several abiotic variables, such as PO4, NO3, sea surface temperature, and salinity, are known to directly or indirectly affect 

and control the abundance of cyanobacteria (Almroth-Rosell et al., 2016; Andersen et al., 2020; Karlson et al., 2010; Lips 

and Lips, 2008; Lu et al., 2019; Olofsson et al., 2020; Stal, 2009; Unger et al., 2013; Wurtsbaugh et al., 2019; Yang et al., 

2008), and therefore we also included many environmental factors. Considering the importance of abiotic variables in 350 

modeling cyanobacterial abundance, the corresponding general ocean circulation models GCMs require adequate horizontal 

and vertical resolution and trustworthy boundary conditions. An earlier study by Reissmann et al., (2009) showed that 

variations in GCMs are likely to affect the simulation of cyanobacteria (see also Munkes et al., 2021). Therefore, we 

employed different GCMs to reduce possible errors that could arise from abiotic variables of different ocean models. Our 

simulation showed that there were conformities in predicted distribution of nodularin despite the different GCMs used in this 355 

study. Although each one of the combined approaches has different working procedures, each model effectively yielded 

similar performance observed in the predicted distribution of nodularin occurrence across the Baltic Sea. This finding 

indicates that both kriging and ML-based algorithms, the ensemble, can capture the differences in abiotic variables of 

different GCMs.      

Using our model-setup we were able to locate areas with high predicted nodularin concentrations in response to current 360 

environmental variables and projected future changes of the same variables. These areas were the Eastern and Western 

Gotland Sea, the Northern Baltic Proper, southern parts of the Bothnian Sea, and the Arkona basin, corresponding to the 

effects and interactions between temperature, PO4, NO3:PO4, salinity, and distance to shore. The effects of temperature, PO4 

and NO3:PO4 are aligned with previous studies by Deng et al., (2022); Lürling et al., (2017), and Olofsson et al., (2016), 

documenting that water temperature increase is associated with higher nutrient loads and phosphate release from sediments, 365 

all of which could have an impact on cyanobacterial biomass increase. Rising temperature is also associated with terrestrial 
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runoff of organic matter but also causes a decrease in salinity in the northern Baltic Proper, northern parts of the Bothnian 

Sea, Bothnian Bay, and southward to the Arkona basin (see Andersson et al., 2013, 2015). Moreover, the increase in the 

abundance of cyanobacteria may also be associated with basin-specific decreases in salinity (Kuosa et al., 2017; Olofsson et 

al., 2020; Suikkanen et al., 2007), which could highlight the area increase of nodularin predicted in the Arkona basin.  370 

Distance to shore, surprisingly, appears to have significant positive direct and interaction effects together with other 

variables on the predicted area increase of nodularin. Our findings show that predicted sites with high nodularin 

concentration are located further offshore. Considering the differences in biogeochemical characteristics between coastal and 

offshore waters (Vigouroux et al., 2021) and that offshore waters are generally more nutrient-depleted than waters closer to 

the coast (see Löptien & Dietze, 2022), our results, in contrast to common assumption, suggest that predicted occurrence of 375 

nodularin is not only driven by nutrient concentrations like PO4 and NO3. However, the predicted occurrence of nodularin in 

nutrient-depleted areas could be attributed to the limitation of model-based projection of nutrient load scenarios, which do 

not differentiate between dissolved inorganic phosphorus stored by cyanobacteria and dissolved organic phosphorus. The 

fact that cyanobacteria can utilize dissolved organic phosphorus under nutrient-depleted conditions (see Caille et al., 2024; 

Rabouille et al., 2022) could explain the observed and predicted occurrence of nodularin. Our model finding suggests the 380 

importance of including distance to shore as a geographical variable in future modeling of cyanobacteria and cyanotoxin, 

particularly in nutrient-depleted areas across the Baltic Sea.  

Results of Bayesian linear regression show that there were variations in the interaction effects between different variables of 

ERGOM and NODC on the predicted occurrence of nodularin, with a relatively low coefficient of determination R2 ≤ 0.25. 

This statistical observation can be attributed to the differences in resolutions of variables measured by GCM of different 385 

origins (see e.g., Dietze & Löptien, 2016; Löptien & Dietze, 2022; Meier et al., 2011; Meier & Kauker, 2003; Munkes et al., 

2021; Schrum & Backhaus, 2002). However, these statistical observations are not great enough to offset the spatial 

regression observed in the regression function R2 ≥ 0.7 and the detrimental and significant effects of other variables with p < 

0.001, 0.01 and 0.05 observed, e.g., in salinity, temperature, PO4, distance to shore, and their interaction effects. Despite the 

statistical results of Bayesian linear regression, our model finding suggests that the spatial regression function produced by 390 

the kriging algorithm is useful to interpret the drivers of the predicted occurrences of nodularin.  

Future increased occurrence of nodularin was predicted for the Eastern Gotland Sea, Northern Baltic Proper, the Bothnian 

Sea, the Quark, and Arkona Basin in response to overall projected changes in environmental variables, particularly the NO3 

concentration and temperature. Earlier studies demonstrated that cyanobacterial species, such as Nodularia 

spumigena and Aphanizomenon spp., will benefit from climate change due to increased stratification by higher temperatures 395 

and that the growth and nitrogen fixation are favored by rising temperatures (Karlberg and Wulff, 2013; Munkes et al., 2021; 

Paerl and Otten, 2013; Visser et al., 2016). Furthermore, it has been shown that the effects of climate change under different 

scenarios are smaller than the effects of considered nutrient load changes (Saraiva et al., 2019). Taken together, our model 

findings suggest that reducing nutrient load could lead to improved future environmental conditions in the Baltic Sea, which 

in turn could reduce future area distribution of nodularin.    400 
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Given the great divergence and large spread between findings of other models projecting cyanobacterial bloom (e.g., Hense 

et al., 2013; Meier et al., 2012, 2019; Munkes et al., 2021; Neumann, 2010; Saraiva et al., 2019), the variation in GCMs, and 

that cyanotoxins cannot be directly measured by satellite and remote sensing, our modeling approach that combines 

geostatistical and ML algorithms could help mitigate this methodological gap. Model prediction of both EBK regression and 

ensemble learning provided useful and conformable spatial estimation of nodularin occurrence, suggesting that combining 405 

results of geostatistical interpolation and ML-based modeling could serve as a promising future approach for cyanotoxin 

investigation. This approach could also help mitigate future expansion of nodularin by detecting and predicting possible 

hotspot occurrences that could arise due to different future climatic scenarios across the Baltic Sea. Despite the model's 

accuracy and performance, care should be taken when interpreting the model findings, given that there was limited data 

availability that covers both nodularin concentration and abundance of N. spumigena in corresponding samples and that the 410 

sampling period of the study was conducted only during the summer and in one year. 

5 Conclusion  

We underscore the need to integrate geostatistical interpolation and machine-learning-based modeling to monitor and 

mitigate spatial expansion of nodularin across the Baltic Sea and to enhance decision-making strategies in this area. Our 

models can be useful tools to generate spatial estimates of nodularin occurrence at unsampled locations, and we show 415 

evidence that the predicted area distribution of nodularin is a result of several interacting environmental variables together 

with a geographical factor of distance to shore that could further help explain increased expansion into different areas in the 

future. Furthermore, modeling using approaches presented in this study could be crucial for effective management applied 

for nutrient reduction and predicting future climate change impacts, as cyanobacteria can exacerbate eutrophication, affect 

water quality, and pose health risks. If used carefully, these approaches could help prioritize surveillance and implement 420 

earlier sampling efforts in areas predicted to have high cyanotoxin concentration. 
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