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Abstract. The large size of traditional drifters limits their ability to mimic the transport of buoyant objects at the ocean surface,

which are subject to complex interactions among direct wind drag, fast-moving surface currents, and wave-induced transport.

To better capture these dynamics, we track the trajectories of 12 novel, ultra-thin surface drifters deployed in the southern

North Sea over 68 days. We adopt a data-driven approach to model drifter velocity using hydrodynamic and atmospheric data,

applying both a linear leeway parameterisation and two machine learning models: random forest and support vector regres-5

sion. Machine learning model-agnostic interpretation techniques reveal that tidal forcing predominantly drives zonal motion,

whereas wind is the main driver in the meridional direction in this region. Notably, the wind exhibits a saturation effect, and its

contribution to explaining the variance of the drifter velocity decreases at higher speeds. In trajectory prediction experiments,

we find that machine learning models, particularly random forest, outperform linear models, with the latter achieving compa-

rable accuracy only at short time scales. Using a hybrid approach and deriving a non-linear function of the wind from machine10

learning interpretable methods to include in the leeway parameterisation significantly improves the model prediction of the

drifter trajectory.

1 Introduction

Accurate predictions of the pathways and the fate of buoyant objects in the ocean rely on our understanding of surface ocean

dynamics (Röhrs et al., 2021). For example, search-and-rescue missions require a model that predicts how far a missing15

person has drifted at the ocean surface to define the search area (Breivik et al., 2013). These models also benefit biological

studies, where the degree of connectivity between different oceanic regions affects the population dynamics of species such

as phytoplankton, larvae, and turtles (Nooteboom et al., 2019; Grimaldi et al., 2022; Lindo-Atichati et al., 2020; Manral

et al., 2024). Similarly, oil spill detection and modelling depend on our knowledge of geophysical fluid dynamics to mitigate

environmental damage (Pisano et al., 2016; Jones et al., 2016; Calzada et al., 2021). Another pressing concern is plastic20

pollution, which threatens marine fauna through ingestion and entanglement (Kühn and van Franeker, 2020), and disrupts

ecosystems via chemical contamination (Mato et al., 2001) and the facilitation of biological invasions (Haram et al., 2023).

Marine debris has increased by 4% on average every year since 1980, indicating that the current plastic standing stock of 3,200
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kilotons in the ocean will double within two decades, exacerbating the issue (Kaandorp et al., 2023). To further advance these

areas of operational oceanography and improve our fundamental understanding of near-surface ocean dynamics, modelling the25

physical mechanisms driving the transport of buoyant objects in the ocean is key.

The transport of buoyant objects at the ocean surface is governed by a complex interplay of winds, waves, and ocean currents

at different spatio-temporal scales. Wind stress creates a friction force on floating objects and generates near-surface currents,

resulting in a strong vertical velocity shear, following the well-known steady-state Ekman solution (Ekman, 1905). Surface

gravity waves contribute to transport in the direction of wave propagation through Stokes drift, which arises from deviations30

in orbital motion (Stokes, 1847). The interaction between Stokes drift and the Coriolis force generates the Coriolis–Stokes

force, which accelerates a current perpendicular to the Stokes drift (see van den Bremer and Breivik (2018)). In addition,

buoyant objects are transported by low-frequency currents, including geostrophic flows that drive large-scale ocean circulation,

topographic steering, mesoscale eddies, and high-frequency periodic currents such as tides and inertial oscillations (Röhrs

et al., 2021).35

Buoyant drifters can be used to monitor how these different physical mechanisms combine to drive the transport at the ocean

near-surface (Lumpkin et al., 2016). Currently, the most commonly deployed designs are drogued surface floats at 15m depth,

such as SVP (Sybrandy and Niiler, 1992), or 1-meter-deep buoyant drifters, such as CODE (Davis et al., 1982), Carthe (Novelli

et al., 2017) or iSphere (MetOcean, 2017). However, these drifter measurements integrate the currents over part of the water

column and do not capture directly the complex surface ocean dynamics, making it difficult to use these drifters to investigate40

the transport of buoyant objects. Alternatively, the surface drifters used in this study (see MetOcean (2020)) have a thin disc

shape that enables them to follow the orbital velocities of the waves and drift with the uppermost surface currents (Morey et al.,

2018; Calvert et al., 2024; Pawlowicz et al., 2024), which are characterised by higher speeds. Yet, the relevance of the Stokes

drift, wind drag, or surface currents on these specific drifters is currently unclear.

Through the analysis of the trajectories of our disc-shaped surface drifters and their comparison with model simulations, we45

can estimate how each forcing mechanism contributes to the near-surface ocean transport. A prevalent data-driven methodology

for quantifying these contributions involves regression models, which seek to establish a relationship between drifter velocity

observations and the hydrodynamic and atmospheric conditions. As described by Breiman (2001a), these regression models

that aim to describe natural processes fall into two broad categories: traditional statistical models (also known as linear models,

Bishop (2006)) or algorithmic models, also known as supervised Machine Learning (ML). Linear models require manually50

defining the model structure to approximate non-linearities and interdependencies of the near-surface ocean dynamics. This

poses a challenge, as there are high-dimensional processes in the ocean with spatiotemporal scales spanning several orders

of magnitude and involving many degrees of freedom (van Sebille et al., 2020). In contrast, machine learning regression

methods do not require explicit knowledge of the underlying transport mechanisms as they establish relationships driven by the

algorithms, making them particularly useful for complex systems with multiscale variability and non-linear interdependence55

(Bracco et al., 2025). For instance, Callies et al. (2017) demonstrated a consistent relationship between the leeway (i.e., wind

contribution to surface friction) and Stokes drift over time in the same region, illustrating these interdependencies of the

system. Furthermore, previous studies have highlighted the advantages in the prediction of the fate of buoyant objects at the
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ocean surface using different machine learning methods, such as tree-based models (Kaandorp et al., 2022; O’Malley et al.,

2023) and neural networks (Aksamit et al., 2020; Fajardo-Urbina et al., 2024; Grossi et al., 2025).60

In this study, we analyse the trajectories of twelve disc-shaped surface drifters deployed in the southern North Sea to evaluate

how different forcing mechanisms drive changes in their velocity, using data on the surface ocean currents, wave conditions,

and wind patterns. We apply a widely used linear parametrisation and two machine learning regression algorithms (random

forest and support vector regression) to model the velocity of the drifters. Using this data-driven approach, we aim to (i) identify

the dominant forces driving drifter velocity changes and (ii) improve the prediction of drifter trajectories using only physical65

variables describing near-surface ocean dynamics.

2 Data

2.1 Surface drifters

2.1.1 Design and deployment

The drifters are thin disc-shaped buoys manufactured by MetOcean (MetOcean, 2020). Each drifter has a diameter of 24cm, a70

height of 4cm, and a weight of 900g. These drifters are designed to track the uppermost centimetres of the ocean surface. They

are equipped with Global Navigation Satellite System (GNSS) positioning (5m positional accuracy), a sea surface temperature

(SST) sensor, and Iridium satellite telemetry. Details on spatial coordinate error estimation are provided in Appendix A. To

facilitate the retrieval of beached drifters after battery depletion, we attached AirTags (Apple Inc., 2021), increasing the total

mass by 1%. Additionally, the drifters report which of their two antennas is transmitting, distinguishing between the upward-75

facing and submerged positions. This allows us to monitor their orientation and thus their flipping behaviour.

We released the drifters off the coast of the town of Moddergat, the Netherlands, in the Eastern Wadden Sea on 25 April

2024 (Fig. 1). We placed the drifters in three clusters spaced 250m apart on mudflats at low tide, awaiting the incoming tide

to transport them. Within each cluster, we arranged four drifters in a square formation with 50m spacing between them. All

drifters remained operational for at least 68 days, drifting across the German Bight region in the southern North Sea and80

reaching the North Frisian Islands. Initially, we set the drifters’ sampling frequency to five minutes, but we lengthened the

interval to thirty minutes after six days to extend battery life. After 26 days, we further lengthened it to three hours.
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Figure 1. Trajectories over 68 days of 12 colour-coded surface drifters in the southern North Sea. Drifters were deployed on 25 April 2024

in the Dutch Eastern Wadden Sea in three different clusters spaced 250m apart. Starting and ending positions are marked with stars and

triangles, respectively. Background colourmap shows the bathymetry of the southern North Sea from the NWS Ocean Physics Analysis and

Forecast model with a horizontal resolution of 0.027→ (Tonani et al., 2019). The study site location in the southern North Sea is highlighted

by a red rectangle on the orthogonal projection of the Northern Hemisphere in the bottom right corner.

2.1.2 Drifter data processing

To ensure the quality of the GNSS data, data points for which the time difference between measurements !t is less than 2.5min

are eliminated, as they likely occur within the same transmission cycle and provide redundant information. We compute the85

(total) drifter velocity vd at position xn and time tn, corresponding to the n-th observation, using the central difference scheme,

which averages the arriving and departing instantaneous velocities (Elipot et al., 2016). This vector is calculated as

vd(xn, tn) =
1
2

(
xn+1→xn

tn+1→ tn
+

xn →xn→1

tn → tn→1

)
(1)

This method yields average speeds for the entire data set of 0.27± 0.19ms→1 in the zonal direction and 0.13± 0.10ms→1 in

the meridional direction. Measurements with speeds exceeding 3ms→1 are flagged as spatial coordinate errors, as sustained90

speeds above this threshold are considered physically unrealistic given the typical fluid motion timescales in the region (Otto

et al., 1990). While such high velocities may occur during wave breaking, these events would last less than a fraction of !t. In

total, 0.6% of the original data points are identified as signal recording errors and removed from the time series. We also omit

the first 24h to reduce the importance of coastal and intertidal effects, focusing the analysis on mesoscale surface dynamics in

the open basin.95
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The German Bight is characterised by strong tidal dynamics due to its shallowness (Otto et al., 1990), so to isolate the

residual kinematics from these dominant tidal effects, we estimate the net drifter motion over the dominant tidal cycle T . This

residual (Lagrangian) velocity is defined by Zimmerman (1979) as:

ṽd(x, t) =
1
T

t+ T
2∫

t→T
2

vd(x, t↑)dt↑ (2)

We identify the dominant tidal harmonic in the drifters’ velocity data using Fast Fourier Transform (FFT) and Morlet wavelet100

analysis (Meyers et al., 1993). Both methods show that the semi-diurnal M2 and S2 tidal constituents are the most significant,

with no signal detected at the inertial period. These findings are consistent with prior Lagrangian observations in the region

(Meyerjürgens et al., 2019; Deyle et al., 2024). Hence, drifter velocities are time-averaged over the period T = 24.83h to

smooth out the influence of both tidal signals, resulting in residual speeds that reach a maximum of 0.63ms→1. Further details

on the spectral analysis methodology and a visualisation of the frequency spectra can be found in Appendix B.105

2.2 Atmospheric and hydrodynamic datasets

We use an atmospheric model and coupled ocean-wave models to quantify the effects of the different forcing mechanisms on

drifter transport. We use data of the wind velocity field at 10m above the ocean surface (uw) from the EMCWF reanalysis

model ERA5, which assimilates satellite and in-situ measurements (Hersbach et al., 2023). The surface ocean currents velocity

field (uo) is provided by the North Western Shelf Ocean Physics Analysis and Forecast model, which is forced by the EM-110

CWF wind field and assimilates SST, sea level anomalies from satellites, as well as in situ temperature and salinity profiles

(Copernicus Marine Service, 2024a). Due to the strong tidal ocean dynamics in the region, we isolate tidal contributions from

the ocean surface velocity field using a low-pass filter with a time window T = 24.83h. The resulting low-pass ocean currents

velocity vector is denoted as uLP
o , while the remaining high-pass filtered ocean currents velocity will be referred to as uHP

o .

To characterise the wave conditions at the southern North Sea, we use the NWS Ocean-Wave Forecasting System (Copernicus115

Marine Service, 2024b), which is coupled to the mentioned ocean currents model and includes the effect of wave-induced

fluxes in momentum and energy, and the Coriolis–Stokes force on the Eulerian current. Several studies have emphasised the

importance of using coupled models (compared to non-coupled models) in the simulation of wave-induced surface transport

of buoyant objects (Röhrs et al., 2012; Cunningham et al., 2022; Rühs et al., 2025). Three key parameters used to describe the

effect of ocean waves on the transport of buoyant objects are significant wave height, mean propagation direction, and mean120

frequency or period. These parameters are derived from the wave spectrum model output, which partitions the spectral signifi-

cant wave height (Hs) and the mean wave direction (ω) into wind waves, and first and second swell components. Additionally,

we consider the bulk wave direction (ωbulk), which represents the overall wave direction of propagation, the period at the spec-

tral peak (Tp), and the Stokes drift velocity field at the surface (us). As in Bruciaferri et al. (2021), we calculate the Stokes

drift at 0.5m below the still–water level to align with the depth of the upper ocean model layer, and apply the parametrisation125

of Breivik et al. (2016) based on the Phillips wind-wave spectrum. While this approximation may underestimate the Stokes
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drift experienced by the drifters (Lenain and Pizzo, 2020), defining the Stokes drift at this depth ensures consistency, allowing

a coherent analysis of the effects derived from the coupled wave–ocean model. Further details on the models’ spatio-temporal

resolution are presented in Table 1.

Variables Dataset Spatial res. Temporal res. Ref.

uw ERA5 global 0.25↓↑ 0.25↓ 1h Hersbach et al. (2023)

reanalysis

uHP
o ,uLP

o NWS Ocean Physics 0.027↓↑ 0.027↓ 15min Tonani et al. (2019)

Analysis and Forecast

Hwind
s ,H1p swell

s ,H2p swell
s ,ωwind, NWS Ocean-Wave 0.05↓↑ 0.05↓ 1h Bruciaferri et al. (2021)

ω1p swell,ω2p swell,ωbulk,Tp,us Forecasting System

Table 1. Specifications of the hydrodynamic and atmospheric model data at the drifters’ spatiotemporal coordinates. Variables included are

the wind velocity vector (uw), high-pass and low-pass ocean currents velocity using a 24.83h filter (uHP
o , uLP

o ), Stokes drift velocity in the

ocean upper-layer (us), and properties derived from the wave spectrum, including significant wave height from the wind, first and second

swell partitions (Hwind
s ,H1p swell

s ,H2p swell
s ), wave direction from the wind, and first and second swell partitions (ωwind,ω1p swell,ω2p swell), bulk

wave direction (ωbulk), and wave period at the spectral peak (Tp). The specified temporal resolution is instantaneous (i.e., not averaged over

time).

Where needed, we interpolate the atmospheric and hydrodynamic model data to the drifter measurements of location and130

timestamp to assess their instantaneous effect on their velocity using the bilinear interpolation scheme from Parcels (Deland-

meter and van Sebille, 2019). To align with the models’ 1h temporal resolution while reducing high-frequency noise, drifter

coordinates during the period with !t = 5min are resampled to a coarser resolution of 30min via linear interpolation.

3 Methodology

We manipulate the interpolated hydrodynamic and atmospheric model data to define physically relevant independent variables135

to model velocity changes along the trajectories of the drifters. We include the zonal (U ) and meridional (V ) components of all

velocity vectors, including the surface ocean currents, wind, and Stokes drift. To account for wave directionality, we project the

properties derived from the wave spectrum onto the zonal and meridional axes using wave direction data. Let A be one such

property; we formulate its vector form by A = (Asinω,Acosω), where ω is the deviation angle from true north of the wave

direction. We define the peak spectral period vector using bulk wave direction, and the three different wave significant height140

vectors using the wave direction contributions from the wind, and the first and second swell partitions. This ensures that the

models incorporate wave effects on drifter motion in both directions, resulting in a feature matrix comprised of 16 variables

measured over 18,696 time points. We do not include previous history of hydrodynamic and atmospheric conditions (i.e., we
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do not include variables with time lags or averages over a spatial radius of influence) because these variables would physically

represent an inertial effect on the drifters, which has been found to be very small (Olascoaga et al., 2020).145

To infer the predominant forcing mechanisms and model the trajectory of the drifters, we analyse the outcome using the

baseline linear regression model of the total drifter velocity components and compare it to two non-linear machine learning

algorithms: random forest and support vector regression. Given the study region’s stronger zonal than meridional tidal com-

ponent (Kopte et al., 2022), we model the zonal and meridional drifter velocity components separately in both the linear and

machine learning models and assume that the interdependence between these two variables is negligible.150

3.1 Linear regression

Unlike more complex non-linear models, linear regression offers a direct model interpretation by quantifying each feature’s

(i.e., independent variables) influence through interpretable coefficients or weights in the prediction equation of the target (i.e.,

dependent variable). The total drifter velocity ud is typically parameterised using a physics-based linear model as

ud = uo + us + ω↓uw + ε, (3)155

where ω is a vector of model coefficients that scales each component of the wind velocity uw, ε is a disturbance term to be

minimised by the linear regression algorithm, uo is the surface currents total velocity (i.e., the addition of the low-pass and

high-pass surface ocean currents), and us is the Stokes drift velocity. Note that this vector equation represents two independent

scalar equations, one for the zonal and one for the meridional components.

Physically, the wind term weight represents the drag coefficient ratio above and below water, since our drifters are radially160

and axially symmetric (Dominicis et al., 2016). Yet, downwind and crosswind components of the drifter velocity vector have

been found to have distinct dependences on the wind speed (Allen, 2005). Several studies have hence divided the wind contri-

bution into two perpendicular components, known in the literature as the "leeway method" (Breivik et al., 2011), and quantified

the wind slip vector represented by ω in Eq. (3). This approach yields values of ω ranging from 1→3%, depending on the type

of surface drifters and choice of hydrodynamic model (Sutherland et al., 2020; Staneva et al., 2021). Hence, we treat wind slip165

ω = (ϑx,ϑy) as a vector with zonal and meridional components to find the best-fit values for this new drifter design using the

ordinary least squares method (Faraway, 2005). The accuracy of the linear model is evaluated based on its goodness-of-fit.

We also consider a linear regression model in terms of the relative wind, given that the friction velocity (i.e., the actual

velocity acting at the ocean surface) is a function of the wind speed with a slope equal to the drag coefficient and a non-zero

constant (Foreman and Emeis, 2010). Upon fitting the boundary conditions at the ocean surface, the drifter velocity is hence170

expressed as

ud = uo + us + ω↓ (uw →uo) + ε (4)

Making assumptions on the magnitude and spatio-temporal scales of the wind and ocean current forcing simplifies this formu-

lation back to Eq. (3) as shown by Duhaut and Straub (2006).

Nevertheless, despite the high interpretability of linear models, they may still oversimplify near-surface ocean dynamics by175

omitting non-linear behaviour in the parameterisation of drifter velocity components. For the case of highly correlated features,
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linear models also struggle to determine their contributions, leading to instability in coefficient estimation and reduced model

reliability (Molnar, 2022).

3.2 Machine learning regression

Machine learning algorithms offer an alternative regression approach particularly suited to climate variables, capturing non-180

linear interactions and multicollinearity without requiring prior structural knowledge (Breiman, 2001b). We create a random

forest model, as it has been found to perform well for spatio-temporal predictions due to its capacity to handle highly correlated

features (Hengl et al., 2018; Nussbaum et al., 2018). To contrast these results, we also employ a support vector regression

model and take advantage of its ability to handle high-dimensional feature spaces and its intrinsic algorithmic differences with

the decision-tree structure of the random forest model. Both models are implemented using the scikit-learn Python package185

(Pedregosa et al. (2011), version 1.6.1).

3.2.1 Random forest

Random forest is a machine learning method that predicts the values of the target variable from the average of the predictions

from a collection of decision trees (Breiman, 2001b). Each regression tree recursively partitions the data through binary splits

based on feature thresholds (Molnar, 2022). In this algorithm, each tree is fitted to a randomly drawn subset of the data and uses190

a randomly drawn subset of features to consider at each split. Random forest models exhibit low sensitivity to hyperparameter

choices including the number of trees ntree, the minimal number of observations at terminal nodes nmin (i.e., the last branch of

each tree), and the number of randomly selected features to test at each split mtry (Probst and Boulesteix, 2017). Hence, we

build a random forest model to fit the drifter velocity zonal and meridional components with scikit-learn defaults ntree = 100,

nmin = 2, mtry = np (Geurts et al., 2006) where np is the total number of variables in the feature matrix (sometimes called195

predictors) and np = 16.

3.2.2 Support vector regression

Support vector regression is a model that applies principles of the support vector machine (Cortes and Vapnik, 1995) to re-

gression tasks (Drucker et al., 1996). In classification, support vector machines find the optimal hyperplane that separates data

and maximises its distance to the closest data point (Vapnik, 1999). Instead, support vector regression identifies an optimal200

hyperplane with a margin (defined by support vectors) where prediction errors are tolerated. This model applies a transfor-

mation using non-linear kernel functions to project the data into a higher-dimensional space where a linear hyperplane can

better approximate the non-linear relationships within the data (Smola and Schölkopf, 2004). Hence, we build a support vector

regression model using a radial basis function (RBF) as the non-linear kernel, and optimised hyperparameters obtained by grid

search using cross-validation (see Appendix D1 for the exact values).205
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3.2.3 Evaluation of predictive performance

We evaluate the predictive performance of the machine learning models through cross-validation, where we calculate the

expected extra-sample error (Hastie et al., 2009). Validating the predictive performance of these models for drifter velocities is

challenging due to the strong temporal autocorrelation present in trajectory data and the limited spatial dispersion in our dataset

(Wadoux and Heuvelink, 2023). These factors could potentially lead to overly optimistic model performance estimates if210

training and testing sets are not sufficiently independent. To address this, we designed a spatio-temporal block cross-validation

strategy to organise data into independent time blocks, regardless of the drifter, and then applied a k-fold cross-validation

(k = 5) by selecting a random set of blocks to be left out in each fold. Doing so ensures that the model is validated on data that

is both temporally and spatially independent of the training set. The duration of the blocks corresponds to the autocorrelation

time of the target variables, ensuring that any two points separated by more than this time range can be considered statistically215

independent and thus suitable for validation. For a detailed explanation of the block-cross validation strategy and the exact

autocorrelation times, see Appendix C.

The zonal and meridional drifter velocity models’ predictive accuracy are evaluated independently using the coefficient of

determination R2 (Wilks, 2011), which quantifies the variance explained by the model, the root-mean-square error (RMSE),

which measures the average prediction error magnitude, and the mean absolute error (MAE), which assesses the bias of the220

model. These metrics are defined as

R2 = 1→
∑N

i=1(yi → ŷi)2∑N
i=1(yi → yi)2

, RMSE =

√√√√ 1
N

N∑

i=1

(yi → ŷi)2, MAE =
1
N

N∑

i=1

| yi → ŷi |, (5)

where yi are the observed target values, ŷi are the model predictions, yi is the mean of the observed values, and N is the

number of observations. All metrics are applied for each fold using the observed and predicted data points from the test set

and averaged across folds to assess the models’ predictive capacities. Cross-validation plots of predicted against observed data225

points within each testing fold are included in S5 in the Supplement.

3.2.4 Model interpretation

A key limitation of machine learning models is their reduced interpretability compared to linear models, the so-called "black-

box" abstractness (Lipton, 2017). As these models do not use a functional form to calculate the output, it becomes hard to

understand the effects of individual features on the final prediction of the target variable (Molnar, 2022). To mitigate this,230

model-agnostic methods have been developed to characterise the overall behaviour of machine learning models.

One such method is permutation feature importance, which is used for identifying the variables that have the greatest impact

on the target. This approach quantifies the increase in model prediction error, chosen to be the RMSE, when the values of a

feature are randomly shuffled 10 times along the time dimension (i.e., the value for observation tn is reassigned to tk, where

k ↔= n is a random index within the dataset). This assumes features causing large prediction error increases when shuffled are235

more important in explaining the variance in the target data (Ewald et al., 2024).
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Another powerful tool for interpreting machine learning models post hoc are Accumulated Local Effects (ALE) plots. These

ALE plots are model-agnostic methods for explaining individual predictions (Apley and Zhu, 2019). As described by Molnar

(2022), ALE plots show how a model’s predictions change with respect to a feature, considering only the data points within a

local range (window) of that feature. To improve visualisation, the accumulated changes are computed across all such intervals240

covering the feature’s range. An advantage of this method is its ability to visually reveal the functional relationship between the

target variable and individual features. Unlike predecessors such as Partial Dependence Plots (PDPs) (Friedman, 2001), which

estimate global average effects across the entire dataset and can be biased by correlated features, ALE plots capture local effects

by focusing on small, localised changes in prediction within each interval. We estimate the ALE uncertainty by calculating the

results from each feature using 100 bootstrapped resamples of the feature matrix and target variable. For each feature, we245

calculate the 95% Confidence Interval (CI) based on the distribution of ALE estimates across these bootstrapped samples.

These ALE plots are generated using the PyAle Python package (Jomar (2020), version 1.2.0), a Python implementation of

the R package ALEPlot (Apley, 2018). After plotting the ALE, feature transformations are derived by visual inspection to

approximate the functional form of the ALE curve to be able to obtain an interpretable model, i.e. the making the linear model

non-linear but retaining its ease of interpretation properties.250

3.3 Modelling drifter trajectories

To assess model predictive accuracy, we reconstruct the change in location of the drifters over time using the models’ predic-

tions of their total velocity and employing a leave-one-drifter-out cross-validation strategy. We train each of the three models on

data from 11 drifters, constituting the training feature matrix X , and obtain the mapping functions fu(X) and fv(X) which re-

late the hydrodynamic and atmospheric ocean conditions to the total drifter velocity components. The predicted drifter velocity255

vector ûd is expressed as:

ûd =


Ûd

V̂d


 =


fu(X)

fv(X)


 , (6)

where Ûd and V̂d are the zonal and meridional predicted drifter velocity components, respectively.

We simulate the trajectory of the test case, i.e., the excluded drifter, by integrating the velocity predictions over time. Let

X ↑(x, t) contain interpolated hydrodynamic and atmospheric variables at position xd and time t. The predicted drifter position260

x̂d(t), based on a given model, is defined as:

x̂d(t + ϖt) = x̂d(t) +

t+ωt∫

t

ûd(X ↑(x̂d, ϱ))dϱ, (7)

where dt is the integration time-step, set to dt = 60s. We use a forward Euler method to solve this integral and calculate the

time advection of the drifter trajectories.
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3.3.1 Trajectory prediction skill metrics265

The accuracy of the modelled trajectories is measured using the mean cumulative separation distance D, which quantifies the

difference between observed and modelled spatial coordinates at each time-step (Haza et al., 2019; van der Mheen et al., 2020;

Moerman et al., 2024). This metric is calculated as

D =
1
M

M∑

i=0

↗x̂d(ti)→xd(ti)↗, (8)

where M is the total number of timesteps along the drifter trajectory, and x̂d(ti) is the position vector of the drifter at the i→ th270

timestep. As reference, observed drifters travel on average a total of 1,795km over their measuring period.

We also evaluate the predicted trajectories using the Liu–Weisberg skill score (Liu and Weisberg, 2011), which is widely

used in drifter studies (Liu et al., 2014; van Sebille et al., 2021; Pärn et al., 2023). This metric is the average of the separation

distance (i.e., the distance between the model prediction and the observed position) weighted by the length of the observed

trajectory. The skill score ss is given by275

ss =





1→ s
n , s↘ n

0, s > n
for s =

∑M
i=0 ↗x̂d(ti)→xd(ti)↗∑M

i=0

∑i
j=0 ↗xd(tj+1)→xd(tj)↗

, (9)

where n is a non-dimensional number that defines the threshold of no skill. Liu and Weisberg (2011) use a threshold of n = 1

to calculate the accuracy of 3-day predictions. However, due to the long prediction period in our trajectory analysis (up to

60 days), a smaller threshold value n is needed. Otherwise, minor differences in separation distance between models would

have little influence on the final Liu-Weisberg skill score, which would instead be dominated by the large cumulative trajectory280

length. We therefore set the threshold to n = 0.05, preserving a consistent ratio between prediction period and threshold to

ensure meaningful model comparisons.

3.3.2 Impact of non-dynamical variables on trajectory prediction

To draw physically meaningful conclusions about the dominant forces governing the transport of buoyant objects, our machine

learning models are initially trained using only dynamic physical variables that change along the drifter trajectory and con-285

trasted with the linear model. Nonetheless, prior studies in other fields have shown that including spatiotemporal features such

as latitude, longitude, distance to reference points, time since release, or seasonal indicators can significantly enhance machine

learning models’ performance (Behrens et al., 2018; Hengl et al., 2018; O’Malley et al., 2023). To assess this in our data, we

train an additional random forest model to predict total drifter velocity incorporating non-dynamic features and contrast the

results with the original random forest model. This random forest model with an expanded dataset includes features related to290

position (latitude and longitude) and local water depth, along with the original input variables. We also test whether explicitly

accounting for the additional transport of these surface drifters due to possible wave surfing (Pizzo et al., 2019) improves the

random forest model predictive skill by introducing another feature: Flipping Index. This feature parameterises drifter flipping
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behaviour, a process used by Haza et al. (2018) for the identification of drogue loss and associated with storm conditions with

strong winds and high wave steepness that induce wave-breaking. The Flipping Index quantifies the proportion of orientation295

changes (i.e., flips) based on successive antenna measurements (see Appendix E for full details). In order to obtain a Flipping

Index along the drifters’ trajectories, we first train a random forest model to predict it everywhere. Since only about 28% of the

dataset exhibits non-zero Flipping Index values (Fig. E2), we apply a hurdle modelling approach: first, a random forest classi-

fier predicts the likelihood of flipping, and second, a random forest regressor estimates the flipping magnitude conditional on a

positive event (Wadoux and Heuvelink, 2023).300

4 Results and Discussion

4.1 Inference of predominant forcing mechanisms

The linear regression, random forest, and support vector regression models collectively provide insight into the physical forcing

mechanisms governing the transport of buoyant objects at the ocean surface. By analysing both the total and residual drifter

velocities, we can infer the relative importance of wind, waves, and ocean currents in shaping measured trajectories of our305

surface drifters at subtidal and supertidal scales.

4.1.1 Total drifter velocity

Fitting the weights of the ordinary least-square linear regression given by Eq. (3) of the drifter total zonal and meridional

velocity components yields ϑx = 1.34% (R2 = 0.26, RMSE = 0.11ms→1, MAE = 0.12ms→1) and ϑy = 1.63% (R2 = 0.40,

RMSE = 0.08ms→1, MAE = 0.10ms→1) in the zonal and meridional directions, respectively. Both values fall within the310

theoretically predicted range of 1→ 2% for objects with a density of approximately 0.7ς, where ς is the seawater density

(Wagner et al., 2022).

Focusing on the scale of each of the resulting terms in this linear regression, we observe a contrast between the predominant

dynamics in the zonal and meridional direction. The mean zonal surface ocean current speed, ≃| Uo |⇐= 0.3ms→1, is higher

than the resulting mean wind contribution ≃ϑx | Uw |⇐= 0.07ms→1, and at least one order of magnitude larger than the mean315

zonal Stokes drift speed (≃| Us |⇐= 0.04ms→1). In the meridional direction, however, mean surface ocean currents speed,

≃| Vo |⇐= 0.08ms→1, and wind effects ≃ϑy | Vw |⇐= 0.06ms→1 are comparable, while the mean Stokes drift speed (≃| Vs |⇐=

0.03ms→1) is still smaller.

The random forest and support vector regression models of the total drifter velocity exhibit similar R2, RMSE, and MAE

from cross-validation, performing a better fit of the zonal drifter velocity than the meridional velocity (see the legend in Fig.320

2 and Sect. 5). Model-agnostic interpretation methods consistently identify ocean currents and wind as the main drivers of the

drifter’s motion, approximating its total velocity as a linear combination of these forces. The permutation feature importance

plots of the machine learning models (Fig. 2) show there is a prominent signature of the tidal current in the zonal direction for

the prediction of the drifter zonal velocity, represented by the high RMSE increase of UHP
o , followed by a smaller contribution
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from the zonal wind. The roles of these two variables are reversed for the prediction of the meridional drifter velocity, where325

the models show the same higher dependence on the meridional wind than the meridional high-pass ocean currents that we

observe in the linear regression model.

Figure 2. Permutation feature importance (RMSE increase) for a random forest and support vector regression models predicting zonal (Ud,

blue) and meridional (Vd, red) total drifter velocity components calculated using central difference scheme. Bars represent the mean RMSE

increase over 10 random permutations of each feature, which are ordered by decreasing importance. Error bars are omitted, as they account

for less than 1% of the RMSE increase. A larger RMSE increase indicates greater feature importance, as shuffling a feature significantly

worsens the model’s prediction. Note the differences in the scale of the y-axis across the models. Features are shaded by type: ocean currents

(blue), wind (beige), and waves (light green). Cross-validated metrics (coefficient of determination R2, RMSE, and MAE) are shown in the

legend.

ALE plots of the random forest model reveal the dependence between the drifter velocity components and the most influential

features from the permutation feature importance plots: high-pass ocean currents and wind. We observe a linear relationship

between the high-pass ocean currents and the parallel total drifter velocity component (Fig. 3a). Yet we also observe small330

nonlinearities in the meridional high-pass ocean currents ALE plot around zero and at the extremes of the feature distribution,

where uncertainty increases due to sparse data.

The ALE plots for the zonal wind velocity show that the effect on the zonal total drifter velocity becomes constant at

extremes of the distribution, resembling a sigmoid function (Fig. 3b). This indicates that higher values of the zonal wind might
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not contribute to the same extent to the variance of the zonal total drifter velocity. Meridional wind exhibits a similar but335

weaker saturation effect on Vd for strong westward winds (<→7ms→1), though data density is low in this regime. This could

be related to the fact that the friction velocity does not scale linearly with wind speed at high values due to increasing surface

roughness (Foreman and Emeis, 2010). However, experiments indicate that this nonlinearity typically occurs at wind speeds

above the maximum observed in our data, which is 13.3ms→1. Another possible explanation for the decoupling between winds

and drifter velocity could be the transfer of kinetic energy from wind to the ocean, generating wind-driven currents. Yet this340

would require a high positive correlation between high wind speeds and surface currents absent in our data (Fig. S7 in the

Supplement). A further consideration is the difference in spatial resolution between the atmospheric (0.25↓) and hydrodynamic

(0.027↓) models. While this discrepancy might seem relevant, the Rossby radius of the ocean remains much smaller than the

synoptic scale, meaning the resolution difference likely has little effect on drifter velocity parameterisation.

(a) (b)

Figure 3. Accumulated Local Effect (ALE) plots for the zonal (blue, left y-axis) and meridional (red, right y-axis) total drifter velocity,

calculated using central difference scheme, as a function of the corresponding parallel components of (a) the high-pass ocean currents

and (b) the wind modelled by a random forest model. The shaded area represents the 95% CI across 100 bootstrapped samples. The top

histograms show feature distributions of the data. Negative velocity values for the zonal component represent westward motion, while

negative meridional velocities represent southward motion.

4.1.2 Residual drifter velocity345

By calculating the drifter residual velocity using Eq. (2), we effectively filter out dominant high-frequency ocean surface

currents (i.e., those shorter than the M2 and S2 tidal frequencies), allowing for a more focused analysis of the underlying net
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transport mechanisms. As seen in Fig. 4, the random forest and support vector regression models in that case assign the highest

importance to the parallel components of the wind, Stokes drift velocity, and low-pass filtered ocean surface currents.

In the meridional direction, the wind and the low-pass current are the most important features in both models, but the350

meridional Stokes drift is only important in the random forest model. This disagreement could stem from the definition of the

permutation feature importance. A feature can only imply a meaningful importance if it is not strongly correlated with other

features that also influence the target (Ewald et al., 2024). We find that meridional Stokes drift and meridional wind are highly

correlated (Spearman correlation coefficient ς = 0.92 (Spearman, 1904); see Fig. S7 in the Supplement). The reason this is

only captured by the random forest model and not the support vector regression is that in random forest models, correlated355

features can also replace each other if randomly left out by mtry for splitting. Instead, support vector regression performs a

general transformation of feature space, where correlated features go into the same dimension and hence are less sensitive to

data points further away from the general distribution.

We also find higher permutation feature importance of cross-terms than in the total velocity models, such as the meridional

wind for the residual zonal drifter velocity model and the zonal 1st swell partition for the residual meridional drifter velocity360

model.

Figure 4. As in Fig. 2 but for the random forest and support vector regression models predicting the zonal (Ũd, blue) and meridional (Ṽd,

red) residual drifter velocity components.
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Residual drifter velocity ALE plots show analogous dependence to the wind speed as the total drifter velocity: a linear

regime for low speeds but plateauing at higher speeds (Fig. S6 in the Supplement). Low-pass currents likewise show a linear

relationship with the parallel residual velocity components where data density is high for speeds < 0.1ms→1 and saturation

effects at the extremes of the distribution (Fig. 5a). Furthermore, we find that Stokes drift influences residual velocity noticeably365

above 0.05ms→1 (Fig. 5b). Below this velocity threshold, the residual velocity remains largely unaffected, and the Stokes drift

contribution to surface drifter transport is minimal. This suggests that in such a regime, the otherwise small influence of swell-

induced Stokes drift may become relatively more significant and should not be neglected. At higher Stokes drift values, the

drifter residual velocity increases approximately linearly in the zonal direction. A similar trend is observed in the meridional

component, although with greater uncertainty due to the limited number of observations at high Stokes drift speed.370

(a) (b)

Figure 5. Accumulated Local Effect (ALE) plots for the zonal (blue, left y-axis) and meridional (red, right y-axis) residual drifter velocity

as a function of the corresponding parallel components of the (a) low-pass ocean currents and (b) Stokes drift modelled by a random forest

model. The shaded area represents the 95% CI across 100 bootstrapped samples. The top histograms show feature distributions of the data.

Negative velocity values for the zonal component represent westward motion, while negative meridional velocities represent southward

motion.

4.2 Prediction of drifter trajectories

To evaluate the predictive skill of each model, we apply a leave-one-drifter-out strategy (see Sect. 3.3). The models are evalu-

ated over a fixed prediction period of 60 days, after which the linear regression model typically predicts beaching. Repeating

this process for each drifter yields 12 simulated trajectories per model. All the resulting trajectories succeed in reproducing

tidal oscillations along the trajectory and large-scale patterns (e.g. the loop near 4↓E longitude in Fig. 6).375
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Figure 6. Example of a reconstructed drifter trajectory of over 60 days using linear regression (yellow), random forest (green) and support

vector regression (blue) models using an integration timestep of dt = 60s. The true measured drifter trajectory is shown in black. The wind

slip coefficients used for this linear regression model are εx = 1.34% and εy = 1.64% in the zonal and meridional direction, respectively.

Comparing the mean cumulative distance of reconstructed trajectories from drifter velocity predictions in Fig. 7 demonstrates

the advantages of using machine learning algorithms for prediction over linear regression for long-term predictions. Random

forest achieves the lowest deviation from observations with D = 10.8km and an interquartile range of all distances (IQR) of

3.2km, indicating superior accuracy and consistency across the test data (Fig. 7). The support vector regression model shows

a lower performance, with a median cumulative separation distance of D = 14.1km (IQR= 2.3km), potentially due to the380

fact that this model does not model high-order interactions by sub-partitioning the dataset into small sections like the random

forest does. However, there is a risk of over-adaptation of the random forest model to the current training data; hence, the

advantage of comparing the results from both models. Meanwhile, the linear regression model has the poorest performance

with a median of D = 27.2km and a higher IQR of 5.6km, indicating it is highly sensitive to the training data. The comparison

of model performances using the Liu-Weisberg skill score also captures the superior performance of the machine learning385

models compared to the linear regression model, assigning a skill score of 0.64±0.10 to the random forest model, 0.55±0.09

to the support vector regression model, and 0.10± 0.16 to the linear regression (Fig. S8 in the Supplement).
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Figure 7. Mean cumulative separation distances using linear regression (yellow), random forest (green), and support vector regression (blue).

Each model is trained on 11 trajectories and tested on the remaining one, with the process iterated so that each drifter is used once as the test

set (leave-one-drifter-out cross-validation). Individual results for each drifter are shown as scatter points along with a median indicator.

The time evolution analysis of the differences between the observed and modelled trajectories from each of the models

reveals that linear regression outperforms machine learning models for time scales smaller than 4 days (Fig. 8). After that

onset time, the cumulative separation distance with respect to the observations increases over time for the linear regression390

predictions, while the error from the machine learning models remains constant, yielding a lower cumulative separation dis-

tance considering the entire trajectory. In the reconstructed trajectories of the drifters (e.g. Fig. 6), we observe that the linear

regression model overestimates the zonal displacement, which could be caused by the fact that this model does not account for

the decrease in the zonal wind contribution for higher wind speeds seen in the random forest ALE plots (Fig. 3b).

Figure 8. Time series of the cumulative separation distances using linear regression (yellow), random forest (green), and support vector

regression (blue). Each model is trained on 11 trajectories and tested on the remaining one, with the process iterated so that each drifter is

used once as the test set (leave-one-drifter-out cross-validation). Individual results for each drifter are shown as shaded lines, along with the

median time series across drifters shown as solid lines. The small panel shows a close-up view for the first week since release.

Additionally, we apply the drifter trajectory model and evaluation procedure described in Sect. 3.3 to assess the effect of395

incorporating non-dynamical variables. Among the tested features, only the inclusion of the depth of the water column yields
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an improvement in velocity prediction. In contrast, adding spatial coordinates such as latitude and longitude does not enhance

model performance (Fig. 9). The parameterisation of wave-surfing transport via the Flipping Index results in a model with

the same median predictive skill across drifter samples as the original random forest, but with somewhat reduced variance

in prediction error. The random forest model trained to predict this index from hydrodynamic and atmospheric variables400

reveals a high permutation importance for wind speed and Stokes drift (Fig.E3, Fig.E4), highlighting their dominant role in the

mechanisms associated with flipping events and, by extension, wave-driven transport.

Figure 9. Mean cumulative separation distance metric applied to modelled trajectories from random forest models of the total drifter velocity

with different sets of features: original model (green), including Flipping Index (grey), including latitude and longitude (light blue), including

bathymetry (dark purple). Each model is trained on 11 trajectories and tested on the remaining one, with the process iterated so that each

drifter is used once as the test set (leave-one-drifter-out cross-validation). Individual results for each drifter are shown as scatter points along

with a median indicator.

4.2.1 Linear models with alternative structure

Furthermore, we explore how to improve the predictive performance of the linear regression of the total drifter velocity using

insights from the machine learning models. From the results of the ALE plots, the zonal and meridional drifter velocity in our405

data shows a sigmoid-like shape as a function of the zonal wind. Hence, we test a total drifter velocity linear regression model

where the contribution of each wind component is modelled by a sigmoid function of its velocity, so that

ud = uo + us + g(uw) + ε for g(φ) =
a

1 + e→b(ε→ε0)
, (10)

yielding a = 0.27ms→1, b = 0.31sm→1, and φ0 = 1.79ms→1 (R2 = 0.28, RMSE = 0.11ms→1, MAE = 0.07ms→1) as best-fit

parameters in the zonal direction and a = 1.82ms→1, b = 0.04sm→1, and φ0 = 12.2ms→1 (R2 = 0.40, RMSE = 0.08ms→1,410

MAE = 0.07ms→1) in the meridional. These fits improve upon the original linear model by reducing its bias, nearly halving

the MAE.
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The alternative approach using the relative wind yields best-fit coefficients of ϑx = 1.39% (R2 = 0.28, RMSE = 0.11ms→1,

MAE = 0.11ms→1), and ϑy = 1.66% (R2 = 0.41, RMSE = 0.08ms→1, MAE = 0.10ms→1), also showing a small improve-

ment in the fix with respect to the original linear model.415

Following the method previously described for reconstructing the trajectories of the drifters from different models, we

compare the predictive accuracy of the three linear regression models. From the resulting mean cumulative separation distance

across drifter samples, we find that the sigmoid function parametrisation improves the linear regression predictions with D =

15.8km (IQR= 3.7km) (Fig. 10). The relative wind parametrisation also shows an improvement in the predictions with D =

25.8km (IQR= 3.3km). However, the analysis of the cumulative separation distance over time reveals that these differences420

between sigmoid and linear functions of the wind only emerge beyond 24h after release (Fig. S10 in the Supplement).

Figure 10. Mean cumulative separation distance metric applied to modelled trajectories using linear regression models with the original

wind formulation (yellow) as per Eq. (3), the relative wind parametrisation (fuchsia) using Eq. (4), and the alternative sigmoid function of

the wind (teal) from Eq. (10). Each model is trained on 11 trajectories and tested on the remaining one, with the process iterated so that each

drifter is used once as the test set (leave-one-drifter-out cross-validation). Individual results for each drifter are shown as scatter points along

with a median indicator.

5 Conclusions

This study analyses the effect of near-surface ocean currents, wave-induced motions, and wind drag on the trajectories of

ultra-thin surface drifters to gain insight into the transport of buoyant objects at the ocean surface. We follow a data-driven

approach and regress drifter velocity against instantaneous hydrodynamic and atmospheric conditions, and compare the es-425

tablished simple linear leeway model with two fundamentally different machine learning algorithms. We also develop a block

cross-validation strategy tailored to the spatiotemporal correlation structure of Lagrangian trajectory data. Interpretable, model-

agnostic techniques such as permutation feature importance and ALE plots prove valuable in capturing the non-linear relation-

ships learned by the machine learning models.

To a first-order approximation, we find that wind and ocean currents are linearly related to drifter velocity. However, non-430

linear behaviour emerges under strong wind forcing and weak Stokes drift conditions. We also evaluate the ability of each

model to reconstruct the trajectory of the drifters from predictions of their zonal and meridional velocities. We find that the

linear model performs reasonably well at early times, but accumulates bias over longer periods, while machine learning models,
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especially the random forest, consistently outperform the linear baseline. The performance of the random forest model further

improves when incorporating additional information such as water depth or a parameterisation of wave-surfing effects. A more435

accurate reconstruction of drifter trajectories is also achieved using a quasi-linear model with a non-linear wind term that takes

the form of the observed function in the ALE plots (Fig. 3b).

While linear approaches remain preferable in operational oceanography due to their simplicity and computational efficiency,

we propose a hybrid framework that utilises interpretable machine learning methods to reveal functional relationships between

drifter velocity and environmental forcing. These insights can guide the formulation of more accurate linear parameterisations.440

Future extensions of this framework may include training region-specific machine learning models and integrating the resulting

functional forms of different variables into existing Lagrangian models, or testing the generalisability of these non-linear

relationships across different ocean basins.

Code availability. Code used to conduct the experiment and to create all of the figures will be available after publication.

Data availability. Drifter data is available at: https://doi.org/10.5281/zenodo.14198921445
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Appendix A: Estimation of spatial coordinate errors

We estimate the uncertainty in the spatial coordinates reported by the GPS system in the drifters from the errors in the dis-

tribution of measurements during a stationary period. To define this stationary condition, we selected data points where the

speeds are < 0.01m/s. This period corresponds to the first two hours of data, during which the drifters were at rest on the dry

mudflats during low tide. For each drifter, we compute the deviation of the longitude and latitude measurements with respect450

to their mean during the two-hour time window and approximate their density distribution to continuous using the Kernel

Density Estimation method. The resulting curves can be observed in Fig. A1, which highlights the standard deviation of the

measurement distribution from each drifter. The maximum standard error of the latitude and longitude deviations is 3.0m and

4.7m respectively. The mean standard error is 1.3m in the latitudinal direction, and 2.1m in the longitudinal direction.

(a) Longitude measurements (b) Latitude measurements

Figure A1. Distribution of the deviation of (a) longitude and (b) latitude measurements with respect to their mean from each of the 12 colour-

coded stationary drifters during a two-hour window using Kernel Density Estimation (KDE). The analysed stationary period corresponds to

the first 2h of the time series when drifters were placed over mudflats during low tide to be carried by the tides. The standard error of the

measurement distributions from each drifter ϑ is included in the legend.

Appendix B: Power spectral analysis of the drifters’ velocity455

We use power spectral analysis to identify the dominant tidal harmonic using two complementary techniques: Fast Fourier

Transform (FFT) and Morlet Wavelet analysis. For FFT analysis, uniform time spacing of the measurements is required, so

we resample the drifters’ velocity to the highest consistent sampling frequency of 3h. We also performed a Morlet Wavelet

spectral analysis to investigate temporal variations in the frequency spectrum, as the time series spans more than one spring-

neap tidal cycle (Meyers et al., 1993). Unlike FFT, this approach does not require time resampling, allowing the detection of460

higher-frequency harmonics without compromising the integrity of the original temporal resolution. Apart from the predom-

inant signals of the M2 and S2 tidal constituents, we also observe a weaker contribution from the high-frequency lunar tidal

constituent M4 in the Morlet Wavelet graph, particularly when the sampling period satisfies !t↘ 30min (Fig. B1).
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Figure B1. Average power spectrum across all drifters’ speed using Fast Fourier Transform (left) and Morlet Wavelet (right) after resampling

the measurements to the highest sampling frequency in the data, 3h. The frequencies of the main tidal harmonics found in the German Bight

region (M2, S2, M4) are highlighted in bright colours (cyan, green and yellow respectively) as well as the inertial frequency at 54→ latitude

(purple).

Appendix C: Spatiotemporal block cross-validation strategy

We use a spatiotemporal block cross-validation strategy to mitigate the impact of temporal autocorrelation and spatial correla-465

tion in the dataset (Wadoux and Heuvelink, 2023). Data is first aligned in time and then segmented into blocks. Subsequently, a

standard k-fold cross-validation approach is applied by splitting the shuffled blocks into five folds. During each iteration, four

folds are used for training, and the remaining fold is used for validation, ensuring all blocks are eventually tested.

The duration of each block corresponds to the average autocorrelation time of the target variable across all drifters using

the e-folding scheme. The autocorrelation functions are found by calculating the Pearson correlation at time lags ranging from470

1h to 100h using statsmodels Python package (Skipper and Josef (2010), version 0.14.2). The resulting correlograms are

shown in Fig. C1, and the resulting autocorrelation times are summarised in Table C1.

23

https://doi.org/10.5194/egusphere-2025-3287
Preprint. Discussion started: 22 July 2025
c© Author(s) 2025. CC BY 4.0 License.



(a) Total drifter velocity magnitude (b) Residual drifter velocity magnitude

Figure C1. Correlogram of the (a) total and (b) residual drifter velocity components across all drifters (zonal is shown in blue and meridional

in red). The shaded region represents the standard deviation from the autocorrelation functions of each drifter velocity component.

Velocity component Autocorrelation time

Ud 12h

Vd 62h

Ũd 101h

Ṽd 117h
Table C1. Autocorrelation times for different drifter velocity components as a result of using e-folding scheme.

Appendix D: Support vector regression hyperparameters

Support vector regression models use kernel functions to transform the data into a higher-dimensional space. In this higher-

dimensional space, the support vector regression algorithm attempts to find a hyperplane that best fits the data, while allowing475

for some deviations from the actual observations, controlled by the parameter ε, called the margin of tolerance (Hastie et al.,

2009). We choose the Radial Basis Function (RBF) kernel to build our models, which is commonly used for its ability to

capture non-linear relationships between data points. The RBF kernel is defined as:

K(x,x↑) = e→ϑ↔x→x→↔2

where ↗x→x↑↗2 is the squared Euclidean distance between two feature vectors x and x↑, and ϑ is a parameter that controls how480

much influence a single training point has (Pedregosa et al., 2011). Additionally, the parameter C alters the decision surface’s

smoothness that fits the target data in the hyperplane. The best fit from the SVR models of the total and residual velocity

components, and Flipping Index, is found for the hyperparameters included in Table D1 using GridSearchCV functionality

(Pedregosa et al., 2011).
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Target variable C ϑ ε

Ud 0.30 2.0↑ 10→3 0.10

Vd 0.30 1.0↑ 10→3 9.5↑ 10→2

Ũd 0.30 2.5↑ 10→3 9.0↑ 10→2

Ṽd 0.70 3.5↑ 10→3 0.15

Table D1. Value of the hyperparameters C,ε,ϖ used in the Support Vector Regression models using a Radial Basis Function kernel to fit the

total drifter zonal and meridional velocity (Ud,Vd), residual drifter zonal and meridional velocity (Ũd, Ṽd).

Appendix E: Flipping Index model485

We define a new metric named Flipping Index (F ) to quantify the proportion of changes in the drifters’ orientation or flips

observed in subsequent measurements. To derive this index for each trajectory, the flips of the drifters are identified over time

as the changes in the orientation signal, resulting in a binary variable f(t) that equals 1 if a flip is observed at time t and 0

otherwise. Then, these flips’ time series are convolved with a sliding window of size n(t) that increases with the sampling

frequency of the measurements. Hence, the Flipping Index is defined as:490

F (t,n(t)) =

n(t)
2∑

i=→n(t)
2

f(t + i), n(t) =
L

!t(t)
(E1)

where L is the fixed length of the temporal window, and !t(t) is the sampling frequency at time t, which increases along

the drifters’ trajectory. The Flipping Index is computed using a window size with L = 3h, which corresponds to the highest

sampling frequency of the drifter dataset. This choice was based on an analysis of window sizes ranging from 1h to 8h, which

revealed only minor variations in the magnitude of the Flipping Index peaks (Fig. E1).495
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Figure E1. Time series of the Flipping Index of a single example surface drifter using different choices of temporal window size ranging

from 1h to 8h. Close-up view between day 5, 12h after release and day 8 shows small variations at the peak depending on the choice of the

window size.

To ensure a continuous representation of the Flipping Index and reduce sensitivity to the non-uniform timestep, we apply a

Gaussian smoothing filter. The standard deviation of the filter is set to ↼ = ≃ϖt⇐/2, where ≃ϖt⇐ represents the mean time interval

between consecutive flips. The index is subsequently normalised by the maximum number of flips observed across all drifters,

resulting in a dimensionless measure ranging from 0 to 1. In this framework, a Flipping Index of 1 corresponds to 10 flips

occurring within a window size with L = 3h. The Flipping Index is evaluated only for time periods with sampling frequency500

!t↘ 30min. At lower sampling frequencies, the number of detected flips is likely strongly underestimated, and the temporal

resolution becomes insufficient to capture submesoscale variability (Essink et al., 2022). Fig. E2 presents the resulting time

series of the mean Flipping Index across all drifters. The relatively small standard deviation indicates that drifters tend to flip

simultaneously, which can be attributed to their spatial proximity and shared exposure to similar hydrodynamic conditions

throughout most of their trajectories.505

26

https://doi.org/10.5194/egusphere-2025-3287
Preprint. Discussion started: 22 July 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure E2. Time series of the Flipping Index from the 12 surface drifters (orange lines), along with the average across them (black line).

The index is computed based on changes in drifter orientation relative to the ocean surface (i.e. flips) over a 26-day trajectory in the southern

North Sea. Peaks indicate periods of increased flipping, likely caused by intense wave activity during storm conditions.

To assess whether including non-physical variables improves the random forest model’s predictive skill, we create an addi-

tional model that fits the Flipping Index for a given hydrodynamic and atmospheric conditions, and then include this index as

a feature in the prediction of the total drifter velocity, which parametrises stormy conditions. However, only 28% of the data

points yield a non-zero Flipping index (i.e., it is a zero-inflated variable), so the standard random forest algorithm would have

difficulties predicting these zeroes (Fig. 4a). In order to solve this issue, we use a hurdle or two-step model that first creates a510

binary variable of the Flipping Index using a threshold, which we establish at F = 0.05, and trains a random forest classifier to

predict instances when the Flipping Index is non-zero (Prasad et al., 2006). Then, we train a random forest regressor with the

predicted non-zero Flipping Index data points to learn the relationship between the climate variables and the magnitude of the

Flipping Index. The resulting permutation feature importance analysis reveals that most of the variance of the binary Flipping

Index variable is explained by a combination of zonal wind, low-pass currents, and various wind-related variables (Fig. E3),515

while the highest importance for the model predicting the magnitude of this Flipping Index is assigned to the Stokes drift and

the wind (Fig. E4).
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Figure E3. Permutation feature importance (RMSE increase) for a random forest classifier predicting the binary Flipping Index of the

drifters in a hurdle model. Grey bars represent the mean RMSE increase over 10 random permutations of each feature, which are ordered by

decreasing importance. Features are colour-coded by a shadow: blue indicates ocean current-related variables, beige corresponds to wind, and

teal to wave parameters. Cross-validated model performance metrics (coefficient of determination R2, RMSE, and MAE) for each velocity

component are shown in the legend.

Figure E4. As in Fig. E3 for a random forest regressor predicting the magnitude of the Flipping Index of the drifters in a hurdle model for

non-zero predictions from the classifier.

This variable is then used in the test case as a feature to train a random forest model to predict the trajectories of the drifters.

For a new location of the predicted drifter, this trained Flipping Index model takes as input the interpolated hydrodynamic and

atmospheric features and predicts the amount of flipping at that location. Then, this information is also included as input for520

the total drifter velocity model that predicts the velocity of the drifter used in the advection scheme.
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