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A The Spatialize library: User Manual

A.1 Downloading and installation

The spatialize package is compatible with Python 3.8 and later versions, offering support
across Linux, macOS, and Windows operating systems. This package is readily accessible
through the Python Package Index (PyPl) at https://pypi.org/project/spatialize.
To install spatialize, you have two convenient options:

1. Install from PyPI:
pip install spatialize
2. Install from GitHub:
pip install -U git+https://github.com/alges/spatialize.git

These installation methods ensure you can easily integrate spatialize into your Python
environment, regardless of your preferred source. By using pip, Python’s package installer,
you can effortlessly manage dependencies and keep your project up-to-date with the latest
spatialize features and improvements.

The spatialize Python package is built based on some existing dependencies, the most
relevant of which are listed as requirements in the package itself. Among them, one can
highlight NumPy ([2]) and pandas ([4]), which are used for data handling (grids and samples),
for data import, and to export the estimation results. Matplotlib ([3]) It is widely used for
illustration purposes. Scikit-learn ([5]) is used to standardise the parameter search. The
next subsections will extend the description of the library.

A.2 General library description

The spatialize library is built on three levels. The first two constitute the API of this
library, which is implemented in Python. The one closest to the user consists of three
high-level functions that allow spatial interpolation in two dimensions on gridded and non-
gridded data and a hyperparameter search for these cases. On a second level, aggregation
functions are provided and functions for estimating precision. In the latter case, a class is
also provided to implement this type of custom function. Finally, at a third level, an efficient
implementation of the methods contained in the spatial estimation functions in the C++


https://pypi.org/project/spatialize

language is found. At the third level, spatialize is designed and implemented in such a
way that it can work in three or more dimensions. In the first two levels, the API provides
only two in this first version.

In addition, spatialize includes an efficient implementation of the Inverse Distance
Weighting (IDW) spatial estimation method, together with a hyperparameter search function
for this tool. A detailed description of these functions is not included in this publication,
as they are not part of the ESI method and its alternatives but are only add-ons. However,
examples of their use are presented in the "Usage examples" section. On the other hand,
future versions of the library are planned to integrate an efficient implementation of Kriging,
which will include nested structures for the adjustment of the experimental variograms.

Our library is an efficient tool designed and implemented to work with large datasets.
Therefore, the examples provided and described in the "Usage examples" section are in the
form of scripts, and no Jupyter notebooks have been provided. If the user wants to use this
type of environment, the library will work, but it will quickly accumulate rubbish in memory.
This is why, in these cases, it is important to work with a limited depth of each tree (use a
parameter alpha no greater than 0.90) and a number of trees in the order of 100. These
values will depend on the amount of data, so they are a reasonable estimate for examples
such as those presented in our Scripts.

A.3 High level API

The main objective of spatialize is to provide an easy-to-use tool for non-experts in
classical geostatistics. Therefore, the high-level APl is composed of functions that are very
simple to call and hide all the details outlined in the previous sections from the user. In this
section, we describe each of these functions in detail, along with their main arguments.

A.3.1 General input data format

Like any interpolation function, the basic input data are:

+ points: Contains the coordinates of known data points. This is an Ns x D array, where
N, is the number of data points, and D is the number of dimensions.

« values: The values associated with each point in points. This must be a 1D array of
length N;.



+ xi: If the data are gridded, they correspond to an array of grids of D components,
each with the dimensions of one of the grid faces, d; x d, = Ny-, where N,- is the total
number of unmeasured locations to estimate. Each component of this array repre-
sents the coordinate matrix on the corresponding axis, as returned by the functions
numpy .mgrid in Numpy, or meshgrid in Matlab or R.

If the data are not gridded, they are simply the locations at which to evaluate the
interpolation. It is then an N,. x D array.

In both cases, D is the dimensionality of each location, which coincides with the
dimensionality of the points.

A.3.2 ESI estimation of gridded data

This is the function used to make an estimate with ESI in the case of sample data and
unmeasured locations that are on a grid — i.e. where the format of xi is as detailed in the
previous section.

Module:
spatialize.gs.esi
Signature:
def esi_griddata(points, values, xi, |\textit{<optional named arguments>}|)

In the optional named arguments, it is possible to set the local interpolation method to be
used (IDW or Kriging), the partition process to generate the random partition set (Voronoi
or Mondrian) and other options related to the interpolation methods. The following list
contains all these options, with their default values and descriptions.

To define the process of generating random partitions:

+ p_process: Indicates the stochastic process used to generate the random partitions.
The options are "mondrian"” and "voronoi". The default value is "mondrian".

* n_partitions: Number of random partitions (m) to be generated. Once the estima-
tion process is completed, each partition corresponds to an estimation scenario. The
default value is 500.



« data_cond: Incaseofusingp_process="voronoi",this parameterindicates whether
the random kernel generation process is conditioned by the sample data, as explained
in the "Model training" section. The default value is True.

+ alpha: Sets the coarseness level of each random partition. Corresponds to the
a € [0, 1) parameter described in the "Rule of thumb for parameter choice" section. As
mentioned there, o = 0 will generate the coarsest partition, while « — 1 will generate
finer ones. The default value is 0. 8.

To define and configure the local interpolator:

* local_interpolator: This is where the function S, (x*), described in the "Weak
voter function set generation" section, is defined. In the current version, it canbe "idw"
or"kriging" whenp_process= "mondrian" isdefined. If p_process="voronoi"
is defined, it can only be "idw".

if local_interpolator="idw" is defined, the method described by Equation (1) is used
to implement IDW.

z(x;) ifx;=x*
IDW(X*) = ¢ 5 wiz(x) : M
{ % otherwise
where,
L 2)

Wi = d(x;, x*)P

and z(x;) are the values of the known samples measured at locations x; € £, for some
element of a particular partition or tree Ty. Then,

« exponent: Itis the parameter p of Equation 2, which defines whether or not to smooth
the weight w; for the sample x;. Note that if p = 0, each sample is assigned the same
weight in the interpolation (equivalent to the simple mean of the neighbours), and
if p — oo, the nearest sample is assigned a weight of 1, while all other samples are
assigned a weight of 0 (equivalent to a nearest-neighbour interpolation). The default
valueis 2.0.



If local_interpolator="kriging" is defined, a standard ordinary Kriging calculation
method is applied, as described in detail in [1]. The variogram model used is fixed (i.e. it
is not fitted from an experimental variogram) and isotropic, as it is applied to a very small
data set (in each cell of each partition). Then,

+ model: Indicates the variographic model used for the ordinary Kriging. In spatialize,
the general variogram has the form:

s-m(h)  0<m(h) <1
v(h)=<0 m(h) <0
1 m(h) > 1

Where m(h) = (1 —n) - (1 — model(h)) and model(h) represents one of the following
functions depending on the chosen model:

- "spherical"”:
: h h\®
spherical(h) = 1.57 -0.5 "
- "exponential™:
exponential(h) = 1 — e3¢
- "cubic":

cubic(h) = (g)z (7 - 8.752 +3.5 (2)3 —0.75 (2>5>

- "gaussian":
2
gaussian(h) = 1— e~3(?)
The default model is "spherical"”. Parameters n, r and s must be specified in

arguments:

* nugget (with default value 0. 1), range (with default value 5000.0) and sill (with
default value 1.0), respectively.

With the above in place, the aggregation function only remains to be defined for the prelimi-
nary estimate returned by this function. Then,
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« agg_function: Aggregation function G to calculate the estimate at locations xi
from the ESI samples, as explained in Sections A.3.4. This function can be any of
the functions defined in the module spatialise.gs.esi.aggfunction or a user-
defined custom function (see more details in Section A.4.1). The default function is
spatialize.gs.esi.aggfunction.mean.

Returns:

+ (ESIResult): As a result, the function returns an object, which is an instance of
the class ESIResult, containing the preliminary estimate according to the provided
arguments. This class provides a set of methods to display aspects of the result, such
as the aggregate estimate, the scenarios of the different partitions, or a precision
calculation based on some loss function — for full details, see A.3.4.

A.3.3 ESI estimation of non-gridded data

This function generates an estimate in ESI space, from a set of sample points (i.e. measured
locations), at a set of unmeasured points at arbitrary locations in space. This implies that
the xi positions must come in the appropriate format, as described in A.3.1.

Module:
spatialize.gs.esi
Signature:
def esi_nongriddata(points, values, xi, |\textit{<optional named arguments>}|)

Except for xi, all the arguments of this function are the same as those of the function for
gridded data detailed in the previous section (A.3.2).

Returns:

+ (ESIResult): As aresult, this function also returns an object, which is an instance of
the class ESIResult, containing the preliminary estimate according to the provided
arguments. This class provides a set of methods to display aspects of the result, such
as the aggregate estimate, the scenarios of the different partitions, or a precision
calculation based on some loss function — for full details, see A.3.4.



A.3.4 ESIResult class and its methods

Both functions for generating ESI estimates, esi_nongriddataand esi_griddata, return
instances of the ESIResult class. An object of this class allows the manipulation of the
results in a disaggregated form, the calculation of the final estimate based on different
aggregation functions, and the calculation of its precision based on different loss functions.
Finally, it allows plotting results in different useful ways.

class ESIResult(EstimationResult)
This class has the following set of methods:

+ esi_samples: The central concept for dealing with ESI estimation results is the
ESI sample. In this sense, it should be noted that each random partition delivers an
estimate for each of the locations provided in the argument xi (for both gridded
and non-gridded data). The set of estimates for a particular partition is what in
spatialize is considered an ESI sample.

This method then returns the set of all ESI samples, one for each random partition,
calculated for the estimation.

- Signature:
def esi_samples()
- Returns:

* (ndarray): An array of dimension N,- x m (m = n_partitions in both
function esi_griddata and esi_nongriddata), for non-gridded data, and
of dimension d; x d, x m for gridded data — remember that, in this case,
dq x dy = Ny (see Section A.3.1).

+ estimation: Returns the estimated values at locations xi by aggregating all ESI
samples using the aggregation function provided in the agg_function argument
(in both functions esi_griddata and esi_nongriddata). This estimate can be
changed using another aggregation function with the re_estimate method of this
same class.

— Signature:

def estimation()



— Returns:

* (ndarray): Anarray of dimension N, for non-gridded data, and of dimension
d; x d, for gridded data — remember that, in this case, d; x d> = Ny (see
Section A.3.1).

* re_estimate: It recalculates the final estimate based on the aggregation function
provided (e.g. by taking the mean of the ESI samples). This method updates the
internal estimate and returns the new result. Then, the next time the estimation
method is called, this is the estimate it will return.

- Signature:
def re_estimate(agg_function)
— Parameters:

* agg_function: Aggregation function G to calculate the estimate at lo-
cations xi from the ESI samples, as explained in the "Ensemble spatial
interpolation” section and A.3.4. It can be any of the functions defined
in the module spatialise.gs.esi.aggfunction or a user-defined cus-
tom function (see more details in Section A.4.1). The default function is
spatialize.gs.esi.aggfunction.mean.

— Returns:

* (ndarray): Anarray of dimension N, for non-gridded data, and of dimension
d; x d, for gridded data — remember that, in this case, d; x d; = Ny (see
Section A.3.1).

 precision: Calculates the precision (or error) between the estimate and the ESI
samples using the specified loss function as explained in the "Interpolation precision
modelling" section.

— Signature:
def precision(loss_function)
— Parameters:

* loss_function (function, optional): A loss function to calculate the preci-
sion, defaultingto spatialize.gs.esi.lossfunction.mse_loss. ltcan



be any of the functions defined in the module spatialise.gs.esi.loss
function or a user-defined custom loss function (see more details in Sec-
tion A.4.2).

= Returns:

* (ndarray): Anarray of dimension N, for non-gridded data, and of dimension
d; x d, for gridded data — remember that, in this case, d; x d, = Ny (see
Section A.3.1).

+ precision_cube: It applies a loss (error) function to each ESI sample with respect
to the current estimate. The difference with the precision method is that it does not
aggregate the result over the total calculated losses, returning the total data “cube”
whose dimensions are the same as the ESI samples cube.

— Signature:

def precision_cube(loss_function=mse_cube)

- Parameters:

* loss_function (function, optional): Aloss function to calculate the preci-
sion cube, defaulting to spatialise.gs.esi.lossfunction.mse_cube.
It can be any of the functions contained in module spatialise.gs.esi.loss
function (or a custom user-defined) whose aggregation function is the
identity function (which produces a data cube as a result).

— Returns:

* (ndarray): An array of dimension N,- x m (m = n_partitions in both
function esi_griddata and esi_nongriddata), for non-gridded data, and
of dimension d; x d, x m for gridded data — remember that, in this case,
dq x do = Ny (see Section A.3.1).

* plot_estimation: Plots the estimation using matplotlib.

- Signature:
def plot_estimation(ax, w, h, **figargs)

— Parameters:
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*

ax (matplotlib.axes.Axes, optional): The Axes object to render the plot
on. If None, a new Axes object is created.

* w (int, optional): The width of the image (if the data is reshaped).

*

h (int, optional): The height of the image (if the data is reshaped).

*

x*figargs (optional): Additional keyword arguments passed to the figure
creation (e.g., DPI, figure size).

* plot_precision: Plots the precision using matplotlib. If the precision has not
been computed yet, it calls the self.precision() method to calculate it.

- Signature:
def plot_precision(ax, w, h, **figargs)
- Parameters:

* ax (matplotlib.axes.Axes, optional): The Axes object where the preci-
sion plot will be rendered. If None, a new Axes object will be created.

* w (int, optional): The width of the image (if the data is reshaped).
* h (int, optional): The height of the image (if the data is reshaped).

* xxfigargs (optional): Additional keyword arguments passed to the figure
creation (e.g., DPI, figure size).

* quick_plot: Creates a quick, side-by-side plot of the estimation and precision
usingmatplotlib. ltusesself.plot_estimation() andself.plot_precision()
to render the plots. The figure is returned for further use or display.

- Signature:
def quick_plot(w, h, xxfigargs)
- Parameters:
* w (int, optional): The width of the image (if the data is reshaped).
* h (int, optional): The height of the image (if the data is reshaped).
* xxfigargs (optional): Additional keyword arguments passed to the figure

creation (e.g., DPI, figure size).
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A.3.5 ESI hyperparameter search

Apart from providing a general-purpose geostatistical tool (i.e. for non-experts in geo-
statistics), spatialize also aims to make the process as automatic as possible. Thus,
the function presented in this section allows a grid search of the best parameters for an
estimate. This is done by using parameterizable cross-validation on training and test sets,
either with k-fold, with random subsets, or leave-one-out for exhaustive estimation.

Module:
spatialize.gs.esi
Signature:
def esi_hparams_search(points, values, xi, |\textit{<optional named arguments>}|)

The mode of use is very similar to that of esi_griddata and esi_nongriddata. The
following parameters are fixed and have the same meaning as in these functions (Sections
A.3.1,A.3.2 and A.3.3):

* points, values, xi
* p_process
* local_interpolator
In addition to the latter, the following must also be defined:

* k: Number of subsets for the k-fold round. If k=N,- or k=-1 a leave-one-out round is
run. The default value is 10.

« griddata: If True, it is to indicate that the estimation is on a grid (xi). The default
value is False.

The grid search parameters must be entered as a set of options in the domain of the
argument to be searched — each argument has the same description and scope as in
esi_griddata and esi_nongriddata. Then:

« data_cond (list)
- Valid only when p_process="voronoi".

- Usage example: data_cond=[True, False]
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* n_partitions (list)
- Usage example: n_partitions=[150, 100, 50]
« alpha (1list)
- Usage example: alpha=1list(np.flip(np.arange(6.70, 0.90, 06.01)))
if local_interpolator="idw" is defined,
« exponent (list)
- Usage example: exponent=list(np.arange(1.0, 15.0, 1.0))
if local_interpolator="kriging" is defined,
* model (list)
- Usage example: model=[ "spherical"”, "exponential", "cubic", "gaussian"]
* nugget (list):
- Usage example: nugget=[0.0, 0.5, 1.0]
* range (list)
- Usage example: range=[10.0, 50.0, 100.0, 200.0]
- 511l (list)
- Usage example: sill=[0.9, 1.0, 1.1]
Finally, one can also search for an optimal aggregation function with:
+ agg_function (dict):

- This dictionary can include any of the functions defined in the

spatialise.gs.esi.aggfunction module or any user-defined custom func-
tions (see more details in the A.4.1 section).

- Usage example: agg_function={"mean": af.mean, "median": af.median}
(if af has been imported with spatialize.gs.esi.aggfunction as af).

Returns:
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+ (ESIGridSearchResult) This functionreturns aninstance of the class ESIGridSearch
Result, detailed below (Section A.3.6). In addition, an example of the use of these
tools is shown in the "Hyperparameter search" section.

A.3.6 ESIGridSearchResult class and its methods

This class contains the results returned by the parameter search function esi_hparams_search(),
described in Section A.3.5.

class ESIGridSearchResult(GridSearchResult)
It has two methods:

+ best_result: Constructs a dictionary with the parameters to make the estimate
(gridded or non-gridded) corresponding to the smallest cross-validation error in the
hyperparameter search made by the esi_hparams_search() function. This dictio-
nary is not intended to be manipulated by the user but to be passed directly to the
esi_griddata and esi_nongriddata functions. Thus, a typical call to this method
would be:

search_result = esi_hparams_search(points, values, (grid_x, grid.y),
griddata=True,
<...>)
result = esi_griddata(points, values,
(grid_x, grid_y),
best_params_found=search_result.best_result())

— Signature:
def best_result()
- Returns:
* (dict): The dictionary with the optimal values found in the cross-validation.

« plot_cv_error: It shows a graph of the cross-validation errors of the hyperparameter
search process. The graph has two components: the first is the error histogram, and
the second is the error level for each of the estimation scenarios generated by the
gridded parameter search.

— Signature:
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2

def plot_cv_error()

A.4 Low level API

The high-level API is intended for users who are not experts in either geostatistics or
computer programming. In this section, we describe some features of spatialize that
require some Python programming skills and are intended to make the most of the output
of ESI estimations in terms of analysis.

A.4.1 Aggregation functions

The aggregation functions G, as presented in the "Ensemble spatial interpolatio” section,
are contained in the module:

spatialize.gs.esi.aggfunction

Their main use is to aggregate the ESI samples generated by the ESI estimation process.
However, they are also useful for aggregating the samples generated by the precision
calculation between an aggregated estimate and the ESI samples of the estimate. The
latter is discussed in more detail in the section A.4.2.

In practice, any function with the following signature can be considered as an aggregation
function in spatialize:

def f(samples):

The samples argument of f is always considered to be non-gridded - that is, an array of
dimension Ny- x m (m = n_partitions in both esi_griddata and esi_nongriddata).
When the estimates are gridded, spatialize flattens them to treat them internally as
non-gridded and reshapes them on return. In this context, the expected behaviour of f is to
return an array of dimension N,. with the aggregate on the second axis of the samples, i.e.
aggregating the m samples. For example, the code for the predefined mean aggregation
function in spatializeis:

import numpy as np
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4

def mean(samples):
return np.nanmean(samples, axis=1)

The standard aggregation functions included in the library are:
+ mean: Calculates the mean of a set of samples.
- Signature:
def mean(samples)
- Returns: The arithmetic mean of the provided samples.
« median: Calculates the median of a set of samples.
- Signature:
def median(samples)
- Returns: The median value of the provided samples.
* MAP: Calculates the Maximum A Posteriori (MAP) estimate.
- Signature:
def MAP(samples)
- Returns: In the current version, the mode of the empirical distribution is returned.

« class Percentile: This is a class for creating functions (callable instances) that
belong to a family of functions indexed by a given percentile.

— Constructor signature:
class Percentile(percentile)

- Returns: When the constructor of the class is called, it returns a function that
calculates the percentile, passed as an argument, over the samples. The
returned function has the general signature of an aggregation function. For
example, the code to obtain an aggregation function p75 that calculates the 75th
percentile is:

p75 = Percentile(75)

The function p75, for example, can be used to make a call such as
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result = esi_griddata(...,
agg_function=p75,

-)

+ class WeightedAverage: This is a class for creating functions (callable instances)
that belong to a family of functions indexed by a given set of weights.

— Constructor signature:
class WeightedAverage(weights, normalize, force_resample)

— Returns: When the class constructor is called, it returns a function, say ws, which
calculates a weighted average of the samples provided. By default, when the
weights are not provided as an argument in the constructor, they are generated
randomly, drawn from a Dirichlet distribution. If force_resample=True is also
specified (this is the default), the weights will be generated each time ws is
called. Finally, if normalize=True is defined (default value is False), the result
returned by ws is normalised to the range of the samples to avoid excessive
smoothing for some set of weights.

For example, when used in the following way, ws is called only once:

ws = WeightedAverage()
result = esi_griddata(...,
agg_function=ws,

-)

But in the following lines of code, e1 and e2 will be different estimates because
the weights will be different for each call:

result.re_estimate(ws)
el = result.estimation()

result.re_estimate(ws)
e2 = result.estimation()

« bilateral_filter: Non-linear filter acting on ESI samples as an aggregation func-
tion. It works in both spatial and sample dimensions. Its effect is that in the final
estimation, it reduces noise while preserving the areas where there are abrupt changes
(edges or high-frequency areas) in the variable to be estimated ([6]).
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— Signature:
def bilateral_filter(samples)

- Returns: A filtered version of the input cube, with reduced noise and preserved
edges.

« identity: Its main function is to be passed as an aggregation function in the defini-
tion of “cube” loss functions, where only the loss (error) between the ESI samples and
the estimate is calculated, but the result is not aggregated. This leaves the possibility
to explore more complex aggregation functions to calculate precision — more details
in Section A.4.2.

- Signature:
def identity(samples)

- Returns: Returns the input data as-is (identity function).

A.4.2 Loss functions

We will now review the module content.

spatialize.gs.esi.lossfunction

Before going into the functions themselves, as mentioned above, spatialize provides
a powerful framework to easily build any uncertainty quantification scheme based on the
precision model. It is useful to review that model here to identify its components and to
understand how itis expressed inthe spatializeidiom. Thus, E represents an aggregation
function, L a loss (error) function, e* is the estimate and {x; } ,, are the ESI samples. With
these components, the precision function p* can be implemented in spatialize with the
following idiomatic structure:

from spatialize.gs.esi.lossfunction import loss
@loss(E)

def p(x, y):
return L(x, Yy)

Note that in this structure, neither e* nor {x; } , appears explicitly. This is because the @1oss
decorator internally transforms the function p to have the signature:
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def p(estimation, esi_samples):

The aim of this is that the design effort is put into the development of the function L, leaving
spatialize to handle the internal processing of the more complex behaviour of p. In this
way, for example, the precision function can be implemented very easily as:

from spatialize.gs.esi.lossfunction import loss

from spatialize.gs.esi.agg_function import mean

@loss(mean)
def p_E(x, y):
return (x - y) *% 2

In other words, when decorating the function p_E with @loss, giving it an aggregation
function (mean, in this case), it becomes the implementation of a precision model. Once
this has happened, it can be passed as an argument when calculating the precision of the
result of an ESI estimation, as shown below:

result = esi_griddata(...)
p = result.precision(p_E)

Two very common loss functions are included in this module:
+ mse_loss: Implements the precision model.

* mae_loss: Implements the precision model given by
.I m
P = E;IXi—efél (3)

An example of a call for both is

from spatialize.gs.esi.lossfunction import mse_loss

result = esi_griddata(...)
p = result.precision(mse_loss)

Where p is an array of dimension d; x d, = N, in the case of gridded data, or simply an
array of dimension N, for the non-gridded case.
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In addition, versions without aggregation are included, i.e. where the aggregation function
is identity. These are:

* mse_cube
* mse_cube

Recall that these last two are to leave the possibility to explore more complex aggregation
functions to calculate accuracy. Both can be passed as arguments when calculating the
precision, as shown below:

from spatialize.gs.esi.lossfunction import mse_cube
result = esi_griddata(...)
p = result.precision(mse_cube)

Just note that p is no longer an array of dimensions d; x d; = Ny, but an array of dimension
di x d, x m(m =n_partitions in both esi_griddata and esi_nongriddata) in the
case of gridded data (or an array of dimension N,- x m, for the non-gridded case), where m
is the number of ESI samples.

Finally, the module also includes:

- class OperationalErrorLoss: This is a class for creating functions (callable
instances) that belong to a family of functions indexed by a given dynamic range.

— Constructor signature:
class OperationalErrorLoss(dyn_range, use_cube)

- Returns: When the constructor of the class is called, it returns a function that
implements the following precision model:

w1

m
> I — el (4)

" k=1
Where d, is an expected dynamic range for output errors, passed in the argument
dyn_range (default value is None). If dyn_range is not passed in the argument,
the dynamic range of the estimate (e;) is used. If use_cube=True (default value



False), then the returned function is decorated with the identity, having the
same output behaviour as mse_cube or mae_cube.

An example of a call is as follows:

from spatialize.gs.esi.lossfunction import OperationalErrorlLoss
result = esi_griddata(...)
op_error_loss = OperationalErrorLoss(1600)

p = result.precision(op_error_loss)
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