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Abstract. The clean energy transition demands a significant increase in exploration for critical minerals, particularly
rare earth elements (REEs), beyond the well-explored surface deposits. Discovery rates have been declining for decades,
10 escalating the need for new exploration methodologies. Deep learning (DL) utilizes multi-layer neural networks to
automatically model high-level abstractions of data, extracting information relevant to the target task, thereby
positioning itself as a potentially powerful tool for mineral prediction. But the non-linear and highly heterogeneous
characteristics of complex exploration datasets paired with sparse, imbalanced training data and a lack of
interpretability represent significant challenges. In this study, we have developed DEEP-SEAM v1.0, a novel
15 explainable semi-supervised DL framework for prospectivity mapping of REE mineralisation in Northern Curnamona
Province, South Australia. This framework proposes a comprehensive data preprocessing pipeline and introduces a
semi-supervised anomaly detection DL model, termed the Deviation Network (DevNet). DevNet leverages a limited
number of positive samples alongside a large number of unlabelled samples to effectively establish the mapping
between multi-source exploration data and mineralisation probability. The results indicate that prospective
20  mineralisation areas exhibit a strong spatial coupling with known REE deposits, with high-probability mineralisation
areas primarily concentrated in faulted regions, felsic granites, and Mesoproterozoic strata. To address concerns about
the poor interpretability of DL models, we incorporate a post-hoc model interpretation technique known as the SHapley
Additive exPlanations method. The method facilitates an improved understanding of the decision-making mechanisms
and logic underlying DevNet. By comparing DEEP-SEAM’s decisions with our understanding of mineral systems, we
25 not only enhance the model’s transparency and interpretability but also strengthen the reliability and credibility of the

predicted prospective mineralisation areas.



https://doi.org/10.5194/egusphere-2025-3283
Preprint. Discussion started: 15 September 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

1. Introduction.

Rare earth elements (REEs) comprise the lanthanides, ranging from lanthanum (La) to lutetium (Lu), and typically
include yttrium (Y) and scandium (Sc) due to their similar chemical properties (Connelly et al., 2005). REEs are crucial
30 in modern industries and indispensable components of defence systems, green technologies, and electronic applications
(Dushyantha et al., 2020). For instance, rare earth alloys and permanent magnets are extensively used in renewable
energy technologies, including electric vehicles, energy storage systems, solar panels, and wind turbines (Zhou et al.,
2016). The growing demand for REEs will continue to be driven by advancements in both traditional applications and
emerging technologies (Alonso et al., 2012; Dushyantha et al., 2020; Goodenough et al., 2018). Currently, the majority
35 of global REE supply is derived from natural (primary) resources (Goodenough et al., 2018). REE mineral deposits are .
found in various types of rocks, including igneous, sedimentary, and metamorphic formations (Smith et al., 2016). The
concentration and distribution of REEs in these deposits are influenced by various geological processes, ranging from
deep magmatic activity to surface weathering (Jaireth et al., 2014; Smith et al., 2016). The interaction of different
geological processes and complex formation mechanisms further complicates the exploration of REE deposits.
40  Moreover, overburden layers introduce additional difficulties (Cheng, 2012). Overburden may dilute or alter signals that
reflect mineralisation, and masking effects can reduce the accuracy of geological data, thereby further increasing the
challenges of exploration (Cheng, 2012; Xiong et al., 201
Creating low-cost mineral prospectivity maps is essentij-outlining potential ore bodie. guiding further data
collection and discovery in mineral exploration. Mineral prospectivity mapping (MPM) is a computer-supported
45 workflow that integrates multiple criteria across several stages to estimate where the target-type mineral deposits are
likely to occur within a defined area (Singer, 1993; Zuo et al., 2021). MPM involves integrating information from
various geoscientific datasets, including geological mapping, geochemical surveys, geophysical measurements
satellite-based remote sensing (Brown et al., 2000; Zuo, 2020). These datasets reflect key mineralisation processei
mineral systems components, enabling the recognition of complex spatial distribution patterns of geological features
50 associated with mineral deposits (Carranza, 2009; McCuaig and Hronsky, 2014). By employing data-driven,
knowledge-driven, or hybrid models, the intrinsic relationships between these features and mineral deposits can be
revealed, leading to the generation of mineral prospectivity maps (Zuo, 2020). In recent years, new theories and data
analysis methods, such as various machine learning (ML) techniques, have been introduced into MPM workflows,
becoming powerful tools for addressing mineral prediction challenges (Chen and Wu, 2017; Rodriguez-Galiano et al.,

55 2015; Singer and Kouda, 1996; Zuo and Carranza, 2011). ML methods enable more efficient analysis and integration of
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geographical information from different sources, thereby optimising the exploration process, improving the success rate
of mineral prospecting, and reducing costs (Farahbakhsh et al., 2023).
Traditional ML techniques are limited in processing raw natural data and typically rely on manually engineered
processors to convert raw observations into suitable internal representations or model-ready feature vectors (LeCun et
60 al., 2015). Deep learning (DL), a subfield of ML, offersaanend-to-end representation learning approach that employs
multiple levels of abstraction (LeCun et al., 2015; Nguyen et al., 2019). It directly extracts and transforms features
through a cascade of multiple layers of non-linear processing units, excelling at uncovering complex structures in
high-dimensional data (Bergen et al., 2019; LeCun et al., 2015). By utilising multiple layers of abstraction, DL can
effectively capture the nonlinear relationships between multi-source heterogeneous exploration data and mineralisation
65 probability (Sun et al., 2020; Zuo and Xu, 2023; Zuo et al., 2023). A common challenge in applying DL to MPM is
insufficient positive samples (known mineral occurrences) to effectively generalise the model’s attributes (Granek and
Haber, 2015). Additionally, mineralisation processes vary significantly across geological periods, regions, and
environments. Rare mineralisation events can cause supervised DL models to struggle when identifying
mineralisation-related information (Cheng, 2007; Granek and Haber, 2015). These models often tend to favour the
70 majority classes while overlooking the minority classes of interest, which can hinder their ability to detect rare but
critical mineralisation signals (Farahbakhsh et al., 2023; Leevy et al., 2018; Li et al.,, 2021; Yang et al., 2022).
Conversely, unsupervised DL models dispense with labeled training sets, circumventing the challenge of acquiring
large-scale positive samples. As a result, they have been widely applied in MPM, offering a promising solution to these
limitations (Xiong et al., 2018; Zuo et al., 2022). The core idea of popular unsupervised DL models for MPM is to learn
75 latent embeddings of the data and then compare the reconstructed data with the original (Xiong et al., 2018). Anomalous
samples, such as mineralized regions, are difficult to effectively encode into the latent representations learned from the
abundant background data, leading to significant reconstruction errors (Ruff et al. 2021). These unsupervised DL
models separate feature extraction and anomaly scoring processes, which may result in suboptimal data representations
and low-quality reconstruction errors (Pang et al. 2019; Gao et al. 2021). A critical issue of their application in MPM is
80  that unsupervised DL models lack prior knowledge regarding the spatial distribution of actual mineral deposits, which is
essential to guide the optimization process. This absence of domain-specific knowledge makes the model prone to
misclassifying noisy data or other non-mineralisation-related information as anomalies related to the target
mineralisation task (Pang et al. 2023; Luo et al., 2024).
In a response to these challenges, semi-supervised learning emerges as a promising approach that integrates the benefits
85 of supervised and unsupervised paradigms (Ruff et al. 2019). This is particularly beneficial for anomaly detection (AD),
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where the identification of rare events is crucial. Semi-supervised AD algorithms work by utilizing a limited number of
labeled anomaly samples in conjunction with a large quantity of unlabelled samples to learn decision boundaries that
isolate outliers from expected or normal data (Zhang et al. 2018). Studies have demonstrated that with as little as 1%
labeled anomalies, appropriate semi-supervised methods can achieve effective performance (Pang et al. 2019). However,
90 some semi-supervised AD algorithms assume that anomalous samples share similar attributes (Liu et al. 2002; 2003). In
contrast, the formation processes of different types of mineral deposits vary, leading to differences in the exploration
data features that reflect these distinct geological processes. Pang et al. (2019) proposed a semi-supervised neural
architecture, known as Deviation Network (DevNet), which directly optimizes anomaly scores through an end-to-end
network. This method leverages a few labeled outliers as prior information to accommodate anomalies exhibiting
95 different abnormal behaviors. The approach has demonstrated excellent performance in fields such as network security
intrusion detection, gear pitting fault detection, and geochemical anomaly identification (Alper et al. 2023; Zheng et al.
2024; Luo et al. 2024).
In addition, although DL models have demonstrated excellent performance in MPM, their complexity and “black-box”
nature make it difficult to interpret the model’s predictions (Mou et al., 2023; Zuo et al., 2023). In the field of mineral
100 prediction, which is characterized by high risks and substantial economic value, the issue of transparency is of particular
concern. Decision-making in MPM requires not only accurate predictions but also a comprehensive understanding of
how these predictions are derived (Hronsky and Kreuzer, 2019). This involves addressing questions such as, 'What
factors drive the model's predictions?' Such insights enable geologists and experts from related fields to integrate their
knowledge, validate the credibility of the predictions, and ultimately help mitigate exploration risks. Thus, improving
105 the interpretability of DL models has become a key focus in research on mineral resource prediction.
Building on a foundational work of Luo et al. (2024), this study presents DEEP-SEAM v1.0, an explainable
semi-supervised DL framework for MPM that integrates multi-source exploration data. By addressing the limitations
inherent in the previous study that focused exclusively on single-source geochemical data, this approach seeks to
overcome challenges associated with inadequate reflection of potential mineralisation information and insufficient
110 model interpretability. This study targets REE mineralisation in the northern part of the Curnamona Province in South
Australia, utilising a sizable open-access exploration dataset to generate heterogeneous evidential layers reflecting the
target mineralisation, including geological data layers, geophysical and remote sensing layers, and geochemical data
layers. Appropriate preprocessing methods are applied to each type of data to achieve effective data mining. To reduce
interference from redundant information and noise in MPM, we employ Spearman correlation analysis to eliminate
115 geophysical and remote sensing features with a high correlation. Additionally, robust principal component analysis
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(RPCA) is applied to the geochemical data to extract key geochemical information relevant to geological processes
while minimizing the influence of noise and outliers. We employ an end-to-end semi-supervised AD DevNet,
leveraging a limited number of labelled positive samples alongside a large set of unlabelled samples to establish a
coupling relationship between diverse evidential layers and the spatial distribution of mineral deposits. Additionally, the
120 study incorporates a model interpretability technique, i.e., SHapley Additive exPlanations (SHAP), to explain the

model’s predictions, thereby enhancing transparency and increasing the credibility of the results.

2. Geological Setting and REE Mineralisation

The Curnamona Province is a large, near-circular geological terrane located in the northeastern part of South Australia
(Preiss, 2000). It extends eastward from the Olary region, crossing into New South Wales (Newton et al., 2003). The

125 province comprises metamorphosed sedimentary and igneous rocks from the Paleoproterozoic to Mesoproterozoic eras
and is a region of significant mineral potential (Rutherford et al., 2007). It hosts numerous medium- to large-scale hard
rock mineral systems, making it one of South Australia’s most important base and precious metal-bearin logical
formations (Robertson et al., 1998). Among these, the world-class Broken Hill lead-zinc-silver-gold deposiie most
renowned, along with significant copper-gold (molybdenum), uranium-REE, tin-tungsten, and silver-lead deposits

130 (Robertson et al., 1998). Much of the Curnamona Province is overlain by younger Cambrian to Cenozoic sedimentary
rocks, particularly in the central region (Williams et al., 2009). The geological evolution of the province has
recorded . , , , o 4
experienced several significant tectonic, magmatic, and metamorphic events, primarily during the Paleoproterozoic and
Mesoproterozoic periods. These events have shaped the region’s complex geological architecture and endowed it with
substantial mineral resource potential.

135 The REE deposits (Table 1) in the study area are located within the predominantly Mesoproterozoic Mount Painter and
Mount Babbage inliers of the Moolawatana Domain located in the north-western Curnamona Province (Fig. 1). The
most recent geology map presentation for the study area is the Mount Painter region by Hore (2015). Although having
limited research, the REE deposits are considered to be primarily of skarn type but may equally include either
hydrothermal, metamorphic or metasomatic origins. For example, previous studies have demonstrated that the

140  Palaeozoic to Early Cretaceous Radium Ridge Breccia (with a Mesoproterozoic precurser), within the southern Mount
Painter Inlier, contain significant REE mineralisation represented by 360 Ma monazites of hydrothermal origin (Alley

and Hore, 2022; Elburg et al., 2013; Drexel and Major, 1990; Hore et al., 2020a; Hore et al., 2020b; Robertson et al.,

1998). Additionally, mid-Paleozoic localised high-grade metamorphism affected older rocks along the central eastern
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flank of the Mount Painter Inlier, generating monazite-rich biotite schists that exhibit remarkable REE enrichment and
145 localised mobilization (Robertson et al., 1998). Another area of significant REE mineralisation is hosted in the

metasomatised Mesoproterozoic Yerila Gneiss of the Mount Babbage Inlier (Wiilser, 2009). There are also several

smaller isolated pockets of REE-rich lithologies scattered throughout the inliers whose origins require further
investigation.
The Mount Painter region also contains substantial primary and secondary uranium resources (Bogacz, 2006; Elburg et
150 al., 2013; Robertson et al., 1998; Wiilser et al., 2011), with mineralisation likely originating from uranium-, thorium-,
and REE-rich granitic bodies, meta-volcanics and meta-sediments located within the inliers (Robertson et al., 1998).
Also, the region holds potential for stratiform and volcanic-associated base metal mineralisation, including Cu, Sn and
W, hosted within metamorphosed Meso- to Neo-Proterozoic sedimentary and volcanic rock units (Hore et al., 2020b;
Robertson et al., 1998; Sheard et al., 1992). Many of the Mount Painter region granites are extremely enriched in heat
155 producing elements (U, Th, K) with the region being notable for the heat generated by radiogenic decay of these
elements. These High Heat Producing Granites (HHPG) initiated convectional sub-surface fluid migration and establish
a region of high geothermal gradient metamorphism (Kovacs, 2005; Neumann et al., 2000; Sandiford et al., 2002). The
region has experienced a prolonged history of these granitic intrusions and consequential localized radiogenic heating,
spanning from the early Mesoproterozoic during the Delamerian Orogeny through to the Late Paleozoic, which led to a
160 series and pulses of magmatic and hydrothermal activity. These geological processes have initiated sodic, potassic or
chloritic alteration of the granites, locally altering initial lithologies to gneisses and schists, and also facilitated the

formation of hydrothermal vein-type, breccia-hosted, and skarn-type mineral deposits of Au, Cu, U, Sn, and REEs.
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165 Figure 1: (a) Simplified stratigraphic map and REE mineral deposits in the Mount Painter and Mount Babbage inliers of the.

north-western Curnamona Province; (b) Geographic location of the study area, after Jagodzinski and Fricke (2010); (c)

Outline map of Australia with state borders.
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Location Name Commodity Suggested mode of formationn Class code

A Yerila gneiss Co, REE, Th, U Metamorphosed and metasomatised Occurrence
sediments

B Yerila East REE Metamorphosed and metasomatised Occurrence
sediments

C Moolawatana Cu, REE Hydrothermal, Pneumatolytic or Occurrence

contact metamorphism

D Gunsight Prospect Cu, Co, REE, U Pneumatolytic and skarn-type Prospec.

E Four Mile Creek REE Metamorphosed and metasomatised Occurrence
sediments

F Armchair Prospect U, Cu, REE, Hydrothermal Deposit

Us0s
G Mount Gee East U, REE Hydrothermal Occurrence
Deposit

3. Materials and Methods

3.1. Data Layers and Features

Study data are sourced from the South Australian Resources Information Gateway (https://map.sarig.sa.gov.au). A

conceptual model can be established by analysing the geological setting and mineralisation type. Geological,

geophysical (magnetic, gravity, radiometric), remote sensing, and geochemical data, along with a digital 61-11

model, are utilised in this study to enable a mappable representation of the conceptual mineralisation modeF

S

multidimensional data integration reflects geological processes associated with mineralisation from various

perspectives.

3.1.1. Geological Data Layers

The geological data layers (Table 2), including faults, granitic rocks, and stratigraphic information closely related tc.

mineralisation, provide critical insights into mineralisation processes, vein distribution, fluid migration, and REE

enrichment. Existing research indicates that the REE spatial patterns and elemental concentrations within deposits are
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largely controlled by the interplay of rock-forming processes (Dushyantha et al., 2020; Jaireth et al., 2014). Faults
systems act as conduits for hydrothermal fluid migration and mineral precipitation (Curewitz and Karson, 1997). REE
mineralisation associated with skarns is primarily formed from fluids derived from granitoid magmas, and
185  understanding the distribution of granitic rocks aids in REE deposit exploration (Robertson et al., 1998). Australia’s
REE mineralisation formation was especially active during the Mesoproterozoic era (Spandler et al., 2020), with known

REE occurrences in the study area showing a close spatial coupling with Mesoproterozoic strata.
3.1.2. Geophysical Data Layers

The Earth’s magnetic field exhibits spatial variations that can be recorded in aeromagnetic surveys. Magnetic
190  measurements highlight the differences in magnetisation levels within near-surface rocks, aiding geological mapping
and the interpretation of concealed bedrock structures (Sharma, 1987). Intrusive igneous bodies, particularly
carbonatite-alkalic intrusions, alkaline intrusions, and pegmatites, serve as significant sources of heat, materials, and
fluids for REE mineralisation (Long et al., 2012). Magnetic survey techniques are regarded as exceptionally efficacious
geophysical methodologies for identifying carbonatite-alkalic intrusive bodies, which commonly produce strong
195 positive magnetic anomalies with circular to near-circular, crescent-shaped, or ring-like geometries (Simandl and
Paradis, 2018; Thomas et al., 2016). The magnetic data (Table 2) utilised in this study include total magnetic intensity,
processed using various methods (see Table 2 for details) to enhance the accuracy, resolution, and interpretability of the
analysis. The total magnetic intensity grid is generated from aeromagnetic survey data with a resolution of 80 metres.
Gravity surveys rely on subtle variations in the gravitational field, which are related to differences in the density of
200 subsurface materials (Reynolds, 2011). Alkaline igneous rock systems, such as carbonatites, are often significant
parental rocks for skarn-type REE deposits (Goodenough et al., 2021). Gravity surveys are typically employed to study
alkaline igneous rock systems, as these rocks generally exhibit high-density characteristics and can be associated with
positive gravity anomalies and pronounce density contrasts compared to surrounding rocks (Drenth, 2014). The gravity
data (Table 2) for the study area were subjected to Bouguer anomaly correction. Additionally, the dataset includes
205 vertically derived gravity gradient data processed using first vertical derivatives and residual gravity data obtained by
subtracting a 1000-metres upward-continued grid. All the gravity data are gridded at a resolution of 100 metres.
Radiometric measurement data play a critical role in REE mineral exploration, as they effectively display, interpret, and
help understand underground geological structures and rock characteristics, particularly for rock types that exhibit
significant radiation anomalies (Bustillo Revuelta, 2018). Radiometric surveys yield estimates of K, U, and Th

210 concentrations using gamma-ray spectrometric analysis. A widespread positive correlation is observed between REEs
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and radioactive elements in many known REE deposits (Thomas et al., 2016). This positive correlation primarily arises
from the similar geochemical behaviours of U, Th, and REEs, leading to the enrichment of these radioactive elements in
REE minerals such as bastnisite, monazite, thorite, fluorocarbonate cerium, and zircon (Walters and Lusty, 2011). The
radiometric data (Table 2) utilised in this study include grids of K (in %K), U (in equivalent ppm), and Th (in equivalent
215 ppm), with these concentrations generated by merging data recorded from various airborne radiometric surveys.

Additionally, the database includes ground dose estimates derived from the linear combination of K, Th, and U grids.
3.1.3. Remote Sensing Data Layers

The distribution of REEs in igneous and metamorphic rocks is significantly influenced by hydrothermal alteration and
mineralisation processes (Lottermoser, 1992). The study of altered rocks is considered an effective tool for analysing the
220  properties of mineralising fluids, conditions of mineralisation, and the evolution of hydrothermal alteration (Bedini,
2011). Remote sensing is an important method for mineral prospecting, utilising hyperspectral and multispectral data to
detect hydrothermally altered minerals with diagnostic spectral absorption characteristics (Pour and Hashim, 2011).
Metasomatism plays a crucial geochemical role in the concentration of REEs, U, Th, and other minerals, with
Na-metasomatism exemplifying this process, typically manifesting as sodium-bearing minerals replacing primary
225 igneous minerals (Khoshnoodi et al., 2016). In this context, remote sensing products can be used to explore the potential
associations between the distribution of metasomatic rocks and the occurrence of REE mineralisation. The suite of
ASTER geoscience products (Table 2) used in this study provides fundamental information about the dominant mineral

components of the rocks and soils in the study area.
3.1.4. Digital Elevation Model

230 Digital elevation models (DEMs) are digital representations of Earth’s topography, created using topographic elevation
data, effectively representing surface morphology in a numerical array format (Guth et al., 2021). By integrating
elevation data with other exploration datasets, a more comprehensive understanding can be gained of how various
geological processes and environmental conditions influence mineralisation. The DEM (Table 2) for the study area is
based on a 9-second latitude and longitude grid and uses the Geocentric Datum of Australia 1994 coordinate system,

235 with each grid cell representing the approximate elevation at its centre. The elevation errors in the DEM are closely
related to terrain complexity: in low-relief areas, the standard error does not exceed 10 metres, while in complex

highland regions, the standard error can reach approximately 60 metres.

10
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3.1.5. Geochemical Data

Lithogeochemical data can reveal “in situ” geochemical processes related to the underlying geology (Grunsky and
240 Caritat, 2019). By analysing variations and characteristics of the geochemical composition of rocks, particularly the
distribution and enrichment of REEs, as well as potential rock types and hydrothermal influences, important insights for
locating REE deposits can be obtained. Th hemical data (Table 2) used in this study encompasses 27 elemental
variables, including trace elements, REE! major oxide components, which provide crucial information for

identifying potential REE mineralisation zones.

245

Table 2: List of key data layers used for generating features in this study.

Data Type Data Layer ilution
Vector Polyline Early Mesoproterozoic and younger (possibly -

some re-activated) faults

Polygon Felsic granites

Mesoproterozoic strata

Raster Magnetic Total magnetic intensity (TMI) 80 m

Variable reduction to pole (VRTP) of TMI

First vertical derivative of TMI VRTP

Automatic gain control filter of TMI VRTP

Tilt angle of TMI VRTP

Pseudo gravity of TMI VRTP

Analytic signal of TMI VRTP

Gradient of the magnetic strength in TMI VRTP

Amplitude of the total vector of TMI VRTP

Third order Cauchy of TMI VRTP

Vertical component of TMI VRTP

Vertical gradient of TMI VRTP

Gravity Onshore Bouguer gravity anomaly 100 m

First vertical derivative of onshore gravity

Residual onshore gravity

11
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Radiometic

Terrestrial radiation dose

100 m

Potassium concentration

Uranium concentration

Thorium concentration

Remote Sensing

Silica index

30 m

Quartz index

Opaque index

MgOH group content

MgOH group composition

Kaolin group index

Gypsum Index

Green vegetation content

Ferrous iron index

Ferrous iron content in MgOH

Ferric oxide content

Ferric oxide composition

FeOH group content

AIOH group content

AIOH group composition

Elevation

Digital elevation model

250m

Tabular

Lithogeochemistry

Ag, As, Au, BaO, Bi, Co, Cr203, Cs, Cu, La, Mo, | -
Nb, Ni, Pb, Rb, Sb, Sc, Sn, SrO, Ta, Th, U3Os,

V,W.,Y, Zn, Zr

This study incorporates vector, raster, and tabular data layers. The geological data layers are in vector format, .

comprising polylines and polygons. To effectively characterise the controlling influence of geological features such as

250  Early Mesoproterozoic faults, felsic granites, and mesoproterozoic strata on mineralisation, these features are assigned

values based on their spatial distribution. Grids covering the study area are first generated, and the distance from each

grid point to the nearest geological feature boundary is calculated. The distance data is then normalized and inverted, so

that the value assignment adheres to the “distance-weight” principle: the closer to the centre of the geological feature,
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the higher the assigned value; conversely, the farther away, the lower the value. The value range is defined from 0 to 1.
255 The raster data comprises geophysical and remote sensing layers, as well as a DEM. The following steps are carried out
to extract a series of features from these layers for various point sets, including known mineral occurrences and
randomly selected samples. First, statistical features for each target point are extracted by calculating the mean an
standard deviation of raster values within a circular buffer zone with approximately a one-kilometre (km) radius aroun_
each point. These statistics reflect the central tendency and dispersion of the area surrounding the target point. Second,
260  texture features for each target point are computed using a square window of approximately one km side length around
each point, based on the calculation of the dissimilarity and correlation of the grey-level co-occurrence matrix (GLCM).
This approach characterises the spatial variability within the area surrounding each point. We extract elevation gradients
in east-west and north-south directions from the DEM data. We then calculate the mean gradient values within a buffer
zone of approximately one km radius around each point to reflect the terrain variation trends. Consequently,
265 higher-dimensional raster features are generated for each point.
To address potential issues arising from feature redundancy and multicollinearity in downstream data mining and
analysis, we calculate the Spearman correlation (Hauke and Kossowski, 2011) between the raster features. By
comparing different correlation thresholds, removing features with correlations above the threshold, and evaluating the
effect of the selected features on model performance, we determined 0.65 to be the optimal threshold. The
270 lithogeochemical data are in tabular format, and to address issues associated with censored data, outliers, and missing
values, we employ the Limit Replacement Method (VanTrump and Miesch, 1977), Tukey’s boxplot method (Tukey,
1977), and the Random Forest algorithm (Breiman, 2001) for appropriate data processing (Luo et al., 2024). The
detailed procedure ca ound in Luo et al. (2024). Based on the location of each point, geochemical samples within
approximately 1.5 Kr_extracted. The inverse square of the distance is used as a weight to calculate a weighted
275 average of the geochemical concentrations of these samples, generating the corresponding elemental concentration for
each point. In cases where corresponding geochemical samples are unavailable, the median value of the elements is
adopted as the elemental value for the point. To address spurious correlations between variables in geochemical data
caused by the closure effect, the Isometric Log-Ratio (ILR) transformation (Egozcue et al., 2003) is applied to “open”
the geochemical composition data. Subsequently, Robust Principal Component Analysis (RPCA) (Filzmoser et al., 2009)
280 is utilised to extract geochemical information related to geological processes while reducing the effects of noise and
outliers. Nevertheless, a limitation of the ILR transformation is that the transformed components lose their direct
relationship to the initial input variables. To enable interpretation of the resulting scores and loadings from the RPCA on
ILR-transformed data, spatial transformations are employed to back-transform the principal component (PC) scores,
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facilitating the interpretation of relationships between each PC and the elements (Filzmoser et al., 2009) (Fig. Al). The

285 back-transformed PC scores are then used as geochemical features.
3.2. Semi-Supervised Deep Learning Framework

The DL-based framework developed in this study, DEEP-SEAM (Fig. 2), encompasses data cleaning and preprocessing,
redundancy filtering, and noise reduction for multi-source exploration datasets, followed by deep data mining to
identify potentially favourable mineralisation areas within the study area. Additionally, the framework employs a
290  post-hoc interpretability technique to analyse the contributions of different exploration data features to account for the
obtained mineralisation probabilities. This study provides corresponding processing solutions for each key step and
produces reliable and credible results for mineral prospectivity delineation. First, data quality has a significant impact
on the performance of DL models. Therefore, this study collects multi-source exploration data and processes it
effectively to reflect geological processes and subsurface geological structures associated with mineralisation. Based on
295 this, a set of random samples is created in the study area and prepared for digggagn into training and test sets. From the
random sample set, those located over 5 km from known mineral occurrence!r;elected as negative samples. 70% of
the negative and positive samples are randomly chosen to form the training set. The remaining 30% of the samples
constituted the testing set. Subsequently, a DevNet, a cutting-edge semi-supervised DL approach, is utilised to learn
from the training data. It is important to note that the DevNet used in the framework can function effectively under
300 significant class imbalance between positive and negative samples.
Moreover, the selection of negative samples is not highly sensitive; even if the chosen negative samples contain
potential positive samples, the model still performs well, as it learns the general patterns of the negative sample set. The
model’s performance is evaluated using the testing set to determine the optimal DL model structure. Then, a set of
regular samples is generated within the study area to create a prediction set, and the trained DL model is employed to
305 generate a mineral prospectivity map for the prediction set. This framework is able to effectively identify prospectivity
areas associated with mineralisation under the guidance of limited positive samples, while avoiding false targets
generated by statistical noise or interfering geological processes. This study combines a feature attribution method to
analyse the internal mechanisms of model predictions, thereby overcoming the shortcomings of DL approaches
regarding interpretability and the resultant credibility issues of predictive outcomes. This analysis is further integrated

310 with existing geological knowledge for a comprehensive evaluation, thereby enhancing the reliability of the predictions.
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Figure 2: Schematic diagram of the DEEP-SEAM framework for MPM.

315 3.2.1. Deviation Network

DevNet, proposed by Pang et al. (2019), employs a Gaussian prior and utilises a Z-score-based deviation loss function
to facilitate direct anomaly scores optimisation through an end-to-end neural anomaly score learner (Fig. 3). DevNet
comprises three primary modules, including an anomaly scoring network, a reference score generator, and a deviation
loss.

320  DevNet differs from the traditional two-step AD methods based on reconstruction error. DevNet establishes a nonlinear

functional relationship between the input data and anomaly measurements through an end-to-end anomaly scoring

15



https://doi.org/10.5194/egusphere-2025-3283
Preprint. Discussion started: 15 September 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

module. Consider a dataset Xx={x|,X2,....0n-Xn 1 Xn420- X nik } > X ERP, where U={x|x,,...xy} represents the unlabeled
data, and M={xyi1,Xy+2,--Xnsx} With MKN denotes a small dataset of positive samples, which provides prior
knowledge of anomaly patterns for model training. In this study, we utilise a feature representation
325 learner w(-;0,) ,where the dot (-) represents the input to the function, which is constructed with multiple hidden layers to
map the input data x into an intermediate representation space QE€R? (Eq. 1), where L denotes the dimensionality of
the space O resides in. Subsequently, we employ the developed anomaly score learner #(-;0,):0—R to compute
anomaly values from the derived intermediate feature representation (Eq. 2). Combining the above components, the

complete anomaly scoring module ¢(-;@) is then formulated as shown in Equation 3.

q=y(x;0,), where g€ Q, M
n(q;0,)= L,FI gty , where ®; = {w°}, w° is a weight matrice, w{,, is a bias term, 2)
#(x;:0)=n(y(x:0,);0,), 3)

330  DevNet integrates a specialized a module designated as a reference score generator, architected to support anomaly
scores @(x;®) learning processes, and to compute a scalar value referred to as the reference score uz €ER. The reference
score represents the average anomaly scores {r,r,,...,/;} across a randomly chosen subsets of negative samples R. Two
primary strategies exist for producing ug: data-driven and prior-driven methods. In this study, we adopt the prior-driven
approach with pr computed according to the Gaussian prior probability.

LT N@07), 4
m=7 T ®)

335 Where each r; is derived from N(i,0*>) and corresponds to the anomaly score of a randomly selected negative sample.
The Gaussian prior-based scores uy are used to optimise the anomaly scoring network ¢(x;@). The deviation is
specified as a Z-score as follows:
dev(x)=@, 6)
Where oy indicates the standard deviation of the prior-based anomaly score set. The calculated deviation is
subsequently incorporated into the contrastive loss to formulate the deviation loss:

L($(x;0),ur, Gr)=(1-y)|dev(x)|[tymax(0,a-dev(x)), @)

340 We assign y=1 for an positive (anomalous) sample x, and y=0 for a negative (normal) sample, while a corresponds to

the Z-score confidence interval parameter.
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Figure 3: Architecture of the DevNet for probability score calculation.

345
3.2.2. Post-Hoc Interpretability
Additive feature attribution methods represent a significant category within the field of explainable DL. These methods
explain individual predictions of DL models by representing the model output as a sum of contributions from individual
input features. The SHAP framework (Lundberg and Lee, 2017), a classical additive feature attribution approach,

350 integrates previous explanation methods such as local interpretable model-agnostic explanations (LIME; Ribeiro et al.,

2016) and DL important features (DeepLIFT; Shrikumar et al., 2017), while incorporating Shapley values originating
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from game theory, thus providing both local and global perspectives for model interpretation (Fig. 4). Furthermore,
compared to the aforementioned methods, SHAP is recognised for possessing three ideal properties: local
accuracy—where the explainer exactly matches the original model output when approximating it for a specific input;
355 missingness—where features absent from the original input must have no contribution; and consistency—where if the
model is revised to increase the influence of a particular feature, the attribution assigned to that feature must not
decrease, regardless of other features. These three properties ensure the reliability of the explanations.
The Shapley value represents an equitable distribution mechanism for apportioning benefits among participants
according to their individual contributions, originating from economist Lloyd Shapley's foundational work. This

360 allocation principle can be mathematically expressed as:

ISICK-IS-1)!

(D(X,'): sc {l,2,...,K}\{i}TU§f(SU {l})'f;(s)]v (8)

SLS)=E[fx)lx], ®
Where S corresponds to a feature subset within the input space. K indicates the set of all inputs. E[f(x)|x,] refers to the

expected value of the function on subset S. Consider a training dataset {x',)'},- used to train a predictive model

(I —
fx) (specifically a DevNet in this study). This model aims to establish a mapping as accurately as possible between the
response value y and the input training data x. SHAP provides an interpretable model g(x) to reveal the impact of input

365 features on the model’s output.

S=g()=pot L, pux (10)

Where x denotes the simplified input, x=h,(x) serving as a function that transform x to the original x, and
#o=A(h,(0)) represents the model output with all simplified inputs toggled off. Several versions of SHAP, such as
DeepSHAP, Kernel SHAP, LinearSHAP, and TreeSHAP, have been proposed to cater to specific categories of ML
models. In this study, we adopted Kernel SHAP. Kernel SHAP integrates linear LIME and constructs an interpretable

370 local model by utilising a small background dataset derived from the data, approximating the original model f. This

approach enhances the sample efficiency and accuracy of SHAP value estimations without relying on specific model

types.
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375 Figure 4: Illustration of SHAP-based interpretation of model predictions via feature contributions.

3.2.3. Implementation

The processing steps of this study include multi-source exploration data preprocessing, feature generation, building a
DL model, and interpreting the model, primarily relying on the Python programming language. Additionally, the R
380  programming language is utilised for the ILR transformation and RPCA of the geochemical data. Notably, the
construction of DevNet significantly impacts the quality of the mineral prospectivity map. Hyperparameter tuning is
conducted to identify the optimal settings, with the goal of improving the performance of the DL model. The
architecture of the DevNet model is determined by comparing hyperparameter settings, depth, activation functions,
optimisation algorithms, and learning rates of different models based on their receiver operating characteristic (ROC)
385 curves (Fawcett, 2006) on the testing set. The ROC curve is a common technique for classification model performance
assessment; it is a two-dimensional plot where the Y-axis represents the true positive rate (TPR) and the X-axis,
represents the false positive rate (FPR). The model’s classification performance is typically quantified by the area under.
the curve (AUC). The AUC ranges from 0 to 1, summarising the overall performance of the classification model into a
single statistical metric. An AUC measurement of 0.5 reflects performance equivalent to random classification, while an
390 AUC value approaching 1 indicates superior classification performance.
Consequently, the architecture of the determined DevNet model comprises an input layer, two hidden layers, and an
output layer, with the number of neurons being 57, 24, 12, and 1, respectively, and the weights and biases shown in
Figure B1. The hidden layers use the ReLU activation function to introduce non-linearity, enhancing the network’s

ability to learn complex features. The output layer employs a linear activation function to generate continuous
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395 probability scores. The optimisation algorithm used for the model is Nadam, with the initial learning rate set at 0.005.
Each batch comprises 128 samples during training, with each epoch consists of 5 batches. A total of 500 epochs are

used for model training.

4. Results and Discussion

This study efficiently integrates multi-source exploration data and transforms them into a mineral prospectivity map .
400 utilising a semi-supervised DL model. Additionally, it provides interpretability for understanding the model’s prediction
process. Geological geophysical, geochemical, remote sensing and DEM data layers are used to construct 57 features
for each sampli DL-based mineral prospectivity model, DevNet, trained with optimised parameter configurations,
effectively captures the complex mapping relationships between multidimensional features and mineralisation
probability. The mineralisation probability is obtained by normalizing the anomaly scores output (the original value of
405 the model output) by DevNet. Table 3 presents the performance evaluation results of DevNet based on various metrics,
using all positive and negative samples from the randomly selected sample set. In addition to the previously mentioned
AUC value, accuracy indicates the percentage of samples correctly labelled by the model out of the total number of
samples. Cohen’s Kappa Coefficient (Cohen, 1960) is a statistical measure of agreement between categorical outcomes,
adjusted for the possibility of random chance. This metric effectively reflects the difference between the classifier an
410  random guessing, making it particularly important in evaluating multi-class or imbalanced datasets. The Matthewjl
Correlation Coefficient (MCC) (Baldi et al., 2000) is another robust metric that addresses class imbalance issues. MCC
is a symmetrical measure, meaning that its value remains unchanged when positive and negative class labels are
swapped. The MCC ranges from -1 to 1, where -1 indicates completely incorrect classification (i.e., the model predicts
all positive samples as negative and all negative samples as positive), 1 indicates perfect classification, and values near
415 0 suggest predictions close to random guessing. The calculation of these three metrics relies on the confusion matrix
derived from the model’s predictions versus the actual labels. Thus, the classification threshold — the point at which the
model’s predicted probabilities are converted into binary labels (e.g., positive or negative) — plays a critical role in
model evaluation. In this study, the classification threshold is determined by evaluating multiple thresholds and
selecting the one that maximises the F1 score. Figure 5 shows the mineralisation probability prediction results based on
420  the trained DevNet model for the regularly sampled prediction dataset. The geometrical Interval method divides the
predicted probabilities into four intervals, with nearly all REE deposits located within or near the red high-probability

area. The exception being Location G — Mount Gee East — which, however, represents an extensive subsurface U and
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REE deposit. The high immediately to the west — Location Y — highlights a number of small hydrothermal Fe-rich U
and REE prospects.

425 Additionally, these red high-potential areas are largely located within the distribution range of felsic granite. Granit.
bodies are typically considered key heat sources for hydrothermal circulation associated with mineralisation, and their
hydrothermal activity is closely related to the mineralisation processes (Hoatson et al., 2011). According to previous
studies, the REE mineralisation in the study area is primarily driven during initial stages by either introduction of felsic
magmatism, including fluid activity or heat originating from the felsic magmatism (Hoatson et al., 2011), or during

430 subsequent events by the radiogenic heat generated by the felsic granites, or the mobilsation of fluids generated by the
radiogenic heat. Notably, the yellow medium-potential and red high-potential areas are distributed in regions
characterised by fault development and probable fault reactivation within the granitic and metasedimentary
Mesoproterozoic strata, which aligns with the REE mineralisation models utilising fluid pathways at varying time
intervals within the study area. Success rate curves are highly effective in revealing the model’s predictive performance.

435 The success rate curve (Xu et al., 2020) is employed to evaluate the consistency between the anomaly probability scores
derived from predictive samples and known mineral occurrences. This curve is generated by displaying the proportion
of accurately identified deposits along the ordinate versus the proportion of the study area designated as prospective
along the abscissa. Success rate analysis indicates that the top 2% of the study area contains 86% of the known mineral
deposits, and 30% of the area delineates all the REE deposits (Fig. 6), indicating that DevNet exhibits high accuracy in

440 identifying high-potential mineralisation areas. The model-defined prospective areas not only closely match the spatial
distribution of known mineral occurrences but also align with existing geological knowledge, demonstrating significant
spatial correlations with fault zones, felsic granite bodies, and Mesoproterozoic metasedimentary strata. These results

provide valuable guidance and decision support for future mineral exploration efforts within the study area.

Table 3: Evaluation metrics for DevNet performance.

Metric Value
AUC-ROC 0.9926
Accuracy 0.9974
MCC 0.9246
Cohen’s Kappa 0.9218
F1 score 0.9231

445
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Figure 5: Prospectivity map showing the spatial distribution of predicted values for REE deposits generated by

DevNet in the north-western Curnamona Province.
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Figure 6: Success-rate curve of DevNet on the predictive dataset.
The “black-box” nature of DL models makes their underlying decision processes difficult to interpret, leading to opacity
regarding key driving factors and uncertainty in decision pathways. This lack of transparency can undermine trust in
delineating prospective mineralisation zones. To elucidate the internal mechanisms of the DevNet model, this study
455 employs the SHAP technique to analyse the model’s predictive decisions from the perspective of feature contributions.
Figures 7 and 8 present SHAP summary plots, which assess each feature's significance in the model’s decision-making
framework from a global perspective, revealing the relationship between eature inputs and predicted outputs. In both
figures, the top variables contribute more to the model than the bottom ones. In the scatter plot (Fig. 7), each row
represents a feature, and the x-axis shows the SHAP values, which can be interpreted as the contribution of that feature
460  to the model’s output. Each point in the plot represents a sample, with colour indicating the feature value—red for high
values and blue for low values. The bar plot (Fig. 8) displays the ranking of feature importance along with their
corresponding average SHAP values, reflecting the average contribution of each feature to the model’s decision-making.
These visualisations provide a clear understanding of the relative importance of different features within the model and
their impact on the prediction outcomes. A pronounced positive relationship between the radioactive element
465 concentrations and REEs abundances underscores the importance of radiometric data in REE exploration (Leroy and
Turpin, 1988; Shah et al., 2021), while the contribution of ground dose data (Fig. 8) further validates the effectiveness

of radiometric measurements in predicting REE prospectivity zones, consistent with existing geological theories.
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Furthermore, we used the SHAP decision plot (Fig. 9) to provide localised explanations for the set of samples with high
probability values. In the plot, each line represents a sample, with the x-axis indicating the model’s output value. The
470  results reveal that ground radiation dose is the key factor driving high probability scores, highlighting its crucial role in
mineralisation prediction. And the prospectivity map shows that medium- to high-mineralisation potential areas closely
align with areas of high radiation dose (Fig. 10). Similarly, the ground radiation of U (Fig. 10) exhibits a positive
interaction with mineralisation probability in the SHAP explanation, which is consistent with existing geological
understanding (Fig. 7). The pseudo-gravity values derived from total magnetic intensity data adjusted for polarization
475 (SA_TMI_VRTP_PseudoGrav_std) (Fig. 10) effectively reflect the magnetic response of subsurface geological bodies.
High values of this feature explain the magnetic anomalies associated with carbonatite bodies linked to skarn-type REE
mineralisation (Simandl and Paradis, 2018; Thomas et al., 2016). SHAP analysis of the model’s decision-making further
validates that the DevNet model successfully learns and captures the intrinsic relationship between this feature and
mineralisation probability, confirming its critical role in the prediction process (Fig. 7). Figure 8 reveals that the
480 standard deviation of AIOH group composition (AIOH_Group Composition_std) (Fig. 10) and the dissimilarity of
ferric oxide content (Ferric_Oxid_Content_dissimilarity) (Fig. 10) significantly contribute to the model’s predictions.
These features show a negative correlation with the model’s output anomaly values, indicating that higher values of
these features correspond to lower mineralisation probabilities and vice versa (Fig. 7). The SHAP interpretation plots
indicate that the first (Geochemical PCl) and second (Geochemical PC2) PCs of the geochemical data are more
485 important than other geochemical PCs, with the first PC being particularly significant. Specifically, the first PC scores
(Fig. 10) are positively correlated with the model’s output anomaly scores, meaning that higher scores in the first PC
increase the likelihood of higher mineralisation probability scores in the DevNet model (Fig. 7). The ranked-scaled
eigenvector plot of the PCs provides an intuitive visualisation of the loadings of each element across the PCs, including
their magnitude and sign. The absolute value of the feature loadings reflects the relative contribution of each element to
490 the respective PC, while the sign (positive or negative) of the loadings indicates the relationship between the element
and the PC. Differences in sign imply that elements exert opposite influences on the PC. In the first PC, elements such
as Rb, Th, W, Cs, Mo, and Pb exhibit significant contributions (Fig. 11a). Based on the well-established association
between Th and REE concentrations in exploration geochemistry, REEs are commonly found coexisting with minerals
containing radioactive elements like Th and U, with REE distribution frequently accompanied by Th anomalies
495 (Dhurandhar and Saxena, 1999). Rb and Cs are typical large-ion lithophile elements whose enrichment is commonly
associated with late-stage magmatic evolution or specific hydrothermal activities, and they may co-occur with other
elements in geological environments related to REE mineralisation (Jowitt et al., 2017). W, Mo, and Pb are common
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ore-forming elements in skarn-type deposits, with W and Mo being particularly prevalent in hydrothermal systems
associated with granite intrusions. The model’s decision-making aligns closely with existing geological knowledge,

500  reinforcing the relationship between this combination of elements and mineralisation processes. SHAP analysis reveals
that lower scores in the second PC increase the likelihood of high anomaly scores in DevNet. Examining the
relationship between scores and loadings, Figure 11b indicates that high concentrations of Sc, Y, Ni, La, Nb, and Th
may result in lower second PC scores. In addition to the previously mentioned role of Th in indicating RE
mineralisation, Sc, La, and Y are critical REEs, which are a group of seventeen chemically similar metallic elements

505  The SHAP method’s interpretation of the model’s decisions indicates that the model effectively learns and captures the
logical relationships between these features and mineralisation probability. It not only identifies key features associated
with mineralisation but also differentiates their contributions to the mineralising environment. The use of SHAP further
validates the model’s scientific rationale within the geological context, thereby enhancing the reliability and
interpretability of the prediction results.
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Figure 10: Spatial distribution of the top six feature.luencing model decisions. Abbreviations:

535 RAD-Radiometric; PC—Principal Component; TMI-Total Magnetic Intensity; VRTP—Variable Reduction to
Pole (applied to TMI); PseudoGrav—Pseudo Gravity (applied to TMI VRTP).
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Figure 11: Ranked-scaled eigenvector plots of (a) first and (b) second principal component.
5. Conclusions
545 This study establishes the DEEP-SEAM framework for MPM, providing a generalised solution for effectively capturing
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the non-linear relationships between features extracted from multi-source exploration data and mineralisation processes.
The framework alleviates the data noise and redundancy problems caused by complex geological processes and
effectively addresses the overfitting phenomena arising from significant class imbalance between positive and negative
samples in mineral prediction. Furthermore, the framework delineates potential mineralisation areas associated with
550 specific deposit types using the DevNet model, under the guidance of limited mineralisation information, with
prospective areas showing strong spatial association with known mineral occurrences. To enhance the DevNet model’s
transparency and interpretability, the framework incorporates the SHAP method, which provides insights into the
overall decision-making process of the DL model and the local effects of feature contributions. The case study indicates
that the DevNet model implemented within the framework demonstrates high predictive accuracy. SHAP analysis of
555 feature roles within the model, coupled with interpretation in the context of existing mineralisation theories, indicates
that DevNet can effectively learn potential clues for mineral deposit identification from multi-source exploration data.
This further validates the reliability of delineating mineral prospectivity areas. DEEP-SEAM v1.0 proposed in this study
demonstrates its capability to effectively predict mineralisation potential in complex geological settings, providing

essential decision support for future mineral exploration efforts.

560
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Appendix A. RPCA Analysis Plots
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Figure A1: RPCA analysis results: (a) scree plot of back-transformed geochemical variables based on variance,

(b) representation quality of back-transformed geochemical variables by PCs.
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Appendix B. Weights and Biases Heatmap
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570  Figure B1: Heatmap of neuron weights and biases for all layers of the DevNet model except the input layer.
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Code and Data Availability

The code and data used for MPM based on the DEEP-SEAM v1.0 framework are archived on Zenodo

(https://doi.org/10.5281/zenodo.17098677; Luo et al., 2025). All data used in this study are publicly available. The raw

575 data can be downloaded from the South Australian Resources Information Gateway (https://map.sarig.sa.gov.au). The

DEEP-SEAM V1.0 is also available on GitHub (https://github.com/EarthByte/MPM_Curnamona_REE)
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