

1 **Contrasting Inland-Coastal Aerosol Mixing States: An Entropy-Based**

2 **Metric for CCN Activity**

3 Jingye Ren^{1,2}, Wei Xu³, Ru-Jin Huang^{1*}, Fang Zhang^{4*}, Ying Wang¹, Lu Chen⁵, Jurgita
4 Ovadnevaite⁶, Darius Ceburnis⁶, Colin O'Dowd⁶

5 ¹*State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese
6 Academy of Sciences, Xi'an, 710061, China,*

7 ²*Xi'an Institute for Innovative Earth Environment Research, Xi'an, 710061, China,*

8 ³*State Key Laboratory of Advanced Environmental Technology, Institute of Urban
9 Environment, Chinese Academy of Sciences, Xiamen, 361021, China,*

10 ⁴*School of Civil and Environmental Engineering, Harbin Institute of Technology,
11 Shenzhen, 518005, China,*

12 ⁵*School of Ocean and Geographic Science, Yancheng Teachers University, Yancheng
13 224051, China,*

14 ⁶*School of Natural Sciences, Centre for Climate & Air Pollution Studies, Ryan Institute,
15 University of Galway, University Road, Galway, Ireland*

16 Corresponding author: Ru-Jin Huang, rujin.huang@ieecas.cn; Fang Zhang,
17 zhangfang2021@hit.edu.cn

18

19

20

21

22

23

24 **Abstract**

25 Simplified assumptions of aerosol hygroscopic mixing states in modeling studies
26 often introduce substantial uncertainties in estimating cloud condensation nuclei (CCN)
27 concentrations and their climatic impacts. This study systematically investigates the
28 contrasting relationships between mixing states and CCN activity by comparing
29 ambient measurements from inland and coastal sites. We show distinct seasonal
30 variations of the particles mixing state. In winter, externally mixed particles dominated
31 both sites, with comparable mixing state indices (χ) of 0.38 ± 0.12 and 0.39 ± 0.09
32 respectively for coastal air masses and inland air. However, summer measurements
33 showed pronounced differences: photochemical processes promoted significantly
34 higher internal mixing in coastal aerosols ($\chi = 0.69 \pm 0.19$), whereas inland χ values only
35 increased moderately to 0.47 ± 0.12 . A universal logarithmic correlation was identified
36 between the critical diameter (D_{cri}) characterizing CCN activity and χ ($D_{\text{cri}} = -$
37 $32.15\ln(\chi) + 84.71$, Pearson $r = -0.74$), but with distinct decrement rates for coastal vs.
38 inland aerosols. Our further quantitative analysis reveals a 0.1 increase in χ enhanced
39 winter CCN concentrations (N_{CCN}) by 39–65% under typical cloud supersaturations,
40 whereas this effect diminished to ~9% in summer. These results underscore that mixing
41 states exert more pronounced control over N_{CCN} in diverse environments. Our work
42 provides critical constraints for parameterizing fine aerosols CCN activity in climate
43 models, thereby reducing uncertainties in aerosol–climate effect estimations.

44 1. Introduction

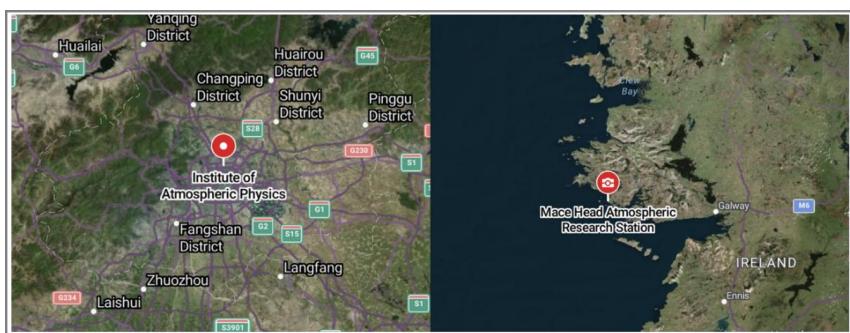
45 Atmospheric cloud condensation nuclei (CCNs) are complex mixtures of organic
46 and inorganic components. Their chemical and physical properties make quantifying
47 aerosol-cloud interactions challenging (Liu et al., 2018; Rosenfeld et al., 2019; Xu et
48 al., 2022, 2024; Virtanen et al., 2025), introducing uncertainties into climate effect
49 assessments (Charlson et al., 1992; Shrivastava et al., 2017; IPCC, 2021; Manavi et al.,
50 2025; Chen et al., 2022). Accurate climate model predictions of aerosol impacts require
51 understanding aerosol mixing states under different atmospheric conditions and their
52 effects on CCN activity (Ching et al., 2016; Zheng et al., 2021). Current models often
53 oversimplify mixing states by assuming pure internal or external mixing (Winkler, 1973;
54 Zheng et al., 2021; Stevens et al., 2019; Riemer et al., 2019). This is problematic
55 because mixing states directly determine particle hygroscopicity and CCN estimates
56 (Wang et al., 2010; Ren et al., 2018). For example, CCN activity for internal-mixed
57 aerosols rely more on inorganic components, while external mixtures are more sensitive
58 to organic matter (Ren et al., 2018; Bhattu et al., 2015). Such simplifications can lead
59 to significant errors, e.g., Sotiropoulou et al. (2007) found that mixing state assumptions
60 caused two-fold N_{CCN} estimation errors in global models.

61 Systematic observations across diverse environments are critical because aerosol
62 mixing states exhibit pronounced spatial-temporal variations (Ye et al., 2018; Liu et al.,
63 2025; Hughes et al., 2018). For example, continental and coastal regions present
64 contrasting scenarios (Ramachandran et al., 2016). The continental areas are dominated
65 by anthropogenic emissions, where aerosol aging is driven by industrial and traffic-

66 related pollutants (Huang et al., 2014; Ren et al., 2023). Particles here undergo
67 progressive internal mixing via photochemical reactions and coagulation, altering their
68 hygroscopic properties (Ervens et al., 2010). While the coastal regions feature dynamic
69 interactions between marine aerosols (e.g., sea salt) and continental pollutants (Schill
70 et al., 2015; Collins et al., 2013; Cheung et al., 2020). Seasonal shifts in air mass sources
71 (e.g., marine vs. continental dominance) create unique mixing state patterns (Xu et al.,
72 2020, 2021a). For instance, summer photochemical processes in coastal areas can
73 enhance internal mixing, while winter often retains more external mixing due to stable
74 atmospheric conditions.

75 However, the aerosols in continental and coastal regions have distinct climate
76 feedback mechanisms (Bellouin et al., 2019; Pan et al., 2022; Gong et al., 2023). The
77 continental aerosols influence regional cloud formation, while coastal aerosols affect
78 marine boundary layer clouds that are key components of global climate systems (Liu
79 et al., 2018). But the current models lack regional-specific mixing state parameters and
80 usually assume uniform mixing in both environments. This could lead to large
81 uncertainties in predicting CCN concentrations, highlighting the need for site-specific
82 observations.

83 Recent studies have used the mixing state index (χ) to characterize aerosol
84 heterogeneity (Zheng et al., 2021; Ching et al., 2017; Yuan et al., 2023), but cross-
85 environment comparisons remain limited. By integrating inland and coastal
86 measurements, this study will focus on addressing two key gaps, (1) How continental
87 vs. marine-dominated environments shape aerosol mixing states and CCN activity; (2)



88 Whether χ -based CCN parameterizations show regional dependencies, providing
89 critical constraints for climate models.

90 **2. Data and Methods**

91 **2.1 Field Campaigns**

92 The inland atmospheric measurements were conducted for two periods from 16
93 November to 6 December and 29 May to 13 June, respectively in urban Beijing, at the
94 Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP, 39.97° N,
95 116.37° E). This urban site exhibited highly variable aerosol populations dominated by
96 local anthropogenic sources including vehicular, cooking emissions, and residential
97 heating. Coastal measurements were performed at the Mace Head atmospheric research
98 station (MHD, 53.33° N, 9.90° W) from 1 November 2009 to 30 January 2010 and 11
99 to 31 August 2010, which located on the west coast of Ireland. Aerosol particles here
100 experience alternating influences from polluted continental and clean marine
101 atmospheres. The map of the sites was shown in Figure 1. More details about the
102 campaigns were given in Fan et al. (2020) and Xu et al. (2021a).

103
104 **Fig 1.** Map of the sites in the Inland of the Institute of Atmospheric Physics (IAP) and

105 Coastal of Mace Head (MHD). (© Google Maps, <https://maps.google.com/>, last access:
106 2 April 2025).

107 **2.2 Instrumentation**

108 **Hygroscopicity measurements**

109 The particle hygroscopicity at both sites was characterized using the humidified
110 tandem differential mobility analyzer (HTDMA). The hygroscopic growth factor (Gf),
111 defined as the ratio of the particle diameter at the fixed RH (90%) and dry diameter set
112 in this study for 40, 80, 110, 150, 200 nm at IAP and 35, 50, 75, 110 and 165 nm at
113 MHD, respectively. The Gf probability density function (Gf-PDF) was derived using
114 the TDMAinv algorithm (Gysel et al., 2009).

115 Here for each particle size, the hygroscopicity parameter κ can be subsequently
116 calculated using κ -Köhler theory (Petters and Kreidenweis, 2007):

$$117 \kappa = (Gf^3 - 1) \cdot \left[\frac{1}{RH} \exp \left(\frac{4\sigma_s M_w}{RT \rho_w D_d Gf} \right) - 1 \right] \quad (1)$$

118 where RH is the HTDMA relative humidity (90% set in the instrument), $\sigma_{s/a}$ is the
119 surface tension of pure water (0.072 mN m^{-1}), M_w and ρ_w are the molecular weight and
120 the density of pure water, R is the gas constant, and T is the absolute temperature, D_d is
121 the droplet diameter.

122 Then, the κ -PDF is obtained and normalized as $\int_0^\infty c(\kappa) d\kappa = 1$, where $c(\kappa)$ is
123 normalized as κ -PDF. Further it was used to calculate the particle population
124 heterogeneity (Calculation seen in Section 2.3).

125 **Chemical components**

126 For the inland atmospheric measurements, the non-refractory submicron aerosol
127 (smaller than $1\mu\text{m}$, NR-PM₁) chemical composition was quantitatively characterized
128 using the Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-
129 ToF-AMS) (DeCarlo et al., 2006), including sulfate (SO_4^{2-}), nitrate (NO_3^-), ammonium
130 (NH_4^+), chloride (ChL) and organics (Org). The black carbon (BC) mass concentration
131 was determined from the light absorption with a seven-wavelength aethalometer (AE33,
132 Magee Scientific Corp.).

133 Measurements of PM₁ in the coastal atmosphere were also performed by the HR-
134 ToF-AMS, including major inorganic salts (non-sea-salt sulfate, nss-SO₄²⁻;
135 methanesulfonic acid, MSA; NO₃⁻; NH₄⁺) and organic matter. The instrument operation
136 and calibration have been described in previous studies (Ovadnevaite et al., 2014; Xu
137 et al., 2019).

138 **Aerosol number size distribution and CCN number concentration**

139 Particle number size distributions (PNSD) were measured using an integrated
140 system consisting of a Differential Mobility Analyzer (DMA; model 3081, TSI Inc.)
141 coupled with a Condensation Particle Counter (CPC; model 3772, TSI Inc.). During the
142 measurements at IAP, the PNSD covered the size range of 10-550 nm with a 5-minute
143 time resolution. It scanned size range of 20-500 nm at MHD with a 10-minute temporal
144 resolution. The CCN number concentrations were quantified at both sites using a
145 Droplet Measurement Technologies CCN counter (DMT-CCNc) (Lance et al., 2006).
146 The instrument's supersaturation (SS) settings were carefully calibrated before and after
147 each campaign using ammonium sulfate aerosol following Rose et al. (2008).

148 **2.3 Calculation the heterogeneity for aerosol particles**

149 To characterize the heterogeneous distribution of the hygroscopic and non-
150 hygroscopic components in populations (Chen et al., 2022), we calculated the mixing
151 state index (χ) using the κ -PDF, following the methodology of Yuan et al. (2023). Two
152 surrogate groups in a population of N aerosol particles were assumed (Zheng et al.,
153 2021). One surrogate group consists the non-hygroscopic species with κ_{NH} of 0.01
154 and another group contains the hygroscopic species with κ_H of 0.6 (Yuan et al., 2023;
155 Ching et al., 2017). At the coastal MHD site, we accounted for the enhanced
156 hydrophilicity of marine aerosols by additionally testing κ_H values of 0.7 and 0.8 (Fig.
157 S1). While these variations in κ_H introduced a mean uncertainty of 8% in χ values, it
158 did not significantly affect the seasonal or site comparisons. The volume fraction of two
159 surrogate groups can be calculated based on the total κ according to the Zdanovskii–
160 Stokes–Robinson (ZSR) mixing rule (Zdanovskii, 1948; Stokes et al., 1966).

161 The mixing state index χ is defined as the affine ratio of the average particle species
162 diversity ($D\alpha$) and population species diversity ($D\gamma$) as:

163
$$\chi = \frac{D\alpha-1}{D\gamma-1} \quad (2)$$

164 The average per-particle species diversity $D\alpha$ can be calculated as follows. First,
165 the mixing entropies at bin i (H_i) are determined according to equation (3),

166
$$H_i = -P_{i,NH} \times \ln P_{i,NH} - P_{i,H} \times \ln P_{i,H} \quad (3)$$

167 where $P_{i,NH}$ and $P_{i,H}$ are the volume fraction of each group for the κ -PDF with X bins
168 at bin i ($i=1,2,\dots,X$), and can be determined from the $P_{i,NH} + P_{i,H} = 1$ and
169 $P_{i,NH} \times \kappa_{NH} + P_{i,H} \times \kappa_H = \kappa_i$. Here $\kappa_{NH} = 0.01$, $\kappa_H = 0.6$; κ_i represents the

170 hygroscopicity parameter at bin i .

171 Based on the assumption that particles in the same diameter have the same mixing

172 entropy $H_\alpha = \sum_{j=1}^N P_j \times H_j$, $P_j = \frac{V_j}{V_{total}} = \frac{1}{N}$; the per-particle mixing entropies H_α is
173 determined according to equation (4),

174
$$H_\alpha = \sum_{i=1}^X H_i \times c(\kappa)_i \times \Delta\kappa \quad (4)$$

175 where $c(\kappa)_i$ is the probability density of the normalized κ -PDF at bin i , and $\Delta\kappa$

176 represents the bin width. Then, the average per-particle species diversity D_α can be

177 determined as $D_\alpha = e^{H_\alpha}$;

178 The bulk population species diversity D_γ can be calculated as follows. First, the

179 aerosol population of the mixing entropy can be calculated as equation (5):

180
$$H_\gamma = -P_{NH} \times \ln P_{NH} - P_H \times \ln P_H \quad (5)$$

181 where P_{NH} and P_H are the volume fraction of the non-hygroscopic and hygroscopic

182 components in the population, and can be calculated by equation (6) and (7):

183
$$P_{NH} = \sum_{i=1}^X P_{i,NH} \times c(\kappa)_i \times \Delta\kappa \quad (6)$$

184
$$P_H = \sum_{i=1}^X P_{i,H} \times c(\kappa)_i \times \Delta\kappa \quad (7)$$

185 Then, the bulk population species diversity D_γ can be determined as $D_\gamma = e^{H_\gamma}$.

186 Here, the definition of surrogate species as supersets encompassing hygroscopicity

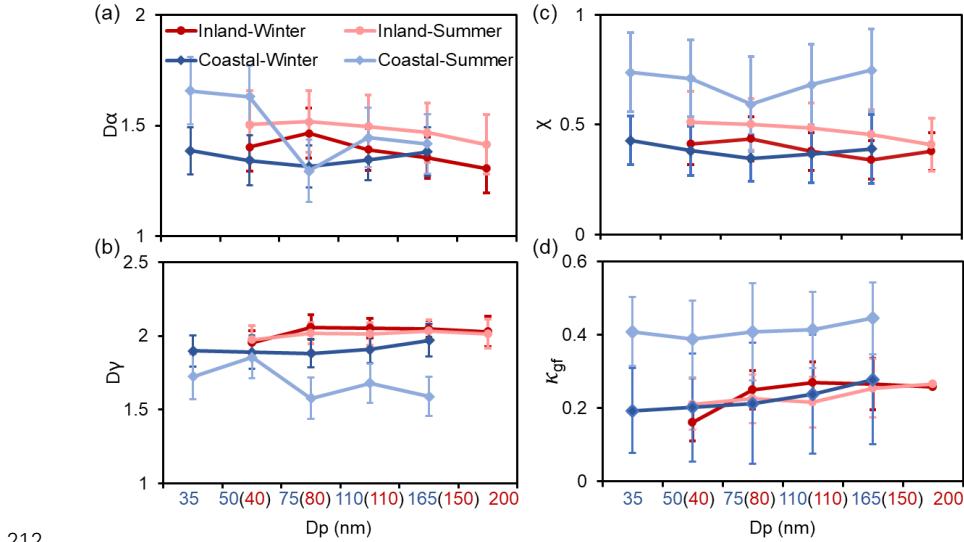
187 heterogeneity implies that the heterogeneity parameter χ ranges from 0 to 1. When the

188 mixing index χ approaches 0, it indicates a completely segregated state where

189 hygroscopic and non-hygroscopic species reside in distinct particles. While for the case

190 the mixing index χ to be 1 represents that the non-hygroscopic and hygroscopic species

191 distributing homogeneously throughout the aerosol population.

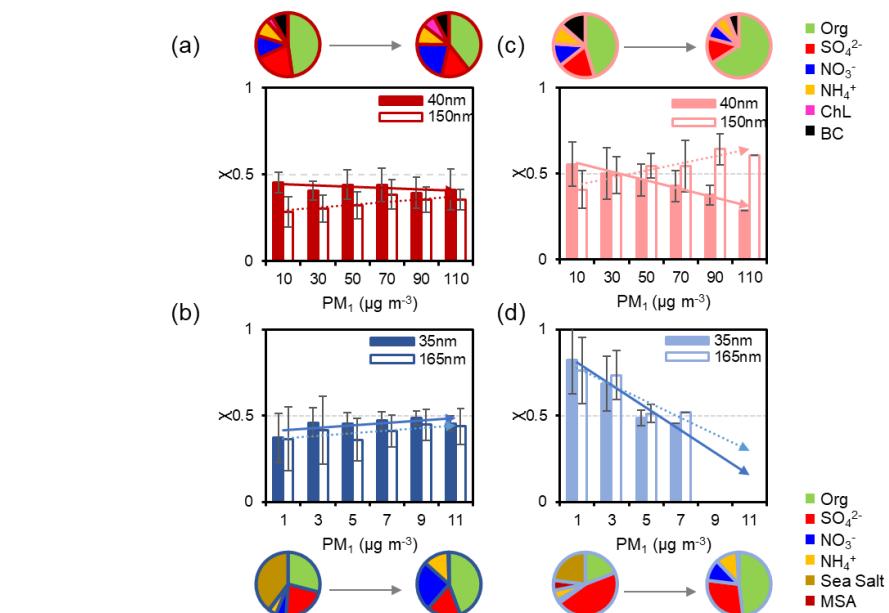


192 3. Result and Discussion

193 3.1 Comparison of the heterogeneity in the inland and coastal atmosphere

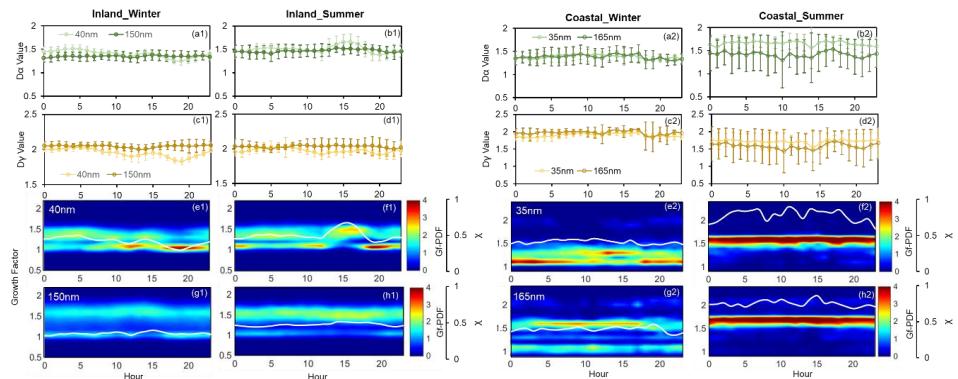
194 To characterize the hygroscopic heterogeneity of atmospheric aerosols, Figure 2
195 depicts variations in mixing state metrics ($D\alpha$, $D\gamma$, χ) and the hygroscopic parameter
196 (κ_{gf}) across particle size distributions. For inland aerosols, $D\alpha$ and χ decrease with
197 increasing particle diameter, accompanied by higher κ_{gf} values. This trend indicates that
198 inland particle populations tend to homogenize into hygroscopic compositions through
199 primary particle aging or secondary formation processes (Liu et al., 2025; Chen et al.,
200 2022; Zhong et al., 2022). In contrast, coastal particles exhibit a non-monotonic pattern:
201 $D\alpha$ and χ decrease for Aitken-mode particles (<100 nm) but increase for accumulation-
202 mode particles. The κ_{gf} shows consistent size-dependent increases in both winter and
203 summer campaigns.

204 Notably, the mixing state metrics exhibit a pronounced minimum at 75 nm
205 particles, influenced by distinct mechanisms: winter minima reflect the high sea salt
206 fraction, while summer minima are driven by anthropogenic organic matter (Cheung et
207 al., 2020; Xu et al., 2021a). Lower winter χ values—coupled with broader κ -PDF
208 distributions—indicate stronger external mixing and compositional diversity compared
209 to summer (Fig. S2). Seasonal χ and κ_{gf} disparities are more pronounced at the coastal
210 site, primarily driven by the seasonal alternation of marine and anthropogenic emission
211 sources.


212

213 **Fig 2.** Mean values of the $D\alpha$ (a), $D\gamma$ (b), χ (c) and κ_{gf} (d) for aerosols of five diameters
214 during winter and summer periods in Inland (IAP) and Coastal (Mace Head) sites.

215 Ultrafine particles (40 nm inland vs. 35 nm coastal, Aitken mode) and larger
216 particles (150 nm inland vs. 165 nm coastal, accumulation mode) were selected to
217 investigate distinct evolutionary processes of aerosol heterogeneity (Fig. 3 and Fig. S3).
218 With the increasing of PM concentration during winter, the variation in χ values exhibit
219 only minor both at the inland and coastal sites, generally fluctuating between
220 approximately -0.04 and 0.08 (Fig. 3a and b). Inland accumulation-mode particles
221 show a modest increase in χ , corresponding with a higher proportion of inorganic salts.
222 Conversely, at coastal sites, the composition fraction shifts from a sea-salt dominance
223 toward organic matter, accompanied by a ~20 % increase in nitrate content (Fig. 3b). In
224 summer, the variation of χ with PM concentration becomes markedly pronounced at
225 both inland and coastal stations. For example, χ for 40 nm particles decreases as PM


226 increases at inland sites (Fig. 3c). The elevated particle heterogeneity mainly arises
227 from the locally primary emissions and photochemically driven new particle formation.
228 In contrast, χ for 150 nm particles increases from ~0.40 to ~0.60 with rising PM,
229 reflecting enhanced secondary formation and internal mixing during pollution process
230 that render the particle population more homogeneous. At coastal sites, χ declines with
231 rising PM by approximately 0.37 for 35 nm particles and 0.24 for 165 nm particles,
232 mirroring the shift in chemical composition makeup from inorganic dominance to
233 greater organic content (Fig. 3d).

235 **Fig 3.** Variation of the average χ of 40 nm and 150 nm in inland and 35 nm and 165 nm
236 in coastal site with the particle mass concentration in Inland-winter (a), Inland-summer
237 (b), Coastal-winter (c) and Coastal-summer (d). The pie charts represent the average
238 mass fraction during four field campaigns.

239 Figure 4 illustrates pronounced diurnal variations in mixing state metrics ($D\alpha$, $D\gamma$,
240 Gf-PDF, χ) between inland and coastal atmospheres. In the inland atmosphere, winter
241 exhibited steeper declines in $D\alpha$ and χ during evening rush hours than summer,
242 indicating a higher fraction of non-hygroscopic particles (40 nm) from fresh traffic
243 emissions (Fig. 4a1). Concurrently, reduced $D\gamma$ values suggest that the bulk population
244 consists of uniformly distributed less-hygroscopic (LH) components (Fig. 4c1). Aitken
245 mode particles showed bimodal and broader Gf-PDF distributions, corresponding to
246 cooking activities (11:00–13:00 LT) and traffic peaks (17:00–20:00 LT) (Cai et al.,
247 2020). Midday photochemical aging promoted more internally mixed aerosols (Yang et
248 al., 2012; Liu et al., 2025), as evidenced by increasing $D\alpha$ at the urban site (Fig. 4b1).
249 Conversely, accumulation-mode particles showed minimal diurnal variations,
250 suggesting stable relative proportions of LH and more-hygroscopic (MH) components
251 in inland aerosols across seasons.

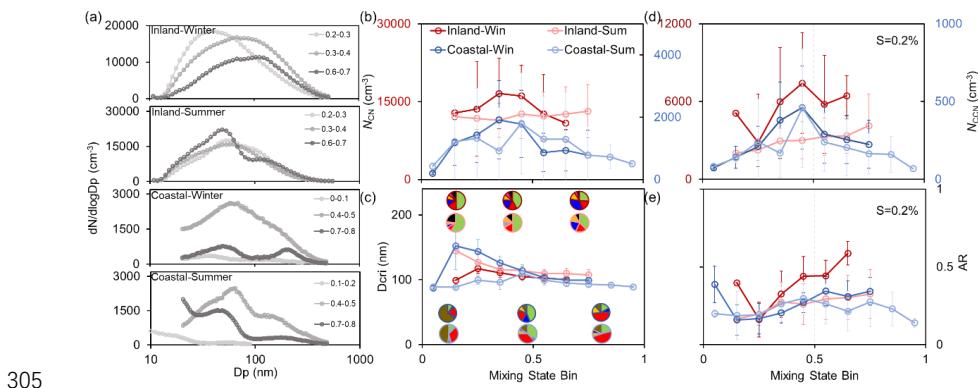
252 **Fig 4.** The variation of $D\alpha$, $D\gamma$, Gf-PDF, and χ during winter and summer periods for
253 40 nm and 150 nm aerosols in Inland (a1-h1) and for 35 nm and 165 nm aerosols
254 Coastal site (a2-h2).

255 For the coastal atmosphere, the mixing state metrics ($D\alpha$, $D\gamma$, and χ) of Aitken and
256 accumulation mode particles in winter exhibited analogous diurnal patterns,
257 characterized by a descending trend at nightfall. This corresponds to an enhanced modal
258 distribution of near-hydrophobic (NH) particles at 35 nm and more-hygrosopic (MH)
259 particles at 165 nm. In summer, $D\alpha$ and $D\gamma$ both trended downward during daytime,
260 with the decline of $D\gamma$ being more pronounced. A conspicuous seasonal discrepancy
261 between Aitken and accumulation mode particles was observed in this region (Fig. 4a2–
262 h2), where the mixing state index χ increased incrementally from winter to summer.
263 Specifically, the mean χ for 35 nm particles escalated from 0.42 to 0.80, and for 165
264 nm particles, it rose from 0.39 to 0.76. This trend demonstrates a strong alignment with
265 the spread factor documented by Xu et al. (2021a, b).

266 The Gf-PDF diurnal profiles of Aitken mode particles displayed a bimodal and
267 broadened distribution, corresponding to a less-hygrosopic (LH) mode of biogenic
268 origin during nighttime and a more-hygrosopic (MH) mode dominated by sea salt
269 (comprising 55% number fraction) during daytime. Analogously, accumulation mode
270 particles exhibited bimodal distributions with a higher proportion of MH mode during
271 daytime, primarily attributed to the prevalence of sea salt and non-sea-salt sulfate (nss-
272 sulfate) in the coastal atmosphere (Xu et al., 2020). In contrast, summer observations
273 revealed that Gf-PDFs of both Aitken and accumulation mode particles transitioned to
274 unimodal distributions, signifying more homogeneous mixing of LH and MH
275 components within individual particles. This uniformity is linked to processes including
276 sulfuric acid condensation, admixture of sulfate with biogenic organic matter (Xu et al.,

277 2021a), as well as photochemical oxidation and atmospheric aging (Jimenez et al.,
278 2009).

279 **3.2 Dependence of the aerosol properties on the mixing state**


280 The mixing state of particle populations undergoes dynamic transformations
281 during atmospheric aging, profoundly influencing their CCN activity. Unlike prior
282 studies that assumed mixing states based on chemical component fractions (Yang et al.,
283 2012; Padró et al., 2012; Ren et al., 2018), this work employs the entropy-derived
284 mixing state index χ , which quantifies the distribution of hygroscopic and non-
285 hygroscopic species (Zheng et al., 2021; Ching et al., 2017). We systematically
286 investigate how aerosol properties evolve with changing χ . Figure 5 illustrates the
287 dependency of aerosol characteristics on χ (ranging from 0 to 1 in 0.1 increments),
288 presenting key insights into particle size and chemical composition—two fundamental
289 determinants of CCN activity (Ren et al., 2018).

290 As χ increases, the peak diameter (D_{peak}) of the particle number size distribution
291 (PNSD) shifts toward larger sizes (Fig. 5a and Fig. S4), while peak concentrations occur
292 within the intermediate χ range (0.3–0.6). This trend indicates that CN number
293 concentration (N_{CN}) first increases, driven by primary emissions and new particle
294 formation, then decreases due to mixing and aging processes (Fig. 5b). Notably, inland
295 summer N_{CN} exhibits a sustained slight increase, linked to frequent new particle
296 formation events and subsequent particle growth.

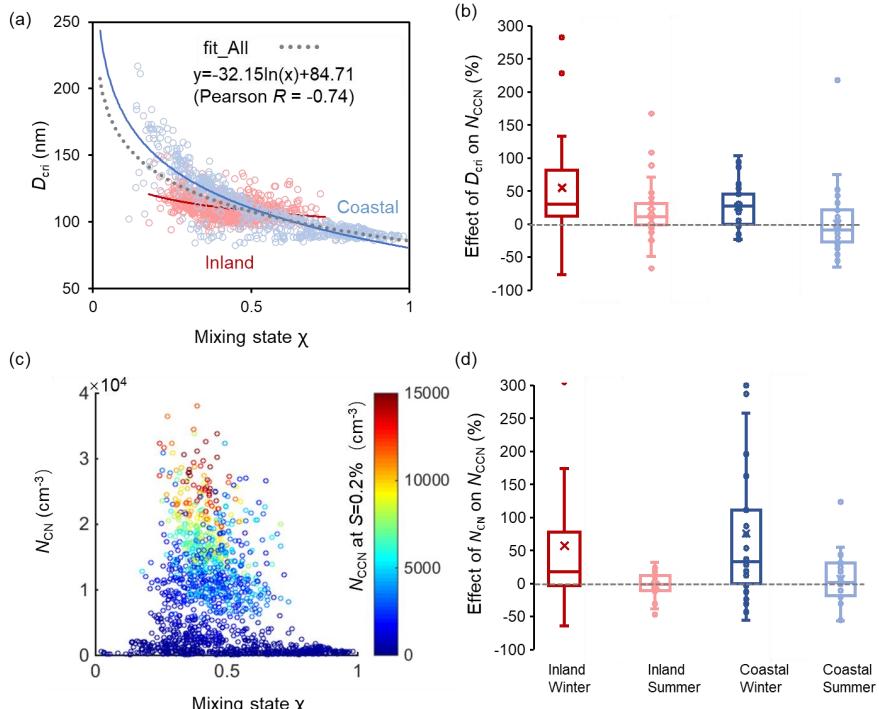
297 The critical diameter (D_{cri})—defined as the minimum size for activation at a given

298 supersaturation—depends on the mass fraction of soluble components (Petters and
299 Kreidenweis, 2007). Using a typical cloud supersaturation of 0.2% as a case study, Fig.
300 5c shows that D_{cri} decreases with increasing soluble species (e.g., sulfate, nitrate) in the
301 inland atmosphere. In contrast, coastal D_{cri} exhibits nonlinear variations with χ : high
302 external mixing (low χ) elevates D_{cri} due to dominant organic components, reducing sea
303 salt particle fractions. As χ increases, the mass fraction of non-sea-salt sulfate (nss-
304 sulfate) rises, enhancing activation potential by decreasing D_{cri} .

305
306 **Fig 5.** Variation of the average particle number size distribution (PNSD) with the
307 mixing state index χ (a), variation of the N_{CN} with the χ (b), variation of the D_{cri} and
308 mass fraction of chemical composition with the χ (c), variation of the N_{CCN} and
309 activation ratio (AR) at $S=0.2\%$ with the χ (d-e).

310 The dependence of CCN activity at 0.2% supersaturation on mixing state index χ
311 reveals distinct inter-atmospheric differences, as shown in Fig. 5d-e. In the inland
312 atmosphere, N_{CCN} at $S=0.2\%$ demonstrates a monotonic increasing trend with χ ,
313 attributed to the synergistic effects of rising N_{CN} and decreasing D_{cri} (Fig. S5). By
314 contrast, coastal N_{CCN} follows a pattern analogous to N_{CN} , with peak concentrations

315 shifting toward higher χ values. This highlights the dominant role of particle size effects
316 in enhancing CCN concentrations under marine-influenced conditions (Perkins et al.,
317 2022).


318 Two distinct $D_{\text{cri}}-\chi$ trends underpin these disparities: one remains stable, driven by
319 the inherent hygroscopicity of sea salt, while the other exhibits steep D_{cri} declines
320 associated with anthropogenic pollution as internal mixing intensifies. These
321 discrepancies are further manifested in the nonlinear $D_{\text{cri}}-\chi$ relationship. The activation
322 ratio (AR)—quantifying aerosol cloud droplet formation potential at fixed
323 supersaturation—also varies by site (Fig. 5e). Notably, inland winter AR shows a
324 marked increase with χ , likely due to enhanced N_{CCN} from the elevated inorganic
325 fraction under higher mixing states (Fig. 3). Conversely, the inorganic fraction
326 decreases during other sampling periods, dampening AR growth.

327 **3.3 Impact of the mixing state on the CCN activity**

328 To better interpret the impact of mixing state on CCN concentrations, Fig. 6
329 quantifies the relative change in N_{CCN} at $S=0.2\%$ as mixing state index χ increases,
330 contextualizing how CN concentration and chemical compositions (i.e., D_{cri}) evolve
331 with mixing and aging across particle populations. D_{cri} demonstrates heightened
332 sensitivity to minor χ fluctuations at low mixing states ($\chi < 0.5$; Fig. 6a), whereas further
333 increases in internal mixing (higher χ) exert negligible influence on D_{cri} for already
334 internally mixed particles. This behavior suggests that the $D_{\text{cri}}-\chi$ relationship may
335 enable a novel parameterization for D_{cri} estimation, a framework that is not yet reported

336 in prior literature.

337

338 **Fig 6.** Dependency of the critical diameter (D_{cri}) on the χ (a), relative change of CCN
339 number concentration (N_{CCN}) at supersaturation $S = 0.2\%$ with the reduction in D_{cri} (b);
340 Dependency of the CN number concentration (N_{CN}) on the χ , different colors represent
341 the N_{CCN} (c), relative change of N_{CCN} with the change in N_{CN} (d).

342 Coastal aerosol data points (blue dots) span a broad D_{cri} range (80–220 nm) with
343 χ varying from 0.1 to 1, reflecting alternating influences of highly hygroscopic
344 inorganic salts (sea salt, sulfate) and less-hygroscopic organic matter. In contrast, inland
345 aerosols—dominated by anthropogenic pollutants—exhibit a narrower D_{cri} range (90–
346 150 nm). Both environments show negative $D_{\text{cri}}\text{-}\chi$ correlations, but with distinct
347 functional forms: coastal aerosols feature an exceptional logarithmic fit ($D_{\text{cri}} = -$

348 42.98ln(χ) +80.36, $R^2 = 0.75$; Fig. 6a blue line), while inland aerosols (red line) yield a
349 shallower slope (-12.04). Pooling all data, we derive a generalized parameterization:
350 $D_{\text{cri}} = -32.15\ln(\chi) + 84.71$ (Pearson $r = -0.74$, $R^2 = 0.54$).

351 Box plot analyses (Fig. S6) show mixing state reduces D_{cri} by 2.2–6.8% across
352 campaigns, with the steepest winter decline. χ impacts on N_{CN} differ starkly between
353 environments: positive effects in polluted inland air (+9%) versus negative effects in
354 coastal regions (-2%). Inland aerosols, frequently perturbed by primary emissions and
355 new particle formation, exhibit elevated N_{CN} (peaking at $\chi = 0.2$ –0.7), while coastal N_{CN}
356 remains $\sim 5000 \text{ cm}^{-3}$ across all χ .

357 To isolate the impacts of critical diameter (D_{cri}) and condensation nuclei number
358 concentration (N_{CN}) on CCN activity, we categorized data into two groups: C1 (particles
359 within specific N_{CN} ranges) evaluates N_{CCN} variations driven by D_{cri} - χ relationships,
360 while C2 (particles within fixed D_{cri} intervals) assesses N_{CN} - χ effects (Fig. 6b). Relative
361 changes (RC) in D_{cri} , N_{CN} , and N_{CCN} with χ were calculated by comparing successive χ
362 increments (χ_{i+1} vs. χ_i , $i=0,0.1\dots 1$) within defined $N_{\text{CN}}/D_{\text{cri}}$ windows.

363 Notably, χ exerts more pronounced effects on N_{CCN} for externally mixed aerosols.
364 For example, coastal winter aerosols (high external mixing; $\chi_{\text{mean}}=0.38\pm0.12$) showed
365 N_{CCN} RCs of 23% (C1) and 72% (C2), whereas coastal summer aerosols (high internal
366 mixing; $\chi_{\text{mean}}=0.69\pm0.19$) exhibited negligible effects (-2.5% in C1, 0.9% in C2). Inland
367 atmospheres, despite smaller seasonal χ variations, showed analogous trends: winter
368 N_{CCN} RCs (55% in C1, 57% in C2 for external mixing) exceeded summer values for
369 more internally mixed populations (Fig. 6d). These results confirm that hygroscopic

370 heterogeneity strongly influences N_{CCN} under external mixing, aligning with prior work

371 (Ching et al., 2017).

372 Mixing state impacts on N_{CCN} are most pronounced during winter in both
373 environments, attributed to heightened winter D_{cri} sensitivity to χ : a 0.1 χ increase
374 reduces D_{cri} by 5.2% (winter), boosting N_{CCN} by 39%, versus 2.4% D_{cri} reduction
375 (summer) yielding only 6% N_{CCN} enhancement. Concomitantly, winter N_{CCN} - χ effects on
376 N_{CCN} reach 65%, far exceeding summer responses.

377 Contrasting with prior evaluation methods that oversimplify mixing states (Ren et
378 al., 2018; Xu et al., 2021b), the entropy-based framework adopted herein enables
379 explicit quantification of CCN activity evolution in response to mixing state transitions.

380 Inland winter aerosols are presumably shaped by intense urban pollution sources—
381 including traffic emissions, residential heating, and cooking activities—thereby
382 enriching the externally mixed particle fraction (Fan et al., 2020; Xie et al., 2020).

383 Analogously, coastal winter aerosols exhibit dominant external mixing, consisting of
384 near-hydrophobic and hydrophilic particle mixtures (Xu et al., 2021a). As illustrated in
385 Fig. S2, winter aerosol populations display bimodal or multimodal κ -PDF distributions,
386 evidencing high-degree external mixing with chemically diverse compositions. These
387 results collectively highlight the pivotal role of mixing state heterogeneity in
388 modulating CCN activity across environments.

389 **4. Conclusions**

390 The mixing state of aerosol populations undergoes complex transformations
391 during atmospheric aging, altering the distribution of hygroscopic and non-hygroscopic

392 components and thus influencing CCN activity (Xu et al., 2021a; Ching et al., 2017).

393 This study derived a mixing state index from field-measured hygroscopicity probability

394 density functions, systematically investigating its impacts on CCN activity in inland

395 and coastal environments. Results provide field evidence that aerosol mixing states

396 generally reside between purely internal and external extremes (Chen et al., 2022),

397 highlighting a dual regulatory mechanism of mixing state on CCN activity. As χ

398 increases, CN number concentrations (N_{CN}) first rise—driven by primary emissions and

399 new particle formation—then decline due to condensation and coagulation during aging.

400 Additionally, a logarithmic decreasing relationship between critical diameter (D_{cri}) and

401 χ was identified for both inland and coastal particles, parameterized as $D_{\text{cri}} = -32.15\ln(\chi)$

402 $+ 84.71$ (Pearson $R = -0.74$, $R^2 = 0.54$). This offers a practical approach to estimate D_{cri}

403 from χ , serving as a general framework for integrating mixing state effects on CCN

404 activity in atmospheric models.

405 Entropy-based analyses confirm the pivotal role of mixing state in regulating N_{CCN} ,

406 especially for externally mixed aerosols: a 0.1 χ increase can enhance N_{CCN} by 39–65%.

407 Current models often oversimplify aerosol mixing states as purely internal or external

408 (Stevens et al., 2019; Bauer et al., 2013), the latter being particularly sensitive to organic

409 matter (Ren et al., 2018; Bhattu et al., 2015). Such simplifications introduce significant

410 biases in N_{CCN} estimation (Riemer et al., 2019; Ching et al., 2019). The χ - D_{cri}

411 parameterization proposed here offers a novel approach to reduce model complexity in

412 representing aerosol hygroscopicity and CCN activation, enabling more accurate

413 simulations of aerosol CCN capacity. This advancement improves our understanding of

414 aerosol-cloud interactions (IPCC, 2021; Rosenfeld et al., 2019), critical for refining
415 climate effect assessments.

416 **Data availability**

417 All data used in the study are available at <https://doi.org/10.3974/geodb.2019.06.11.V1>
418 (Fan et al., 2019) and <http://doi.org/10.17632/3dx6pnx869.1> (Xu et al., 2021a).

419 **Author contributions**

420 RH and JR conceived the conceptual development of the paper. JR, FZ and WX directed
421 and performed the experiments with YW and LC. FZ provided the dataset in the inland
422 site. JO, DC and CO provided the dataset in the coastal site. JR conducted the data
423 analysis and wrote the draft. All authors edited and commented on the various sections
424 of the paper.

425 **Competing interests**

426 The contact author has declared that none of the authors has any competing interests.

427 **Supporting Information**

428 Additional analysis results that were applied in this study. Sensitivity of the
429 hygroscopic parameter for the group of the hygroscopic species on the mixing state
430 index χ (Figure S1), mean values of the κ -PDF for aerosols of five diameters (Figure
431 S2), time series of the average per-particle species diversity $D\alpha$, the bulk population
432 species diversity $D\gamma$, and their affine ratio χ (Figure S3), variation of the peak diameter
433 (D_{peak}) with the mixing state index (Figure S4), diurnal variation of χ and CN

434 concentration during winter and summer periods for 40 nm and 150 nm aerosols in
435 inland and for 35 nm and 165 nm aerosols in coastal site (Figure S5), relative change
436 of the critical diameter and CN concentration with the mixing state index χ (Figure S6)
437 (PDF).

438 **Acknowledgements**

439 This work was funded by the National Natural Science Foundation of China (NSFC)
440 under Grant No. 42525301, 42405118 and 42475112, the State Key Laboratory of
441 Loess Science, Institute of Earth Environment, Chinese Academy of Sciences
442 (SKLLQG2429), the Guangdong Natural Science Foundation (Grant No.
443 2024A1515011005). We thank all participants of the field campaign for their hard work
444 and sharing of the data.

445 **References**

446 Bhattu, D., Tripathi, S. N.: CCN closure study: Effects of aerosol chemical composition
447 and mixing state, *Journal of Geophysical Research: Atmospheres.*, 120(2), 766-
448 783, <https://doi.org/10.1002/2014JD021978>, 2015.

449 Bellouin, N., Quaas, J., Gryspeert, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher,
450 O., Carslaw, K. S., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G.,
451 Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U., Malavelle,
452 F., Mauritzen, T., McCoy, D. T., Myhre, G., Mülmenstädt, J., Neubauer, D.,
453 Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S. E., Sourdeval, O.,
454 Storelvmo, T., Toll, V., Winker, D., Stevens, B.: Bounding global aerosol radiative
455 forcing of climate change, *Rev. Geophys.*, 58, e2019RG000660, <https://doi.org/>,
456 2019.

457 Bauer, S. E., Ault, A., Prather, K. A.: Evaluation of aerosol mixing state classes in the

458 GISS modelE-MATRIX climate model using single-particle mass spectrometry
459 measurements, *Journal of Geophysical Research: Atmospheres.*, 118, 9834-9844,
460 <https://doi.org/10.1002/jgrd.50700>, 2013.

461 Chen, Y., Haywood, J., Wang, Y., Malavelle, F., Jordan, G., Partridge, D., Fieldsend, J.,
462 Leeuw, J. D., Schmidt, A., Cho, N., Oreopoulos, L., Platnick, S., Grosvenor, D.,
463 Field, P., Lohmann, U.: Machine learning reveals climate forcing from aerosols is
464 dominated by increased cloud cover, *Nature Geoscience.*, 15(8), 609-614,
465 <https://doi.org/10.1038/s41561-022-01027-9>, 2022.

466 Chen, A., Zhao, C., Zhang, H., Yang, Y., Li, J.: Surface albedo regulates aerosol direct
467 climate effect, *Nature Communications.*, 15(1), 7816, <https://doi.org/10.1038/s41467-024-52255-z>, 2024.

469 Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley Jr, J. A., Hansen, J.
470 E., Hofmann, D. J.: Climate forcing by anthropogenic aerosols, *Science.*,
471 255(5043), 423-430, <https://doi.org/10.1126/science.255.5043.423>, 1992.

472 Ching, J., Zaveri, R. A., Easter, R. C., Riemer, N., Fast, J. D.: A three-dimensional
473 sectional representation of aerosol mixing state for simulating optical properties
474 and cloud condensation nuclei, *Journal of Geophysical Research: Atmospheres.*,
475 121(10), 5912-5929, <https://doi.org/10.1002/2015JD024323>, 2016.

476 Collins, D. B., Ault, A. P., Moffet, R. C., Ruppel, M. J., Cuadra-Rodriguez, L. A.,
477 Guasco, T. L., Corrigan, C. E., Pedler, B. E., Azam, F., Aluwihare, L. I., Bertram,
478 T. H., Roberts, G. C., Grassian, V. H., Prather, K. A.: Impact of marine
479 biogeochemistry on the chemical mixing state and cloud forming ability of nascent
480 sea spray aerosol, *Journal of Geophysical Research: Atmospheres.*, 118(15), 8553-
481 8565, <https://doi.org/10.1002/jgrd.50598>, 2013.

482 Cheung, H. C., Chou, C. C. K., Lee, C. S. L., Kuo, W. C., Chang, S. C.: Hygroscopic
483 properties and cloud condensation nuclei activity of atmospheric aerosols under
484 the influences of Asian continental outflow and new particle formation at a coastal
485 site in eastern Asia, *Atmospheric Chemistry and Physics.*, 20(10), 5911-5922,
486 <https://doi.org/10.5194/acp-20-5911-2020>, 2020.

487 Chen, L., Zhang, F., Zhang, D., Wang, X., Song, W., Liu, J., Ren, J., Jiang, S., Li, X.,
488 and Li, Z.: Measurement report: Hygroscopic growth of ambient fine particles
489 measured at five sites in China, *Atmospheric Chemistry and Physics.*, 22, 6773-
490 6786, <https://doi.org/10.5194/acp-22-6773-2022>, 2022.

491 Cai, J., Chu, B., Yao, L., Yan, C., Heikkinen, L. M., Zheng, F., Li, C., Fan, X., Zhang,
492 S., Yang, D., Wang, Y., Kokkonen, T. V., Chan, T., Zhou, Y., Dada, L., Liu, Y., He,
493 H., Paasonen, P., Kujansuu, J. T., Petäjä, T., Mohr, C., Kangasluoma, J., Bianchi,
494 F., Sun, Y., Croteau, P. L., Worsnop, D. R., Kerminen, V. M., Du, W., Kulmala, M.,
495 & Daellenbach, K. R.: Size-segregated particle number and mass concentrations
496 from different emission sources in urban Beijing, *Atmospheric Chemistry and*
497 *Physics.*, 20(21), 12721-12740, <https://doi.org/10.5194/acp-20-12721-2020>, 2020.

498 Cai, M., Tan, H., Chan, C. K., Qin, Y., Xu, H., Li, F., Schurman, M. I., Liu, L., Zhao,
499 J.: The size-resolved cloud condensation nuclei (CCN) activity and its prediction
500 based on aerosol hygroscopicity and composition in the Pearl Delta River (PRD)
501 region during wintertime 2014, *Atmospheric Chemistry and Physics.*, 18(22),
502 16419-16437, <https://doi.org/10.5194/acp-18-16419-2018>, 2018.

503 Ching, J., Fast, J., West, M., Riemer, N.: Metrics to quantify the importance of mixing
504 state for CCN activity, *Atmospheric Chemistry and Physics.*, 17(12), 7445-7458,
505 <https://doi.org/10.5194/acp-17-7445-2017>, 2017.

506 Ching, J., Adachi, K., Zaizen, Y., Igarashi, Y., Kajino, M.: Aerosol mixing state revealed
507 by transmission electron microscopy pertaining to cloud formation and human
508 airway deposition, *npj Climate and Atmospheric Science.*, 2(1), 22, <https://doi.org/10.1038/s41612-019-0081-9>, 2019.

510 DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C.,
511 Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., Jimenez, J.
512 L.: Field-deployable, high-resolution, time of-flight aerosol mass spectrometer,
513 *Analytical Chemistry.*, 78, 8281-8289, <https://doi.org/10.1021/ac061249n>, 2006.

514 Ervens, B., Cubison, M. J., Andrews, E., Feingold, G., Ogren, J. A., Jimenez, J. L.,
515 Quinn, P. K., Bates, T. S., Wang, J., Zhang, Q., Coe, H., Flynn, M., Allan, J. D.:

516 CCN predictions using simplified assumptions of organic aerosol composition and
517 mixing state: a synthesis from six different locations, *Atmospheric Chemistry and*
518 *Physics.*, 10(10), 4795-4807, <https://doi.org/10.5194/acp-10-4795-2010>, 2010.

519 Fan, X., Liu, J., Zhang, F., Chen, L., Collins, D., Xu, W., Jin, X., Ren, J., Wang, Y., Wu,
520 H., Li, S., Sun, Y., Li, Z.: Contrasting size-resolved hygroscopicity of fine particles
521 derived by HTDMA and HR-ToF-AMS measurements between summer and
522 winter in Beijing: the impacts of aerosol aging and local emissions, *Atmospheric*
523 *Chemistry and Physics.*, 20(2), 915-929, <https://doi.org/10.5194/acp-20-915-2020>,
524 2020.

525 Gong, X., Zhang, J., Croft, B., Yang, X., Frey, M. M., Bergner, N., Chang, R. Y. W.,
526 Creamean, J. M., Kuang, C., Martin, R. V., Ranjithkumar, A., Sedlacek, A. J., Uin,
527 J., Willmes, S., Zawadowicz, M. A., Pierce, J. R., Shupe, M. D., Schmale, J., Wang,
528 J.: Arctic warming by abundant fine sea salt aerosols from blowing snow, *Nature*
529 *Geoscience.*, 16(9), 768-774, <https://doi.org/10.1038/s41561-023-01254-8>, 2023.

530 Gysel, M., McFiggans, G. B., Coe, H.: Inversion of tandem differential mobility
531 analyser (TDMA) measurements, *Journal of Aerosol Science.*, 40(2), 134-151,
532 <https://doi.org/10.1016/j.jaerosci.2008.07.013>, 2009.

533 Hughes, M., Kodros, J. K., Pierce, J. R., West, M., Riemer, N.: Machine learning to
534 predict the global distribution of aerosol mixing state metrics, *Atmosphere.*, 9(1),
535 15, <https://doi.org/10.3390/atmos9010015>, 2018.

536 Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Daellenbach, K. R.,
537 Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns,
538 E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G.,
539 Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad,
540 I. E., Prévôt, A. S.: High secondary aerosol contribution to particulate pollution
541 during haze events in China, *Nature.*, 514(7521), 218-222, <https://doi.org/10.1038/nature13774>, 2014.

543 IPCC. Summary for Policymakers. In *Climate Change 2021: The Physical Science*
544 *Basis. Contribution of Working Group I to the Sixth Assessment Report of the*

545 Intergovernmental Panel on Climate Change; Cambridge University Press:
546 Cambridge, United Kingdom and New York, NY, USA, 2021.

547 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll,
548 J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K.
549 S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D.,
550 Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y., Tian, J., Laaksonen, A.,
551 Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson,
552 J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A., Onasch, T. B.,
553 Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F.,
554 Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R.,
555 Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J., Zhang, Y., Dzepina,
556 K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M.,
557 Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U.,
558 Worsnop, D. R.: Evolution of organic aerosols in the atmosphere, *Science*,
559 326(5959), 1525-1529, <https://doi.org/10.1126/science.1180353>, 2009.

560 Liu, J., Zhang, F., Ren, J., Chen, L., Zhang, A., Wang, Z., Zou, S., Xu, H., Yue, X.: The
561 evolution of aerosol mixing state derived from a field campaign in Beijing:
562 implications for particle aging timescales in urban atmospheres, *Atmospheric
563 Chemistry and Physics*, 25(9), 5075-5086, <https://doi.org/10.5194/acp-25-5075-2025>, 2025.

564

565 Liu, P., Song, M., Zhao, T., Gunthe, S. S., Ham, S., He, Y., Qin, Y., Gong, Z., Amorim,
566 C. J., Bertram, K. A., Martin, S. T.: Resolving the mechanisms of hygroscopic
567 growth and cloud condensation nuclei activity for organic particulate matter,
568 *Nature communications*, 9(1), 4076, <https://doi.org/10.1038/s41467-018-06622-2>, 2018.

569

570 Lance, S., Nenes, A., Medina, J., Smith, J. N.: Mapping the operation of the DMT
571 continuous flow CCN counter, *Aerosol Science and Technology*, 40(4), 242-254,
572 <https://doi.org/10.1080/02786820500543290>, 2006.

573 Manavi, S. E. I., Aktypis, A., Siouti, E., Skyllakou, K., Myriokefalitakis, S., Kanakidou,

574 M., Pandis, S. N.: Atmospheric aerosol spatial variability: Impacts on air quality
575 and climate change, *One Earth.*, 8(3),
576 <https://doi.org/10.1016/j.oneear.2025.101237>, 2025.

577 Ovadnevaite, J., Ceburnis, D., Leinert, S., Dall'Osto, M., Canagaratna, M., O'Doherty,
578 Berresheim, H., O'Dowd, C.: Submicron NE Atlantic marine aerosol chemical
579 composition and abundance: Seasonal trends and air mass categorization, *Journal
580 of Geophysical Research: Atmospheres.*, 119, 11850-11863,
581 <https://doi.org/10.1002/2013JD021330>, 2014.

582 Pan, Z., Mao, F., Rosenfeld, D., Zhu, Y., Zang, L., Lu, X., Thornton, J. A., Holzworth,
583 R. H., Yin, J., Efraim, A., Gong, W.: Coarse Sea spray inhibits lightning, *Nature
584 Communications.*, 13(1), 4289, <https://doi.org/10.1038/s41467-022-31714-5>,
585 2022.

586 Petters, M. D., Kreidenweis, S. M.: A single parameter representation of hygroscopic
587 growth and cloud condensation nucleus activity, *Atmospheric Chemistry and
588 Physics.*, 7(8), 1961-1971, <https://doi.org/10.5194/acp-7-1961-2007>, 2007.

589 Padró, L. T., Moore, R. H., Zhang, X., Rastogi, N., Weber, R. J., and Nenes, A.: Mixing
590 state and compositional effects on CCN activity and droplet growth kinetics of
591 size-resolved CCN in an urban environment, *Atmospheric Chemistry and Physics.*,
592 2012, 12, 10239-10255, <https://doi.org/10.5194/acp-12-10239-2012>, 2012.

593 Perkins, R. J., Marinescu, P. J., Levin, E. J. T., Collins, D. R., Kreidenweis, S. M.: Long-
594 and short-term temporal variability in cloud condensation nuclei spectra over a
595 wide supersaturation range in the Southern Great Plains site, *Atmospheric
596 Chemistry and Physics.*, 22(9), 6197-6215, <https://doi.org/10.5194/acp-22-6197-2022>, 2022.

598 Rosenfeld, D., Zhu, Y., Wang, M., Zheng, Y., Goren, T., Yu, S.: Aerosol- driven droplet
599 concentrations dominate coverage and water of oceanic low-level clouds, *Science.*,
600 363(6427), <https://doi.org/10.1126/science.aay4194>, 2019.

601 Riemer, N., Ault, A. P., West, M., Craig, R. L., Curtis, J. H.: Aerosol mixing state:
602 Measurements, modeling, and impacts, *Reviews of Geophysics.*, 57(2), 187-249,
603 <https://doi.org/10.1029/2018RG000615>, 2019.

604 Ren, J., Zhang, F., Wang, Y., Collins, D., Fan, X., Jin, X., Xu, W., Sun, Y., Cribb, M.,
605 Li, Z.: Using different assumptions of aerosol mixing state and chemical
606 composition to predict CCN concentrations based on field measurements in urban
607 Beijing, *Atmospheric Chemistry and Physics.*, 18(9), 6907-6921,
608 <https://doi.org/10.5194/acp-18-6907-2018> 2018.

609 Ramachandran, S., Srivastava, R.: Mixing states of aerosols over four environmentally
610 distinct atmospheric regimes in Asia: coastal, urban, and industrial locations
611 influenced by dust, *Environmental Science and Pollution Research.*, 23, 11109-
612 11128, <https://doi.org/10.1007/s11356-016-6254-8>, 2016.

613 Ren, J., Zhang, F., Chen, L., Cao, G., Liu, M., Li, X., Wu, H., Cheng, Y., and Li, Z.:
614 Identifying the hygroscopic properties of fine aerosol particles from diverse
615 sources in urban atmosphere and the applicability in prediction of cloud nuclei,
616 *Atmos. Environ.*, 298, 119615, <https://doi.org/10.1016/j.atmosenv.2023.119615>,
617 2023.

618 Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., Pöschl,
619 U.: Calibration and measurement uncertainties of a continuous-flow cloud
620 condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate
621 and sodium chloride aerosol particles in theory and experiment, *Atmospheric
622 Chemistry and Physics.*, 8(5), 1153-1179, <https://doi.org/10.5194/acp-8-1153-2008>, 2008.

624 Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B., Jimenez, J.
625 L., Kuang, C., Laskin, A., Martin, S. T., Ng, N. L., Petaja, T., Pierce, J. R., Rasch,
626 P. J., Roldin, P., Seinfeld, J. H., Shilling, J., Smith, J. N., Thornton, J. A., Volkamer,
627 R., Wang, J., Worsnop, D. R., Zaveri, R. A., Zelenyuk, A., Zhang, Q.: Recent
628 advances in understanding secondary organic aerosol: Implications for global
629 climate forcing, *Reviews of Geophysics.*, 55(2), 509-559,

630 <https://doi.org/10.1002/2016RG000540>, 2017.

631 Stevens, R., and Dastoor, A.: A Review of the Representation of Aerosol Mixing State
632 in Atmospheric Models, *Atmosphere.*, 10, 168,
633 <https://doi.org/10.3390/atmos10040168>, 2019.

634 Sotiropoulou, R. E. P., Nenes, A., Adams, P. J., Seinfeld, J. H.: Cloud condensation
635 nuclei prediction error from application of Köhler theory: Importance for the
636 aerosol indirect effect, *Journal of Geophysical Research: Atmospheres.*, 112(D12),
637 <https://doi.org/10.1029/2006JD007834>, 2007.

638 Schill, S. R., Collins, D. B., Lee, C., Morris, H. S., Novak, G. A., Prather, K. A., Quinn,
639 P. K., Sultana, C. M., Tivanski, A. V., Zimmermann, K., Cappa, C. D., Bertram, T.
640 H.: The impact of aerosol particle mixing state on the hygroscopicity of sea spray
641 aerosol, *ACS central science.*, 1(3), 132-141,
642 <https://doi.org/10.1021/acscentsci.5b00174>, 2015.

643 Stokes, R. H., Robinson, R. A.: Interactions in aqueous nonelectrolyte solutions. I.
644 Solute-Solvent equilibria, *Journal of Physical Chemistry.*, 70(7), 2126-2130,
645 <https://doi.org/10.1021/j100879a010>, 1966.

646 Virtanen, A., Joutsensaari, J., Kokkola, H., Partridge, G. D., Blichner, S., Seland, Ø.,
647 Holopainen, E., Tovazzi, E., Lipponen, A., Mikkonen, S., Leskinen, A., Hyvärinen,
648 A., Zieger, P., Krejci, R., Ekman, A. M. L., Riipinen, I., Quaas, J., Romakkaniemi,
649 S.: High sensitivity of cloud formation to aerosol changes, *Nature Geoscience.*, 1-
650 7, <https://doi.org/10.1038/s41561-025-01662-y>, 2025.

651 Winkler, P.: The growth of atmospheric aerosol particles as a function of the relative
652 humidity—II. An improved concept of mixed nuclei, *Journal of Aerosol Science.*,
653 4(5), 373–387, [https://doi.org/10.1016/0021-8502\(73\)90027-X](https://doi.org/10.1016/0021-8502(73)90027-X), 1973.

654 Wang, J., Cubison, M. J., Aiken, A. C., Jimenez, J. L., Collins, D. R.: The importance
655 of aerosol mixing state and size-resolved composition on CCN concentration and
656 the variation of the importance with atmospheric aging of aerosols, *Atmospheric
657 Chemistry and Physics.*, 10(15), 7267-7283, <https://doi.org/10.5194/acp-10-7267-2010>, 2010.

659 Xu, W., Ovadnevaite, J., Fossum, K. N., Lin, C., Huang, R.-J., O'Dowd, C., Ceburnis,
660 D.: Seasonal trends of aerosol hygroscopicity and mixing state in clean marine and
661 polluted continental air masses over the Northeast Atlantic, *Journal of Geophysical*
662 *Research: Atmospheres.*, 126, e2020JD033851,
663 <https://doi.org/10.1029/2020JD033851>, 2021a.

664 Xu, W., Fossum, K. N., Ovadnevaite, J., Lin, C., Huang, R. J., O'Dowd, C., Ceburnis,
665 D.: The impact of aerosol size-dependent hygroscopicity and mixing state on the
666 cloud condensation nuclei potential over the north-east Atlantic, *Atmospheric*
667 *Chemistry and Physics.*, 21(11), 8655-8675, <https://doi.org/10.5194/acp-21-8655-2021>, 2021b.

668 Xu, W., Ovadnevaite, J., Fossum, K. N., Lin, C., Huang, R. J., O'Dowd, C., Ceburnis,
669 D.: Aerosol hygroscopicity and its link to chemical composition in the coastal
670 atmosphere of Mace Head: marine and continental air masses, *Atmospheric*
671 *Chemistry and Physics.*, 20(6), 3777-3791, <https://doi.org/10.5194/acp-20-3777-2020>, 2020.

672 Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., Xie, C., Zhou, W., Du, W., Li, J.,
673 Fu, P., Wang, Z., Worsnop, D. R., Coe, H.: Changes in aerosol chemistry from
674 2014 to 2016 in winter in Beijing: Insights from high-resolution aerosol mass
675 spectrometry, *Journal of Geophysical Research: Atmospheres.*, 124, 1132-1147,
676 <https://doi.org/10.1029/2018JD029245>, 2019.

677 Xu, W., Ovadnevaite, J., Fossum, K. N., Lin, C., Huang, R. J., Ceburnis, D., O'Dowd,
678 C.: Sea spray as an obscured source for marine cloud nuclei, *Nature Geoscience.*,
679 15(4), 282-286, <https://doi.org/10.1038/s41561-022-00917-2>, 2022.

680 Xu, W., Ovadnevaite, J., Fossum, K. N., Huang, R. J., Huang, D., Zhong, H., Gu, Y.,
681 Lin, C., Huang, C., O'Dowd, C., Ceburnis, D.: Condensation of organic-inorganic
682 vapours governs the production of ultrafine secondary marine cloud nuclei,
683 *Communications Earth & Environment.*, 5(1), 359,
684 <https://doi.org/10.1038/s43247-024-01519-z>, 2024.

685 Xie, C., He, Y., Lei, L., Zhou, W., Liu, J., Wang, Q., Xu, W., Qiu, Y., Zhao, J., Sun, J.,

688 Li, L., Li, M., Zhou, Z., Fu, P., Wang, Z., Sun, Y.: Contrasting mixing state of black
689 carbon-containing particles in summer and winter in Beijing, *Environmental*
690 *Pollution.*, 263, 114455, <https://doi.org/10.1016/j.envpol.2020.114455>, 2020.

691 Ye, Q., Gu, P., Li, H. Z., Robinson, E. S., Lipsky, E. M., Kaltsonoudis, C., Lee, A. K.
692 Y., Apte, J. S., Robinson, A. L., Sullivan, R. C., Presto, A. A., Donahue, N. M.:
693 Spatial variability of sources and mixing state of atmospheric particles in a
694 metropolitan area, *Environmental Science & Technology.*, 52, 6807-6815,
695 <https://doi.org/10.1021/acs.est.8b01011>, 2018.

696 Yuan, L., and Zhao, C.: Quantifying particle-to-particle heterogeneity in aerosol
697 hygroscopicity, *Atmospheric Chemistry and Physics.*, 23, 3195-3205,
698 <https://doi.org/10.5194/acp-23-3195-2023>, 2023.

699 Yang, F., Chen, H., Du, J., Yang, X., Gao, S., Chen, J., Geng, F.: Evolution of the mixing
700 state of fine aerosols during haze events in Shanghai, *Atmospheric Research.*, 104:
701 193-201, <https://doi.org/10.1016/j.atmosres.2011.10.005>, 2012.

702 Zheng, Z., West, M., Zhao, L., Ma, P.-L., Liu, X., and Riemer, N.: Quantifying the
703 structural uncertainty of the aerosol mixing state representation in a modal model,
704 *Atmospheric Chemistry and Physics.*, 21, 17727–17741,
705 <https://doi.org/10.5194/acp-21-17727-2021>, 2021.

706 Zheng, Z., Curtis, J. H., Yao, Y., Gasparik, J. T., Anantharaj, V. G., Zhao, L., West, M.,
707 Riemer, N.: Estimating submicron aerosol mixing state at the global scale with
708 machine learning and Earth system modeling, *Earth and Space Science.*, 8(2),
709 e2020EA001500, <https://doi.org/10.1029/2020EA001500>, 2021.

710 Zdanovskii, A.: New methods for calculating solubilities of electrolytes in
711 multicomponent systems, *Zh. Fiz. Khim. C*, 22, 1475–1485, 1948.

712 Zhong, H., Huang, R. J., Lin, C., Xu, W., Duan, J., Gu, Y., Huang, W., Ni, H.; Zhu, C.,
713 You, Y., Wu, Y., Zhang, R., Ovadnevaite, J., Ceburnis, D., O'Dowd, C.:
714 Measurement report: On the contribution of long-distance transport to the
715 secondary aerosol formation and aging, *Atmospheric Chemistry and Physics.*, 22,
716 9513-9524, <https://doi.org/10.5194/acp-22-9513-2022>, 2022.