Point-to-point responses to comments from reviewer #2
(Manuscript number: egusphere-2025-3282)

We thank Reviewer 2 for the careful and constructive feedback. In this response, we clarify
computational trade-offs (runtime and memory), expand validation and uncertainty analyses (CV
diagnostics, MC-dropout), discuss choices on parameter prior ranges and activation functions,
and streamline figures and captions to improve interpretability. Reviewer comments appear in
black, followed by our responses in blue.

Commentl: The main contribution of this work is integration of CLMS5 into a BINN framework.
The paper walks the reader through BINN’s design, validation, benchmarking, and performance:
Figure 1 lays out the architecture—neural network parameters bounded by sigmoids flow into a
differentiable CLM5 SOC module, trained end-to-end against Smooth-L1 losses with soft priors.
Figures 2—4 show synthetic tests: CLMS5-generated data used to recover the most sensitive
parameters, with moderate success (r=0.7) and acceptable SOC skill, supported by sensitivity
analysis but limited by equifinality and assumptions. Figures 5—6 compare BINN outputs to
PRODA and observations, demonstrating high spatial correlation and NSE=0.66, though
validation may be optimistic. Figure 7 uses traceability analysis to illustrate how different
biomes balance inputs vs residence time, offering mechanistic interpretation, and Figure 8
highlights computational efficiency, with BINN running over 50x faster than PRODA by virtue
of vectorization and gradient-based learning.

The language of the article reads clear most of the times except for using buzzwords that
exaggerates and overstretch the results/claims, e.g. “transformative”, “harness the power of AI”.
The work feels methodologically rigor and advances engineering problem with good
computational efficiency. The manuscript presents a technically solid and well-executed
methodological advance, and the figures clearly illustrate the architecture, parameter recovery,
benchmarking, and efficiency of the BINN framework. However, the work in its current form
suffers from a gap between claims and evidence: while the method is convincingly demonstrated
in synthetic tests and with observational SOC profiles, the validation strategy (random ross-
validation, reliance on shared forcing, limited exploration of equifinality, absence of independent
benchmarks or uncertainty quantification) does not fully support the breadth of the conclusions
drawn. Strengthening the validation would likely require substantial additional work, which may
not be feasible in a short revision cycle. Therefore, I recommend one of two paths forward: (1)
reframe the manuscript more modestly, toning down broad claims of ecological insight and
general applicability, focusing instead on the clear computational and methodological
contributions; or (ii) extend the analysis with additional validation and uncertainty assessment to
bring the evidence base up to the level of the claims. Either path would improve the agreement
between the strong methodological innovation and the scientific narrative presented.

We appreciate the reviewer’s comprehensive summary and positive evaluation of our work. The
reviewer’s constructive comments and suggestions will help us further improve the robustness
and rigorousness of this work. Following the reviewer’s suggestions, we will revise related
sentences in our manuscript (such as “transformative”) to remain neutral in descriptions. We will
reframe the manuscript to focus more on the computational and methodological contributions of
BINN.



Moreover, we will strengthen validation and uncertainty reporting in the revised manuscript.
First, beyond reporting test NSE across the 10-fold cross validation (Fig. 6¢ in the original
manuscript), we now provide the spatial distribution of mean residual (with sign indicating over
or underestimation) and coefficients across all 10 folds (Fig. R1a—b), together NSE of 10 folds
including all sites (Fig. R1c) and report the mean test NSE (Fig. R1d). This makes it clear where
the uncertainty is data-driven versus model-driven and avoids over-interpreting any single
evaluation. Second, in the revision, we quantify parameter uncertainty from BINN with Monte
Carlo dropout, showing site-level posterior distributions (Fig. R2) and coverage in the posterior
distributions of BINN on the prescribed parameter values (Fig. R3). The new results indicate that
equifinality is manageable, in particularly for key, sensitive parameters.
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Figure R1: Comparison of observed and simulated SOC storage using BINN across 10 fold
cross-validation test. (a) Spatial map of normalized difference across all 10 folds. The residual
is calculated by averaging the simulated SOC at each site across all 10 folds. Mean test-set
differences are plotted after normalization: positive differences are scaled to [0,1] by the 99th
percentile of positive deviations; negative differences are scaled to [—1,0] by the 99th percentile
of negative deviations. (b) Spatial map of the coefficients of variation across all 10 folds. (c) The
scatter plot presents the SOC from data points derived from the mean values across all 10 folds
between observed and simulated SOC storage at various soil depths, with the Nash—Sutcliffe
modelling efficiency coefficient (NSE) shown in the title. (d) The box plot shows the mean
performance of test NSE accross the 10-fold cross validation test.
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Figure R2. Uncertainty in posterior distributions by BINN parameters in relation to Monte
Carlo dropout in the parameter recovery experiment at one site. For each parameter, the
marginal posterior is shown, with the vertical blue and red dashed lines indicating the prescribed
(“true’”) and BINN’s point estimate, respectively.
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Figure R3: Coverage of parameters’ posterior ranges of BINN. The coverage was quantified
by the percentage of prescribed (“true”) parameter values that fall into the Monte Carlo—dropout
posterior range across test sites. Error bars show the mean £ SD across the 10 cross-validation
folds of the synthetic parameter-recovery experiment.
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Comment 2: Sensitivity to Design Choices: The sensitivity to certain study design choices that
may have affected the entire article are not investigated: (1) Choice of a sigmoids activation
function per-parameter risks stabilizes the training, and is a regularization mechanism [1] but
may cause the output parameters to be biased rather than interpretable results especially in the
presence of noisy and/or sparse data [2]. (2) While I understand the prior is chosen based on
literature, for certain parameters it doesn’t seem certain other literature values. Most
importantly: tauds3 (Turnover time of passive SOC) is set to 20-400 years seems to be
short, tauds1 (Turnover time of fast SOC) minimum rate is set to 0.8 hr, and w_folding (the
influence of soil water on modifying SOC decomposition) seems too wide, allowing 0.0001 may
nullify water limitation and 5 being a large amplification.
1. Please, include references for each choice of the priors’ range.
2. Please, investigate, if the choice of activation function and priors has biased the
results.
3. Please, show more evidence as why you are convinced the model results indicate
interpretability rather than bias.
4. Please, also explain why other model choices (like loss function) are made

We thank the reviewer for the valuable comments and suggestions. We address the concerns
point-by-point as below.

(1) Parameter prior range. We will add Table R1 and related references for parameter prior
ranges in in the supplementary materials of the revised manuscript (please see Table R1 and
references at the end of this response letter). Specifically, we determine the prior ranges of
parameters based on a synthesis of previous modeling work (e.g., CLMS5 Technote), meta-
analyses (e.g., Xu et al. 2016), and data assimilation studies (e.g., Shi et al. 2018). Following a
common practice in ecosystem modeling and data assimilation, we select the minimum and
maximum possible values reported in literature as the lower and upper ends, respectively in our
prior range. This ensures the interpretability of parameter values that are within the range while
also maintaining flexibility in searching the optimal values. Regarding the three parameters, i.e.,
tauds3, taudsl, and w_folding, that the reviewer pointed out, we set tau4s3 to be within 20 and
400 years, mainly considering the default value of about 230 years in CLMS5 for tau4s3.
Mechanistically, the respective passive SOC pool of tauds3 represents SOC that is chemically
and/or physically protected. Thus, we choose the lower end of 20 years and upper end of 400
years to represent least and strongest physiochemical protection, respectively. Similar rationale
also applies to the prior range for tauds1. While the lower end represents the turnover of the
simplest, most decomposable organic matter, such as glucose, the upper end indicates slower
turnover of more complex organic matters. For w_folding, the lower end reflects strongest soil
water stress that depresses SOC decomposition, such as in the desert regions, whereas the upper
end indicates most suitable soil water conditions that favor SOC decomposition. In the revised
manuscript, we will describe how we set the prior ranges in the main text with more details in the
supplementary materials.

(2) Influence of the choice of activation function on training results. Our use of the sigmoid
function is to purely constrain the neural network outputs to be within [0, 1] and then mapped to
each parameter’s prior range. To address the reviewer’s concern, in the revision, we conducted an
additional experiment to examine the potential bias introduced by the choice of activation



functions. Specifically, we retrained BINN with a hard-sigmoid (same bounding, but different
gradient shape from the sigmoid function used in the original manuscript). We found that the
selection of activation functions has minimal influence on our optimization results and there is
no significant change in NSE values when using different activation functions (Fig. R4b, c).
Meanwhile, the spatial residual patterns between BINN-optimized simulation and observations
(Fig. R4a) are nearly unchanged using the two different activation functions. All these results
suggest that it is unlikely that the choice of activation functions will introduce systematic bias in
model optimization (Fig. R4a—c).

(3) Evidence for interpretability. We will explicitly include three lines of evidence in the revised
manuscript to demonstrate that BINN-optimized results offer high interpretability. First, in the
synthetic experiment, BINN well recovers prescribed parameters and reproduces synthetic SOC,
demonstrating that BINN learns parameters matching the known “ground truth”, i.e., the
prescribed parameters, rather than exploiting spurious correlations. Second, each of the predicted
parameters is directly mapped to a CLMS5 process component with clear biogeochemical
meaning, for example, q10 describes how SOC decomposition may change under increasing
temperature. When applying BINN to simulate SOC, the process components derived from
BINN closely match those derived by PRODA, supporting a common mechanistic signal rather
than activation function or prior-induced artifacts, as PRODA uses Bayesian-based calibration
which is the current gold-standard data assimilation method for ecological modeling. Third, we
apply traceability analysis to quantify the contribution of each component to variations in SOC
storage across ecosystems, thereby linking learned parameters to process components to SOC
outcomes. Taking them together, these results indicate that BINN provides mechanistic insight,
not sorely statistical fit.

(4) Choice of loss function. We choose the Smooth-L1 loss to measure the SOC loss because it is
robust in excluding outliers yet retains stable gradients near zero. Moreover, the soft-prior
penalty (i.e., centered cosh function) encourages parameters toward middle of the ranges while
allowing data-driven deviation. We will improve our descriptions about specific design of the
BINN framework and the rationale for the selected loss function in Supplementary Information
Appendix 1 and section 2 to make our justifications clearer.
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Figure R4: Comparison of observed and simulated SOC storage using BINN with
Hardsigmoid activation function. (a) Spatial map of the normalized differences for one
representative fold (median NSE). (b) Observed vs simulated SOC storage from the testing
dataset. (c) The box plot shows the mean performance of testing NSE in the 10-fold cross
validation test.

Comment 3: Computational trade-offs: The main difference between PRODA and this model is
that this model considers all sites data across space at the same time. It is correct that reduction
in computational time is expected, but the computational memory cost is expected to increase,
with increased chance of data leakage in space. This model is claimed to offer a computational
advantage to PRODA, but it is not made clear how much computational time is saved, how much
memory load is increased. Please, consider acknowledging the trade-offs made in the BINN
modeling framework to save computational costs compared to PRODA. Some are summarized
as follows.

1. To claim the potential to extend to other regions or spatial generalizability of the
framework, you would need to use leave-one-biome-out would test for the special
generalizations (and if same NSE and correlation coefficients will be achieved)

2. Uncertainty quantification is a strong point in PRODA which also enhances
model robustness and interpretability.
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We thank the reviewer for bringing up the concerns about memory usage in BINN training. To
address this concern, in the revision, we report the peak memory usage (RSS) for MCMC,
PRODA with MCMC and BINN (with and without vectorized CLMS5) on the same PC in Fig.
R5. Our measurements indicate that BINN with vectorized CLMS yields the least peak memory
usage among all the methods, while also substantially reducing computational time (Fig. 8).
Conceptually, BINN’s memory usage can be kept bounded via smaller batches and gradient
checkpointing, whereas the site-by-site Bayesian samplers maintain full state per chain, which
tends to increase peak RSS despite longer running time. Thus, memory is not a key limiting
factor in BINN training. We will include Figs. RS and 8 in the section 5 and discuss this point in
the revised manuscript.

Thanks for the wonderful suggestion on the leave-one-biome-out tests, which can be done in our
future work. Our current scope is to infer parameters within the training data domain that
involves various biomes, and we are not trying out-of-domain transfer to the biomes without
training data. Thus, we do not include biome as a categorical environmental covariate. To clarify,
our intent is to show that, even without explicitly encoding biome labels, BINN can recover
processes that regulate SOC storage across biomes within the training data domain. Accordingly,
we claim that BINN can be applied in regions where both models and observations are available
to infer interpretable parameters to improve local SOC simulations. At present, BINN requires
data from all target regions during training to support mechanism discovery and site-specific
inference accuracy, whose inference cannot be generalized to those biomes without observations.
We will clarify this and discuss this limitation in the revised manuscript. We note that PRODA
also has this limitation; after it performs data assimilation on observation sites, it relies on a
neural network to extrapolate to new sites.
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Figure R5. Comparative analysis of the peak memory (RSS) required for integrating 2000
soil profiles into process-based model (CLMS5). The figure shows the maximum memory usage
(in MB) for MCMC, for PRODA (MCMC+NN), which uses a Bayesian-inference approach
(MCMC) combined with a neural network (NN), and for BINN with the matrix form of CLM5
before and after vectorization. The memory requirement is based on running each method for
300 epochs to ensure that the models have finished learning from the 2,000 soil profiles.

Comment 4: Limited parameter testing: Limited test cases and benchmarking to only a few of
the 21 parameters. Only 4 out of 21 CLMS5 parameters were actually recovered and validated.
The sensitivity analysis (Fig. 3) justifies focusing on these, but ignores interactions and leaves 17
parameters untested. If the framework is claimed to be generalizable and “interpretable,” but
only 4 parameters were realistically tested, then the claims exceed the demonstrated evidence.

We fully understand the reviewer’s concern. Initially, we focused on the four most sensitive
parameters to show that BINN achieves comparable recovery where identifiability is strongest
because these four parameters are typically well-constrained in Bayesian-based calibration. To
address the reviewer’s concern, in the revision, we have extended the synthetic recovery to all 21
biogeochemical parameters and now report correlations for each parameter (Fig. R5). As
anticipated, highly sensitive parameters are recovered with strong correlations, whereas
insensitive parameters exhibit weak identifiability, consistent with the sensitivity indices in Fig. 3
of the original manuscript. As our mechanistic inferences are based on combinations of



parameters rather than any single parameter, the low identifiability of some of the parameters
may not hinder interpretability in downstream analyses.
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Figure R6: BINN parameter recovery for all CLMS parameters. (a—u) Scatter plots of
BINN-predicted versus prescribed values for each parameter. (v) Density scatter of simulated
SOC versus synthetic SOC. (w) Summary across a 10-fold cross-validation: mean correlation for
all parameters (predicted vs. prescribed), and NSE for SOC simulations.

Comment 5: The manuscript doesn't include line number, so I cannot unfortunately provide line-
by-line comments. Please, consider this in the resubmission

We apologize for this inconvenience. We will include line numbers in the revised manuscript.

Comment 6: Figure 1, panel (a) and (b) need titles in the figure for better read. If colors contain
information, please, be specific. "Priors" vs "Sigmoid activation" can be more explicitly
separated.

Thanks for the suggestion. We will add concise titles to panels (a) and (b) in Figure 1 during the
manuscript revision.

Comment 7: Figure 2, seems redundant.

Thank you for the suggestion. We agree that the main text can make the workflow clear enough
without Figure 2. To keep the main text more streamlined, we will move Figure 2 to
Supplementary Information, as it may be useful for readers who are interested in the detailed
parameter recovery workflow and its difference from the real-world application.

Comment 8: Figure 3, caption needs to explain better what kind of sensitivity test was carried
out. The parameter labels need to be more intuitive. You can also consider giving colors to
parameters that fall within one of your five broad categories (environmental modifier, CUE,
substrate decomposability, ...). Include appropriate legends as needed.

We thank the reviewer for the suggestions. Regarding sensitivity analysis, we used a first-order
approximation method following Gao et al. (2011) and will state the first-order sensitivity index
in the title in the caption for Fig. 3. We performed the sensitivity analyses randomly at 512 sites
across the Contiguous U.S., and in the revision, we will include the standard deviation of the
sensitivity analysis in addition to the mean values in the sensitivity test results in Fig. R7, with
parameters indicating individual process components (e.g., K, A, B, &, V) being distinguished by
different colors.

Gao, C. et al. Assimilation of multiple data sets with the ensemble Kalman filter to improve
forecasts of forest carbon dynamics. Ecological Applications 21, 1461-1473 (2011).
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First-order Sensitivity Indices accross All Layers
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Figure R7. First-order sensitivity of CLMS parameters across all soil depths. Bars show the
first-order sensitivity index for each biogeochemical parameter over all soil layers. Parameters
are ranked (y-axis) by decreasing sensitivity and color-coded by their associated process
component (e.g., K, A, B, &, V). The x-axis reports sensitivity scores, quantifying the influence of
small parameter perturbations on model outputs, with larger values indicating greater influence.

Comment 9: Figure 4, please, use clear and sharp caption as these are your main contributions,
such as "Fit of BINN to SOC data across CONUS in depth"

We will revise the figure 4 caption to be sharp and clear for readers to understand as the reviewer
suggested.

Comment 10: Figure 5, please, make color scales consistent across all panels and legends be
readable. Please, explain why in panel c and f BINN is constantly overestimating the PRADO,
and why correlation collapses to 1 in r.

We thank the reviewer for the comments and suggestions. In the revision, we will enlarge the
legends for better readability. If panels share comparable ranges, we harmonize color scales.
However, for components with distinct ranges with other components (e.g., plant carbon input),
we will keep panel-specific scales (Fig. R8).

The reason why correlation between BINN and PRODA in the panel of ‘Plant Carbon Inputs’
collapses to 1 is because this component is NPP-driven and identical in both frameworks (both
use the same CLMS5 NPP simulations), so a collapse to r=1 is expected (Fig. R8r). We will
explicitly explain this point in the revised manuscript.

The apparent overestimation in carbon transfer efficiency and baseline decomposition stems
from the difference in the way sampling insensitive parameters under the two methods (Fig. R8¢
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and f). In BINN, gradient-based training with a soft prior penalty tends to keep weakly
identifiable parameters close to center of their prior range, which may shift composite
components upward. In PRODA, the posterior distribution of the insensitive parameters is
sampled uniformly from the prior value, thus the estimated parameters are not pulled toward the
center as in BINN (Tao et al. 2024). Because these components aggregate both sensitive and
insensitive parameters, BINN’s mild central tendency can manifest as systematic positive bias
relative to PRODA.

Tao F, Houlton BZ, Huang Y, Wang YP, Manzoni S, Ahrens B, Mishra U, Jiang L, Huang X, and

Luo Y. 2024. Convergence in simulating global soil organic carbon by structurally different
models after data assimilation. Global Change Biology, 30: €17297.
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Figure R8. Comparison of the spatial patterns of model components retrieved by BINN and
PRODA. The model components include carbon transfer efficiency (a, b, ¢), baseline
decomposition (d, e, ), environmental modifier (g, h, 1), carbon input allocation (j, k, 1), vertical
transport rate (m, n, o), and plant carbon inputs (p, g, r). The left column (a, d, g, j, m, p) shows
the model components retrieved by BINN, while the middle column (b, e, h, k, n, q) displays the
model components retrieved by PRODA. The scatter plots in the right column (c, f, 1, 1, o, 1)
compare the values of each model component retrieved by BINN (y-axis) against those retrieved
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by PRODA (x-axis). The correlation coefficient between the BINN and PRODA values for each
model component is shown in the top left corner of the corresponding scatter plot. The plant
carbon inputs (p, g, r) are identical for both methods due to the use of the same input forcing
data.

Comment 11: Figure 6, bias and error distributions. Hard to interpret geographically. Captions
don’t explain ecological meaning of bias hotspots. Needs to be restructured in agreement with
how you would handle the major revisions.

We fully understand the reviewer’s comment that it is challenging to interpret the current SOC
residual map. To address this concern, we normalized the map with 99 percentiles instead of the
maximum and minimum values for better interpretability. The revised figure now shows the
major bias hotspots located in the center of U.S. (Fig. R9). During the revision, we plan to add a
map with normalized differences across all cross-validations to show the uncertainty in data to
Fig. 1.
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Figure R9. Comparison of observed and simulated SOC storage using BINN. (a) Spatial
map of residuals for one representative fold (median NSE). (b) Observed vs simulated SOC
storage from the testing dataset. (¢) The box plot shows the mean performance of testing NSE in
the 10-fold cross validation test.

Comment 12: Figure 7 decomposes SOC into carbon input vs residence time across biomes
without any independent data or synthesis data to validate biome-level trade-offs. A needed step
before presenting this figure is testing BINN on analytical or the reference [3] can be used to
create a test case for validity of residence times derived from the BINN, before its application to
CONUS.

We thank the reviewer for the helpful suggestion. We agree that validating biome-level trade-ofts
with independent benchmarks would strengthen the claim. As the primary objective of our

15



current traceability analysis is to help mechanistic interpretation from SOC data within the
training data domain, out-of-domain or biome-level validation are outside the scope of this study.
Please refer to our previous responses to Comment 3. However, we are grateful for the wonderful
suggestion, which can help guide future work.

Comment 13: Figure 8, please, restructure and consider the points in the major revision
As suggested, we have added analysis on memory usage and will include the new Fig. R5 in
Supplementary Information and will describe the memory usage in the main text. Therefore, it

would be appropriate if we keep Figure 8 to highlight the computational efficiency in the main
text, as it is the most remarkable operational benefit of our newly developed BINN.

16



References in Table R1:

Lawrence, D. M. et al. The Community Land Model Version 5: Description of New Features,
Benchmarking, and Impact of Forcing Uncertainty. Journal of Advances in Modeling Earth
Systems 11, 4245-4287 (2019).

Shi, Z., Crowell, S., Luo, Y. & Moore, B. Model structures amplify uncertainty in predicted soil
carbon responses to climate change. Nat Commun 9, 2171 (2018).

Zhang, D., Hui, D., Luo, Y. & Zhou, G. Rates of litter decomposition in terrestrial ecosystems:
global patterns and controlling factors. Journal of Plant Ecology 1, 85-93 (2008).

Xu, X. et al. Soil properties control decomposition of soil organic carbon: Results from data-
assimilation analysis. Geoderma 262, 235-242 (2016).

Davidson, E. A. & Janssens, 1. A. Temperature sensitivity of soil carbon decomposition and
feedbacks to climate change. Nature 440, 165-173 (2006).

Davidson, E. A., Janssens, I. A. & Luo, Y. On the variability of respiration in terrestrial
ecosystems: moving beyond Q10. Global Change Biology 12, 154—164 (2006).

Koven, C. D., Lawrence, D. M. & Riley, W. J. Permafrost carbon—climate feedback is sensitive
to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proceedings of the
National Academy of Sciences 112, 3752-3757 (2015).

17



Table R1: 21 biogeochemical parameters in CLM5

No. Name Matrix Corresp oqdlng Description Unit Prior Range Reference
Term Mechanism

1 fllsl Transfer fraction, from metabolic litter to fast SOC unitless [0.1,0.8]
2 f12s1 Transfer fraction, from cellulose litter to fast SOC unitless [0.2,0.8]
3 f13s2 Transfer fraction, from lignin litter to slow SOC unitless [0.2,0.8]
4 fs1s2 Transfer fraction, from fast SOC to slow SOC unitless [0.0001, 0.4]

Microbial carbon L t al. 2019:
5 fs1s3 A use efficiency Transfer fraction, from fast SOC to passive SOC unitless [0.0001, 0.1] awrence et al. >

(CUE) Shi et al. 2018
6 fs2sl Transfer fraction, from slow SOC to fast SOC unitless [0.1,0.74]
7 fs2s3 Transfer fraction, from slow SOC to passive SOC unitless [0.0001, 0.1]
8 fs3sl Transfer fraction, from passive SOC to fast SOC unitless [0.0001, 0.9]
9 fewd2 Transfer fr.actlon, from coarse woody debris to unitless (0.5, 1]
cellulose litter

10 taudcwd Turnover time of coarse woody debris year [1, 6]
11 taudll Turnover time of metabolic litter year [0.0001, 0.11] Zhang et al. 2008
12 taud12 K Substrate Turnover time of cellulose litter year [0.1,0.3]

decomposability
13 taudsl Turnover time of fast SOC year [0.0001, 0.5]
14 tauds2 Turnover time of slow SOC year [1,10] Xu et al. 2016
15 tauds3 Turnover time of passive SOC year [20, 400]
16 qlo Temperature sensitivity unitless [1.2,3] II))av1‘ccllson ett all. 22(())(())56,

£ Environmental avidson et a’.

17 efolding modifiers E-folding parameter to calculate depth scalar meter [0.1, 1] Lawrence et al. 2019;
18  w scaling Scaling factor to soil water scalar unitless [0.0001, 5] Shi et al. 2018
19 bio . Bioturbation rate m2/yr [3x1075 16x104]
20 eryo \% Vertical transport Cryoturbation rate m2/yr [3x10° 5%10%] Koven et al. 2015
21 beta I Carbon input Vertical distribution of carbon input unitless [0.5,0.9999] Lawrence et al. 2019;

Shi et al. 2018
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