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Abstract

A range of leaching protocols have been used to measure the soluble fraction of aerosol
trace elements worldwide, and therefore these measurements may not be directly comparable.
This work presents the first large-scale international laboratory intercomparison study for
aerosol trace element leaching protocols. Eight widely-used protocols are compared using 33
samples that were subdivided and distributed to all participants. Protocols used ultrapure water,
ammonium acetate, or acetic acid (the so-called “Berger leach”) as leaching solutions, although
none of the protocols were identical to any other. The ultrapure water leach resulted in
significantly lower soluble fractions, when compared to the ammonium acetate leach or the
Berger leach. For Al, Cu, Fe and Mn, the ammonium acetate leach resulted in significantly
lower soluble fractions than those obtained with the Berger leach, suggesting that categorizing
these two methods together as “strong leach” in global databases is potentially misleading.
Among the ultrapure water leaching methods, major differences seemed related to specific
protocol features rather than the use of a batch or a flow-through technique. Differences in trace
element solubilization among leach solutions were apparent for aerosols with different sources
or transport histories, and further studies of this type are recommended on aerosols from other
regions. We encourage the development of “best practices” guidance on analytical protocols,
data treatment and data validation in order to reduce the variability in soluble aerosol trace
element data reported. These developments will improve understanding of the impact of

atmospheric deposition on ocean ecosystems and climate.
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1 Introduction

Atmospheric deposition has been a major pathway for vital nutrients, including trace
elements, to reach the surface ocean over modern and geological times (Jickells et al., 2005;
Jaccard et al., 2013; Mahowald et al., 2018). Natural ocean fertilization events have been
reported following aeolian deposition of the vital micronutrient iron (Fe) from dust (Cassar et
al., 2007), volcanic emissions (Langmann et al., 2010) and fire emissions (Tang et al., 2021).
Since the Industrial Revolution, increasing atmospheric emissions linked to human activities
as well as changes in anthropogenic land use have resulted in additional inputs of trace elements
into the atmosphere (Mahowald et al., 2018; Bai et al., 2023). Notably, the increased emission
of toxic metals (e.g., Cu) has been shown to have the potential to negatively impact marine
ecosystems (Paytan et al., 2009; Jordi et al., 2012).

While anthropogenic activities may result in the emission of trace elements which are
deleterious to the marine ecosystem, anthropogenic emissions are also rich in bioavailable
essential nutrients, such as Fe (Hamilton et al., 2020; Ito et al., 2021) and Mn (Lu et al., 2024).
In addition, atmospheric mixing with anthropogenic pollutants can enhance the solubility of
natural aerosol Fe (and perhaps other trace elements) due to proton-promoted and ligand-
mediated interactions (Shi et al., 2012; Paris and Desboeufs, 2013; Baker et al., 2021).

The biogeochemical impacts of aerosol trace elements deposited to the ocean are primarily
driven by the fraction that is assimilated by the marine microbial community (Baker and Croot,
2010; Jickells et al., 2016; Mahowald et al., 2018). This fraction has historically been related
to operational definitions of trace elements released into solution in experimental studies that
have employed a wide variety of leaching protocols (e.g., Sholkovitz et al., 2012; Fishwick et
al., 2014; Perron et al., 2020a; Li et al., 2023) and have variously described the released trace
element fraction as ‘“soluble”, “labile”, “leachable”, “dissolved”, “readily-accessible”,

“bioaccessible” and “bioavailable”. Thus, while a considerable number of studies have
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investigated aerosol soluble trace elements (e.g., Hsu et al., 2005; Baker and Jickells, 2006;
Buck et al., 2010; Kumar et al., 2010; Sholkovitz et al., 2012; Gao et al., 2020; Perron et al.,
2020b; Chen et al., 2024), data reported in the literature suffers from a lack of standardization
of protocols and terminology (Meskhidze et al., 2019). In addition, such operationally defined
fractions do not map onto the oceanic definitions of “soluble” or “dissolved” trace elements in
seawater, and understanding of the relationships between these fractions and the metabolic
processes of nutrient uptake by marine organisms is currently lacking.

Further complication arises due to the solubilization of aerosol trace elements after
deposition into the ocean, which can be influenced by varying properties of seawater, as well
as through dissolution kinetics during the lifetime of particles in the seawater column that are
difficult to replicate in the laboratory (Baker and Croot, 2010). Different leaching protocols
may therefore simulate the solubilization of aerosol trace elements under different atmospheric
and oceanic conditions as well as over different timescales, but the environmental relevance of
the various leaching protocols in use is currently unclear.

The GEOTRACES community has made significant advances in producing a series of
recommendations for aerosol sampling, sample handling and sample digestion for total trace
element determination (Morton et al., 2013; Aguilar-Islas et al., 2024; Buck et al., 2024).
Similar standardization has not been applied to aerosol soluble trace element determination,
rendering both comparisons between different studies and data conglomeration for use in
modeling studies very difficult (Perron et al., 2024; Shelley et al., 2024).

Several studies (Chen et al., 2006; Mackey et al., 2015; Clough et al., 2019; Perron et al.,
2020a; Li et al., 2023) have compared aerosol trace element leaching methods and assessed the
effects of different leaching solutions and contact time, although in each of these studies
laboratory handling was performed by a single group and analysis was undertaken typically

using a single instrument. A recent study (Li et al., 2024) found good agreement between
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aerosol solubility for eight trace elements measured by two laboratories using four different
ultrapure water (UPW) batch leaching methods. Moreover, Li et al. (2024) suggested that very
small and sometimes non-significant differences are introduced by varying agitation method,
filter pore size and contact time within UPW batch leaching protocols.

Here we present the first large-scale intercomparison study that compares eight commonly
used leaching protocols for determining soluble trace elements in aerosol samples. Six research
institutions participated in this intercomparison: Guangzhou Institute of Geochemistry (GIG),
China; the CSIR-National Institute of Oceanography (NIO), India; the University of East
Anglia (UEA), UK; the University of Georgia (UGA), USA, the University of Plymouth (UoP),
UK; and the University of Tasmania (UTAS), Australia. Leaching protocols examined use
UPW, ammonium acetate (AmmAc) or acetic acid with hydroxylamine hydrochloride (Berger)
as leaching solutions. These protocols also varied in contact time, agitation method and
filtration procedure. No attempt was made to standardize the sample processing, analysis and
the data treatment, with each group using their usual practices for these procedures. The aim
of this study is to assess the extent to which the variability in the reported soluble fractions of
aerosol trace elements can be attributed to the leaching methodology used and/or sample

characteristics.
2 Methodology

2.1 Sample collection

This work used a custom-made instrument (ASM-1) (Jiang et al., 2022; Li et al., 2024) to
collect ambient PMyo (particulate matters with aerodynamic diameters of 10 um or less)
samples with a sampling flow rate of 1 m3/min. Whatman 41 cellulose fiber filters (203 mm x
254 mm) were used to collect aerosol particles due to their low background (blank
concentrations) for trace elements following the recommended GEOTRACES cleaning
protocol. The actual area available for aerosol collection was 180 mm >230 mm due to filter
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edges being covered by the frame of the filter holder. Filters used for aerosol sampling were
acid-washed using procedures described in previous work (Morton et al., 2013; Zhang et al.,
2022) to further reduce the background, and stored individually in zipper-top polyethene bags
(Sigma-Aldrich, 229 mm =305 mm).

Six PM1o samples were collected at an urban site (113°36°E, 23°13°N) in Guangzhou from
24 November to 01 December 2021 to test aerosol trace element distribution on the filters
(Table 1). The sampling site is located on the rooftop of a building at the Guangzhou Institute
of Geochemistry, about 30 m above ground level (Yu et al., 2020). Sampling started at 08:30
or 20:30 each day (UTC+8), and lasted for 11.5, 23.5 or 35.5 hours to intentionally vary the
amount of aerosol particles collected over a large range. In addition, three lab blanks (i.e., acid-
washed filters which were not taken to the field) and four field blanks (i.e., acid-washed filters
mounted in the aerosol sampler for 2 h while the pump was off) were prepared during this

sampling period.

Table 1. Summary of the aerosol samples collected in this study, their distribution among the
participants and the purposes for which they were used. (a: all eight subsamples of every sample,
b: one subsample of every sample; c: three subsamples of two samples; d: filtered air volume

was 59 m? for each subsample).

Samples Location Distribution Purpose

Al - A6 Guangzhou GIG only ? Homogeneity testing
B1-B13 Qingdao All groups ® Lab and field blanks
Cl1-C7 Qingdao All groups © Within-group precision
D1-D26 Qingdao All groups ™ ¢ Intercomparison

Another 33 PM1o samples were collected between 03 April and 07 May 2022 at a suburban
site in Qingdao (Table 1), a coastal city in Northern China affected by Asian desert dust and

anthropogenic pollution. The sampling site is located on the rooftop of a building (36.34 N,

6
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120.67 E), about 20 m above ground level (Zhang et al., 2022). Aerosol sampling started at
08:00 each day and ended at 07:30 on the next day (UTC+8), giving a sampling time of 23.5 h
and a sampled air volume of 1410 m2. In addition, six lab blanks and seven field blanks were
collected during the sampling period in Qingdao with the same procedure as described above.

After sampling, each filter was folded inward to protect aerosol particles, placed back into
the zipper-top polyethene bag, and stored frozen at -20 <C.

2.2 Sample use and distribution

All the PM1o samples and blank filters were divided into eight discs (47 mm in diameter)
using a circular titanium hole-punch. These subsamples were folded inward, stored individually
in zipper bags (Sigma-Aldrich, 64 mm %76 mm), and labelled X-1 to X-8 (where X is the
sample identification name). Subsamples were labelled after subdivision, hence the subsample
numbers are not related to the location of the discs on the filter.

Intercomparison exercises should ideally be conducted by sharing homogeneous materials
among the participants in quantities that are sufficient for each participant to make a realistic
assessment of the precision of their measurements. Neither of these conditions could be easily
met for the intercomparison study reported here because: 1) it could not be guaranteed that
aerosol material was homogeneously distributed over the aerosol filters; and 2) the amount of
material a subsample contained was unlikely to be sufficient for replicate analysis of the soluble
trace elements studied. Our study therefore addressed the issues of sample homogeneity
(Section 2.6.1), intra-method precision (Section 2.6.2) and inter-method comparison (Section
2.6.3) separately.

For the homogeneity test, all eight portions of each filter collected at Guangzhou (A1-A6)
were subjected to the same digestion procedure by a single group at GIG (Section 2.3) to
determine the total concentration of 14 trace elements in each subsample. This information

directly informs whether sample heterogeneity represents a confounding factor in later
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comparisons.

The 33 samples (and six lab blanks and seven field blanks, B1-B13) collected in Qingdao
were distributed to all participating laboratories for soluble trace element analysis. Seven of
these samples (C1-C7) were used to assess intra-method precision with each laboratory
receiving three subsamples of two filter samples (Table 2). Furthermore, each laboratory
received one portion of each of the remaining 26 filter samples (D1-D26) for conducting the
leaching method intercomparison. These sub-samples (D1-D26) each had a sampled air volume
of 59m?3 which can be used to convert data presented in this study into atmospheric
concentrations. One subsample of each of the Qingdao samples was also retained at GIG for
total trace element determination, and the last subsample was reserved for future as yet

undetermined usage.

Table 2. Summary of subsample distribution from filter samples in group C to the six

laboratories. Each lab was provided with triplicate subsamples of each C filter.

GIG UTAS UGA UEA UoP NIO
C1 C1 C3 C4 C5 C6
C7 C2 C4 C5 C6 Cc7

2.3 Leaching and digestion procedures

Table 3 provides an overview of the laboratory leaching protocols investigated in this
study; more details can be found in Tables S1-S6. Each laboratory analyzed the samples they
received using only the method associated with them in Table 3. UGA and UTAS both
employed a two-stage protocol with successive leaching (termed leach 1 and leach 2, hereafter)
and therefore reported two values for each trace element. A total of eight leaching protocols

were examined in this study.
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The eight leaching protocols fell into three broad categories based on the chemistry of the
leaching solution: five methods used ultrapure water (> 18.2 MQ-cm) as leachate (two
employing batch extraction and three employing flow-through extraction), while the other three
methods used ammonium acetate (two methods) or acetic acid and hydroxylamine
hydrochloride (one method) as leachate. These categories are referred to hereafter as UPW,
AmmAc and Berger leaches, respectively. Within and among these categories, protocols also
differed in solution contact time, volume of leachate, presence or absence of agitation,
additional filtration step using a backing filter, and pore size of any backing filter, as
summarized in Table 3. Thus, it is important to note that, even within each of the three
categories of methods, no leaching protocol examined in this study was identical to any other.

Results are presented hereafter using the acronym of the laboratory followed by the type
of leaching solution used (“-u” for UPW, “-a” for AmmAc and “-b” for Berger). Where groups
performed sequential leaching (Table 3), we consider the sum of both leaching fractions to be
equivalent to a single-step AmmAc (for UTAS-a) or Berger (for UGA-b) leach. In this work,
we report results produced using eight different leaching protocols (i.e. GIG-u, N1O-u, UEA-a,
UTAS-u, UTAS-a, UGA-u, UGA-b, and UoP-u).

The digestion procedure used by the GIG laboratory to measure total trace elements
contained in aerosols was described previously (Zhang et al., 2022). Briefly, aerosol filter
subsamples were digested in a mixture of HNOs, H2O2 and HF in an acid-cleaned Teflon jar,
using microwave digestion. The residual solution was then evaporated, and 20 mL HNO3 (1%)
was added to the jar. The resulting solution was filtered through a 0.22 pm polyethersulfone
filter and analyzed using inductively coupled plasma mass spectrometry (ICP-MS, iCAP Q,

Thermo Fisher Scientific).
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Table 3. Overview of the eight leaching protocols used by the six laboratories participating in this intercomparison study.

protocol batch/flow-through  contact time leaching solution volume agitation filter pore size reference
(M)

GIG batch 120 min ultrapure water 20 mL orbital shaking 0.22 Zhang et al., 2022
(pH: 6.5)

NIO batch 30 min ultrapure water 20 mL ultrasonication 0.2 Panda et al., 2022
(pH: 6.4)

UEA batch 60 min ammonium acetate 20 mL hand shaking 0.2 Sarthou et al., 2003

(1.1 mol/L, pH: 4.7)

UoP flow-through ~45s ultrapure water 100 mL no agitation 0.2 Buck et al., 2010
(pH: 5.2)

UGA-leach 1 flow-through ~20s ultrapure water 100 mL no agitation 0.2 Buck et al., 2013
(pH: 5.6)

UGA-leach 2 batch ~120 min 25% acetic acid (v/v) 10 mL no agitation no backing filter Berger et al., 2008

(following +0.02 mol/L (centrifugation)

leach 1) hydroxylamine

hydrochloride

UTAS-leach 1 flow-through ~40s ultrapure water 50 mL no agitation no backing filter Perron et al., 2020a
(pH: 6.5)

UTAS-leach 2 batch 60 min ammonium acetate 10 mL hand shaking no backing filter Perron et al., 2020a

(following (1.1 mol/L, pH: 4.7) (centrifugation)

leach 1)

10
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2.4 Trace element determination

Each group determined trace elements in the leaching solutions using the analytical
methods routinely used in their laboratory. Table 4 shows the trace elements determined by
each laboratory, Table S7 summarizes the methods used, and Table S8 provides a summary of
the analytical detection limits. As shown in Table 4, up to 20 trace elements were determined
by groups participating in this intercomparison study. The results presented in this paper focus
on the seven trace elements (i.e., Al, Cu, Fe, Mn, Ni, Pb and V) that were determined by all the
six groups. Comparisons for the other elements (Ba, Cd, Ce, Co, Cr, La, P, Th, Ti, U and Zn)
are reported in the supplementary material (Figures S1 and S3-S6). For all groups, the mass of
trace elements in aerosol samples was determined against an external standard calibration
(Table S7). The same trace elements determined in leaching solutions by GIG were also
determined in the total digests of the Guangzhou and Qingdao samples. Trace elements
concentrations in leachate and digests were corrected for the volume of the liquid phase used

and reported as mass of trace elements on the filter subsamples received.

Table 4. List of trace elements determined by each of the six laboratories. If one trace element

was not measured by one laboratory, the corresponding cell is left blank.

Trace element GIG NIO UEA UTAS UGA UoP

Al y y y y y y
AS y y

Ba y y y y
Cd y y y y y
Ce y y

Co y y y y y
Cr y y y y y
Cu y y y y y y
Fe y y y y y y
La y y

Mn y y y y y y
Ni y y y y y y

11
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Pb y y y y y y
P y y y

Sb y y

Th y y y

Ti y y y y y
U y y y
\ y y y y y y
Zn y y y y y

2.5 Blank subtraction

For each analytical method, blank subtraction was conducted using the following
procedure.

As described above, each group received 13 blank filters (B1-B13). First, we calculated
the median of all the blank measurements generated by a research group. If the median value
was below the analytical detection limit for that trace element and analytical method, no blank
correction was made; if the median was above the analytical detection limit, this median value
was subtracted from the respective measured quantity for the subsample. We calculated the
median absolute deviation (MAD, defined as the median of the absolute differences between
the individual blanks and the median blank) to represent the uncertainty in the blank.
Subsamples with blank-corrected quantities less than three times of the MAD were defined as
less than the blank-correction detection limit. In this work we use median and MAD, rather
than mean and standard deviation, because median and MAD can be reliably calculated when
values below detection limits are present and they are less affected by the presence of outliers.
2.6 Data analysis
2.6.1 Sample homogeneity

Six samples (Al-A6) were collected in Guangzhou to examine particle distribution
homogeneity, and eight subsamples (47 mm discs) were obtained from each sample. For each

filter sample, we measured the mass of 14 trace elements in the eight subsamples (Xi, where
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Xi is the mass of a given trace element in the ith subsample) at the GIG laboratory; we then
calculated the median value (Xm) of the eight measurements, the MAD as well as relative MAD,
which is defined as MAD/Xn.

2.6.2 Precision derived from replicate subsample analysis

Each group measured trace elements on three subsamples from each of two different
aerosol samples (C samples) collected at Qingdao (Table 2). For each trace element, the relative
MAD was determined for both samples and the higher of these values was used as the
uncertainty in the soluble trace element mass measurement. This value was then applied to the
intercomparison study samples (D1-D26) for which no replicate sample was available. We note
that the uncertainty determined in this way includes a component due to the heterogeneity of
trace element distribution across the aerosol samples, as well as a component from variability
in the analytical procedures within each group.

For four (GIG, NIO, UGA and UTAS) of the six groups participating this work, the
magnitude of the uncertainty in each intercomparison subsample was determined by
multiplying its measured soluble mass by its respective relative MAD value. The other two
groups (UEA and UoP) reported individual uncertainties for the intercomparison subsamples
based on calibration uncertainties and repeated analyses of single subsample extract solutions.
In the latter cases, the uncertainties of the soluble trace element mass measurement in
individual subsamples were taken to be whichever of the replicate-determined or individually-
determined uncertainties was larger.

2.6.3 Inter-method statistical comparisons

Comparison of the results produced by the various leaching methods for each trace
element for samples D1-D26 was done where possible using both parametric and non-
parametric tests, and each dataset for each element and method was tested for normality using

the Shapiro Wilks method (Miller and Miller, 2010). For comparisons of similar methods (e.g.,
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the batch UPW leaches of GIG and NIO) the hypothesis that each method-method pair
produced statistically indistinguishable results was examined according to the following
statistical tests.

(1) Spearman’s Rank Correlation was used to test the correlation between methods
(assuming that there is a direct relationship between the amounts of a trace element leached by
the two methods). When no correlation was found between two methods, subsequent tests were
deemed to be unreliable.

(2) A two-tailed t-test was used to test the slope of a method-method relationship. Method-
method slopes and intercepts were determined using orthogonal distance regression (ODR),
since both analytical parameters were subject to significant uncertainty and simple linear
regression was therefore not suitable. A slope equal to 1 implies that sample-to-sample changes
in trace element release are equivalent between the two methods. Because the samples shared
for the intercomparison were subject to heterogeneity, the slope was also tested for difference
to 140.12, after uncertainties due to sample heterogeneity were taken into account (the upper
limit of such uncertainties is estimated to be 12%, as discussed in Sections 2.6.1 and 3.1); in
this case, one-tailed t-tests were used.

(3) A two-tailed t-test was used to investigate whether the intercept of the ODR method-
method relationship differed significantly from zero. Divergence from zero indicates the
presence of an offset between the two methods.

(4) Paired t-tests and Wilcoxon Signed Rank tests were used to assess if the difference
between the two measurements for each individual sample was different from zero.

Optimum agreement between each method-method pair was therefore indicated by

significant correlation (test 1) and absence of significant differences indicated by tests 2-4.
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Comparisons between dissimilar methods (e.g. batch UPW vs AmmAc) were made using
two-tailed t-tests and Mann Whitney U tests, after first confirming the presence of significant
differences between the datasets using one-way ANOVA and Kruskal Wallis tests.

2.7 Air mass back trajectory analysis

Five-day air mass back trajectories (AMBTS) were calculated at heights of 50, 500 and
1000 m above the ground level throughout the sampling period at the sampling site in Qingdao,
using the NOAA READY HYSPLIT model with NCEP/NCAR Reanalysis Project datasets
(Stein et al., 2015). For each sample, trajectories were calculated every 3 hours throughout the
collection period and 50 m trajectories (for all samples) were used to perform cluster analysis
with the openair software tool in R (Carslaw and Ropkins, 2012). Between four and six clusters
were tested for this analysis, and three clusters (arrivals from the north (N), southwest (SW)
and the Yellow Sea (YS)) were chosen to represent the major differences in atmospheric
transport pathways during the field sampling (Figure 1). Each sample was assigned to one of
the three clusters, based on the dominant AMBT type of the eight trajectories calculated for

that sample.
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Figure 1. (a) Result of the 4-cluster analysis of the AMBTSs calculated during the sample

collection at Qingdao, showing representative pathways for the clusters and their percentage

occurrence; (b) examples of 50 m AMBTSs for samples classified as N (Sample D22, blue dash),

SW (D16, red solid) and Y'S (D18, green dot-dash) types.

3 Results and Discussion

3.1 Aerosol trace element distribution on the filters

Table 5 summarizes the relative MAD values obtained for total trace elements contained
in the Guangzhou samples (A1-A6). The median of relative MAD values obtained for the 14
trace elements ranged from a minimum of 2.7% for V to a maximum of 12% for Cr. In this
work, we chose a conservative approach by applying the highest median relative MAD value
(i.e. 12%) to represent the uncertainty associated with trace element distribution heterogeneity
over a filter, regardless of the element analyzed. Variations between different methods greater
than this 12% heterogeneity are likely to be due to differences in analytical results, as described
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in Section 2.6.3.

Table 5. Summary of the relative MAD (in %) in particle distribution homogeneity: minimum,

maximum and median values for the 6 filters collected in Guangzhou.

Element Min Max Median
Al 1.4 11 7.1
As 1.0 8.0 5.1
Ba 14 12 5.9
Cd 0.5 10 5.0
Cr 6.6 22 12
Cu 2.1 14 4.2
Fe 1.6 11 4.9
Mn 1.1 12 6.5
Ni 3.4 11 5.4
Pb 0.6 7.7 4.5
Se 3.5 10 6.9
Sh 1.4 8.9 4.8
\/ 1.3 9.4 2.7
Zn 3.2 10 8.7

3.2 Background (blank) contribution

Each research group determined the soluble fraction of trace elements in blank samples
(B samples) according to their chosen method(s); therefore, the blank values included the
contribution from the blank filters and from the analytical procedures used. The total blank for
each trace element analyzed was subtracted from the subsamples’ measurements in the
intercomparison study, without attempting to separately quantify the contributions from the
filter and the analytical procedure.

In almost all cases, blank contributions were extremely low with respect to the PMug
subsamples. For the seven elements that are the focus of this intercomparison study, 79% of

blanks were below the analytical detection limit, and only two blank values were greater than
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10% of the magnitude of the lowest intercomparison sample. There were only a few cases for
which blanks were higher than the lowest intercomparison sample and 24 cases (~2%) where
intercomparison samples were identified as being below the blank-correction detection limit.
Table S9 summarizes the blank contributions for all trace elements with measurable blanks.
3.3 Intra-method precision

Table 6 summarizes the relative uncertainties (in %) for soluble trace elements determined
by each of the six groups when analyzing three replicates of the same aerosol sample (C
samples), and the relative uncertainty is defined in Section 2.6.2. In most cases these relative
uncertainties were within the range of values determined for total element homogeneity over
whole filter samples (Table 5). None of the uncertainties reported in Table 6 was larger than
the highest uncertainty value reported for the total element homogeneity test (22% for Cr),
suggesting that intra-laboratory variability was not significantly greater than the variability

between subsamples within individual filter samples.
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363  Table 6. Summary of the relative uncertainties (in %) for soluble trace elements analysis of 3 replicate samples determined by each of the six

364 laboratories. If one trace element was not measured by one laboratory, the corresponding cell is left blank.

Trace element GIG-u NIO-u UEA-a UTAS-u UTAS-a UGA-u UGA-b UoP-u
Al 11 2.6 44 18 15 9.1 11 8.2
As 11 3.2
Ba 4.5 2.9 18 4.2 49
Cd 5.7 2.8 10 8.4 0.11 1.5 7.0
Ce 0.8 14 11
Co 7.8 4.3 4.7 0.9 1.0 3.6 4.4
Cr 12 1.1 2.7 4.1 1.2 1.8 21
Cu 6.9 6.8 15 3.8 6.1 16 16 11
Fe 12 9.0 1.6 17 15 2.0 2.0 13
La 2.3 17 8.3
Mn 9.7 1.7 4.7 6.1 51 3.6 49 3.7
Ni 15 6.9 5.0 2.6 7.4 8.5 15 15
P 5.3 1.1 0.6 4.7
Pb 12 6.9 3.5 8.2 4.7 2.0 3.4 10
Sb 7.8 25
Th 12 0.6 5.8 15
Ti 7.2 7.9 25 7.3 0.12 43 5.6
U 2.1 11 9.5 8.1
Vv 10 4.8 3.1 5.1 1.8 11 3.0 9.6
Zn 12 4.7 15 6.3 7.3 7.3 5.2

365
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3.4 Comparison of leaching methods
Figure 2 summarizes statistical comparisons of similar leaching methods for all of the

samples collected at Qingdao (D samples), and the results are discussed below.

Batch UPW Methods
Cu Fe

n Ni
m%%h HJP
VS
NIO-u
Flow UPW Methods
Fe Mn Ni

UTAS'”‘L‘.‘LLH—
VS

UGA-u

VS

UGA-u ‘
A e ol m e ] B
VS

UTAS-uU

Ammonium Acetate Methods
Cu Fe Mn Ni

KHHIHLPP

| or p < 0.05 2| (numbers defined
B o <001 4| 3| in caption)

Figure 2. Summary of the statistical comparisons of the leaching methods for all of the 26
samples (N, SW and YS) collected at Qingdao. Comparisons are only shown for similar
methods: Batch UPW (GIG-u and NIO-u), Flow UPW (UoP-u, UTAG-u and UGA-u) and
AmmAc (UEA-a and UTAS-a). Statistical tests (as detailed in Section 2.6.3) shown in
quadrants are (1) Spearman’s Rank Correlation, (2) one-tailed t-test of slope versus 140.12
uncertainty, (3) intercept equals zero, and (4) Wilcoxon Signed Rank Test. Significant test

results are indicated by the color code: blue indicates agreement between methods, red
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indicates disagreement, and white indicates that the test result was not statistically significant.

Full statistical test results (all tests and elements) can be found in Figure S4.

3.4.1 Ultrapure water batch leaching methods

Table 3 shows that the two UPW batch leaching protocols examined in this work differ in
contact time (2 versus 0.5 h), agitation method (orbital shaking versus ultrasonication), and to
a lesser extent, filter pore size (0.22 versus 0.2 pm).

As shown in Figure 2, a strong correlation (Spearman test, p<0.01) was observed between
soluble trace element masses measured by GIG and NIO for four of the elements investigated
(Al, Cu, Ni and V); nevertheless, the slope statistically differs from 140.12 for Al and V and
the intercept is statistically different from zero in the case of Al (p<0.05). Among these four
elements, the best agreement between the two protocols was found for Cu and Ni (Figure 3),
with NIO values slightly higher than those of GIG, except for a few YS samples. Good
agreement was also observed for Al and V, although for both elements there are some samples

with measured values greatly deviating from the 1:1 line.
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Figure 3. Comparison of the absolute mass of soluble trace elements (Al, Cu, Fe, Mn, Ni, Pb
and V) obtained using UPW batch leaching methods (GIG and NI10O). Air mass origins (N, SW,
YS) for each sample are indicated by the color code. The dashed line indicates the 1:1
relationship between the methods, and the grey shading indicates the 12% sample homogeneity

uncertainty.

Although there was a significant correlation for Fe (Spearman test, p<0.05, Figure 2), large
deviation from the 1:1 slope was not uncommon (Figure 3). Fe measured by NIO tended to be
higher than GIG values, especially for samples from continental air masses (N and SW). No
significant correlation was found between the two methods for Mn or Pb (Figure 2). Similar to
Fe, soluble Mn values reported by NI10O tended to be higher than those reported by GIG (Figure
3), especially for N and SW samples. The ultrasonication used by NIO may lead to the

formation of reactive oxygen species (e.g., hydroxyl radicals and hydrogen peroxide) due to
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acoustic cavitation (Kanthale et al., 2008; Miljevic et al., 2014). These species have the
potential to reduce insoluble Fe(lll) and Mn(1V) to the more soluble Fe(ll) and Mn(ll),
especially when poorly soluble mineral dust is present in the N and SW samples. Enhanced
solubility of Al in the NIO data (relative to GIG) is not observed, perhaps because Al only has
one oxidation state and its solubility may not be affected by redox chemistry.

Notably, N1O reported much lower values than GIG for Pb (Figure 3). GIG and NIO both
checked their experimental data and found no errors, and there is no clear clue why such large
differences occurred. Therefore, here we do not discuss the UPW batch data for Pb further.
3.4.2 Ultrapure water flow-through leaching methods

The three UPW flow-through leaching methods investigated here differ by contact time,
pH and volume of leaching solution, and the use (or not) of a backing filter (Table 3).

Overall, a positive and significant correlation (Spearman test p<0.01, Figure 2) was found
between the soluble trace element mass measured by UoP and UGA. For all trace elements
except Pb, the comparison of these two methods, however, resulted in a slope different from
140.12 and an intercept different from O for Ni and V (Figure 2), with slightly lower values
obtained by UoP than by UGA (Figure 4). This difference cannot be attributed to higher blank
levels in UGA samples because both laboratories had element blanks below their method
detection limits (hence, no blank correction was applied).

The UTAS UPW flow-through method produced soluble trace element measurements that
positively and significantly correlate with the two other methods (Figure 2), except for Al and
Fe. Overall, UTAS measurements were higher than those of UoP (Figure 4), except for low Ni
measurements (compared to both UoP and UGA) which result from elevated Ni blank
correction in UTAS data treatment (due to new Ni cones used in the SF-ICP-MS instrument,

Table S9).
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Figure 4. Comparison of the absolute mass of soluble trace elements (Al, Cu, Fe, Mn, Ni, Pb
and V) obtained using UPW flow-through leaching methods (UoP, UTAS and UGA). Plot
details are as described in Figure 3. UGA data are represented by solid symbols, and UTAS

data are represented by open symbols.

One striking observation from Figures 2 and 4 is the lack of correlation between Al and
Fe measured by UoP or UGA and that measured by UTAS (similar behavior was also observed
for Ti, Ba and U, as shown in Figure S1). High Al and Fe masses reported by UTAS could
stem from the absence of a backing filter in the UTAS method, whereby the soluble fraction of
trace elements measured can include the contribution of particles with a diameter greater than
0.2 um. As shown in Figures 4 and S2, this observation is even more obvious in aerosol samples
influenced by terrestrial air-masses (N and SW samples) due to lower solubility of Fe and Al

in these samples when compared to YS samples. The absence of a backing filter in the UTAS
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protocol only seems to influence lithogenic elements with lower solubility (Al, Fe, Ti, Ba, U),
while more soluble elements (Cu, Mn, Ni, Pb and V) showed a significant correlation (p<0.01)
with the other two methods investigated. No filtration in the UTAS UPW flow-through
protocol may also be responsible for higher uncertainty obtained for lithogenic elements when
measuring three replicate samples (Table 6).

Based on the intercomparison results, it is reasonable to assume that the different leaching
solution volumes have minor, if any, impacts on the results from the three UPW flow-through
leaching methods. Our findings are consistent with those of Winton et al. (2015) suggesting
that over 90% of the soluble Fe contained in aerosols was extracted using a single 50 mL UPW
flow-through leach, although Winton et al. (2015) did not provide for other trace elements.
3.4.3 Ammonium acetate leaching methods

As displayed in Table 3, the two AmmAc leaching protocols applied by UEA and UTAS
differ by the volume of the leaching solution and the absence of a backing filter in the UTAS
protocol; in addition, the UTAS leaching is performed as part of the sequential leaching of a
single sample, immediately following the UPW flow-through leaching.

For Al, Cu and Mn, measurements show excellent agreement (significant correlation
(p<0.01), and no significant differences in slopes, intercepts or soluble masses) for the two
AmmAc methods (Figures 2 and 5). The other elements (Fe, Ni, Pb and V) also show good
agreement between methods, with no significant differences for slopes and only Ni having a
significant difference for intercept, possibly due to the Ni blank overcorrection applied to the
UTAS dataset (see Section 3.4.2 and Table S9) which shifts the correlation curve below the
140.12 grey-shaded area in Figure 5. Both Pb and V measurements show good correlation and
agreement in intercept values, although the slopes differ from 140.12 (Figure 2). These four
elements (Fe, Ni, Pb and V) do show significant differences for soluble masses, possibly due

to differences in the calibration methods or other analytical differences.
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Figure 5. Comparison of the absolute mass of soluble trace elements (Al, Cu, Fe, Mn, Ni, Pb
and V) obtained using AmmAc extraction methods (UEA and UTAS). Plot details are

described in Figure 3.

Poorer agreement between the two methods was again found for lithogenic elements (Al
and Fe), although comparisons were noticeably better for the AmmAc methods (Figure 5) than
for the UTAS-u to other UPW flow-through method comparisons (Figure 4). For these two
elements (Al and Fe), measurement differences were more pronounced in samples influenced
by “terrestrial” air masses (N and SW) while YS samples showed a good agreement (Figures
5, S5 and S6). This better agreement for lithogenic elements between the AmmAc methods
may suggest that the > 0.2 um particles which are not removed by the UTAS UPW leaching
protocol are largely soluble in AmmAC so that their trace element content is not removed by

0.2 pm filtration in the UEA method.
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3.4.4 Influence of different leaching protocols on the determination of fractional solubility

Figure 6 illustrates the variations in solubility of trace elements in the Qingdao samples,
determined using the eight leaching methods tested in this study. Kruskal Wallis and one-way
ANOVA tests both indicated significant differences (p < 0.01) among the results obtained for
the five methods employing UPW as the leaching solution for all elements except Ni and V.
Some of the significant differences within the UPW methods are discussed in Sections 3.4.1-
3.4.2 (e.g. for Pb in the UPW batch methods, and Al and Fe in the UPW flow-through methods).
In general, where significant differences in solubility existed within the UPW group these did

not appear to be related to whether the method employed batch or flow-through techniques.
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Figure 6. Box and whisker plots of solubility (in %) for Al, Cu, Fe, Mn, Ni, Pb and V in the
Qingdao samples determined using the eight leaching protocols tested in this study. Colors
indicate method type: batch UPW (light blue), flow UPW (dark blue), AmmAc (green), and

acetic acid with hydroxylamine hydrochloride (purple).

When comparing all the eight methods, Kruskal Wallis and one-way ANOVA tests
indicated significant differences in solubility for all seven elements. In almost all cases, the
UPW methods resulted in significantly different (lower) solubilities than those obtained with
the AmmAC and Berger leaches, as expected. For Al, Cu, Fe and Mn, solubilities obtained
using the AmmAc leach were significantly different from (lower than) those obtained using
the Berger leach.

Table 7 illustrates the broad differences obtained between the UPW, AmmAc and Berger
methods using the pooled median solubility values for each method. Both Figure 6 and Table
7 show that the extent of solubilization from aerosol by the different methods is highly element
specific. For example, the patterns in enhancement in solubility for AmmAc and Berger
compared to UPW (AmmACc/UPW and Berger/UPW, see Table 7) are very different for Fe,
Mn and Pb. Interestingly, the more aggressive conditions of the Berger leach (compared to
AmmAC) had large impacts on the dissolution of poorly soluble lithogenic elements (such as

Al and Fe), but no effect on Pb dissolution.

Table 7. Median trace element solubilities for the Qingdao aerosol samples, determined from
the combined soluble element masses determined for the methods using UPW (GIG-u, NI1O-u,
UoP-u, UTAS-u and UGA-u), AmmAc (UEA-a and UTAS-a) and Berger (UGA-b), and
solubility ratios of the AmmAc to UPW (AmmAc/UPW) and Berger to UPW (Berger/UPW)

methods. (a: excluding UTAS-u due to the inclusion of > 0.2 um particles, b: excluding GIG-
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518  uand NIO-u due to unexplained inconsistencies in Pb data).

element UpPwW AmmAcC Berger AmmAc / UPW Berger / UPW
Solubility (%) Solubility (%) Solubility (%)
All samples
Al 2.1% 13 23 6.1 11
Cu 16 34 51 2.2 3.2
Fe 09° 4.2 14 4.7 15
Mn 29 47 67 1.6 2.3
Ni 8.2 14 30 1.7 3.6
Pb 8.9 (11°) 57 52 6.4 (5.0°) 5.9 (4.6 )
\ 16 25 36 1.5 2.2
N samples
Al 1.32 12 20 9.1 15
Cu 11 27 42 2.4 3.7
Fe 0.6° 4.0 14 7.0 24
Mn 20 42 61 2.1 3.0
Ni 6.0 10 29 1.7 4.7
Pb 6.0 (8.4 ") 42 39 7.1(5.1° 6.4 (4.6 )
\Y 11 19 28 1.7 2.5
SW samples
Al 192 11 21 55 11
Cu 19 39 55 2.1 2.9
Fe 09° 4.1 14 4.8 16
Mn 30 46 66 1.5 2.2
Ni 6.6 12 24 1.8 3.7
Pb 10 (119 54 54 5.6 (5.0°) 5.7 (5.0
\ 16 23 31 1.4 2.0
YS samples
Al 8.2% 19 37 2.3 4.5
Cu 28 45 57 1.6 2.0
Fe 162 4.4 15 2.8 9.6
Mn 38 49 71 1.3 1.9
Ni 19 22 45 1.2 2.4
Pb 15 (19 ) 73 76 4.9 (3.8Y) 5.1(3.99)
\Y 42 52 62 1.2 1.5
519
520
521 For most methods, there were statistically significant differences (Kruskal Wallis and one-

522 way ANOVA tests) between solubilities determined for the different air mass types for most
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elements (Figures 7 and S7). Exceptions to this were the N1O-u results (for which significant
differences were only found for Al and Cu) and Fe (for which significant differences were
found for some of the UPW methods, but not for AmmAc or Berger). In all cases where such
significant differences were found, solubility in YS-type samples was higher than that in N-
type samples (Figure 7). Note that the difference between N and YS samples appear to become
less pronounced as the leach solution becomes more aggressive (e.g. for V, the YS/N solubility
ratios are 4.0-6.1 for the UPW methods, 2.7-3.0 for the AmmAc methods, and 2.3 for the
Berger method). Enhanced trace element solubility in YS samples compared to N samples may
be due to increased atmospheric processing of particles transported over the ocean (particularly
for lithogenic elements) (Longo et al., 2016; Hamilton et al., 2022; Sakata et al., 2023) or to
anthropogenic emissions of highly soluble trace elements to the marine atmosphere (e.g. V, Ni

from shipping) (Sholkovitz et al., 2009; Chen et al., 2024).
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Figure 7. Summary of the comparisons of trace element solubility for the N, SW and YS

samples determined using the eight leaching methods tested in this work. Red colors indicate
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statistically significant differences (Mann Whitney U Test) between pairs of sample types (1:
N vs SW; 2: N vs YS; 3: SW vs YS), and white colors indicate no significant difference. No
summary is shown where the Kruskal Wallis Test indicated no significant differences (p <0.01)

between the three sample types.

The aerosol provenance seems to be a key driver of the resulting amount of total and
soluble trace element measured, regardless of the leaching protocol used. Indeed, higher Al,
Cu, Ni, and V solubility was determined for YS samples compared to samples showing
terrestrial fingerprints. Such an increase in trace element solubility in marine samples was less
pronounced when measuring Fe, Mn and Pb due to similarly high solubility measured in
samples influenced by SW air-masses. In YS samples, V, Ni and Cu showed higher solubility
in UPW, with a lesser impact of stronger AmmAc and Berger leaching protocols. Increased
atmospheric processing of particles transported over the ocean can explain the presence of more
readily soluble trace elements in the presence of UPW in Y'S samples compared to N and SW
samples.

As opposed to the UPW leaches, AmmAc methods showed similar (Mn, Pb) or higher (Al,
Fe) solubilities in samples containing terrestrial inputs, except for Cu, Ni and V for which

higher solubility was found in samples influenced by marine air masses.
4 Conclusions and recommendations for future studies

In general, comparisons between similar leaching methods (Sections 3.4.1-3.4.3) show a
high degree of correlation between measured soluble masses of trace elements. Where
correlation was poor, the differences appear to stem from specific differences in the leaching
methods. For example, the use of ultrasonic agitation instead of mechanical agitation for UPW
batch methods seems to result in increased solubility for Fe and Mn, and the absence of a
backing-filter resulted in higher soluble Al and Fe in the UPW flow-through leach. The trace
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elements most impacted by these experimental differences appear to be lithogenic elements
associated with mineral dust, including Fe.

Most of the elements whose soluble masses are well-correlated nevertheless show
significantly different slopes and intercepts from those which would be expected for “identical”
results (within the uncertainties associated with sample heterogeneity). Differences in
calibration between the participating research groups, as well as the differences in leaching
procedures (Table 3), could contribute to this behavior. All groups took steps to determine the
accuracy of their calibrations using external reference materials (Table S7), but there was no
common procedure adopted during this intercomparison exercise to verify the accuracy of
analysis, suggesting a common approach and sharing of certified reference materials (CRMs)
could further improve confidence in the results of analytical intercomparisons.

The differences in fractional solubility observed between the different leaching method
types in this study are not unexpected, since dissolution of trace elements is partially dependent
on the chemical characteristics of the leach solution (which varies widely between UPW,
AmmAc and Berger). The GEOTRACES data products naming  convention
(https://www.geotraces.org/parameter-naming-conventions/; last accessed: 18 June 2025)
suggests describing both AmmAc and Berger leaches as "strong" leaches. However, for some
elements studied here, there is a wide range in trace element solubility data reported within this
suggested classification. For Pb and V, the AmmAc and Berger leaches appear to give
equivalent results, while solubility determined using AmmAc and Berger leaches was
significantly different for Al, Cu, Fe, Mn and Ni. Careful consideration should be given to the
variation in solubility between leach solutions for a given trace element when observational
data are used to validate numerical models, since using data obtained from a variety of
analytical methods might introduce unknown biases into the validation.

The differences in trace element solubility observed for aerosols with different source
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and/or transport histories within each of the individual leaching methods further complicates
this issue and highlights the importance of underlying particle properties in determining trace
element solubility. While Fe (the most commonly studied and modelled trace element) appears
to be least affected by differences in sample source or transport type for the trace elements
reported here, it would appear to be necessary to investigate such behavior in aerosols from a
wider variety of environments and regions in order to fully quantify this effect.

Our study and others (e.g. Perron et al., 2020a; Li et al., 2023) clearly demonstrate that
different leaching solutions release different proportions of aerosol trace elements into solution.
It is not possible to identify a “correct” procedure for the determination of aerosol soluble
element input to the ocean (or indeed whether a correct procedure exists) without a better
understanding of the factors that control trace element dissolution in the complex and variable
matrix of natural seawater over the time frames during which aerosol particles remain
suspended following deposition to the ocean (Baker and Croot, 2010). The identification in
future work of links between different leaching protocols and specific environmental processes
or behaviors would be a significant advance.

However, this study highlights the necessity for some best practice guidance to reduce
uncertainties in future intercomparison studies of aerosol soluble trace element leaching
protocols. Best practice should include an agreed approach to analytical instrument calibration,
representative blank definition and detection limit determination. Distribution of one or more
solution-phase reference and/or consensus samples relevant to the range of trace elements
assessed would also be advisable. Reporting by each group of measured concentrations for
these solution-phase samples would allow direct intercomparison of analytical performance
that is independent of extraction methods. In addition, the reporting of measurement
uncertainty and precision via a common approach should be encouraged for all future studies.

Adoption of such best practices outside of intercomparison studies will improve
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data interpretation and assimilation of observational data into models.
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