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24 Abstract

25 Simplified assumptions of aerosol hygroscopic mixing states in modeling studies
26  often introduce substantial uncertainties in estimating cloud condensation nuclei (CCN)
27  concentrations and their climatic impacts. This study systematically investigates the
28  contrasting relationships between mixing states and CCN activity by comparing
29  ambient measurements from inland and coastal sites. We show distinct seasonal
30 variations of the particles mixing state. In winter, externally mixed particles dominated
31  both sites, with comparable mixing state indices (y) of 0.38+0.12 and 0.39+0.09
32  respectively for coastal air masses and inland air. However, summer measurements
33 showed pronounced differences: photochemical processes promoted significantly
34  higher internal mixing in coastal aerosols (¥=0.69+0.19), whereas inland y values only
35 increased moderately to 0.47+0.12. A universal logarithmic correlation was identified
36  between the critical diameter (D.ri) characterizing CCN activity and ¥ (Dei = -
37 32.15In(y)+84.71, Pearson r = -0.74), but with distinct decrement rates for coastal vs.
38 inland aerosols. Our further quantitative analysis reveals a 0.1 increase in x enhanced
39  winter CCN concentrations (Nccn) by 39-65% under typical cloud supersaturations,
40  whereas this effect diminished to ~9% in summer. These results underscore that mixing
41  states exert more pronounced control over Ncen in diverse environments. Our work
42  provides critical constraints for parameterizing fine aerosols CCN activity in climate

43 models, thereby reducing uncertainties in aerosol—climate effect estimations.
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44 1. Introduction

45 Atmospheric cloud condensation nuclei (CCNs) are complex mixtures of organic
46  and inorganic components. Their chemical and physical properties make quantifying
47  aerosol-cloud interactions challenging (Liu et al., 2018; Rosenfeld et al., 2019; Xu et
48  al., 2022, 2024; Virtanen et al., 2025), introducing uncertainties into climate effect
49  assessments (Charlson et al., 1992; Shrivastava et al., 2017; IPCC, 2021; Manavi et al.,
50  2025; Chen et al., 2022). Accurate climate model predictions of acrosol impacts require
51  understanding aerosol mixing states under different atmospheric conditions and their
52  effects on CCN activity (Ching et al., 2016; Zheng et al., 2021). Current models often
53  oversimplify mixing states by assuming pure internal or external mixing (Winkler, 1973;
54  Zheng et al., 2021; Stevens et al., 2019; Riemer et al., 2019). This is problematic
55  because mixing states directly determine particle hygroscopicity and CCN estimates
56  (Wang et al., 2010; Ren et al., 2018). For example, CCN activity for internal-mixed
57  aerosols rely more on inorganic components, while external mixtures are more sensitive
58  to organic matter (Ren et al., 2018; Bhattu et al., 2015). Such simplifications can lead
59  to significant errors, e.g., Sotiropoulou et al. (2007) found that mixing state assumptions
60  caused two-fold Nccn estimation errors in global models.

61 Systematic observations across diverse environments are critical because aerosol
62  mixing states exhibit pronounced spatial-temporal variations (Ye et al., 2018; Liu et al.,
63  2025; Hughes et al., 2018). For example, continental and coastal regions present
64  contrasting scenarios (Ramachandran et al., 2016). The continental areas are dominated

65 by anthropogenic emissions, where aerosol aging is driven by industrial and traffic-
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66  related pollutants (Huang et al., 2014; Ren et al., 2023). Particles here undergo
67  progressive internal mixing via photochemical reactions and coagulation, altering their
68  hygroscopic properties (Ervens et al., 2010). While the coastal regions feature dynamic
69 interactions between marine aerosols (e.g., sea salt) and continental pollutants (Schill
70  etal., 2015; Collins et al., 2013; Cheung et al., 2020). Seasonal shifts in air mass sources
71 (e.g., marine vs. continental dominance) create unique mixing state patterns (Xu et al.,
72 2020, 2021a). For instance, summer photochemical processes in coastal areas can
73 enhance internal mixing, while winter often retains more external mixing due to stable
74 atmospheric conditions.

75 However, the aerosols in continental and coastal regions have distinct climate
76 feedback mechanisms (Bellouin et al., 2019; Pan et al., 2022; Gong et al., 2023). The
77  continental aerosols influence regional cloud formation, while coastal aerosols affect
78  marine boundary layer clouds that are key components of global climate systems (Liu
79  etal., 2018). But the current models lack regional-specific mixing state parameters and
80 usually assume uniform mixing in both environments. This could lead to large
81  uncertainties in predicting CCN concentrations, highlighting the need for site-specific
82  observations.

83 Recent studies have used the mixing state index ()) to characterize aerosol
84  heterogeneity (Zheng et al., 2021; Ching et al., 2017; Yuan et al., 2023), but cross-
85 environment comparisons remain limited. By integrating inland and coastal
86  measurements, this study will focus on addressing two key gaps, (1) How continental

87  vs. marine-dominated environments shape aerosol mixing states and CCN activity; (2)
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88  Whether y-based CCN parameterizations show regional dependencies, providing

89  critical constraints for climate models.

90 2. Data and Methods

91 2.1 Field Campaigns

92 The inland atmospheric measurements were conducted for two periods from 16

93  November to 6 December and 29 May to 13 June, respectively in urban Beijing, at the

94  Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP, 39.97° N,

95 116.37° E). This urban site exhibited highly variable aerosol populations dominated by

96 local anthropogenic sources including vehicular, cooking emissions, and residential

97  heating. Coastal measurements were performed at the Mace Head atmospheric research

98  station (MHD, 53.33° N, 9.90° W) from 1 November 2009 to 30 January 2010 and 11

99  to 31 August 2010, which located on the west coast of Ireland. Aerosol particles here

100  experience alternating influences from polluted continental and clean marine

101 atmospheres. The map of the sites was shown in Figure 1. More details about the

102  campaigns were given in Fan et al. (2020) and Xu et al. (2021a).
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104  Fig 1. Map of the sites in the Inland of the Institute of Atmospheric Physics (IAP) and
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105  Coastal of Mace Head (MHD). (© Google Maps, https://maps.google.com/, last access:

106 2 April 2025).
107 2.2 Instrumentation

108  Hygroscopicity measurements

109 The particle hygroscopicity at both sites was characterized using the humidified
110  tandem differential mobility analyzer (HTDMA). The hygroscopic growth factor (Gf),
111  defined as the ratio of the particle diameter at the fixed RH (90%) and dry diameter set
112 in this study for 40, 80, 110, 150, 200 nm at IAP and 35, 50, 75, 110 and 165 nm at
113 MHD, respectively. The Gf probability density function (Gf-PDF) was derived using
114  the TDMAinv algorithm (Gysel et al., 2009).

115 Here for each particle size, the hygroscopicity parameter k can be subsequently

116  calculated using k-Kohler theory (Petters and Kreidenweis, 2007):

405My,

117 k= (GfF3—1)- [iexp (m) - 1] (1)
118  where RH is the HTDMA relative humidity (90% set in the instrument), oya is the
119  surface tension of pure water (0.072 mN m™"), M,, and py, are the molecular weight and
120  the density of pure water, R is the gas constant, and 7 is the absolute temperature, Dy is
121 the droplet diameter.

122 Then, the k-PDF is obtained and normalized as fooo c(k)dk = 1, where c(x) is
123 normalized as x-PDF. Further it was used to calculate the particle population

124  heterogeneity (Calculation seen in Section 2.3).

125  Chemical components
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126 For the inland atmospheric measurements, the non-refractory submicron aerosol
127  (smaller than 1pum, NR-PM;) chemical composition was quantitatively characterized
128  using the Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-
129  ToF-AMS) (DeCarlo et al., 2006), including sulfate (SO4%), nitrate (NO3°), ammonium
130 (NH4"), chloride (ChL) and organics (Org). The black carbon (BC) mass concentration
131 was determined from the light absorption with a seven-wavelength aethalometer (AE33,
132 Magee Scientific Corp.).

133 Measurements of PM in the coastal atmosphere were also performed by the HR-
134  ToF-AMS, including major inorganic salts (non-sea-salt sulfate, nss-SO4>;
135  methanesulfonic acid, MSA; NOs"; NH4") and organic matter. The instrument operation
136  and calibration have been described in previous studies (Ovadnevaite et al., 2014; Xu
137 etal, 2019).

138 Aerosol number size distribution and CCN number concentration

139 Particle number size distributions (PNSD) were measured using an integrated
140  system consisting of a Differential Mobility Analyzer (DMA; model 3081, TSI Inc.)
141  coupled with a Condensation Particle Counter (CPC; model 3772, TSI Inc.). During the
142 measurements at IAP, the PNSD covered the size range of 10-550 nm with a 5-minute
143  time resolution. It scanned size range of 20-500 nm at MHD with a 10-minute temporal
144 resolution. The CCN number concentrations were quantified at both sites using a
145  Droplet Measurement Technologies CCN counter (DMT-CCNc) (Lance et al., 2006).
146  The instrument's supersaturation (SS) settings were carefully calibrated before and after

147  each campaign using ammonium sulfate aerosol following Rose et al. (2008).
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148 2.3 Calculation the heterogeneity for aerosol particles

149 To characterize the heterogeneous distribution of the hygroscopic and non-
150  hygroscopic components in populations (Chen et al., 2022), we calculated the mixing
151  state index () using the k-PDF, following the methodology of Yuan et al. (2023). Two
152  surrogate groups in a population of N aerosol particles were assumed (Zheng et al.,
153 2021). One surrogate group consists the non-hygroscopic species with kyy of 0.01
154  and another group contains the hygroscopic species with xy of 0.6 (Yuan et al., 2023;
155  Ching et al.,, 2017). At the coastal MHD site, we accounted for the enhanced
156  hydrophilicity of marine aerosols by additionally testing ky values of 0.7 and 0.8 (Fig.
157  S1). While these variations in ky introduced a mean uncertainty of 8% in y values, it
158  did not significantly affect the seasonal or site comparisons. The volume fraction of two
159  surrogate groups can be calculated based on the total x according to the Zdanovskii—
160  Stokes—Robinson (ZSR) mixing rule (Zdanovskii, 1948; Stokes et al., 1966).

161 The mixing state index y is defined as the affine ratio of the average particle species

162  diversity (Da) and population species diversity (Dy) as:

_ Dg-1

163 =51 2
164 The average per-particle species diversity Da can be calculated as follows. First,
165  the mixing entropies at bin i (f;) are determined according to equation (3),

166 H; = —P;yy X InP;yy — Py X InP; 3)

167  where Pinu and Piy are the volume fraction of each group for the k-PDF with X bins
168 at bin i (i=1,2,...X), and can be determined from the P;yy+ P,y =1 and

169 Py Xkyy + Piy X kg =k; . Here kyy =0.01,ky = 0.6; ki represents the

8
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170 hygroscopicity parameter at bin i.

171 Based on the assumption that particles in the same diameter have the same mixing

172 entropy H, = Z?’:l P, X H;, P; = Vt‘:i —= %; the per-particle mixing entropies H, is
173 determined according to equation (4),

174 Hy =YX, H; X c(k); X Ak 4)
175  where c(k); is the probability density of the normalized x-PDF at bin i, and Ak
176 represents the bin width. Then, the average per-particle species diversity Do can be
177  determined as D, = efle;

178 The bulk population species diversity Dy can be calculated as follows. First, the
179  aerosol population of the mixing entropy can be calculated as equation (5):

180 H, = —Pyy X InPyy — Py X InPy 5)

181  where Pxu and Py are the volume fraction of the non-hygroscopic and hygroscopic

182  components in the population, and can be calculated by equation (6) and (7):

183 Pyy = Zf:l P yp X c(x); X Ak 6)
184 Py = Zle Py X c(k); X Ak (7
185 Then, the bulk population species diversity Dy can be determined as D, = e*’r.

186  Here, the definition of surrogate species as supersets encompassing hygroscopicity
187  heterogeneity implies that the heterogeneity parameter x ranges from 0 to 1. When the
188 mixing index Y approaches 0, it indicates a completely segregated state where
189  hygroscopic and non-hygroscopic species reside in distinct particles. While for the case
190  the mixing index y to be 1 represents that the non-hygroscopic and hygroscopic species

191  distributing homogeneously throughout the aerosol population.
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192 3. Result and Discussion
193 3.1 Comparison of the heterogeneity in the inland and coastal atmosphere

194 To characterize the hygroscopic heterogeneity of atmospheric aerosols, Figure 2
195  depicts variations in mixing state metrics (Da, Dy, x) and the hygroscopic parameter
196  (kgf) across particle size distributions. For inland aerosols, Da and y decrease with
197  increasing particle diameter, accompanied by higher kg values. This trend indicates that
198  inland particle populations tend to homogenize into hygroscopic compositions through
199  primary particle aging or secondary formation processes (Liu et al., 2025; Chen et al.,
200  2022; Zhong et al., 2022). In contrast, coastal particles exhibit a non-monotonic pattern:
201  Da and  decrease for Aitken-mode particles (<100 nm) but increase for accumulation-
202  mode particles. The kgf shows consistent size-dependent increases in both winter and
203  summer campaigns.

204 Notably, the mixing state metrics exhibit a pronounced minimum at 75 nm
205  particles, influenced by distinct mechanisms: winter minima reflect the high sea salt
206  fraction, while summer minima are driven by anthropogenic organic matter (Cheung et
207  al., 2020; Xu et al., 2021a). Lower winter y values—coupled with broader x-PDF
208  distributions—indicate stronger external mixing and compositional diversity compared
209  to summer (Fig. S2). Seasonal y and kgr disparities are more pronounced at the coastal
210  site, primarily driven by the seasonal alternation of marine and anthropogenic emission

211 sources.

10
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213 Fig 2. Mean values of the Da (a), Dy (b), % (c) and ks (d) for aerosols of five diameters

214  during winter and summer periods in Inland (IAP) and Coastal (Mace Head) sites.

215 Ultrafine particles (40 nm inland vs. 35 nm coastal, Aitken mode) and larger
216  particles (150 nm inland vs. 165 nm coastal, accumulation mode) were selected to
217  investigate distinct evolutionary processes of aerosol heterogeneity (Fig. 3 and Fig. S3).
218  With the increasing of PM concentration during winter, the variation in y values exhibit
219  only minor both at the inland and coastal sites, generally fluctuating between
220  approximately —0.04 and 0.08 (Fig. 3a and b). Inland accumulation-mode particles
221  show a modest increase in Y, corresponding with a higher proportion of inorganic salts.
222 Conversely, at coastal sites, the composition fraction shifts from a sea-salt dominance
223 toward organic matter, accompanied by a ~20 % increase in nitrate content (Fig. 3b). In
224 summer, the variation of x with PM concentration becomes markedly pronounced at
225  both inland and coastal stations. For example, y for 40 nm particles decreases as PM

11
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226  increases at inland sites (Fig. 3c). The elevated particle heterogeneity mainly arises
227  from the locally primary emissions and photochemically driven new particle formation.
228 In contrast, y for 150 nm particles increases from ~0.40 to ~0.60 with rising PM,
229  reflecting enhanced secondary formation and internal mixing during pollution process
230 that render the particle population more homogeneous. At coastal sites, y declines with
231  rising PM by approximately 0.37 for 35 nm particles and 0.24 for 165 nm particles,
232 mirroring the shift in chemical composition makeup from inorganic dominance to
233  greater organic content (Fig. 3d).
1
oD QoD &
! . 40nm ! 40nm
—1 150nn] 150nm
=05 =05 L H 1 J I -
1‘11h i il
i
I JUALLE
10 30 50 70 90 110 10 30 50 70 90 110
(b) PM; (ug m®) (d) PM; (ug m)
1 1
— 35nm 35nm
—1165nm J N 165nm
=0.5 ] =0.5
1 il [}
il
LN :
13 5 7 9 1 13 5 7 9 1
PM; (ug m) PM; (ug m)
® © @
|
234
235  Fig 3. Variation of the average y of 40 nm and 150 nm in inland and 35 nm and 165 nm
236  in coastal site with the particle mass concentration in Inland-winter (a), Inland-summer
237  (b), Coastal-winter (c) and Coastal-summer (d). The pie charts represent the average
238  mass fraction during four field campaigns.
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239 Figure 4 illustrates pronounced diurnal variations in mixing state metrics (Da, Dy,
240  Gf-PDF, y) between inland and coastal atmospheres. In the inland atmosphere, winter
241  exhibited steeper declines in Da and y during evening rush hours than summer,
242  indicating a higher fraction of non-hygroscopic particles (40 nm) from fresh traffic
243  emissions (Fig. 4al). Concurrently, reduced Dy values suggest that the bulk population
244 consists of uniformly distributed less-hygroscopic (LH) components (Fig. 4c1). Aitken
245  mode particles showed bimodal and broader Gf-PDF distributions, corresponding to
246  cooking activities (11:00-13:00 LT) and traffic peaks (17:00-20:00 LT) (Cai et al.,
247  2020). Midday photochemical aging promoted more internally mixed aerosols (Yang et
248  al., 2012; Liu et al., 2025), as evidenced by increasing Da at the urban site (Fig. 4b1).
249  Conversely, accumulation-mode particles showed minimal diurnal variations,
250  suggesting stable relative proportions of LH and more-hygroscopic (MH) components

251  in inland aerosols across seasons.

Inland_Winter Inland_Summer Coastal Winter Coastal_Summer

m - —e=1500m (a‘)| 1) 35nm ——165nm (@2) [RTTIRREIRSENET, ©2)]
i

| 40n . R
2 11 1 1 1
5 05 05
5 20
5
o 2 pprsseeiilasieal ]

Dax Value

1
N
Stos =
5]
! 0
1

0 5 10 15 20
0

®2)
2
| 5
15 gros =
5
1
0

0 5 10 15 2
Hour Hour

Growth Factor

1 -

1@
o 5 10 15 20
; 150”"‘ - ZE
[ ————— H? u 05 x
05_
5 0 15 20 10 15 20
Hour

252 Fig 4. The variation of Da, Dy, Gf-PDF, and ) during winter and summer periods for
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254  Coastal site (a2-h2).
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255 For the coastal atmosphere, the mixing state metrics (Da, Dy, and y) of Aitken and
256  accumulation mode particles in winter exhibited analogous diurnal patterns,
257  characterized by a descending trend at nightfall. This corresponds to an enhanced modal
258  distribution of near-hydrophobic (NH) particles at 35 nm and more-hygroscopic (MH)
259  particles at 165 nm. In summer, Da and Dy both trended downward during daytime,
260  with the decline of Dy being more pronounced. A conspicuous seasonal discrepancy
261  between Aitken and accumulation mode particles was observed in this region (Fig. 4a2—
262  h2), where the mixing state index y increased incrementally from winter to summer.
263  Specifically, the mean y for 35 nm particles escalated from 0.42 to 0.80, and for 165
264  nm particles, it rose from 0.39 to 0.76. This trend demonstrates a strong alignment with
265  the spread factor documented by Xu et al. (2021a, b).

266 The Gf-PDF diurnal profiles of Aitken mode particles displayed a bimodal and
267  broadened distribution, corresponding to a less-hygroscopic (LH) mode of biogenic
268  origin during nighttime and a more-hygroscopic (MH) mode dominated by sea salt
269  (comprising 55% number fraction) during daytime. Analogously, accumulation mode
270  particles exhibited bimodal distributions with a higher proportion of MH mode during
271  daytime, primarily attributed to the prevalence of sea salt and non-sea-salt sulfate (nss-
272  sulfate) in the coastal atmosphere (Xu et al., 2020). In contrast, summer observations
273  revealed that Gf-PDFs of both Aitken and accumulation mode particles transitioned to
274  unimodal distributions, signifying more homogeneous mixing of LH and MH
275  components within individual particles. This uniformity is linked to processes including
276  sulfuric acid condensation, admixture of sulfate with biogenic organic matter (Xu et al.,

14
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277 202la), as well as photochemical oxidation and atmospheric aging (Jimenez et al.,

278 2009).
279 3.2 Dependence of the aerosol properties on the mixing state

280 The mixing state of particle populations undergoes dynamic transformations
281  during atmospheric aging, profoundly influencing their CCN activity. Unlike prior
282  studies that assumed mixing states based on chemical component fractions (Yang et al.,
283 2012; Padr6 et al.,, 2012; Ren et al., 2018), this work employs the entropy-derived
284  mixing state index yx, which quantifies the distribution of hygroscopic and non-
285  hygroscopic species (Zheng et al., 2021; Ching et al., 2017). We systematically
286  investigate how aerosol properties evolve with changing y. Figure 5 illustrates the
287  dependency of aerosol characteristics on % (ranging from 0 to 1 in 0.1 increments),
288  presenting key insights into particle size and chemical composition—two fundamental
289  determinants of CCN activity (Ren et al., 2018).

290 As y increases, the peak diameter (Dpeak) of the particle number size distribution
291  (PNSD) shifts toward larger sizes (Fig. 5a and Fig. S4), while peak concentrations occur
292  within the intermediate y range (0.3-0.6). This trend indicates that CN number
293  concentration (Ncn) first increases, driven by primary emissions and new particle
294  formation, then decreases due to mixing and aging processes (Fig. 5b). Notably, inland
295 summer Ncn exhibits a sustained slight increase, linked to frequent new particle
296  formation events and subsequent particle growth.

297 The critical diameter (Dcri)—defined as the minimum size for activation at a given

15
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298  supersaturation—depends on the mass fraction of soluble components (Petters and
299  Kreidenweis, 2007). Using a typical cloud supersaturation of 0.2% as a case study, Fig.
300  5cshows that D decreases with increasing soluble species (e.g., sulfate, nitrate) in the
301 inland atmosphere. In contrast, coastal D exhibits nonlinear variations with y: high
302  external mixing (low ) elevates Dci due to dominant organic components, reducing sea
303  salt particle fractions. As y increases, the mass fraction of non-sea-salt sulfate (nss-

304  sulfate) rises, enhancing activation potential by decreasing Deri.
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306  Fig 5. Variation of the average particle number size distribution (PNSD) with the
307 mixing state index ¥ (a), variation of the Ncn with the y (b), variation of the Dei and
308 mass fraction of chemical composition with the  (c), variation of the Nccn and

309 activation ratio (AR) at $=0.2% with the  (d-e).

310 The dependence of CCN activity at 0.2% supersaturation on mixing state index y
311  reveals distinct inter-atmospheric differences, as shown in Fig. 5d-e. In the inland
312  atmosphere, Nccn at $=0.2% demonstrates a monotonic increasing trend with 7y,
313  attributed to the synergistic effects of rising Ncn and decreasing Deri (Fig. S5). By

314  contrast, coastal Nccn follows a pattern analogous to Ncn, with peak concentrations
16
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315  shifting toward higher y values. This highlights the dominant role of particle size effects
316  in enhancing CCN concentrations under marine-influenced conditions (Perkins et al.,
317 2022).

318 Two distinct Dei-y trends underpin these disparities: one remains stable, driven by
319  the inherent hygroscopicity of sea salt, while the other exhibits steep Dei declines
320 associated with anthropogenic pollution as internal mixing intensifies. These
321  discrepancies are further manifested in the nonlinear Dei-y relationship. The activation
322 ratio (AR)—quantifying aerosol cloud droplet formation potential at fixed
323 supersaturation—also varies by site (Fig. 5e). Notably, inland winter AR shows a
324  marked increase with y, likely due to enhanced Nccen from the elevated inorganic
325  fraction under higher mixing states (Fig. 3). Conversely, the inorganic fraction

326  decreases during other sampling periods, dampening AR growth.
327 3.3 Impact of the mixing state on the CCN activity

328 To better interpret the impact of mixing state on CCN concentrations, Fig. 6
329  quantifies the relative change in Nccn at S=0.2% as mixing state index y increases,
330 contextualizing how CN concentration and chemical compositions (i.e., Deri) evolve
331 with mixing and aging across particle populations. Dci demonstrates heightened
332  sensitivity to minor  fluctuations at low mixing states (y <0.5; Fig. 6a), whereas further
333  increases in internal mixing (higher y) exert negligible influence on D¢ for already
334  internally mixed particles. This behavior suggests that the Dgi-y relationship may

335 enable anovel parameterization for D, estimation, a framework that is not yet reported

17
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Fig 6. Dependency of the critical diameter (D) on the y (a), relative change of CCN
number concentration (Nccn) at supersaturation S = 0.2% with the reduction in Dei (b);
Dependency of the CN number concentration (Ncn) on the y, different colors represent

the Ncen (c), relative change of Ncen with the change in New (d).

Coastal aerosol data points (blue dots) span a broad D range (80-220 nm) with
y varying from 0.1 to 1, reflecting alternating influences of highly hygroscopic
inorganic salts (sea salt, sulfate) and less-hygroscopic organic matter. In contrast, inland
aerosols—dominated by anthropogenic pollutants—exhibit a narrower D range (90—
150 nm). Both environments show negative Dgi-y correlations, but with distinct

functional forms: coastal aerosols feature an exceptional logarithmic fit (Dei = -
18
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348  42.98In(y) +80.36, R*=0.75; Fig. 6a blue line), while inland aerosols (red line) yield a
349  shallower slope (-12.04). Pooling all data, we derive a generalized parameterization:
350  Dei=-32.15In(y) + 84.71 (Pearson r = -0.74, R = 0.54).

351 Box plot analyses (Fig. S6) show mixing state reduces Dci by 2.2—6.8% across
352  campaigns, with the steepest winter decline. y impacts on Ncn differ starkly between
353  environments: positive effects in polluted inland air (+9%) versus negative effects in
354  coastal regions (-2%). Inland aerosols, frequently perturbed by primary emissions and
355  new particle formation, exhibit elevated Ncn (peaking at x = 0.2—0.7), while coastal Ncn
356  remains ~5000 cm™ across all y.

357 To isolate the impacts of critical diameter (Dcri) and condensation nuclei number
358  concentration (Ncn) on CCN activity, we categorized data into two groups: C1 (particles
359  within specific Ncn ranges) evaluates Ncen variations driven by Dei-y, relationships,
360  while C2 (particles within fixed De;i intervals) assesses Nen-y effects (Fig. 6b). Relative
361  changes (RC) in Dci, Nen, and Ncen with x were calculated by comparing successive i
362  increments (yit+1 vs. xi, i=0,0.1...1) within defined Ncn/Deri windows.

363 Notably, y exerts more pronounced effects on Ncen for externally mixed aerosols.
364  For example, coastal winter aerosols (high external mixing; ¥mean=0.38+0.12) showed
365  Ncen RCs of 23% (C1) and 72% (C2), whereas coastal summer aerosols (high internal
366  mixXing; Ymean=0.69%0.19) exhibited negligible effects (-2.5% in C1, 0.9% in C2). Inland
367  atmospheres, despite smaller seasonal y variations, showed analogous trends: winter
368  Ncen RCs (55% in C1, 57% in C2 for external mixing) exceeded summer values for
369 more internally mixed populations (Fig. 6d). These results confirm that hygroscopic

19
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370  heterogeneity strongly influences Ncen under external mixing, aligning with prior work
371 (Ching et al., 2017).

372 Mixing state impacts on Nccn are most pronounced during winter in both
373  environments, attributed to heightened winter Dcri sensitivity to y: a 0.1 y increase
374  reduces Dei by 5.2% (winter), boosting Ncen by 39%, versus 2.4% Deri reduction
375  (summer) yielding only 6% Nccn enhancement. Concomitantly, winter Nen-y effects on
376  Ncen reach 65%, far exceeding summer responses.

377 Contrasting with prior evaluation methods that oversimplify mixing states (Ren et
378 al, 2018; Xu et al., 2021b), the entropy-based framework adopted herein enables
379  explicit quantification of CCN activity evolution in response to mixing state transitions.
380 Inland winter aerosols are presumably shaped by intense urban pollution sources—
381 including traffic emissions, residential heating, and cooking activities—thereby
382 enriching the externally mixed particle fraction (Fan et al., 2020; Xie et al., 2020).
383  Analogously, coastal winter aerosols exhibit dominant external mixing, consisting of
384  near-hydrophobic and hydrophilic particle mixtures (Xu et al., 2021a). As illustrated in
385  Fig. S2, winter aerosol populations display bimodal or multimodal k—PDF distributions,
386  evidencing high-degree external mixing with chemically diverse compositions. These
387 results collectively highlight the pivotal role of mixing state heterogeneity in

388  modulating CCN activity across environments.

389 4. Conclusions
390 The mixing state of aerosol populations undergoes complex transformations

391  during atmospheric aging, altering the distribution of hygroscopic and non-hygroscopic
20
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392  components and thus influencing CCN activity (Xu et al., 2021a; Ching et al., 2017).
393  This study derived a mixing state index from field-measured hygroscopicity probability
394  density functions, systematically investigating its impacts on CCN activity in inland
395 and coastal environments. Results provide field evidence that aerosol mixing states
396  generally reside between purely internal and external extremes (Chen et al., 2022),
397  highlighting a dual regulatory mechanism of mixing state on CCN activity. As y
398 increases, CN number concentrations (Ncn) first rise—driven by primary emissions and
399  new particle formation—then decline due to condensation and coagulation during aging.
400  Additionally, a logarithmic decreasing relationship between critical diameter (Dcri) and
401 ywas identified for both inland and coastal particles, parameterized as Dei = -32.15In(y)
402  +84.71 (Pearson R = -0.74, R? = 0.54). This offers a practical approach to estimate Dcri
403  from y, serving as a general framework for integrating mixing state effects on CCN
404  activity in atmospheric models.

405 Entropy-based analyses confirm the pivotal role of mixing state in regulating Nccn,
406  especially for externally mixed aerosols: a 0.1 y increase can enhance Nccn by 39-65%.
407  Current models often oversimplify aerosol mixing states as purely internal or external
408  (Stevensetal.,2019; Bauer et al., 2013), the latter being particularly sensitive to organic
409  matter (Ren et al., 2018; Bhattu et al., 2015). Such simplifications introduce significant
410  biases in Nccen estimation (Riemer et al., 2019; Ching et al., 2019). The ¥-Dei
411  parameterization proposed here offers a novel approach to reduce model complexity in
412 representing aerosol hygroscopicity and CCN activation, enabling more accurate
413  simulations of aerosol CCN capacity. This advancement improves our understanding of

21
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414 aerosol-cloud interactions (IPCC, 2021; Rosenfeld et al., 2019), critical for refining

415  climate effect assessments.
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