Notes on revision made to manuscript Egusphere-2025-3283

Response to the Reviewers

Reviewer 2

Comment 2.1 — This manuscript describes a generalisable method for using a variety of digital
representations of geology to locate mineralisation. The application is to hydrothermal REE deposits in the
Curnamona Province, Australia. The method uses deep learning for prediction to locate unknown
mineralisation, and Shapley values to explain which input features contribute most to the predciction. The
submission is well-written and structured. The figures are a decent quality. There are some issues that need
rectifying before this work can be published.

Response: Thank you for your positive assessment of our manuscript. We appreciate your recognition of our
novel approach and are grateful for your detailed comments. We have addressed each of them carefully in
our revision to further improve the quality of our paper. Note: As advised not to upload the revised
manuscript during the response process, please refer to the attached document for more detailed
information regarding the specific revisions made in response to your comments.

Comment 2.2 — Generalisability of the method. The authors can provide some discussion to how
DEEP-SEAM can be used for other mineralisation types. This will help the manuscript fit within the scope of
the journal.

Response: We agree that discussing how DEEP-SEAM can be applied to other mineralisation systems would
strengthen the manuscript. We have added a paragraph at the end of the Discussion and Conclusion section
(Lines 651-670) that addresses the transferability of the DEEP-SEAM framework to different deposit types.
Line649-668: The DEEP-SEAM framework is designed with potential generalisability and scalability, and its
methodological principles are applicable to MPM across diverse mineralisation systems. The framework's ability
to capture complex, non-linear relationships between multi-source geoscientific data and mineralisation probability
establishes a theoretical foundation for its application to various deposit types. The potential transferability of
DEEP-SEAM is built upon three key principles. First, the framework requires integration of deposit-specific
evidence layers that reflect critical mineralisation processes, including geological proxies (e.g., structural features,
lithological units, alteration zones), geochemical pathfinder elements, geophysical signatures, and remote sensing
derivatives. The specific indicators employed vary with deposit type. For instance, orogenic Au systems commonly
display Au-As-Sb associations; porphyry Cu deposits exhibit Cu-Mo-Au signatures; iron oxide-copper-gold
(IOCG) systems are characterised by magnetic and gravity anomalies, whilst volcanic-associated massive sulphide
(VMS) deposits display resistivity contrasts. The framework accommodates these variations through appropriate
feature engineering and predictor variable selection. Second, the DL architecture within DEEP-SEAM can be
adapted to different datasets through hyperparameter optimisation and structural adjustments, enabling the model
to learn deposit-specific spatial patterns and feature interactions. This adaptive tuning process - involving
adjustment of parameters such as network depth, learning rate, and dropout rate based on validation performance -
represents standard practice in geoscientific machine learning applications where geological heterogeneity
demands dataset-specific optimisation. Third, model interpretability through SHAP analysis provides a critical

validation mechanism. By examining whether the model's predictive logic aligns with established metallogenic



theory and the geological context of the target area, geoscientists can assess the reliability of prospectivity
delineation. This interpretability component ensures that the framework operates not as a black box but as a

geologically informed predictive tool applicable across mineralisation systems.

Comment 2.3 — Data reduction of geochemical assay. RPCA is used, and is a better choice than PCA.
However, the results in Figure Al tell me that RPCA is not that effective for data reduction. Six principal
components are required to explain > 70% of the variance. | wonder whether a non-linear method such as
UMAP may be a better option. UMAP can act like an auto-encoder.

Response: Thanks for suggesting non-linear methods. We conducted additional experiments by applying
UMAP to the ILR-transformed geochemical data (Please see the attached Fig. 1). Indeed, UMAP is capable of
capturing complex nonlinear patterns and has been successfully used for exploratory visualization in various
fields. However, the main objective of this study is not only dimensionality reduction but also the
development of an interpretable workflow for MPM. RPCA provides linear and robust principal components
that can be directly linked to geochemical element loadings, enabling the identification of key controlling
factors in geochemical variability and mineralization processes. In contrast, UMAP functions as a nonlinear
autoencoder-like embedding, in which each dimension is not explicitly associated with the original
geochemical variables, thereby limiting geological interpretability. Therefore, RPCA was retained in this

study for its interpretability and robustness, even though it requires more components to capture a high
cumulative variance.

3D UMAP Embedding of Geochemical ILR-transformed Data
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Figure 1. 3D UMAP Embedding of Geochemical ILR-transformed Data

Comment 2.4 — Abundance of magnetic data derivatives versus other data. The number of magnetic
layers used indicates the authors think that REE deposits are best imaged using magnetics, however this



is not well-explained in the paper. What is the 2d correlation between these layers — i.e. are the same
patterns presented in each, which can add bias?

Response: To fully obtain data related to mineralization, we conducted a thorough search on the website
for data that could provide such information, which included so much aeromagnetic data. Aeromagnetic
surveying uses highly sensitive magnetometers carried by aircraft to measure the Earth's magnetic field
on the surface, which can effectively detect magnetic minerals underground, including REE deposits rich
in magnetic minerals. In our study area, the REE mineralization is genetically associated with igneous
intrusions and hydrothermal alteration zones, both of which exhibit distinct magnetic signatures.
Different magnetic derivatives (e.g., reduced-to-pole, vertical derivative, tilt angle) can highlight different
aspects of these geological structures, such as boundary edges, depth information, and subtle anomalies,
making them complementary for capturing mineralization-related features. We share the reviewer's
concern about potential 2D correlation between magnetic data layers, which could introduce bias into
the model. To address this issue, we implemented a systematic correlation analysis during the data
preprocessing stage. The Spearman correlation method (Hauke and Kossowski, 2011) was used to
qguantify relationships between all feature layers. We tested multiple correlation thresholds and
evaluated their impact on model performance, ultimately determining 0.65 as the optimal threshold
(Lines 259-261). Features exceeding this correlation threshold were removed to minimize redundancy
while preserving the diverse information content necessary for robust prediction. This approach ensures
that the retained magnetic layers contribute complementary information rather than duplicating the
same patterns, thereby reducing potential bias in the model.

Comment 2.5 — justification of the various features with respect to REE mineralisation isn’t well
established. Aside from the comment regarding magnetics, an example is using a DEM. More detail is
needed on which “geological processes and environmental conditions influence mineralisation” are
revealed by DEM. I'm assuming the DEM represents erosion and rock competency, but you may be
thinking of others. This is important when justifying feature engineering (L258-259).

Response: Table 2 is discussed with additional evidence demonstrating how our adopted datasets
effectively support mineral prospectivity mapping. We added (1) Lines 201-205 Magnetic responses to REE
mineralisation can be highly variable and depend on the nature of host rocks. White (2005) interprets the Yerila
Granite (Table 1) in the study area not as a true granite (although parts of the protolith may have been deformed
granite) but as a metasomatic allanite-rich rock, where the highest REE enrichment (Th, U, Zr, Y, and REEs)
occurs in calcsilicate rocks that exhibit relatively distinct magnetic signatures compared to surrounding
lithologies. (2) Lines 229-236: A compelling example of this relationship is demonstrated at REE Location D
(Fig. 1), which represents a Cu-U-REE mineral system associated with hydrothermal fluid flow during the
Ordovician (Zivak, 2024). The mineralisation is hosted within multiply deformed, pyrite-rich metasedimentary
and metavolcanic rocks, where REEs and uranium are highly concentrated, predominantly in monazite and, to a
lesser extent, in apatite (which locally contains up to 11% total REEs). Critically, both the radioactive elements
and REEs were co-transported by hydrothermal fluids sourced from granitoid rocks along the eastern extremity
of the Paralana Fault (Marshall, 1979). This genetic link between U-Th-K and REE enrichment provides a
robust basis for using radiometric data as a proxy for REE prospectivity.. (3) Lines 247-257: Remote sensing is

an important method for mineral prospecting, utilising hyperspectral and multispectral data to detect



hydrothermally altered minerals with diagnostic spectral absorption characteristics (Pour and Hashim, 2011).
Metasomatism plays a crucial geochemical role in the concentration of REEs, U, and Th, often producing
diagnostic mineralogical assemblages detectable through remote sensing (Khoshnoodi et al., 2016). For example,
Location A (Fig. 1), defined by the Yerila Granite, demonstrates intense metasomatic enrichment that can be
captured by remote sensing data. The Yerila Granite (~1560 Ma, Moolawatana Suite) is geochemically unique,
with extremely high REE contents and exceptional radioactivity, making it possibly the most radioactive granite
in Australia (White, 2005; Sheard, 2009). This enrichment is attributed to metasomatic processes that produced
diagnostic REE-bearing minerals including allanite, monazite, yttrotitanite, and zircon, accompanied by
K-feldspar alteration and fluorite mineralisation (White, 2005). These metasomatic assemblages and associated
alteration minerals exhibit distinct spectral signatures in the visible-near infrared (VNIR) and shortwave infrared
(SWIR) regions. (4) Lines 265- 274:  For example, the high immediately to the west of REE Location G (Fig.
1), which is centred on Radium Ridge, demonstrates a clear relationship between topography and mineralisation.
Radium Ridge is a prominent topographic feature extending approximately 3 km in an east-west direction,
characterised by steep slopes on its southern flank and gentler gradients on the northern side (Sullivan et al.,
1945). The steepest sections of the ridge result from differential weathering resistance of a silicified zone, which
hosts small hydrothermal Fe-rich U and REE prospects along the ridge crest (Sullivan et al., 1945). This
exemplifies how DEM data can capture the topographic expressions that result from structurally-controlled
mineralisation and lithological contrasts caused by differential weathering and silicification processes, thereby

serving as an indirect indicator of potential mineralised zones.

Reference:

White, A.J.: Granites and Uranium Mineralisation in the Mount Painter Complex Northern Flinders Ranges.
PIRSA, Adelaide, Open File Envelope 12288, unpublished, 2005.

Zivak, D.: Rare Earth Element (REE) potential of the Curnamona Province, South Australia, Report Book
2024/00037. Department for Energy and Mining, South Australia, Adelaide, 2024.

Marshall, N.J.: Geochemical Exploration Studies in the Mt. Painter Province. Department of Mines and
Energy, South Australia Open File Envelope 3536, unpublished, 1979.

Pour, A. B. and Hashim, M.: Identification of hydrothermal alteration minerals for exploring of porphyry
copper deposit using ASTER data, SE Iran, Journal of Asian Earth Sciences, 42, 1309 - 1323,
https://doi.org/10.1016/j.jseaes.2011.07.017, 2011.

Khoshnoodi, K., Yazdi, M., Behzadi, M., and Gannadi-Maragheh, M.: Using of ASTER, ETM+ and gamma
spectrometry airborne data to find the relationship between the distribution of alkali metasomatism and
REE mineralization in the Bafq area, Central Iran., Journal of Sciences, Islamic Republic of Iran, 27, 65 - 77,
2016.

Sheard, M.J.: Explanatory Notes for CALLABONNA 1:250000 Geological Map, sheet SH54-6. South
Australia. Department of Primary Industries and Resources. Report Book, 2009/01, 2009.

Sullivan, C.J., Broadhurst, E., and Sprigg, R.C.: Reports on individual uranium occurrences. In Dickenson S.B.
et al., eds, Report on investigation of uranium deposits at Mount Painter, South Australia [during the
period] June 1944 to September 1945, Part 111(3), Report Book 40/1. South Australia Department of Mines,
Adelaide,. 124 - 168, 1945.

Comment 2.6 — Each of the geophysical methods image different depths of the crust. This is partly
due to the physics of the method itself, but mostly due to station spacing and line spacing. Wider line



spacing means deeper minimum depths of imaging. Please explain this in context with the geophysical
survey parameters.

Response: Thank you for this helpful comment. You're absolutely right that the depth each geophysical
method images is influenced not only by the underlying physics of the method but also by the survey
design. We have supplemented the manuscript with papers that provide more details of the data
processing procedure. Taking the gravity data we used as an example to explain, this dataset is sourced
from the South Australian Resources Information Gateway (SARIG), with detailed processing methods
and original survey parameters documented in the official report from the Geological Survey of South
Australia (Katona, 2017). Key points to note are: (1) Variability in spacing and effective resolution: The
original station spacing is highly uneven, ranging from dense intervals of 50 metres to sparse ones of up
to 50 kilometres (Katona, 2017, p. 30, Table 2). Whilst the final product is a regular 100-metre grid, the
effective resolution is determined by line spacing rather than along-line station spacing (Katona, 2017, p.
39, Figure 2). For instance, even if stations along a line are spaced 100 metres apart, if the line spacing is
2 kilometres, the effective resolution in that area is limited to several hundred metres, capable only of
reflecting larger-scale, deeper geological sources. (2) Quantification of survey parameters: Figure 33 in
the report (Nominal Station Line Spacing map) quantifies and visualises the line spacing distribution
across the entire state. Line spacing across our study area varies from 4,000 to 8,000 metres (please see
the attached Fig. 2). The gravity data we employed consist of processed 100-metre grids (including
Onshore Bouguer gravity anomaly, First vertical derivative, and Residual gravity), which complement
information on deep large-scale and shallow small-scale anomalies. In response to your suggestion, we
have added relevant references in the Methods section. Similar considerations apply to the magnetic and
radiometric data used in this study.
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Figure. 2 Bouguer gravity 2016 reliability grid (station spacing). Nominal station line spacing takes the
distance between lines of stations to be the station spacing, as opposed to the distance between stations

along lines (Katona, 2017).

Reference:

Katona, L.F. 2017. Gridding of South Australian Ground Gravity Data, using the Supervised Variable
Density Method. Report Book 2017/00012. Department of the Premier and Cabinet, South Australia,

Adelaide.

Comment 2.7 — The most interesting part of the study is finding areas on unknown mineralisation.
However, there is limited analysis of the newly identified prospective areas. Examples are location ‘X’ (SW



of E), the area extending SW of ‘E’ and a blob SE of ‘F’. Why would anyone go to these locations to

acquire a tenement? Some geological analysis is needed.

Response: We added Lines 488-507: Additionally, the high prospectivity areas identified by the proposed
framework, excluding known mineral occurrences, are subjected to further analysis (Fig. 5). Based on
comprehensive review of historical exploration company reports, location X comprises a metamorphosed
volcano-sedimentary sequence with radioactive metasediments subdivided into (a) allanite-bearing calc-silicates
and (b) allanite-biotite schists and granitic gneisses, likely derived from tuffaceous protoliths. Allanite serves as
the principal REE- and U-bearing phase (Teale, 1981). Grab samples display anomalous concentrations of Ce
(up to 4600 ppm), Th (3600 ppm), Nb (900 ppm), U (600 ppm), W (180 ppm), and Sn (170 ppm) (Brewer,
1980). The area extending southwest of location E, known as the Paralana Plateau, represents another
prospective target successfully delineated by the proposed framework. Historical exploration by Exoil N.L.
around 1970 identified multiple sub-vertical monazite-bearing schist lenses ranging from 7 to 17 m in thickness
and 30 to 170 m in length (Exoil, 1970). The indicated resource exceeds 5 million tonnes of schist with
monazite grades of 5-6%. As monazite is a principal REE-bearing mineral (with some containing 50-70% total
rare earth oxides), this represents REE mineralisation potential. The anomaly southeast of location F is located
on a silicified ridge of Mesoproterozoic rocks near the East Painter Uranium Workings, and this area is
characterised by uranium mineralisation associated with anomalous REE and Cu concentrations (Teale, 1993;
Robertson et al., 2006). The spatial and geological association suggests potential for REE mineralisation,
warranting field investigation to validate the model prediction. Taken together, the aggregate performance
metrics and the spatial analysis of the prospectivity maps suggest that the parameter-optimised DL model,
DevNet, characterises the complex associations between multivariate features and mineralisation probability,

thereby enabling the use of available geoscience data to estimate mineral potential in underexplored areas.

Comment 2.8 — The discussion needs to explore geological reasons how shap values align with
geological understanding. Explore the mechanisms — what geological features contributing to
mineralisation are magnetic? Why are others radioactive (e.g. [in469 to 472)? Are there any that are both
magnetic and radioactive?

Response: We added Lines 550-559: The geological basis for this strong radiometric signature can be
exemplified by Location C (Moolawatana), where a quartz-sericite schist exhibits locally high radioactivity as
determined by scintillometer surveys. This schist contains anomalously high Ce (up to 1,400 ppm) and Th (with
a Ce:Th ratio of approximately 1.7:1), indicating the presence of cerium-bearing allanite (McPhee et al., 1982).
This mineral is likely the main contributor to the elevated prospectivity scores at this location. Although Ce was
not among the elements used in lithogeochemistry (Table 2), the allanite and/or its host rock likely contain other
listed elements (e.g., Th, U, Y), thereby providing anomalously high indicator signals for this location. This
example demonstrates the direct geological linkage between radioactive minerals (allanite hosting Th and U)

and REE enrichment, validating the use of radiometric data as a diagnostic tool for REE prospectivity.

Reference:

McPhee K.A., Hodkinson I.P. and Mackie A.M.: Report for Exploration Licence 871 (Gunsight) for 6 Month
Period Ending 28 February, 1982. Department of Mines and Energy, South Australia. Open File Envelope
3536, unpublished, 1982.



Comment 2.9 — The results section opens with statements describing the interpretation of results for
the results have been presented. E.g. “This study efficiently integrates multi-source exploration data and
transforms them into a mineral prospectivity map utilising a semi-supervised DL model. Additionally, it
provides interpretability for understanding the model’s prediction process” And “The DL-based mineral
prospectivity model, DevNet, trained with optimised parameter configurations, effectively captures the
complex mapping relationships between multidimensional features and mineralisation probability. The
mineralisation probability is obtained by normalizing the anomaly scores output (the original value of the
model output) by DevNet.” The readers need to make up their minds by viewing the results first before

the authors can make these statements (which are really discussion items).

Response: Thank you for this valuable feedback. We have modified the description of the result section to

distinguish it from the discussion section.

Comment 2.10 — Not sure about anomaly detection being relevant to MPM. AD looks at a univariate
signal, while MPM is a data fusion exercise. Anomalous prospectivity values - Just needs a clearer

explanantion

Response: We've moved this content from the Introduction to the Methods section and provided a
clearer explanation: "Semi-supervised learning represents an intermediate paradigm between supervised
and unsupervised learning approaches, leveraging the combination of limited labelled data and abundant
unlabelled samples to drive model training (Ruff et al., 2019). This methodology enables enhanced
predictive accuracy while simultaneously reducing annotation costs. This paradigm is particularly
well-suited for anomaly detection (AD) tasks: under conditions where anomalous samples are extremely
scarce while normal samples are relatively abundant, semi-supervised anomaly detection aims to identify
observations that significantly deviate from the joint distribution of normal data and construct decision
boundaries capable of effectively distinguishing between anomalous and normal patterns (Ruff et al.,
2019; Zhang et al.,, 2018). Studies have demonstrated that with as little as 1% labelled anomalies,
appropriate semi-supervised methods can achieve effective performance (Pang et al., 2019). Mineral
deposits can be conceptualised as rare “geological anomalies” formed through the coupling of multiple
geological processes (Cheng and Zhao, 2011). Ore-forming processes are typically accompanied by a
series of geological anomalous phenomena and products (e.g., structural, lithological, mineralogical, and
fluid-related), which are manifested in multi-source datasets including geological, geophysical,
geochemical, and remote sensing data (Zhao, 2002). MPM enables the extraction of
mineralisation-related anomalous information from these multi-source exploration datasets, thereby
providing target area guidance for subsequent exploration deployment. However, some early
semi-supervised AD methods implicitly assume “anomaly homogeneity” (i.e., anomalous samples are
mutually similar; Liu et al., 2002; 2003), which often fails to hold in complex geological settings
characterised by diverse mineralisation types and varying ore-forming mechanisms. Pang et al. (2019)
proposed a semi-supervised neural architecture, known as DevNet, which directly optimises anomaly
scores through an end-to-end network. This method leverages a few labelled outliers as prior information
to accommodate anomalies exhibiting different abnormal behaviours. The approach has demonstrated
excellent performance in fields such as network security intrusion detection, gear pitting fault detection,
and geochemical anomaly identification (Alper et al., 2023; Luo et al., 2024; Zheng et al., 2024).”

Comment 2.11 — Do occurrences, prospects and deposits have the same weight within your model?



Response: Yes, occurrences, prospects, and deposits are treated with equal weight in our model. All these
mineralization points are assigned the same positive label (value = 1) during the training process. By
allowing the model to learn from the patterns of all positive samples, we enable it to capture the full
spectrum of geological signatures associated with REE mineralization systems, from small-scale
occurrences to large deposits.

Comment 2.12 — Negative samples are drawn > 5km from known deposits. Establish that this is
reasonable (all deposits are known? Then why do prospectivity analysis?)

Response: Our choice of >5km distance for negative sampling follows established practices in mineral
prospectivity modeling papers (Carranza et al. 2008; Zuo and Carranza, 2011; Nykanen et al. 2015). The
5km buffer ensures that negative samples are collected from areas unlikely to be influenced by known
mineralization processes, while still maintaining sufficient spatial coverage for model training. Regarding
the apparent contradiction between "known deposits" and prospectivity analysis, in our modeling
approach, only a subset of known deposits was used for training purposes, while the remaining deposits
were reserved for independent validation to assess model performance. More importantly, the primary
objective of our prospectivity analysis is not to rediscover known deposits, but to identify previously
unrecognized prospective areas that may host undiscovered REE mineralization. The model learns from
the geological signatures associated with known mineralization and extrapolates these patterns to
identify areas with similar characteristics that warrant further exploration attention.

Reference:

Carranza, E. J. M., Hale, M., & Faassen, C. (2008). Selection of coherent deposit-type locations and their
application in data-driven mineral prospectivity mapping. Ore Geology Reviews, 33, 536-558.

Nykanen, V., Lahti, |., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as
validation tool for prospectivity models—a magmatic Ni—Cu case study from the Central Lapland
Greenstone Belt, northern Finland. Ore Geology Reviews, 71, 853—-860.

Zuo, R., & Carranza, E. M. J. (2011). Support vector machine: a tool for mapping mineral prospectivity.
Computers & Geosciences, 37, 1967-1975.

Comment 2.13 — 1439 Success rate high accuracy - against what benchmarks/other studies?

Response: In our manuscript, the assessment of “high accuracy” is primarily based on a comparative
analysis with previous deep learning - based mineral prospectivity studies that used similar evaluation
metrics, in particular the proportion of known deposits captured within the top-ranked prospective areas
(i.e., the success-rate curve). For example, Luo et al. (2023) reported that the success-rate curve of their
metallogenic-factor VAE model showed that less than 60% of the known mineral deposits were located
within the top 10% most anomalous areas predicted by the model. In a subsequent study, Luo et al. (2024)



showed that the VAE-CAPSNET-GAN model achieved a success rate in which 10% of the study area
contained 64% of the known mineral deposits. In contrast, our DEEP-SEAM framework achieves a
considerably higher concentration of known deposits in the highest-ranked prospective areas: the
success-rate curve indicates that the top 10% of the study area identified by DEEP-SEAM contains 86% of
the known mineral deposits. Since these comparative results with other models are not explicitly listed in
the manuscript, we have revised the relevant sentence in the text to read: Success-rate analysis indicates
that the top 2% of the study area contains 86% of the known mineral deposits, and 30% of the area
delineates all the REE deposits (Fig. 6), demonstrating that DevNet can effectively reduce the search
space for high-potential metallogenic targets.

Reference:

Luo, Z., Zuo, R, Xiong, Y., & Zhou, B. (2023). Metallogenic-factor variational autoencoder for geochemical
anomaly detection by ad-hoc and post-hoc interpretability algorithms. Natural Resources Research, 32(3),
835-853.

Luo, Z., & Zuo, R. (2025). Causal discovery and deep learning algorithms for detecting geochemical
patterns associated with gold-polymetallic mineralization: a case study of the edongnan region.
Mathematical Geosciences, 57(1), 193-220.

Comment 2.14 — You use features which image the subsurface (magnetics and gravity) and those
limited to the surface (DEM, ASTER and, at the scale of this study, radiometrics). It would be interesting
to look at the SHAP values and see whether surface versus deeper signatures are more useful.

Response: Thank you for this insightful suggestion. We have incorporated this analysis into the discussion
section (Lines 599-609). The added text reads “ Furthermore, we employed SHAP values to comprehensively
compare the relative importance of features from surface-indicative datasets (DEM, remote sensing, and
radiometric data) and depth-indicative datasets (magnetic and gravity data) in producing high mineralisation
probability scores (Fig. 9). The analysis reveals that the top four features contributing most significantly to the
model's output anomaly scores are all derived from surface datasets, ranked as follows:
Terrestrial _Radiation Dose Mean, Geochemical PCI, Ferric_Oxide Content Dissimilarity, and
ALOH_Group_ Composition_Standard Deviation. This result demonstrates that although subsurface
geophysical data (magnetic and gravity) effectively delineate structural frameworks and identify favourable host
rocks, the surface expression of REE enrichment exhibits more prominent signatures. Radiometric data directly
detect radioactive elements (e.g., Th and U) associated with REE enrichment, providing direct indicators of REE
concentration. Remote sensing derivative indices effectively identify hydrothermal alteration minerals indicative
of REE mineralisation. Geochemical data directly reflect the spatial distribution and enrichment-depletion
patterns of REEs.”

Comment 2.15 — Figure 10.5td based features have border effects. Does this impact the model training
and degrade results? Can these border effects be removed?



Response: We have conducted a comprehensive examination of the spatial statistical feature extraction
process within buffer zones. While most input layers demonstrate normal statistical behavior, we
acknowledge that a small number of layers exhibit pronounced standard deviation anomalies at the study
area boundaries, manifesting as edge effects. This phenomenon primarily stems from statistical bias
introduced by buffer truncation. We discuss this issue from three perspectives: data characteristics,
model mechanisms, and prediction outcomes. From a data characteristics perspective, evidence layers
exhibiting high-frequency spatial variations experience significant statistical bias when truncated at
buffer edges due to insufficient sample points, resulting in amplified standard deviations (for instance,
the AIOH_Group_Composition_Standard_Deviation layer shown in Figure 10 in manuscript). Conversely,
evidence layers with regional distribution characteristics maintain statistical consistency at boundaries, as
their gradual wvariations are less susceptible to local truncation effects (such as
AIOH_Group_Content_Standard_Deviation layer illustrated in attached Fig. 3b). This disparity represents
a classical manifestation of "edge effects" in spatial statistics, constrained by study area boundary
conditions and fixed buffer radius settings. However, this issue is confined to a limited number of
high-variability layers rather than being a systematic problem. Regarding model mechanisms, our
framework employs the DevNet model based on multi-source exploration data for mineralization
anomaly extraction. The model's core strengths lie in its multi-layer feature fusion strategy and anomaly
learning mechanism, which enhance resistance to local noise including edge effects. DevNet establishes a
robust "normality baseline" by learning the distribution patterns of extensive unlabeled samples and
their differences from limited known mineralization samples in latent space. During training, the model is
guided by prior mineralization information to learn anomaly patterns associated with mineralization
rather than focusing on local anomalies and noise at boundaries, thereby effectively diluting the
influence of edge effects in input data. In terms of prediction outcomes, both the prediction results and
model interpretability analysis demonstrate that despite the significant presence of edge effects in
certain evidence layers (such as AIOH_Group_Composition_Standard_Deviation) that play important
roles in the model, the final mineral prospectivity map shows no apparent boundary artifacts such as
edge-concentrated high values or anomalous gradients. This indirectly confirms that edge effects are
progressively attenuated through multi-source data fusion and model learning processes, without
compromising overall prediction accuracy and reliability. In summary, while edge effects objectively exist
in a minority of input layers, their impact on final mineralization anomaly extraction reliability remains
minimal due to the selective influence of data characteristics, DevNet's noise resistance mechanisms, and
the stability of prediction results. We will consider extending buffer zones or implementing boundary
correction algorithms (such as mirror padding) for further optimization in future work.
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Figure3. ALOH Group Content: (a) original distribution; (b) standard deviation distribution



