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Abstract. The clean energy transition demands a significant increase in exploration for critical minerals, particularly

rare earth elements (REEs), beyond the well-explored surface deposits. Discovery rates have been declining for decades,

escalating the need for new exploration methodologies. Deep learning (DL) utilizes multi-layer neural networks to10

automatically model high-level abstractions of data, extracting information relevant to the target task, thereby

positioning itself as a potentially powerful tool for mineral prediction. But the non-linear and highly heterogeneous

characteristics of complex exploration datasets paired with sparse, imbalanced training data and a lack of

interpretability represent significant challenges. In this study, we have developed DEEP-SEAM v1.0, a novel

explainable semi-supervised DL framework for prospectivity mapping of REE mineralisation in Northern Curnamona15

Province, South Australia. This framework proposes a comprehensive data preprocessing pipeline and introduces a

semi-supervised anomaly detection DL model, termed the Deviation Network (DevNet). DevNet leverages a limited

number of positive samples alongside a large number of unlabelled samples to effectively establish the mapping

between multi-source exploration data and mineralisation probability. The results indicate that prospective

mineralisation areas exhibit a strong spatial coupling with known REE deposits, with high-probability mineralisation20

areas primarily concentrated in faulted regions, felsic granites, and Mesoproterozoic strata. To address concerns about

the poor interpretability of DL models, we incorporate a post-hoc model interpretation technique known as the SHapley

Additive exPlanations method. The method facilitates an improved understanding of the decision-making mechanisms

and logic underlying DevNet. By comparing DEEP-SEAM’s decisions with our understanding of mineral systems, we

not only enhance the model’s transparency and interpretability but also strengthen the reliability and credibility of the25

predicted prospective mineralisation areas.
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1. Introduction

Rare earth elements (REEs) comprise the lanthanides, ranging from lanthanum (La) to lutetium (Lu), and typically

include yttrium (Y) and scandium (Sc) due to their similar chemical properties (Connelly et al., 2005). REEs are crucial

in modern industries and indispensable components of defence systems, green technologies, and electronic applications30

(Dushyantha et al., 2020). For instance, rare earth alloys and permanent magnets are extensively used in renewable

energy technologies, including electric vehicles, energy storage systems, solar panels, and wind turbines (Zhou et al.,

2016). The growing demand for REEs will continue to be driven by advancements in both traditional applications and

emerging technologies (Alonso et al., 2012; Dushyantha et al., 2020; Goodenough et al., 2018). Currently, the majority

of global REE supply is derived from natural (primary) resources (Goodenough et al., 2018). REE mineral deposits are35

found in various types of rocks, including igneous, sedimentary, and metamorphic formations (Smith et al., 2016). The

concentration and distribution of REEs in these deposits are influenced by various geological processes, ranging from

deep magmatic activity to surface weathering (Jaireth et al., 2014; Smith et al., 2016). The interaction of different

geological processes and complex formation mechanisms further complicates the exploration of REE deposits.

Moreover, overburden layers introduce additional difficulties (Cheng, 2012). Overburden may dilute or alter signals that40

reflect mineralisation, and masking effects can reduce the accuracy of geological data, thereby further increasing the

challenges of exploration (Cheng, 2012; Xiong et al., 2018).

Creating low-cost mineral prospectivity maps is essential for outlining potential ore bodies and guiding further data

collection and discovery in mineral exploration. Mineral prospectivity mapping (MPM) is a computer-supported

workflow that integrates multiple criteria across several stages to estimate where the target-type mineral deposits are45

likely to occur within a defined area (Singer, 1993; Zuo et al., 2021). MPM involves integrating information from

various geoscientific datasets, including geological mapping, geochemical surveys, geophysical measurements, and

satellite-based remote sensing (Brown et al., 2000; Zuo, 2020). These datasets reflect key mineralisation processes and

mineral systems components, enabling the recognition of complex spatial distribution patterns of geological features

associated with mineral deposits (Carranza, 2009; McCuaig and Hronsky, 2014). By employing data-driven,50

knowledge-driven, or hybrid models, the intrinsic relationships between these features and mineral deposits can be

revealed, leading to the generation of mineral prospectivity maps (Zuo, 2020). In recent years, new theories and data

analysis methods, such as various machine learning (ML) techniques, have been introduced into MPM workflows,

becoming powerful tools for addressing mineral prediction challenges (Chen and Wu, 2017; Rodriguez-Galiano et al.,

2015; Singer and Kouda, 1996; Zuo and Carranza, 2011). ML methods enable more efficient analysis and integration of55
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geographical information from different sources, thereby optimising the exploration process, improving the success rate

of mineral prospecting, and reducing costs (Farahbakhsh et al., 2023).

Traditional ML techniques are limited in processing raw natural data and typically rely on manually engineered

processors to convert raw observations into suitable internal representations or model-ready feature vectors (LeCun et

al., 2015). Deep learning (DL), a subfield of ML, offers a end-to-end representation learning approach that employs60

multiple levels of abstraction (LeCun et al., 2015; Nguyen et al., 2019). It directly extracts and transforms features

through a cascade of multiple layers of non-linear processing units, excelling at uncovering complex structures in

high-dimensional data (Bergen et al., 2019; LeCun et al., 2015). By utilising multiple layers of abstraction, DL can

effectively capture the nonlinear relationships between multi-source heterogeneous exploration data and mineralisation

probability (Sun et al., 2020; Zuo and Xu, 2023; Zuo et al., 2023). A common challenge in applying DL to MPM is65

insufficient positive samples (known mineral occurrences) to effectively generalise the model’s attributes (Granek and

Haber, 2015). Additionally, mineralisation processes vary significantly across geological periods, regions, and

environments. Rare mineralisation events can cause supervised DL models to struggle when identifying

mineralisation-related information (Cheng, 2007; Granek and Haber, 2015). These models often tend to favour the

majority classes while overlooking the minority classes of interest, which can hinder their ability to detect rare but70

critical mineralisation signals (Farahbakhsh et al., 2023; Leevy et al., 2018; Li et al., 2021; Yang et al., 2022).

Conversely, unsupervised DL models dispense with labeled training sets, circumventing the challenge of acquiring

large-scale positive samples. As a result, they have been widely applied in MPM, offering a promising solution to these

limitations (Xiong et al., 2018; Zuo et al., 2022). The core idea of popular unsupervised DL models for MPM is to learn

latent embeddings of the data and then compare the reconstructed data with the original (Xiong et al., 2018). Anomalous75

samples, such as mineralized regions, are difficult to effectively encode into the latent representations learned from the

abundant background data, leading to significant reconstruction errors (Ruff et al. 2021). These unsupervised DL

models separate feature extraction and anomaly scoring processes, which may result in suboptimal data representations

and low-quality reconstruction errors (Pang et al. 2019; Gao et al. 2021). A critical issue of their application in MPM is

that unsupervised DL models lack prior knowledge regarding the spatial distribution of actual mineral deposits, which is80

essential to guide the optimization process. This absence of domain-specific knowledge makes the model prone to

misclassifying noisy data or other non-mineralisation-related information as anomalies related to the target

mineralisation task (Pang et al. 2023; Luo et al., 2024).

In a response to these challenges, semi-supervised learning emerges as a promising approach that integrates the benefits

of supervised and unsupervised paradigms (Ruff et al. 2019). This is particularly beneficial for anomaly detection (AD),85
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where the identification of rare events is crucial. Semi-supervised AD algorithms work by utilizing a limited number of

labeled anomaly samples in conjunction with a large quantity of unlabelled samples to learn decision boundaries that

isolate outliers from expected or normal data (Zhang et al. 2018). Studies have demonstrated that with as little as 1%

labeled anomalies, appropriate semi-supervised methods can achieve effective performance (Pang et al. 2019). However,

some semi-supervised AD algorithms assume that anomalous samples share similar attributes (Liu et al. 2002; 2003). In90

contrast, the formation processes of different types of mineral deposits vary, leading to differences in the exploration

data features that reflect these distinct geological processes. Pang et al. (2019) proposed a semi-supervised neural

architecture, known as Deviation Network (DevNet), which directly optimizes anomaly scores through an end-to-end

network. This method leverages a few labeled outliers as prior information to accommodate anomalies exhibiting

different abnormal behaviors. The approach has demonstrated excellent performance in fields such as network security95

intrusion detection, gear pitting fault detection, and geochemical anomaly identification (Alper et al. 2023; Zheng et al.

2024; Luo et al. 2024).

In addition, although DL models have demonstrated excellent performance in MPM, their complexity and “black-box”

nature make it difficult to interpret the model’s predictions (Mou et al., 2023; Zuo et al., 2023). In the field of mineral

prediction, which is characterized by high risks and substantial economic value, the issue of transparency is of particular100

concern. Decision-making in MPM requires not only accurate predictions but also a comprehensive understanding of

how these predictions are derived (Hronsky and Kreuzer, 2019). This involves addressing questions such as, 'What

factors drive the model's predictions?' Such insights enable geologists and experts from related fields to integrate their

knowledge, validate the credibility of the predictions, and ultimately help mitigate exploration risks. Thus, improving

the interpretability of DL models has become a key focus in research on mineral resource prediction.105

Building on a foundational work of Luo et al. (2024), this study presents DEEP-SEAM v1.0, an explainable

semi-supervised DL framework for MPM that integrates multi-source exploration data. By addressing the limitations

inherent in the previous study that focused exclusively on single-source geochemical data, this approach seeks to

overcome challenges associated with inadequate reflection of potential mineralisation information and insufficient

model interpretability. This study targets REE mineralisation in the northern part of the Curnamona Province in South110

Australia, utilising a sizable open-access exploration dataset to generate heterogeneous evidential layers reflecting the

target mineralisation, including geological data layers, geophysical and remote sensing layers, and geochemical data

layers. Appropriate preprocessing methods are applied to each type of data to achieve effective data mining. To reduce

interference from redundant information and noise in MPM, we employ Spearman correlation analysis to eliminate

geophysical and remote sensing features with a high correlation. Additionally, robust principal component analysis115
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(RPCA) is applied to the geochemical data to extract key geochemical information relevant to geological processes

while minimizing the influence of noise and outliers. We employ an end-to-end semi-supervised AD DevNet,

leveraging a limited number of labelled positive samples alongside a large set of unlabelled samples to establish a

coupling relationship between diverse evidential layers and the spatial distribution of mineral deposits. Additionally, the

study incorporates a model interpretability technique, i.e., SHapley Additive exPlanations (SHAP), to explain the120

model’s predictions, thereby enhancing transparency and increasing the credibility of the results.

2. Geological Setting and REE Mineralisation

The Curnamona Province is a large, near-circular geological terrane located in the northeastern part of South Australia

(Preiss, 2000). It extends eastward from the Olary region, crossing into New South Wales (Newton et al., 2003). The

province comprises metamorphosed sedimentary and igneous rocks from the Paleoproterozoic to Mesoproterozoic eras125

and is a region of significant mineral potential (Rutherford et al., 2007). It hosts numerous medium- to large-scale hard

rock mineral systems, making it one of South Australia’s most important base and precious metal-bearing geological

formations (Robertson et al., 1998). Among these, the world-class Broken Hill lead-zinc-silver-gold deposit is the most

renowned, along with significant copper-gold (molybdenum), uranium-REE, tin-tungsten, and silver-lead deposits

(Robertson et al., 1998). Much of the Curnamona Province is overlain by younger Cambrian to Cenozoic sedimentary130

rocks, particularly in the central region (Williams et al., 2009). The geological evolution of the province has

experienced several significant tectonic, magmatic, and metamorphic events, primarily during the Paleoproterozoic and

Mesoproterozoic periods. These events have shaped the region’s complex geological architecture and endowed it with

substantial mineral resource potential.

The REE deposits (Table 1) in the study area are located within the predominantly Mesoproterozoic Mount Painter and135

Mount Babbage inliers of the Moolawatana Domain located in the north-western Curnamona Province (Fig. 1). The

most recent geology map presentation for the study area is the Mount Painter region by Hore (2015). Although having

limited research, the REE deposits are considered to be primarily of skarn type but may equally include either

hydrothermal, metamorphic or metasomatic origins. For example, previous studies have demonstrated that the

Palaeozoic to Early Cretaceous Radium Ridge Breccia (with a Mesoproterozoic precurser), within the southern Mount140

Painter Inlier, contain significant REE mineralisation represented by 360 Ma monazites of hydrothermal origin (Alley

and Hore, 2022; Elburg et al., 2013; Drexel and Major, 1990; Hore et al., 2020a; Hore et al., 2020b; Robertson et al.,

1998). Additionally, mid-Paleozoic localised high-grade metamorphism affected older rocks along the central eastern
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flank of the Mount Painter Inlier, generating monazite-rich biotite schists that exhibit remarkable REE enrichment and

localised mobilization (Robertson et al., 1998). Another area of significant REE mineralisation is hosted in the145

metasomatised Mesoproterozoic Yerila Gneiss of the Mount Babbage Inlier (Wülser, 2009). There are also several

smaller isolated pockets of REE-rich lithologies scattered throughout the inliers whose origins require further

investigation.

The Mount Painter region also contains substantial primary and secondary uranium resources (Bogacz, 2006; Elburg et

al., 2013; Robertson et al., 1998; Wülser et al., 2011), with mineralisation likely originating from uranium-, thorium-,150

and REE-rich granitic bodies, meta-volcanics and meta-sediments located within the inliers (Robertson et al., 1998).

Also, the region holds potential for stratiform and volcanic-associated base metal mineralisation, including Cu, Sn and

W, hosted within metamorphosed Meso- to Neo-Proterozoic sedimentary and volcanic rock units (Hore et al., 2020b;

Robertson et al., 1998; Sheard et al., 1992). Many of the Mount Painter region granites are extremely enriched in heat

producing elements (U, Th, K) with the region being notable for the heat generated by radiogenic decay of these155

elements. These High Heat Producing Granites (HHPG) initiated convectional sub-surface fluid migration and establish

a region of high geothermal gradient metamorphism (Kovacs, 2005; Neumann et al., 2000; Sandiford et al., 2002). The

region has experienced a prolonged history of these granitic intrusions and consequential localized radiogenic heating,

spanning from the early Mesoproterozoic during the Delamerian Orogeny through to the Late Paleozoic, which led to a

series and pulses of magmatic and hydrothermal activity. These geological processes have initiated sodic, potassic or160

chloritic alteration of the granites, locally altering initial lithologies to gneisses and schists, and also facilitated the

formation of hydrothermal vein-type, breccia-hosted, and skarn-type mineral deposits of Au, Cu, U, Sn, and REEs.
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Figure 1: (a) Simplified stratigraphic map and REE mineral deposits in the Mount Painter and Mount Babbage inliers of the165
north-western Curnamona Province; (b) Geographic location of the study area, after Jagodzinski and Fricke (2010); (c)

Outline map of Australia with state borders.
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Table 1: Overview of REE mineral deposit characteristics (created by Steve Hore).

Location Name Commodity Suggested mode of formation Class code

A Yerila gneiss Co, REE, Th, U Metamorphosed and metasomatised

sediments

Occurrence

B Yerila East REE Metamorphosed and metasomatised

sediments

Occurrence

C Moolawatana Cu, REE Hydrothermal, Pneumatolytic or

contact metamorphism

Occurrence

D Gunsight Prospect Cu, Co, REE, U Pneumatolytic and skarn-type Prospect

E Four Mile Creek REE Metamorphosed and metasomatised

sediments

Occurrence

F Armchair Prospect U, Cu, REE,

U3O8

Hydrothermal Deposit

G Mount Gee East

Deposit

U, REE Hydrothermal Occurrence

3. Materials and Methods170

3.1. Data Layers and Features

Study data are sourced from the South Australian Resources Information Gateway (https://map.sarig.sa.gov.au). A

conceptual model can be established by analysing the geological setting and mineralisation type. Geological,

geophysical (magnetic, gravity, radiometric), remote sensing, and geochemical data, along with a digital elevation

model, are utilised in this study to enable a mappable representation of the conceptual mineralisation model. This175

multidimensional data integration reflects geological processes associated with mineralisation from various

perspectives.

3.1.1. Geological Data Layers

The geological data layers (Table 2), including faults, granitic rocks, and stratigraphic information closely related to

mineralisation, provide critical insights into mineralisation processes, vein distribution, fluid migration, and REE180

enrichment. Existing research indicates that the REE spatial patterns and elemental concentrations within deposits are

https://doi.org/10.5194/egusphere-2025-3283
Preprint. Discussion started: 15 September 2025
c© Author(s) 2025. CC BY 4.0 License.



9

largely controlled by the interplay of rock-forming processes (Dushyantha et al., 2020; Jaireth et al., 2014). Faults

systems act as conduits for hydrothermal fluid migration and mineral precipitation (Curewitz and Karson, 1997). REE

mineralisation associated with skarns is primarily formed from fluids derived from granitoid magmas, and

understanding the distribution of granitic rocks aids in REE deposit exploration (Robertson et al., 1998). Australia’s185

REE mineralisation formation was especially active during the Mesoproterozoic era (Spandler et al., 2020), with known

REE occurrences in the study area showing a close spatial coupling with Mesoproterozoic strata.

3.1.2. Geophysical Data Layers

The Earth’s magnetic field exhibits spatial variations that can be recorded in aeromagnetic surveys. Magnetic

measurements highlight the differences in magnetisation levels within near-surface rocks, aiding geological mapping190

and the interpretation of concealed bedrock structures (Sharma, 1987). Intrusive igneous bodies, particularly

carbonatite-alkalic intrusions, alkaline intrusions, and pegmatites, serve as significant sources of heat, materials, and

fluids for REE mineralisation (Long et al., 2012). Magnetic survey techniques are regarded as exceptionally efficacious

geophysical methodologies for identifying carbonatite-alkalic intrusive bodies, which commonly produce strong

positive magnetic anomalies with circular to near-circular, crescent-shaped, or ring-like geometries (Simandl and195

Paradis, 2018; Thomas et al., 2016). The magnetic data (Table 2) utilised in this study include total magnetic intensity,

processed using various methods (see Table 2 for details) to enhance the accuracy, resolution, and interpretability of the

analysis. The total magnetic intensity grid is generated from aeromagnetic survey data with a resolution of 80 metres.

Gravity surveys rely on subtle variations in the gravitational field, which are related to differences in the density of

subsurface materials (Reynolds, 2011). Alkaline igneous rock systems, such as carbonatites, are often significant200

parental rocks for skarn-type REE deposits (Goodenough et al., 2021). Gravity surveys are typically employed to study

alkaline igneous rock systems, as these rocks generally exhibit high-density characteristics and can be associated with

positive gravity anomalies and pronounce density contrasts compared to surrounding rocks (Drenth, 2014). The gravity

data (Table 2) for the study area were subjected to Bouguer anomaly correction. Additionally, the dataset includes

vertically derived gravity gradient data processed using first vertical derivatives and residual gravity data obtained by205

subtracting a 1000-metres upward-continued grid. All the gravity data are gridded at a resolution of 100 metres.

Radiometric measurement data play a critical role in REE mineral exploration, as they effectively display, interpret, and

help understand underground geological structures and rock characteristics, particularly for rock types that exhibit

significant radiation anomalies (Bustillo Revuelta, 2018). Radiometric surveys yield estimates of K, U, and Th

concentrations using gamma-ray spectrometric analysis. A widespread positive correlation is observed between REEs210
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and radioactive elements in many known REE deposits (Thomas et al., 2016). This positive correlation primarily arises

from the similar geochemical behaviours of U, Th, and REEs, leading to the enrichment of these radioactive elements in

REE minerals such as bastnäsite, monazite, thorite, fluorocarbonate cerium, and zircon (Walters and Lusty, 2011). The

radiometric data (Table 2) utilised in this study include grids of K (in %K), U (in equivalent ppm), and Th (in equivalent

ppm), with these concentrations generated by merging data recorded from various airborne radiometric surveys.215

Additionally, the database includes ground dose estimates derived from the linear combination of K, Th, and U grids.

3.1.3. Remote Sensing Data Layers

The distribution of REEs in igneous and metamorphic rocks is significantly influenced by hydrothermal alteration and

mineralisation processes (Lottermoser, 1992). The study of altered rocks is considered an effective tool for analysing the

properties of mineralising fluids, conditions of mineralisation, and the evolution of hydrothermal alteration (Bedini,220

2011). Remote sensing is an important method for mineral prospecting, utilising hyperspectral and multispectral data to

detect hydrothermally altered minerals with diagnostic spectral absorption characteristics (Pour and Hashim, 2011).

Metasomatism plays a crucial geochemical role in the concentration of REEs, U, Th, and other minerals, with

Na-metasomatism exemplifying this process, typically manifesting as sodium-bearing minerals replacing primary

igneous minerals (Khoshnoodi et al., 2016). In this context, remote sensing products can be used to explore the potential225

associations between the distribution of metasomatic rocks and the occurrence of REE mineralisation. The suite of

ASTER geoscience products (Table 2) used in this study provides fundamental information about the dominant mineral

components of the rocks and soils in the study area.

3.1.4. Digital Elevation Model

Digital elevation models (DEMs) are digital representations of Earth’s topography, created using topographic elevation230

data, effectively representing surface morphology in a numerical array format (Guth et al., 2021). By integrating

elevation data with other exploration datasets, a more comprehensive understanding can be gained of how various

geological processes and environmental conditions influence mineralisation. The DEM (Table 2) for the study area is

based on a 9-second latitude and longitude grid and uses the Geocentric Datum of Australia 1994 coordinate system,

with each grid cell representing the approximate elevation at its centre. The elevation errors in the DEM are closely235

related to terrain complexity: in low-relief areas, the standard error does not exceed 10 metres, while in complex

highland regions, the standard error can reach approximately 60 metres.
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3.1.5. Geochemical Data

Lithogeochemical data can reveal “in situ” geochemical processes related to the underlying geology (Grunsky and

Caritat, 2019). By analysing variations and characteristics of the geochemical composition of rocks, particularly the240

distribution and enrichment of REEs, as well as potential rock types and hydrothermal influences, important insights for

locating REE deposits can be obtained. The geochemical data (Table 2) used in this study encompasses 27 elemental

variables, including trace elements, REEs, and major oxide components, which provide crucial information for

identifying potential REE mineralisation zones.

245

Table 2: List of key data layers used for generating features in this study.

Data Type Data Layer Resolution

Vector Polyline Early Mesoproterozoic and younger (possibly
some re-activated) faults

-

Polygon Felsic granites

Mesoproterozoic strata

Raster Magnetic Total magnetic intensity (TMI) 80 m

Variable reduction to pole (VRTP) of TMI

First vertical derivative of TMI VRTP

Automatic gain control filter of TMI VRTP

Tilt angle of TMI VRTP

Pseudo gravity of TMI VRTP

Analytic signal of TMI VRTP

Gradient of the magnetic strength in TMI VRTP

Amplitude of the total vector of TMI VRTP

Third order Cauchy of TMI VRTP

Vertical component of TMI VRTP

Vertical gradient of TMI VRTP

Gravity Onshore Bouguer gravity anomaly 100 m

First vertical derivative of onshore gravity

Residual onshore gravity
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Radiometic Terrestrial radiation dose 100 m

Potassium concentration

Uranium concentration

Thorium concentration

Remote Sensing Silica index 30 m

Quartz index

Opaque index

MgOH group content

MgOH group composition

Kaolin group index

Gypsum Index

Green vegetation content

Ferrous iron index

Ferrous iron content in MgOH

Ferric oxide content

Ferric oxide composition

FeOH group content

AlOH group content

AlOH group composition

Elevation Digital elevation model 250m

Tabular Lithogeochemistry Ag, As, Au, BaO, Bi, Co, Cr2O3, Cs, Cu, La, Mo,
Nb, Ni, Pb, Rb, Sb, Sc, Sn, SrO, Ta, Th, U3O8,
V, W, Y, Zn, Zr

-

This study incorporates vector, raster, and tabular data layers. The geological data layers are in vector format,

comprising polylines and polygons. To effectively characterise the controlling influence of geological features such as

Early Mesoproterozoic faults, felsic granites, and mesoproterozoic strata on mineralisation, these features are assigned250

values based on their spatial distribution. Grids covering the study area are first generated, and the distance from each

grid point to the nearest geological feature boundary is calculated. The distance data is then normalized and inverted, so

that the value assignment adheres to the “distance-weight” principle：the closer to the centre of the geological feature,
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the higher the assigned value; conversely, the farther away, the lower the value. The value range is defined from 0 to 1.

The raster data comprises geophysical and remote sensing layers, as well as a DEM. The following steps are carried out255

to extract a series of features from these layers for various point sets, including known mineral occurrences and

randomly selected samples. First, statistical features for each target point are extracted by calculating the mean and

standard deviation of raster values within a circular buffer zone with approximately a one-kilometre (km) radius around

each point. These statistics reflect the central tendency and dispersion of the area surrounding the target point. Second,

texture features for each target point are computed using a square window of approximately one km side length around260

each point, based on the calculation of the dissimilarity and correlation of the grey-level co-occurrence matrix (GLCM).

This approach characterises the spatial variability within the area surrounding each point. We extract elevation gradients

in east-west and north-south directions from the DEM data. We then calculate the mean gradient values within a buffer

zone of approximately one km radius around each point to reflect the terrain variation trends. Consequently,

higher-dimensional raster features are generated for each point.265

To address potential issues arising from feature redundancy and multicollinearity in downstream data mining and

analysis, we calculate the Spearman correlation (Hauke and Kossowski, 2011) between the raster features. By

comparing different correlation thresholds, removing features with correlations above the threshold, and evaluating the

effect of the selected features on model performance, we determined 0.65 to be the optimal threshold. The

lithogeochemical data are in tabular format, and to address issues associated with censored data, outliers, and missing270

values, we employ the Limit Replacement Method (VanTrump and Miesch, 1977), Tukey’s boxplot method (Tukey,

1977), and the Random Forest algorithm (Breiman, 2001) for appropriate data processing (Luo et al., 2024). The

detailed procedure can be found in Luo et al. (2024). Based on the location of each point, geochemical samples within

approximately 1.5 km are extracted. The inverse square of the distance is used as a weight to calculate a weighted

average of the geochemical concentrations of these samples, generating the corresponding elemental concentration for275

each point. In cases where corresponding geochemical samples are unavailable, the median value of the elements is

adopted as the elemental value for the point. To address spurious correlations between variables in geochemical data

caused by the closure effect, the Isometric Log-Ratio (ILR) transformation (Egozcue et al., 2003) is applied to “open”

the geochemical composition data. Subsequently, Robust Principal Component Analysis (RPCA) (Filzmoser et al., 2009)

is utilised to extract geochemical information related to geological processes while reducing the effects of noise and280

outliers. Nevertheless, a limitation of the ILR transformation is that the transformed components lose their direct

relationship to the initial input variables. To enable interpretation of the resulting scores and loadings from the RPCA on

ILR-transformed data, spatial transformations are employed to back-transform the principal component (PC) scores,

https://doi.org/10.5194/egusphere-2025-3283
Preprint. Discussion started: 15 September 2025
c© Author(s) 2025. CC BY 4.0 License.



14

facilitating the interpretation of relationships between each PC and the elements (Filzmoser et al., 2009) (Fig. A1). The

back-transformed PC scores are then used as geochemical features.285

3.2. Semi-Supervised Deep Learning Framework

The DL-based framework developed in this study, DEEP-SEAM (Fig. 2), encompasses data cleaning and preprocessing,

redundancy filtering, and noise reduction for multi-source exploration datasets, followed by deep data mining to

identify potentially favourable mineralisation areas within the study area. Additionally, the framework employs a

post-hoc interpretability technique to analyse the contributions of different exploration data features to account for the290

obtained mineralisation probabilities. This study provides corresponding processing solutions for each key step and

produces reliable and credible results for mineral prospectivity delineation. First, data quality has a significant impact

on the performance of DL models. Therefore, this study collects multi-source exploration data and processes it

effectively to reflect geological processes and subsurface geological structures associated with mineralisation. Based on

this, a set of random samples is created in the study area and prepared for division into training and test sets. From the295

random sample set, those located over 5 km from known mineral occurrences are selected as negative samples. 70% of

the negative and positive samples are randomly chosen to form the training set. The remaining 30% of the samples

constituted the testing set. Subsequently, a DevNet, a cutting-edge semi-supervised DL approach, is utilised to learn

from the training data. It is important to note that the DevNet used in the framework can function effectively under

significant class imbalance between positive and negative samples.300

Moreover, the selection of negative samples is not highly sensitive; even if the chosen negative samples contain

potential positive samples, the model still performs well, as it learns the general patterns of the negative sample set. The

model’s performance is evaluated using the testing set to determine the optimal DL model structure. Then, a set of

regular samples is generated within the study area to create a prediction set, and the trained DL model is employed to

generate a mineral prospectivity map for the prediction set. This framework is able to effectively identify prospectivity305

areas associated with mineralisation under the guidance of limited positive samples, while avoiding false targets

generated by statistical noise or interfering geological processes. This study combines a feature attribution method to

analyse the internal mechanisms of model predictions, thereby overcoming the shortcomings of DL approaches

regarding interpretability and the resultant credibility issues of predictive outcomes. This analysis is further integrated

with existing geological knowledge for a comprehensive evaluation, thereby enhancing the reliability of the predictions.310

https://doi.org/10.5194/egusphere-2025-3283
Preprint. Discussion started: 15 September 2025
c© Author(s) 2025. CC BY 4.0 License.



15

Figure 2: Schematic diagram of the DEEP-SEAM framework for MPM.

3.2.1. Deviation Network315

DevNet, proposed by Pang et al. (2019), employs a Gaussian prior and utilises a Z-score-based deviation loss function

to facilitate direct anomaly scores optimisation through an end-to-end neural anomaly score learner (Fig. 3). DevNet

comprises three primary modules, including an anomaly scoring network, a reference score generator, and a deviation

loss.

DevNet differs from the traditional two-step AD methods based on reconstruction error. DevNet establishes a nonlinear320

functional relationship between the input data and anomaly measurements through an end-to-end anomaly scoring
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module. Consider a dataset x={x1,x2,...,xN,xN+1,xN+2,...,xN+K} , xi∈RD , where U ={x1,x2,..,xN} represents the unlabeled

data, and M={xN+1,xN+2,...,xN+k} with M≪N denotes a small dataset of positive samples, which provides prior

knowledge of anomaly patterns for model training. In this study, we utilise a feature representation

learner ψ(∙;Θt) ,where the dot (∙) represents the input to the function, which is constructed with multiple hidden layers to325

map the input data x into an intermediate representation space Q∈RL (Eq. 1), where L denotes the dimensionality of

the space Q resides in. Subsequently, we employ the developed anomaly score learner η(∙;Θs):Q→R to compute

anomaly values from the derived intermediate feature representation (Eq. 2). Combining the above components, the

complete anomaly scoring module ϕ(∙;Θ) is then formulated as shown in Equation 3.

q=ψ x;Θt , where q∈ Q, (1)

η(q;Θs)= k=1
L ωkoqk+ωL+1o� , where Θs = {wo}, wo is a weight matrice, wL+1o is a bias term, (2)

ϕ(x;Θ)=η ψ x;Θt ;Θs , (3)

DevNet integrates a specialized a module designated as a reference score generator, architected to support anomaly330

scores ϕ(x;Θ) learning processes, and to compute a scalar value referred to as the reference score μR∈R. The reference

score represents the average anomaly scores {r1,r2,...,rl} across a randomly chosen subsets of negative samples R. Two

primary strategies exist for producing μR: data-driven and prior-driven methods. In this study, we adopt the prior-driven

approach with μR computed according to the Gaussian prior probability.

r1,r2,…,rl~N(μ,σ2), (4)

μR=
1
l i=1

l ri� , (5)

Where each ri is derived from N μ,σ2 and corresponds to the anomaly score of a randomly selected negative sample.335

The Gaussian prior-based scores μR are used to optimise the anomaly scoring network ϕ(x;Θ) . The deviation is

specified as a Z-score as follows:

dev x = ϕ x;Θ -μR
σR

, (6)

Where σR indicates the standard deviation of the prior-based anomaly score set. The calculated deviation is

subsequently incorporated into the contrastive loss to formulate the deviation loss:

L(ϕ(x;Θ),μR,σR)=(1-y)|dev(x)|+ymax(0,a-dev(x)), (7)

We assign y=1 for an positive (anomalous) sample x, and y=0 for a negative (normal) sample, while a corresponds to340

the Z-score confidence interval parameter.
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Figure 3: Architecture of the DevNet for probability score calculation.

345

3.2.2. Post-Hoc Interpretability

Additive feature attribution methods represent a significant category within the field of explainable DL. These methods

explain individual predictions of DL models by representing the model output as a sum of contributions from individual

input features. The SHAP framework (Lundberg and Lee, 2017), a classical additive feature attribution approach,

integrates previous explanation methods such as local interpretable model-agnostic explanations (LIME; Ribeiro et al.,350

2016) and DL important features (DeepLIFT; Shrikumar et al., 2017), while incorporating Shapley values originating
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from game theory, thus providing both local and global perspectives for model interpretation (Fig. 4). Furthermore,

compared to the aforementioned methods, SHAP is recognised for possessing three ideal properties: local

accuracy—where the explainer exactly matches the original model output when approximating it for a specific input;

missingness—where features absent from the original input must have no contribution; and consistency—where if the355

model is revised to increase the influence of a particular feature, the attribution assigned to that feature must not

decrease, regardless of other features. These three properties ensure the reliability of the explanations.

The Shapley value represents an equitable distribution mechanism for apportioning benefits among participants

according to their individual contributions, originating from economist Lloyd Shapley's foundational work. This

allocation principle can be mathematically expressed as:360

Φ(xi)= S⊆{1,2,...,K}\{i}
|S|!(K-|S|-1)!

K!
[fx(S∪{i})-fx(S)]� , (8)

fx(S)=E[f(x)|xs], (9)

Where S corresponds to a feature subset within the input space. K indicates the set of all inputs. E[f(x)|xs] refers to the

expected value of the function on subset S. Consider a training dataset xi,yi i=1,..,ntrain used to train a predictive model

f(x) (specifically a DevNet in this study). This model aims to establish a mapping as accurately as possible between the

response value y and the input training data x. SHAP provides an interpretable model g(x) to reveal the impact of input

features on the model’s output.365

f(x)=g(x')=ϕ0+ i=1
M ϕixi'� , (10)

Where x' denotes the simplified input, x=hx(x') serving as a function that transform x' to the original x , and

ϕ0=f(hx(0)) represents the model output with all simplified inputs toggled off. Several versions of SHAP, such as

DeepSHAP, Kernel SHAP, LinearSHAP, and TreeSHAP, have been proposed to cater to specific categories of ML

models. In this study, we adopted Kernel SHAP. Kernel SHAP integrates linear LIME and constructs an interpretable

local model by utilising a small background dataset derived from the data, approximating the original model f . This370

approach enhances the sample efficiency and accuracy of SHAP value estimations without relying on specific model

types.
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Figure 4: Illustration of SHAP-based interpretation of model predictions via feature contributions.375

3.2.3. Implementation

The processing steps of this study include multi-source exploration data preprocessing, feature generation, building a

DL model, and interpreting the model, primarily relying on the Python programming language. Additionally, the R

programming language is utilised for the ILR transformation and RPCA of the geochemical data. Notably, the380

construction of DevNet significantly impacts the quality of the mineral prospectivity map. Hyperparameter tuning is

conducted to identify the optimal settings, with the goal of improving the performance of the DL model. The

architecture of the DevNet model is determined by comparing hyperparameter settings, depth, activation functions,

optimisation algorithms, and learning rates of different models based on their receiver operating characteristic (ROC)

curves (Fawcett, 2006) on the testing set. The ROC curve is a common technique for classification model performance385

assessment; it is a two-dimensional plot where the Y-axis represents the true positive rate (TPR) and the X-axis

represents the false positive rate (FPR). The model’s classification performance is typically quantified by the area under

the curve (AUC). The AUC ranges from 0 to 1, summarising the overall performance of the classification model into a

single statistical metric. An AUC measurement of 0.5 reflects performance equivalent to random classification, while an

AUC value approaching 1 indicates superior classification performance.390

Consequently, the architecture of the determined DevNet model comprises an input layer, two hidden layers, and an

output layer, with the number of neurons being 57, 24, 12, and 1, respectively, and the weights and biases shown in

Figure B1. The hidden layers use the ReLU activation function to introduce non-linearity, enhancing the network’s

ability to learn complex features. The output layer employs a linear activation function to generate continuous
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probability scores. The optimisation algorithm used for the model is Nadam, with the initial learning rate set at 0.005.395

Each batch comprises 128 samples during training, with each epoch consists of 5 batches. A total of 500 epochs are

used for model training.

4. Results and Discussion

This study efficiently integrates multi-source exploration data and transforms them into a mineral prospectivity map

utilising a semi-supervised DL model. Additionally, it provides interpretability for understanding the model’s prediction400

process. Geological, geophysical, geochemical, remote sensing and DEM data layers are used to construct 57 features

for each sample. The DL-based mineral prospectivity model, DevNet, trained with optimised parameter configurations,

effectively captures the complex mapping relationships between multidimensional features and mineralisation

probability. The mineralisation probability is obtained by normalizing the anomaly scores output (the original value of

the model output) by DevNet. Table 3 presents the performance evaluation results of DevNet based on various metrics,405

using all positive and negative samples from the randomly selected sample set. In addition to the previously mentioned

AUC value, accuracy indicates the percentage of samples correctly labelled by the model out of the total number of

samples. Cohen’s Kappa Coefficient (Cohen, 1960) is a statistical measure of agreement between categorical outcomes,

adjusted for the possibility of random chance. This metric effectively reflects the difference between the classifier and

random guessing, making it particularly important in evaluating multi-class or imbalanced datasets. The Matthews410

Correlation Coefficient (MCC) (Baldi et al., 2000) is another robust metric that addresses class imbalance issues. MCC

is a symmetrical measure, meaning that its value remains unchanged when positive and negative class labels are

swapped. The MCC ranges from -1 to 1, where -1 indicates completely incorrect classification (i.e., the model predicts

all positive samples as negative and all negative samples as positive), 1 indicates perfect classification, and values near

0 suggest predictions close to random guessing. The calculation of these three metrics relies on the confusion matrix415

derived from the model’s predictions versus the actual labels. Thus, the classification threshold – the point at which the

model’s predicted probabilities are converted into binary labels (e.g., positive or negative) – plays a critical role in

model evaluation. In this study, the classification threshold is determined by evaluating multiple thresholds and

selecting the one that maximises the F1 score. Figure 5 shows the mineralisation probability prediction results based on

the trained DevNet model for the regularly sampled prediction dataset. The geometrical Interval method divides the420

predicted probabilities into four intervals, with nearly all REE deposits located within or near the red high-probability

area. The exception being Location G – Mount Gee East – which, however, represents an extensive subsurface U and
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REE deposit. The high immediately to the west – Location Y – highlights a number of small hydrothermal Fe-rich U

and REE prospects.

Additionally, these red high-potential areas are largely located within the distribution range of felsic granite. Granite425

bodies are typically considered key heat sources for hydrothermal circulation associated with mineralisation, and their

hydrothermal activity is closely related to the mineralisation processes (Hoatson et al., 2011). According to previous

studies, the REE mineralisation in the study area is primarily driven during initial stages by either introduction of felsic

magmatism, including fluid activity or heat originating from the felsic magmatism (Hoatson et al., 2011), or during

subsequent events by the radiogenic heat generated by the felsic granites, or the mobilsation of fluids generated by the430

radiogenic heat. Notably, the yellow medium-potential and red high-potential areas are distributed in regions

characterised by fault development and probable fault reactivation within the granitic and metasedimentary

Mesoproterozoic strata, which aligns with the REE mineralisation models utilising fluid pathways at varying time

intervals within the study area. Success rate curves are highly effective in revealing the model’s predictive performance.

The success rate curve (Xu et al., 2020) is employed to evaluate the consistency between the anomaly probability scores435

derived from predictive samples and known mineral occurrences. This curve is generated by displaying the proportion

of accurately identified deposits along the ordinate versus the proportion of the study area designated as prospective

along the abscissa. Success rate analysis indicates that the top 2% of the study area contains 86% of the known mineral

deposits, and 30% of the area delineates all the REE deposits (Fig. 6), indicating that DevNet exhibits high accuracy in

identifying high-potential mineralisation areas. The model-defined prospective areas not only closely match the spatial440

distribution of known mineral occurrences but also align with existing geological knowledge, demonstrating significant

spatial correlations with fault zones, felsic granite bodies, and Mesoproterozoic metasedimentary strata. These results

provide valuable guidance and decision support for future mineral exploration efforts within the study area.

Table 3: Evaluation metrics for DevNet performance.

Metric Value

AUC-ROC 0.9926

Accuracy 0.9974

MCC 0.9246

Cohen’s Kappa 0.9218

F1 score 0.9231

445
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Figure 5: Prospectivity map showing the spatial distribution of predicted values for REE deposits generated by
DevNet in the north-western Curnamona Province.
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450
Figure 6: Success-rate curve of DevNet on the predictive dataset.

The “black-box” nature of DL models makes their underlying decision processes difficult to interpret, leading to opacity

regarding key driving factors and uncertainty in decision pathways. This lack of transparency can undermine trust in

delineating prospective mineralisation zones. To elucidate the internal mechanisms of the DevNet model, this study

employs the SHAP technique to analyse the model’s predictive decisions from the perspective of feature contributions.455

Figures 7 and 8 present SHAP summary plots, which assess each feature's significance in the model’s decision-making

framework from a global perspective, revealing the relationship between eature inputs and predicted outputs. In both

figures, the top variables contribute more to the model than the bottom ones. In the scatter plot (Fig. 7), each row

represents a feature, and the x-axis shows the SHAP values, which can be interpreted as the contribution of that feature

to the model’s output. Each point in the plot represents a sample, with colour indicating the feature value—red for high460

values and blue for low values. The bar plot (Fig. 8) displays the ranking of feature importance along with their

corresponding average SHAP values, reflecting the average contribution of each feature to the model’s decision-making.

These visualisations provide a clear understanding of the relative importance of different features within the model and

their impact on the prediction outcomes. A pronounced positive relationship between the radioactive element

concentrations and REEs abundances underscores the importance of radiometric data in REE exploration (Leroy and465

Turpin, 1988; Shah et al., 2021), while the contribution of ground dose data (Fig. 8) further validates the effectiveness

of radiometric measurements in predicting REE prospectivity zones, consistent with existing geological theories.
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Furthermore, we used the SHAP decision plot (Fig. 9) to provide localised explanations for the set of samples with high

probability values. In the plot, each line represents a sample, with the x-axis indicating the model’s output value. The

results reveal that ground radiation dose is the key factor driving high probability scores, highlighting its crucial role in470

mineralisation prediction. And the prospectivity map shows that medium- to high-mineralisation potential areas closely

align with areas of high radiation dose (Fig. 10). Similarly, the ground radiation of U (Fig. 10) exhibits a positive

interaction with mineralisation probability in the SHAP explanation, which is consistent with existing geological

understanding (Fig. 7). The pseudo-gravity values derived from total magnetic intensity data adjusted for polarization

(SA_TMI_VRTP_PseudoGrav_std) (Fig. 10) effectively reflect the magnetic response of subsurface geological bodies.475

High values of this feature explain the magnetic anomalies associated with carbonatite bodies linked to skarn-type REE

mineralisation (Simandl and Paradis, 2018; Thomas et al., 2016). SHAP analysis of the model’s decision-making further

validates that the DevNet model successfully learns and captures the intrinsic relationship between this feature and

mineralisation probability, confirming its critical role in the prediction process (Fig. 7). Figure 8 reveals that the

standard deviation of AlOH group composition (AlOH_Group_Composition_std) (Fig. 10) and the dissimilarity of480

ferric oxide content (Ferric_Oxid_Content_dissimilarity) (Fig. 10) significantly contribute to the model’s predictions.

These features show a negative correlation with the model’s output anomaly values, indicating that higher values of

these features correspond to lower mineralisation probabilities and vice versa (Fig. 7). The SHAP interpretation plots

indicate that the first (Geochemical_PC1) and second (Geochemical_PC2) PCs of the geochemical data are more

important than other geochemical PCs, with the first PC being particularly significant. Specifically, the first PC scores485

(Fig. 10) are positively correlated with the model’s output anomaly scores, meaning that higher scores in the first PC

increase the likelihood of higher mineralisation probability scores in the DevNet model (Fig. 7). The ranked-scaled

eigenvector plot of the PCs provides an intuitive visualisation of the loadings of each element across the PCs, including

their magnitude and sign. The absolute value of the feature loadings reflects the relative contribution of each element to

the respective PC, while the sign (positive or negative) of the loadings indicates the relationship between the element490

and the PC. Differences in sign imply that elements exert opposite influences on the PC. In the first PC, elements such

as Rb, Th, W, Cs, Mo, and Pb exhibit significant contributions (Fig. 11a). Based on the well-established association

between Th and REE concentrations in exploration geochemistry, REEs are commonly found coexisting with minerals

containing radioactive elements like Th and U, with REE distribution frequently accompanied by Th anomalies

(Dhurandhar and Saxena, 1999). Rb and Cs are typical large-ion lithophile elements whose enrichment is commonly495

associated with late-stage magmatic evolution or specific hydrothermal activities, and they may co-occur with other

elements in geological environments related to REE mineralisation (Jowitt et al., 2017). W, Mo, and Pb are common
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ore-forming elements in skarn-type deposits, with W and Mo being particularly prevalent in hydrothermal systems

associated with granite intrusions. The model’s decision-making aligns closely with existing geological knowledge,

reinforcing the relationship between this combination of elements and mineralisation processes. SHAP analysis reveals500

that lower scores in the second PC increase the likelihood of high anomaly scores in DevNet. Examining the

relationship between scores and loadings, Figure 11b indicates that high concentrations of Sc, Y, Ni, La, Nb, and Th

may result in lower second PC scores. In addition to the previously mentioned role of Th in indicating REE

mineralisation, Sc, La, and Y are critical REEs, which are a group of seventeen chemically similar metallic elements.

The SHAP method’s interpretation of the model’s decisions indicates that the model effectively learns and captures the505

logical relationships between these features and mineralisation probability. It not only identifies key features associated

with mineralisation but also differentiates their contributions to the mineralising environment. The use of SHAP further

validates the model’s scientific rationale within the geological context, thereby enhancing the reliability and

interpretability of the prediction results.

510
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Figure 7: SHAP summary scatter plot illustrating the association between individual feature values and their
corresponding predicted probability scores. Abbreviations: SA–South Australia; RAD–Radiometric;
PC–Principal Component; std–Standard Deviation; TMI–Total Magnetic Intensity; VRTP–Variable Reduction
to Pole (applied to TMI); PseudoGrav–Pseudo Gravity (applied to TMI VRTP); GRAV–Gravity; 1VD–First515
Vertical Derivative (applied to onshore gravity); Tilt–Tilt Angle (applied to TMI VRTP); BigT–Amplitude of the
Total Vector (applied to TMI VRTP).
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Figure 8: Bar plot of SHAP summary depicting feature importance in DevNet model predictions. Abbreviations:520
SA–South Australia; RAD–Radiometric; PC–Principal Component; std–Standard Deviation; TMI–Total
Magnetic Intensity; VRTP–Variable Reduction to Pole (applied to TMI); PseudoGrav–Pseudo Gravity (applied
to TMI VRTP); GRAV–Gravity; 1VD–First Vertical Derivative (applied to onshore gravity); Tilt–Tilt Angle
(applied to TMI VRTP); BigT–Amplitude of the Total Vector (applied to TMI VRTP).

525
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Figure 9: SHAP dependence plot showing the impact of different features on the original value of DevNet model
output. Abbreviations: SA–South Australia; RAD–Radiometric; PC–Principal Component; std–Standard
Deviation; TMI–Total Magnetic Intensity; VRTP–Variable Reduction to Pole (applied to TMI);
PseudoGrav–Pseudo Gravity (applied to TMI VRTP); GRAV–Gravity; 1VD–First Vertical Derivative (applied to530
onshore gravity); Tilt–Tilt Angle (applied to TMI VRTP); AS–Analytic Signal (applied to TMI VRTP).
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Figure 10: Spatial distribution of the top six features influencing model decisions. Abbreviations:
RAD–Radiometric; PC–Principal Component; TMI–Total Magnetic Intensity; VRTP–Variable Reduction to535
Pole (applied to TMI); PseudoGrav–Pseudo Gravity (applied to TMI VRTP).

(a)

540
(b)

Figure 11: Ranked-scaled eigenvector plots of (a) first and (b) second principal component.

5. Conclusions

This study establishes the DEEP-SEAM framework for MPM, providing a generalised solution for effectively capturing545
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the non-linear relationships between features extracted from multi-source exploration data and mineralisation processes.

The framework alleviates the data noise and redundancy problems caused by complex geological processes and

effectively addresses the overfitting phenomena arising from significant class imbalance between positive and negative

samples in mineral prediction. Furthermore, the framework delineates potential mineralisation areas associated with

specific deposit types using the DevNet model, under the guidance of limited mineralisation information, with550

prospective areas showing strong spatial association with known mineral occurrences. To enhance the DevNet model’s

transparency and interpretability, the framework incorporates the SHAP method, which provides insights into the

overall decision-making process of the DL model and the local effects of feature contributions. The case study indicates

that the DevNet model implemented within the framework demonstrates high predictive accuracy. SHAP analysis of

feature roles within the model, coupled with interpretation in the context of existing mineralisation theories, indicates555

that DevNet can effectively learn potential clues for mineral deposit identification from multi-source exploration data.

This further validates the reliability of delineating mineral prospectivity areas. DEEP-SEAM v1.0 proposed in this study

demonstrates its capability to effectively predict mineralisation potential in complex geological settings, providing

essential decision support for future mineral exploration efforts.

560
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Appendix A. RPCA Analysis Plots

(a)

(b)565

Figure A1: RPCA analysis results: (a) scree plot of back-transformed geochemical variables based on variance,

(b) representation quality of back-transformed geochemical variables by PCs.
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Appendix B. Weights and Biases Heatmap

Figure B1: Heatmap of neuron weights and biases for all layers of the DevNet model except the input layer.570
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Code and Data Availability

The code and data used for MPM based on the DEEP-SEAM v1.0 framework are archived on Zenodo

(https://doi.org/10.5281/zenodo.17098677; Luo et al., 2025). All data used in this study are publicly available. The raw

data can be downloaded from the South Australian Resources Information Gateway (https://map.sarig.sa.gov.au). The575

DEEP-SEAM v1.0 is also available on GitHub (https://github.com/EarthByte/MPM_Curnamona_REE)
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