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Abstract. Accurate aerosol composition retrievals support radiative forcing assessment, source attribution, air quality anal-
ysis, and improved modeling of aerosol-cloud-radiation interactions. Aerosol retrievals based solely on visible-wavelength
aerosol optical depth (AOD) observations provide limited spectral sensitivity, which may be insufficient to reliably distin-
guish among aerosol types with similar optical properties. In this study, we present a new retrieval framework that combines
multi-wavelength AOD observations from both the visible and shortwave infrared spectrum, enhancing aerosol type discrimi-
nation. A neural network forward model trained on simulations from the Model for Optical Properties of Aerosols and Clouds
(MOPSMAP), which relates aerosol optical properties to spectral AOD, is embedded in an optimal estimation method (OEM)
to retrieve aerosol composition. This machine learning-based forward model achieves computational efficiency without mak-
ing compromises in accuracy. The neural network forward model achieves a mean R? of 0.99 with root-mean-square error
below 0.01. The retrieval resolves up to four independent aerosol components, with degrees of freedom for signal about 3.75.
In the total retrieval uncertainty, the forward model contributes less than 10%, confirming its robustness. We apply this hybrid
method to ground-based observations, including data from the Aerosol Robotic Network (AERONET) and Fourier Transform
Infrared spectrometer (FTIR) measurements. The retrieved aerosol compositions are consistent with physical expectations and
validated through backward trajectory analysis. Furthermore, we successfully apply this method to satellite AOD observations
and demonstrate its potential for global aerosol composition retrievals. The full development of a global dataset will be further

addressed in future work.

Copyright statement. TEXT

1 Introduction

Aerosols play an important role in the climate system by influencing the Earth’s radiation budget (Kuniyal and Guleria, 2019;
Haywood, 2021), cloud microphysics (Mauritsen et al., 2011; Gong et al., 2023), and air quality (Garrett and Zhao, 2006).

Depending on their properties, aerosols can either cool the Earth’s surface by reflecting incoming solar radiation (Charlson
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and Wigley, 1994; Chang et al., 2022), or warm the atmosphere by absorbing sunlight (Weinbruch et al., 2012; Bond et al.,
2013; Breider et al., 2014; Groot Zwaaftink et al., 2016; Kodros, 2018). While the net global effect of aerosols is cooling,
their climatic impact varies significantly with aerosol type, spatial distribution, and environmental conditions (Kaufman et al.,
2002; Satheesh and Moorthy, 2005). For example, strongly scattering aerosols such as sulfate and sea salt typically have a
cooling effect in lower-latitude regions. However, in the Arctic, sea salt aerosols can undergo hygroscopic growth under Arctic
humidity, which enhances their infrared radiative properties (Ji et al., 2025) and potentially contributes to the longwave cloud
radiative effects (Gong et al., 2023). These complexities highlight the importance of accurately observing aerosol microphysical
and optical properties in different environmental conditions to better quantify the impact of aerosols on climate and improve
the performance of climate models.

Aerosol optical depth (AOD) is a fundamental parameter used to describe the column-integrated extinction of solar radiation
due to aerosols. AOD retrievals can be obtained through both active and passive remote sensing techniques. Active remote
sensing methods, such as lidar, provide vertically resolved aerosol properties and have been widely used on both ground-based
and satellite platforms (Jin et al., 2020; Floutsi et al., 2023). For instance, the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) mission provides detailed aerosol vertical distributions, offering crucial insights into aerosol
transport and layering (Winker et al., 2007; Liu et al., 2009). Passive remote sensing, on the other hand, relies on the measure-
ment of scattered and absorbed radiation and includes both satellite-based and ground-based instruments. Satellite sensors such
as the Moderate Resolution Imaging Spectroradiometer (MODIS) retrieve AOD on global scales using multi-spectral radiance
measurements (Levy et al., 2007), while ground-based networks like the AErosol RObotic NETwork (AERONET) provide
high-accuracy AOD measurements at multiple wavelengths through sun photometry (Holben et al., 1998; Giles et al., 2019b).

Despite the abundance of AOD observations, retrieving aerosol composition from remote sensing remains challenging. Re-
cent studies have introduced new methods for retrieving aerosol composition (Li et al., 2019; Ji et al., 2023). In particular,
Fourier Transform Infrared spectrometer (FTIR) has been successfully employed to extract aerosol component information
from infrared emission spectra (Ji et al., 2023). This method provides valuable insights into aerosol microphysical and chem-
ical properties. The incorporation of shortwave infrared spectral information into aerosol retrieval algorithms offers a promis-
ing method for improving the accuracy of aerosol composition estimation. Barreto et al. (2020) and Alvérez et al. (2023)
have established a detailed observation framework that combines AERONET and FTIR measurements to obtain aerosol AOD
spectra spanning both visible and shortwave infrared wavelengths. Despite the availability of such comprehensive spectral
observations, no existing retrieval algorithm has been developed to infer aerosol composition based on joint visible—infrared
shortwave-infrared AOD data. This study aims to fill that gap.

In aerosol remote sensing, radiative transfer models and Mie—seattering—ealeutations—aerosol optical property calculators
are fundamental to developing a full-physics retrieval algorithm. For example, MODIS aerosol retrievals use look-up tables
based on radiative transfer simulations (Levy et al., 2007), while AERONET applies a detailed multi-wavelength approach
to observe aerosol size distribution and refractive index (Giles et al., 2019b). However, the complex dependence of aerosol
optical properties on size distribution, composition, relative humidity, and multiple scattering introduces strong nonlinearity

into the aerosol retrievals, making traditional retrievals computationally intensive and challenging to optimize. To address these
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challenges, machine learning (ML) methods have emerged as promising alternatives, offering the potential to approximate
the nonlinear mappings between aerosol properties and observations more efficiently while retaining the underlying physical
constraints learned from full-physics simulations.

In recent years, machine learning techniques have been widely explored to enhance remote sensing retrievals, offering sub-
stantial improvements in efficiency and data assimilation (Cobb et al., 2019; Himes et al., 2020; Doicu et al., 2021; Tian
and Shi, 2022; Li et al., 2023). However, ML models are often criticized for their lack of physical interpretability, func-
tioning as “black-box™ algorithms without explicit ties to underlying atmospheric physics. Despite these limitations, some
studies have demonstrated the potential of ML to replace specific components of physical models (Himes et al., 2020). For
example, a hybrid radiative transfer and transfer learning framework is proposed to retrieve aerosol optical depth and fine-
mode fraction from multi-spectral geostationary satellite data (Tang et al., 2025). Additionally, neural network—based retrieval
approaches using TROPOMI O, A-band spectra have been developed for aerosol parameter inference (Rao et al., 2022),
and radiative transfer emulators have been integrated into TROPOMI aerosol layer height algorithms (Nanda et al., 2019).

“The FastMAPOL algorithm employs neural network-based
forward models within a multi-angle polarimetric retrieval framework, achieving speed-ups of about 1000x with minimal
accuracy loss (Gao et al., 2021a). It also includes adaptive view-angle filtering to mitigate retrieval errors from problematic
geometries in satellite and airborne data (Gao et al., 2021b). Similarly, the PACE-MAPP algorithm couples atmosphere—ocean
vector radiative transfer emulators to jointly retrieve aerosol and ocean optical properties from polarimetric measurements
(Stamnes et al., 2023). In addition, algorithms such as the Generalized Retrieval of Aerosol and Surface Properties (GRASP)

algorithm (Dubovik et al., 2011a) and the Remote Sensing of Trace Gases and Aerosol Products (RemoTAP) algorithm (Hasekamp et al., 2(

have integrated radiative transfer emulation strategies and have been widely applied to global aerosol data from POLDER and
PACE (Hasekamp et al., 2024).

These examples highlight the growing role of machine learning in-aerosol-remotesensingemulators in operational and
research retrieval systems. While most prior work focuses on improving radiative transfer speed or expanding polarimetric
capabilities, our approach extends the emulator concept to direct aerosol composition retrieval from visible and shortwave

infrared AOD spectra, emphasizing feasibility in ground-based and satellite multi-band systems.
The ultimate goal of this study is to develop an algorithm to retrieve global aerosol compositions from AOD observations at

visible and shortwave infrared wavelengths. Traditionally, this retrieval relies on constructing a relationship between AOD and
aerosol composition using full-physics models, such as the Model of Optical Properties of Aerosols and Clouds (MOPSMAP,
(Gasteiger and Wiegner, 2018)). In this study, MOPSMAP is used to generate a training dataset, and a ML model is trained to
capture the mapping between AOD and aerosol composition. The trained ML model then serves as a forward model, replacing
the traditional physical model in the inversion process. This approach can approximate the full-physics forward model with a
faster, data-driven algorithm that can be applied globally.

In Section 2, we describe aerosol datasets used in this study, including both ground-based measurements and satellite obser-

vations. We present the construction steps of the ML database, the training process, and how it is integrated into the retrieval
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algorithm in Sect. 3. Section 4 presents the results, followed by a discussion on the implications and limitations of the proposed

approach.

2 Data
2.1 Multi-band AOD Measurements from AERONET and FTIR

In this study, ground-based measurements are conducted in Ny-Alesund (11.5° E, 78.9° N), including a sun photometer
(AERONET) and a Fourier Transform Infrared spectrometer. The FTIR system (Notholt et al., 1995) is a Bruker 120HR
instrument operated as part of the Network for the Detection of Atmospheric Composition Change (NDACC). FTIR leads high
resolution, 0.0035 cm ™1, spectra in infrared. Barreto et al. (2020) and Alvdrez et al. (2023) provide a detailed methodology, the
Langley calibration method, for measuring AOD using the shortwave infrared spectrum from FTIR. Following their approach,
this study derives aerosol AOD observations in the infrared-spectral range, including 1020.90, 1238.25, 1558.25, 2133.40,
2192.00, and 2314.20 nm.

-providie '. m-hteh-qaa

—Standard AERONET sun photometers retrieve AOD at
340, 380, 440, 500, 675, 870, 1020, and 1640 nm, covering the ultraviolet (UV) to shortwave infrared (SWIR) range —Fhese
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and-aeros analysis—(Floutsi et al., 2023). In addition to these direct sun measurements, AERONET provides inversion
roducts that include single scattering albedo (SSA), asymmetry factor (AF), and effective radius (Reff), retrieved using sk

radiance observations (Dubovik and King, 2000; Giles et al., 2019a). These parameters are useful for aerosol t

and are used in this study.
In Ny—Alesund, the selected wavelengths start from 440 nm, as shorter wavelengths (340 and 380 nm) are not available. In

e discrimination

summary, based on the combined AERONET and FTIR observations, the aerosol optical depth (AOD) retrievals in this study
are performed at the following wavelengths: 440, 550, 675, 870, 1020, 1558, and 2192 nm.

2.2 Multi-band AOD Measurementsretrievals from Satellite

The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite
provides NASA’s standard Level-3 monthly Deep Blue aerosol products. These products offer global, gridded measurements
of AOD over land and ocean on a 1° x 1° grid. The Deep Blue algorithm, originally applied to the Sea-viewing Wide Field-
of-view Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS), has been adapted for VIIRS to
ensure continuity in aerosol data records.

The monthly aggregated product (AERDB_D3_VIIRS_SNPP) is derived from the Version-2.0 daily level 3 gridded products

(Sayer et al., 2018). It calculates arithmetic mean values from daily data to produce monthly statistics. This dataset has been
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available since March 1, 2012. Satellite-derived AOD from sensors such as VIIRS and MODIS covers wavelengths at 490, 550,
670, 865, 1240, 1610, and 2250 nm over ocean. While the ground-based AOD measurements, e.g. AERONET and FTIR, cover
different wavelengths. In order to facilitate the broad applicability of the machine learning database (given in the next section)
to potential future observational datasets, the satellite AOD measurements are interpolated at varying wavelengths employing

the Angstrém exponent (Angstrom, 1929) to align with the spectral bands of the ground-based AOD measurements:

Anew -
T()\new) - T()\sal) ( )\sat > (1)

where 7(Apew) is the interpolated AOD at wavelength (440, 550, 675, 870, 1020, 1558, 2192 nm); 7(Ag) is the AOD at a
known wavelength measured by satellites; « is the Angstrém exponent, typically calculated using two known AOD values. This
approach integrates visible ;-near-infrared;—and-and shortwave infrared observations, providing a continuous aerosol spectral

dataset suitable for both current and future remote sensing applications.

3 Method

Tosets ]

3.1 Overview of the Methodological Framework

This study presents a hybrid framework that combines physics-based aerosol optical property calculator , machine learnin
ML), and optimal estimation method (OEM) to retrieve aerosol composition from multi-wavelength AOD-measurements;this

a-AOD observations. The key idea is
Wmmrwmd model (MOPSMAP) using-aneural-network-trained-on—a-large
e-to align with what is actually observable.
Instead of directly retrieving aerosol properties from a full-physics model, we first generate a synthetic database using
MOPSMAP, in which each sample includes both microphysical inputs and resulting aerosol optical outputs. From this database,
we construct a new forward model using machine learning. Specifically, the ML model takes as input the aerosol component
fractions m@%
Ws1ngle scattering albedo

meée}wvhﬁ&gfeaﬂyfeéuemgeefnpu%aﬂeﬂal»eeﬁ SSA), asymmetry factor (AF), and effective radius (Reff), parameters that
are typically accessible from remote sensing observations. The output of the model is the spectral acrosol optical depth (AOD)
originally computed by MOPSMAP. Once trained, the-neural-networkreplaces-the-traditional-radiative-transfer-model-as-the
forward-medel-

Mﬁemeva}ﬁep%ﬂ&maemﬁe&eafﬂeekm forward model is embedded inte-within an optlmal estimation
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knoewledgeframework. Observed spectral AOD (e.g., from

s-hybrid-approach-ensuresphys onststeney,enhanees mputattonal-et ney;-and-enablesHe e-a h
ground-based-and-sateHite-observations—ground-based measurements or satellite retrievls) is used as the retrieval input, and
aerosol component fractions are estimated iteratively by minimizing the mismatch between observed and simulated AOD
under constraints from a prior information and measurement uncertainty.

aerosol-component fractions:Specifically, as shown in Fig. 1, MOPSMAP takes as input a variety of aerosol microphysical
parameters, including component fractions, particle size distribution, complex refractive index, particle shape, and ambient
relative humidity. It then computes corresponding optical properties, such as SSA, AF, and Reff, which are usually observable
using instruments such as sun photometers. We therefore reorganize the MOPSMAP simulation inputs and outputs according.
to actual observational conditions. In summary, part of the original MOPSMAP outputs (SSA, AF;, and Reff) are repurposed as
inputs to a machine learning model. This is not achievable by the traditional forward simulation itself, but can be enabled by

data-driven learning.
To implement the proposed aerosol composition retrieval framework, we follow a structured approach consisting of three

main steps. These are outlined as follows and will be described in detail in the following sections:

1. Synthetic Dataset Generation: A large AOD dataset is generated using MOPSMAP by varying aerosol component
fractions, as well as four physically-constrained parameters: single scattering albedo (SSA), asymmetry factor (AF),

effective radius (Reff), and relative humidity (RH). -

2. Machine Learning Forward Model: A neural network is trained to emulate the MOPSMAP-a new forward model,
mapping input parameters (the aerosol component fractions, SSA, AF, and Reff) to multi-wavelength AOD spectra.

3. Retrieval via Optimal Estimation: The ML-based forward model is integrated into an optimal estimation framework

to retrieve aerosol composition from observed AOD.

3.2 Aerosol Optical Database Simulation with MOPSMAP

The Model for Optical Properties of Aerosols and Clouds (MOPSMAP, (Gasteiger and Wiegner, 2018)) is a numerical tool
designed to compute aerosol and cloud optical properties based on Lorenz-Mie theory and the T-matrix method. It supports
a wide range of aerosol compositions, including sulfates, sea salt, black carbon, mineral dust, and organic aerosols, with
flexible size distributions (e.g., log-normal, gamma) and shape assumptions (spherical and non-spherical particles). Covering
a broad spectral range from ultraviolet (UV) to thermal infrared (IR), MOPSMAP provides key optical parameters such as

extinction, scattering, and absorption coefficients, single scattering albedo (SSA), asymmetry parameter, and phase functions.
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Figure 1. Schematic overview of the model development and retrieval workflow. Left panel: MOPSMAP is used to generate a synthetic

database by simulating optical properties from randomly sampled aerosol parameters, including component fractions, size distribution, and

. SSA, AF, and Refi

refractive index. Based on the subset of optical parameters that are typically available in real observations (e.

reorganize the simulated database to define the machine learning inputs. The corresponding aerosol component fractions, SSA, AF, and Reff
are selected as the machine learning inputs. The spectral AOD is the machine learning output. This effectively inverts the original MOPSMAP
input-output structure to train an efficient, observation-driven emulator of the forward model. Right panel: The trained ML-based forward
model is then used within an optimal estimation framework. Prior aerosol composition is taken from MERRA-2 (Gelaro et al., 2017), and
AOD is simulated using the learned forward model. By minimizing the mismatch with observed AOD measurements, the acrosol composition
is retrieved. This setup allows flexible integration of real-world measurements and efficient inversion without full-physics simulation during

retrieval.

To construct a comprehensive dataset for training a machine learning model, we use the MOPSMAP for aerosol optical
property simulations. We consider five primary aerosol composition, similar to MERRA-2 (The Modern-Era Retrospective
analysis for Research and Applications, Version 2) reanalysis data (Gelaro et al., 2017): sea salt, sulfate, black carbon, dust,
and insoluble aerosols. The size distributions of dry aerosols follow a log-normal distribution, with sea salt and dust ranging
from 0.01 to 0.5 um, while sulfate, black carbon, and insoluble aerosols range from 0.01 to 0.1 pm. Varying proportions of
these five aerosol classes are randomly assigned, with their total constrained to sum to 100%. This process is repeated 10,000
times, with each time a randomly varying proportion of five aerosols, to produce a dataset that covered a wide range of aerosol
mixtures commonly found in the atmosphere. Hygroscopic growth significantly alters aerosol optical properties, particularly
in the shortwave infrared spectrum. We incorporate this effect by varying the relative humidity (RH) between 55% and 95% in
the simulations. The optical properties of the aerosol mixtures are then computed under these conditions.

In-summary;-as-As given in Tab.1, using MOPSMAP, we simulate 10,000 cases, obtaining a set of aerosol optical properties

across multiple wavelengths, including: Extinction coefficient at visible and shortwave infrared wavelengths (440, 550, 675,
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Table 1. Overview of input parameters and simulated outputs used in the MOPSMAP-based aerosol optical property database.

Category Parameter Description

Input Parameters  Aerosol Composition Fractions of sea salt, sulfate, black carbon, dust, and insoluble; sum to 100%
Size Distribution Log-normal; sea salt and dust: 0.01-0.5 pm; others: 0.01-0.1 pm (dry mode)
Relative Humidity (RH) Varied from 55% to 95%, affecting wet particle size
Particle Shape spherical

Output Variables = AOD Spectrum Extinction AOD at 440, 550, 675, 870, 1020, 1558, and 2192 nm
Single Scattering Albedo (SSA)  at 440 nm for training
Asymmetry Factor (AF) at 440 nm for training
Effective Radius (Reff) Wet effective radius derived from size and RH

870, 1020, 1558, 2192 nm), Single scattering albedo (SSA), Asymmetry factor (AfAF) and Effective radius (Reff). Given-the

eomplexity-ofTo focus on the spectral shape of AOD rather than absolute magnitude, we scale all wavelengths relative to
the 440 nm value. This results in a relative AOD spectrum, with AOD (440 nm) set to 1.0 and all other wavelengths scaled
accordingly. The retrieved outputs represent number concentration fractions of aerosol components. Then, in post-processing,
these fractions can be combined with observed or modeled AOD magnitudes to calculate component-specific AODs. However,
due to differences in size-dependent extinction efficiency among aerosol types, the AOD contribution of each component is
not strictly proportional to number fraction. Therefore, while the absolute AOD values of individual components may have

properties-and-their-optical-characteristiesspatial distribution and relative dominance of each aerosol type remain meaningful
articularly in high-AOD cases. The script used to generate this database is available in Section data and code.

3.3 Neural Network Model Training

Directly using MOPSMAP in the retrieval is challenging, likely due to the high dimensionality of its input parameters and
the strong nonlinearity in the model. Therefore, to replace MOPSMAP as a forward model, we develop a machine learning
framework that learns the relationship between aerosol composition and its optical properties. The trained model allows for
rapid calculations in retrieval applications. All detailed procedures and comments are available in the accompanying code
repository (see "code data availability"). Below, we provide a brief summary of the training workflow.

We adopt a fully connected feed-forward neural network with two hidden layers, which is commonly used in aerosol retrieval
studies (Faure et al., 2001; Nanda et al., 2019; Chen et al., 2022). The architecture is defined as:

Input (9) — FC(32) — ReLU — FC(32) — ReLU — FC(9) — Output (AOD) 2)
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Here, FC(n) denotes a fully connected layer with n neurons. Each hidden layer is followed by a rectified linear unit (ReLU)

activation function (Nair and Hinton, 2010), defined as:
ReLU(z) = max(0, 2) 3)

ReLU introduces non-linearity into the model, is computationally efficient, and helps mitigate the vanishing gradient problem,
enabling effective training of deep networks.

The input features consist of 5 aerosol component fractions (sea salt, sulfate, black carbon, dust, and insoluble), along
with 4 physically-constrained parameters: SSA, AF, Reff, and RH. The output labels are the corresponding AODs at eight
wavelengths: 440, 500, 550, 675, 870, 1020, 1558, and 2192 nm.

To ensure generalization and avoid overfitting, the dataset is split as:
Train : Validation : Test = 70% : 15% : 15% )

The model is trained using the Adam optimizer with a learning rate of 10~2 and batch size of 64. Performance is evaluated
using the mean squared error (MSE) as the loss function:

N
1 i i
MSE = = > (Viil — Ypoh)® 5)
i=1

Model accuracy is assessed with the root mean square error (RMSE) and coefficient of determination (R2):

Z(Krue - pred)2

RZ=1— r
Z(Krue _Y)2

(6)

1
RMSE = \/ ¥ D (Yiwe = Yprea)? @

By using this machine learning-based forward model, we achieve a computationally efficient alternative to MOPSMAP,
making it feasible for large-scale aerosol composition retrievals from both ground-based and satellite measurements. This
approach not only reduces computational cost but also preserves the essential physical relationships governing aerosol optical
properties, enabling large-scale and physically consistent aerosol composition retrievals in the subsequent optimal estimation

framework.
3.4 Aerosol Composition Retrieval Using Optimal Estimation

To retrieve aerosol composition from multi-wavelength AOD measurements, we apply the optimal estimation method (OEM)
(Rodgers, 2000). The key idea is to iteratively adjust the aerosol composition vector until the simulated AOD spectrum matches
the observed one, under physical constraints provided by prior knowledge and measurement uncertainty.

In traditional full-physics approaches, such as using MOPSMAP directly, the state vector x may include high-dimensional

microphysical properties like aerosol size distribution, number concentration, and refractive index for each aerosol component:



X:[nl(r)uNlu"'7n5(r)7N5]T (8)

where n; and IN; are the aerosol size distribution and number concentration of the five aerosol types: sea salt, sulfate, soot,

dust, and insoluble aerosols. n;(r) denotes the log-normal size distribution for component ¢, defined as:

N; 1 /Inr —Inrpe 2
2 . e — _ -
50 mi(r) V2, Ino,r P [ 2 ( Ino ) ©)

Tmod and o are internal parameters of the log-normal distribution of the aerosol. The MOPSMAP captures physical details
in aerosol optical properties but could result in ill-posed inverse problems. In practice, we have also implemented a full-
physics optimal estimation algorithm based on MOPSMAP directly; however, due to poor retrieval convergence and unstable
performance, this approach is not further considered in the current study.

255 However, if we have reconstructed MOPSMAP using machine learning, the trained model can greatly simplify the input
parameters and can guarantee the accuracy of the output aerosol AOD simulation, then the state vector can be reduced from

nearly ten dimensions to five dimensions:
x = [N1, No, Ny, Ny, N] " (10)

ML makes a clever connection between all input parameters to have only 5 parameters, which is easier to converge. Thus, the
260 nonlinearity of the inversion process can be reduced, and the accuracy and speed of the inversion can be improved. This model

approximates the forward mapping from aerosol composition to AOD as:
y = f(x;0) (11)

where x € R® represents the aerosol component fractions (sea salt, sulfate, BC, dust, and insoluble), and 6 = {SSA, AF, Reff, RH}
are fixed auxiliary parameters that encode environmental and optical conditions. The model f is learned from a large MOPSMAP-
265 generated dataset and replaces the computationally intensive radiative-transfer-bulk aerosol optical property calculator step.
The OEM retrieves x by minimizing a cost function that balances fidelity to the observed AOD spectrum, yqps, and deviation

from a prior estimate x,:
J(x) = (yobs — £(x:0))TSy ™ (yows — £(x:0)) + (x —x4) TS (x — x,) (12)

Here, S, is the a prior covariance matrix, and S, is the observation error covariance derived from AOD measurement un-

270  certainty. The a prior vector X, is derived from the MERRA-2 monthly mean aerosol component fractions at the same
time and location as the FTIR observations. The a prior covariance matrix S, is set as a diagonal matrix with a variance
of 0.01 (i.e.. a standard deviation of 0.1) for each acrosol component. This reflects a relatively loose prior constraint, allowing
the retrieval to be primarily informed by the spectral AOD observations while maintaining physical plausibility. For the
measurement error covariance matrix Sy, we distinguish between visible and shortwave infrared (SWIR) wavelengths. For

10
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reported uncertainties from Barreto et al. (2020) and Alvarez et al. (2023), who applied Langley calibration for FTIR-based
AOD measurements in the SWIR region. All uncertainties are assumed to be spectrally uncorrelated.
The state vector is updated iteratively using the Gauss-Newton method. The Jacobian matrix K, representing the sensitivity

of AOD to changes in aerosol components, is numerically computed via finite differences:

K = (x:0) (13)
ox

The gain matrix G and update equation are:
G=(K"S,'K+S,") 'K"sy ! (14)

Xn+1 :Xn+G(YObs_f(Xn;0)> (15)

where 7 is the iteration index.
This hybrid retrieval framework reduces computational cost and avoids non-convergence issues common in full-physics
OEMs, while maintaining physical realism through the machine-learned forward operator and inclusion of environmental

parameters as constraints.
3.5 Uncertainty Analysis

As we mentioned before, a comprehensive virtual database is constructed, covering a wide range of aerosol compositions.

To quantitatively assess retrieval uncertainty, we avoid relying solely on limited ground-based observations, which may not

be representative. Instead, we-randomly-seleet1;500-cases{from-our-original-database-of-a total of 1500 cases are randoml

selected (15% of the full 10,000-synthetie-database;—and-use-000-sample dataset, they do not represent a designated “test”
set.) and the corresponding AOD spectrum are used as the synthetic AOD observation. For each selected sample, we perturb

the aerosol component by 10% (acted as a priori), followed by normalization. Subsequently, these 1,500 cases are processed
through the full retrieval procedure. This experimental configuration facilitates a systematic and controlled evaluation of the
retrieval algorithm under diverse aerosol scenarios, thereby supporting a robust assessment of error characteristics and retrieval
performance.
The posterior error covariance matrix Sp, for each sample is given by:
Spos = (KT(S, +S;) 'K +8;1) ™" (16)
where K is the Jacobian matrix, estimated numerically by finite perturbations;S,, is the measurement error covariance matrix;
Sy is the forward model error covariance matrix, estimated as the squared residuals between simulated and predicted AOD
spectra, S, is the prior error covariance matrix. The total retrieval uncertainty for each aerosol type is decomposed into three
components: observation error contribution, a prior error contribution, and forward model error contribution. Finally, the result

averaged over the 1500 cases allows us to quantify the dominant sources of uncertainty for each aerosol component.

11
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To further assess the information content of the retrieval system, we calculate the Averaging Kernel (AVK) matrix A, defined
as:
0 retrieve
A = Petrieved _ ope (17)
OXtrue
The diagonal elements of the AVK matrix indicate the degree to which each aerosol component is constrained by the

observations. The trace of the AVK matrix gives the Degrees of Freedom for Signal (DoF):
DoF = trace(A) (18)

indicating how much independent information is effectively retrieved from the measurement. This highlights the potential and

limitation of our retrieval algorithm in distinguishing aerosol types under realistic error assumptions.

4 Results
4.1 Characterization of the Synthetic Aerosol Optical Database

Figure 2 shows the mean normalized AOD spectra simulated by MOPSMAP for five pure aerosol types: sea salt, sulfate,
black carbon (BC), dust, and insoluble aerosols. Each case corresponds to an idealized scenario in which a single aerosol type
dominates (100% composition), allowing a clear examination of spectral distinctions. The properties on the aerosol classes,
e.g. complex refractive indices of different aerosol components, are based on the OPAC (Optical Properties of Aerosols and
Clouds), which provides standard optical properties for atmospheric aerosols under diverse environmental conditions (Hess
et al., 1998).

All spectra are normalized to an AOD of 0.1 at 440 nm. However, different aerosol types exhibit distinct spectral shapes,
particularly in the shortwave infrared range. Sea salt shows the flattest spectral curve, maintaining relatively high AOD values
across shortwave infrared wavelengths (e.g., 1.5-2.2um), consistent with its coarse-mode size distribution and strong infrared
extinction. In contrast, sulfate exhibits the steepest decline in AOD with wavelength, indicative of its fine-mode nature and low
absorption.

Although BC, dust, and insoluble aerosols display very similar behavior in the visible range (440-870 nm), their differences
become more distinguishable in the shortwave infrared. Dust retains slightly higher AOD values beyond 1.5um due to its

scattering efficiency at longer wavelengths, while BC and insoluble aerosols separate further in the 1.5 - 2 um range—Fhese

Tegion.

These spectral distinctions arise from the different refractive indices and particle sizes of the aerosol types. and confirm the
physical basis for using IR AOD as a complementary constraint in aerosol composition retrievals. Visible AOD alone may not
fully resolve composition degeneracies, especially between absorbing and scattering aerosols. Incorporating SWIR channels
thus enhances the information content of the retrieval system, enabling improved discrimination of spectrally similar aerosol
types. This supports the inclusion of SWIR AOD in our retrieval framework and highlights its practical relevance.
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Figure 2. Normalized AOD spectra for five pure aerosol components simulated using MOPSMAP. Each spectrum assumes a single dominant

aerosol type (100% composition) with AOD normalized at 440 nm.

To better understand the diversity and coverage of the training dataset, we visualize the distributions of auxiliary parameters
derived from the full synthetic database (all 10000 cases). Figure 3 shows the distributions of three key physical parameters
used as auxiliary inputs in the machine learning model: single scattering albedo (SSA), asymmetry factor (AF), and effective
radius (Reff). These parameters are evaluated at 440 nm. The SSA histogram reveals a strong right-skewed distribution with a
mean value of 0.94, suggesting most aerosols in the database are weakly absorbing. The AF histogram, centered around 0.70,
reflects the forward-scattering nature of the aerosol mixtures. The Reff distribution peaks near 0.25 pm and spans from 0.1
to 0.7 um, consistent with a mix of fine- and coarse-mode particles. These histograms demonstrate that the training database

encompasses a wide range of realistic aerosol conditions.
4.2 Neural Network Trained Model vs. MOPSMAP

The machine learning model trained to replace MOPSMAP shows high accuracy in predicting AOD at multiple wavelengths.
Figure 4(a-g) present a near-perfect agreement between predicted and original AOD, with R? values consistently above 0.99.
The best performance is observed at 1.02 um (R? = 0.9964), while all wavelengths exhibit minimal deviation from the 1:1 line,
indicating reliable predictions of trained model.

The residual distribution in Fig.4(h) is centered around zero, confirming that prediction errors are symmetrically distributed
with no systematic bias. The histogram shows that the majority of residuals remain within 0.05, further validating the model’s
precision.The performance metrics in the table highlight the robustness of the machine learning model. With a mean R? of
0.9927 and an RMSE of 0.0072, the model effectively captures the optical properties of aerosols. The low training, validation,
and test losses (about 10~°) suggest strong generalization ability, minimizing the risk of overfitting.

Overall, these results confirm that the machine learning model successfully replicates the MOPSMAP simulations, offering

an efficient and accurate alternative for forward modeling in aerosol retrieval.
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Figure 3. Histograms of key physical parameters in the training dataset: (top) Single scattering albedo (SSA), (middle) Asymmetry factor

(AF), and (bottom) Effective radius (Reff), all evaluated at 440 nm. The mean and standard deviation of each parameter are indicated.

4.3 Retrieval Uncertainty Analysis

As we mentioned in Sec.3.5, to understand the source of retrieval uncertainty, we decompose the total posterior variance
into contributions from prior, observation, and forward model errors. To better understand the relative importance of different
uncertainty sources in the retrieval, we present their average contributions in Table 2, with further discussion below.

Table 2 summarizes the normalized contributions to the total retrieval uncertainty from a prior, observation, and forward
model errors for each aerosol component, based on the 1500-case ensemble introduced in Section 3.5. The results highlight
distinct sensitivities across aerosol types. For sea salt and sulfate, the a prior and observation contribute comparably (e.g.,
53.8% vs. 39.4% for sea salt), indicating that these components are well constrained by the AOD spectral information. In
contrast, black carbon retrieval is heavily dependent on a prior assumptions, with 93.4% of the uncertainty attributed to the a
priori, reflecting its relatively weak spectral signature in the AOD spectrum. Dust and insoluble aerosols fall in between, with
both a prior and observational constraints playing meaningful roles.

Importantly, the contribution from the forward model error remains below 10% for all aerosol types, confirming the stability

and reliability of the machine-learning-based forward model used in this study. These findings underscore the benefits of
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Figure 4. Performance evaluation of the machine learning model replacing MOPSMAP as the forward model. Figures (a-g) show scatter
plots comparing the predicted normalized AOD from machine learning model with the normalized AOD from MOPSMAP at different
wavelengths (0.5, 0.55, 0.675, 0.87, 1.02, 1.558, and 2.192 um). The red dashed line represents the 1:1 reference line. Figure (h) displays the
residual distribution of the predicted AOD values. The table summarizes key performance metrics, including the mean R?, RMSE, and loss

values for training, validation, and testing.

combining physically consistent training datasets with efficient retrieval algorithms, enabling robust composition inference
while keeping model-induced uncertainty low.
To quantify the information content of the retrieval, we compute the averaging kernel matrix A. The diagonal elements

of A reflect the sensitivity of each retrieved parameter to the observations. A value close to 1 indicates strong observational
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Table 2. Normalized contributions (%) to the retrieval uncertainty for each aerosol component from prior, observation, and forward model

€1Tor sources.

Component a Prior (%) Observation (%) Model (%)

Sea Salt 53.8 394 6.8
Sulfate 57.6 36.0 6.4
Black Carbon 934 54 1.2
Dust 61.2 33.1 5.7
Insoluble 49.5 43.5 7.0

constraint, while values near O suggest the solution is mainly determined by the a prior. The averaged averaging kernel matrix

obtained from 1500 synthetic test cases is:

0.85 —0.00 0.15 -0.01 70.03_
-0.00 0.89 0.18 —-0.05 -0.03
A=1]015 018 027 023 0.15
-0.01 -0.05 0.23 0.86 0.00
_70.03 -0.03 0.15 0.00 0.83 |

The diagonal values indicate high sensitivity for sea salt (411 = 0.85), sulfate (A2 = 0.89), dust (A44 = 0.86), and insoluble
aerosols (Ass = 0.89), while black carbon is less constrained (Az3 = 0.27). The total degrees of freedom for signal (DoF),

given by trace(A), is 3.75, indicating that approximately 4 independent parameters can be resolved from the measurement.
4.4 Aerosol Composition Retrieval from Ground-Based Observations

Figure 5 presents the retrieved aerosol composition and corresponding AOD spectral fit at Ny—Alesund on 21 April 2020. The
retrieval results indicate that sea salt, sulfate, and black carbon aerosols dominate during this aerosol event. Specifically, sea
salt constitutes the largest fraction (~43%), followed by black carbon (~33%) and sulfate (~24%). Dust and insoluble aerosols
contribute minimally (< 1%). The observed AOD spectrum is well constructed by the forward model (Fig. 5b), with residual
differences typically below 0.005 (Fig. 5¢).

To further assess the potential source regions of the retrieved aerosols, a 120-hour backward trajectory analysis is conducted
using the HYSPLIT model (Fig. 5d). Based on the HYSPLIT back-trajectory analysis, the air masses (below 1500 m) are
mainly originated from the ocean. Specifically, both 500 m and 1500 m trajectories indicate that, two days earlier (on 19
April), vertical lifting of air masses from the open ocean region between Canada and Greenland likely introduced sea salt
aerosols into the lower troposphere, subsequently reaching Ny-Alesund. Sea salt has been released in the atmosphere in the

lowest 500 m between northeast Greenland on the last day prior to advection towards Ny—Alesund. This transport pattern
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Figure 5. Aerosol composition retrieval from ground-based observations at Ny—Alesund on 21 April 2020. (a) Retrieved aerosol component
number concentration fractions (sea salt, sulfate, black carbon, dust, and insoluble aerosols) with uncertainties. (b) Observed versus modeled
AOD spectra. (c) Residual differences between observed and simulated AOD. (d) 120-hour backward trajectories arriving at Ny—Alesund
(78.9°N, 11.9°E) at altitudes of 500 m, 1500 m, and 3000 m above ground level, computed using the NOAA HYSPLIT model (Stein et al.,
2015).

supports the presence of sea salt in the retrieved result. The upper-level trajectory (around 3000 m altitude) originates near
the US-Canada border, suggesting sulfate and black carbon aerosols transported over longer distances (approximately five
days) from anthropogenic sources in North America. These trajectories support the retrieved aerosol composition, confirming
sea salt dominance from lower-altitude oceanic pathways and sulfate and black carbon from long-range transport at higher
altitudes. Overall, this retrieval approach, integrating machine learning and optimal estimation, successfully captures aerosol

composition with high accuracy and consistency between observed and modeled AOD spectra.
4.5 Aerosol Composition from Satellite Observations

Based on the previous results using ground-based observations, we have demonstrated that machine learning models can yield
reasonably accurate retrievals. However, for satellite-based applications, the available observations are currently limited to
the AOD spectrum, without corresponding measurements of additional physical parameters such as SSA, asymmetry factor,

effective radius, and relative humidity. To address this limitation, we
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Figure 6. (a) and (b): Retrieved aerosol composition for two MODIS-labeled-VIIRS-labeled regions: "Background” (30—45°N, 50-25°W)
and "Dust” (0-7.5°N, ~25°W). Each bar shows the mean aerosol component fraction with labeled regions. (c) MOBPIS-VIIRS aerosol

classification map.

ropose two potential strategies:

1. One approach is to supplement satellite AOD observations with additional physical parameters such as SSA, AF, and

405 Reff, obtained from other satellite products te-ferm-a-comprehensive-inputfor-or reanalysis data, as auxiliary inputs to
the retrieval algorithm;-

2. Another approach is to treat these physical parameters, represented as € in the forward model F'(x;0), as part of the
state vector -thereby-incorporating-them-directly-into-theretrieval—x, allowing them to be retrieved jointly with aerosol

410 composition.

The first approach allows for more accurate spectral simulation by incorporating multiple observational constraints, leading
to improved physical consistency. However, it requires access to diverse datasets, which increases complexity. Moreover,
satellite-based products for these additional physical constraints are not yet available as a consolidated database. In contrast, the
second approach relies solely on AOD spectral observations, offering a easier solution. Given the complexity of developing a

415 multi-source parameter dataset, this study adopts the second strategy as a preliminary attempt to extend our retrieval framework
to satellite observations.

In March 2022, a Saharan dust outbreak transported a large amount of mineral dust across North Atlantic and into the
Arctic. This event serves as one of the key reasons why March 2022 is selected as the case study of dust enhancement for
demonstrating the aerosol retrieval results in this study. To evaluate the capability of our retrieval method in distinguishing

420 aerosol types over the ocean, we apply the inversion algorithm to MODBIS-VIIRS AOD spectral data in March 2022 and

focus on the North Atlantic region. The MOBIS-VIIRS aerosol classification product (Fig. 6¢) provides a reference aerosol
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Figure 7. Comparison of dust AOD distributions in March 2022. (a): Retrieved dust AOD based on monthly MOBIS-VIIRS AOD mea-
surement; (b): GEOS-Chem model simulated monthly mean dust AOD. The retrieved dust AOD is derived by applying the retrieved dust
composition fraction to the total MOBES-VIIRS AOD at 550 nm, thereby providing a dust AOD product.

classification information, which label most of the mid-latitude North Atlantic as "Background" and the tropical eastern North

Atlantic as "Dust". Based on this map, we selected two representative regions for further analysis:

— Mid-North Atlantic (30-45°N, 50-25°W): Representing the "Background" class.

— Equatorial North Atlantic (0-7.5°N, ~25°W): Representing the "Dust" class.

The retrieved aerosol composition in these two regions is shown in Fig. 6a-b. Over the mid-latitude North Atlantic (panel
a), sea salt dominates with a fraction exceeding 45%, followed by sulfate and a smaller contribution from dust and insoluble
aerosols. This composition is consistent with clean marine air masses influenced by westerly flow. In contrast, the equatorial
North Atlantic (panel b), located downwind of West AfrieaAFrica, shows a strong dust signal, with dust fractions exceed-
ing 50% and reduced sea salt contributions. This suggests the MODPIS-VIIRS "Dust" label is physically supported by our
component-resolved retrieval. These results demonstrate the potential of our method to capture the aerosol type over the ocean.
Moreover, this approach provides physically interpretable aerosol composition that can complement or refine existing satellite
classification products.

In addition, we evaluate the spatial distribution of retrieved dust AOD during March 2022 (Fig.7a) and compare it with
GEOS-Chem model simulations (Fig.7b, model setups are given in Appendix.A). Both datasets show a consistent dust plume
stretching from the Sahara across the tropical Atlantic, with reduced influence over the mid-latitude Atlantic. The similarity in
spatial distribution pattern between our retrieved dust AOD and model results confirms that the retrieved dust distribution is

physically realistic and consistent with large-scale transport patterns.
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5 Conclusions

440 This study shows the feasibility of integrating machine learning with physically based aerosol modeling to retrieve aerosol
composition from multi-wavelength AOD observations. By using a neural network trained on a comprehensive database gen-
erated with MOPSMAP, we successfully emulate the aerosol spectral features with aerosol composition and optical properties.
The resulting algorithm is easier to converge and efficient, suitable for application across diverse platforms, including ground-
based FTIR and AERONET observations as well as satellite-based MODBIS-and-VIIRS data. In addition, this retrieval method

445 s faster (about 5 - 10 times) than traditional full-physics retrieval method, making it a promising tool for large-scale aerosol
monitoring. The degrees of freedom for signal (DoF) analysis confirms the robustness of the retrieval framework. The diag-
onal elements of the averaging kernel matrix show strong observational constraints for sea salt, sulfate, dust, and insoluble
aerosols (A7 = 0.85, Ags = 0.89, Ayy = 0.86, As5 = 0.89), while black carbon is less constrained (As3 = 0.27), highlighting
its stronger dependence on the prior. The total DoF of 3.75 suggests that approximately four independent aerosol parameters

450 can be reliably retrieved from the multi-wavelength AOD observations.

However, on satellite platforms, shortwave infrared observations over land are still missing due to the strong and variable
influence of surface emissivity (Li et al., 2020), which limits the global (land) applicability of this method. Improvements
in shortwave infrared AOD retrieval, especially over land surfaces, would significantly enhance the accuracy and reliability
of aerosol composition inversion. Due to the lack of reliable land-based shortwave infrared AOD spectra from satellite ob-

455 servations, this study highlights the importance of ground-based measurements. The combined use of AERONET and FTIR
observations helps fill this critical gap, providing high-quality, multi-wavelength AOD data that enable physically consistent

and information-rich aerosol composition retrievals.

In this_study, the use of Mie theory assumes spherical aerosol particles, which may introduce biases, particularly for
non-spherical particles such as mineral dust. Determining aerosol shape is a complex problem that cannot be addressed
460  solely through passive radiometry. In practice, characterizing particle asphericity requires additional measurements, such as
polarization or depolarization ratios from lidar or radar. Qur previous work (Ji et al,, 2023) has demonstrated the feasibility.
of combining FTIR and radar observations to jointly constrain aerosol properties. Therefore, incorporating aerosol shape
Besides, our analysis highlights the importance of high-quality auxiliary optical parameters, particularly single scattering
465 albedo (SSA), asymmetry factor (AF), and effective radius (Reff), in constraining aerosol composition retrievals. In ground-based
settings. instruments such as AERONET offer reliable inversions of these parameters, enabling accurate component estimation
when combined with spectrally resolved AOD. While satellite retrieval of these quantities remains more challenging. Current
and upcoming satellite sensors can provide some of this information, but typically require multi-angle, multi-spectral, or
polarimetric measurements, along with advanced inversion algorithms. For example, the POLDER instrument aboard PARASOL
470  enabled global retrievals of SSA, Reff, and AF: through polarization-based algorithms such as GRASP and RemoTAP (Dubovik et al., 2011t
- Upcoming missions like 3MI (on MetOp-SG) and NASA’s PACE will carry advanced polarimetric imagers and hyperspectral
sensors to further improve retrievals of aerosol microphysical and optical properties (Werdell et al., 2019; Gao et al., 202 1)
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. However, these satellite-based parameters often originate from different sensors and require cross-platform coordination
unlike AERONET which provides all relevant quantities from a single instrument. Therefore, applying the proposed retrieval
475 framework to satellite observations may involve higher uncertainty and greater dependence on auxiliary data. Future improvements

in satellite instrumentation and algorithm synergy will help extend this framework from ground-based to global applications.
In summary, the integration of machine learning and multi-band AOD observations presents a promising method for aerosol

composition retrieval. Continued efforts to improve shortwave infrared AOD accuracy, expand physical realism in training data,
and incorporate additional observational constraints such as lidar profiles will be essential for achieving reliable, global-scale

480 aerosol monitoring.

Data availability. The MERRA-2 reanalysis data used as a priori information are available from NASA’s GES DISC at https://disc.gsfc.nasa.
gov/datasets/M2TINXAER_5.12.4 (hourly) and https://disc.gsfc.nasa.gov/datasets/ M2TMNXAER _5.12.4 (monthly mean). Ground-based
aerosol optical depth (AOD) observations are obtained from AERONET (https://aeronet.gsfc.nasa.gov/). The VIIRS Deep Blue Aerosol
monthly Level 3 product (AERDB_M3_VIIRS_SNPP, version 2) used in this study is publicly available via NASA LAADS DAAC at
485  https://doi.org/10.5067/VIIRS/AERDB_M3_VIIRS_SNPP.002. The synthetic aerosol dataset used for model training and testing, as well as
the code implementing the retrieval algorithm, are available upon request from the corresponding author. FTIR AOD observations are also

available upon request from the corresponding author.

Appendix A: GEOS-Chem Model Setups

GEOS-Chem is a global 3D chemical transport model widely applied to simulate atmospheric trace gases and aerosol transport,

490 chemistry, and deposition Bey et al. (2001). Driven by assimilated meteorological data from the Goddard Earth Observing
System (GEOS), GEOS-Chem allows detailed studies of atmospheric composition and transport patterns. In this study, we use
GEOS-Chem version 13.4.0, driven by MERRA-2 reanalysis data Gelaro et al. (2017), configured with a horizontal resolution
of 2° x 2.5° and 47 vertical levels. The simulations spanned from January 1, 2021, to May 31, 2022.
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