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Abstract. Alluvial aquifers serve as vital groundwater resources worldwide. Due to their complex heterogeneity, accurate 

characterization requires the integration of multiple data types. This study introduces presents a robust methodologysystematic 

framework to address for characterizing aquifer heterogeneity through hydrofacies analysis, in alluvial aquifers by 10 

integratingcombining borehole data, electrical resistivity tomography (ERT) and stochastic modeling. The approach was tested 

in the Varaždin aquifer, where geostatistical and stochastic tools were used to simulate the spatial distribution of four 

hydrofacies identified from borehole data: gravel (G), gravel, sandy to clayey (Gsc), sand with gravel, clayey to silty (Sgcs), 

and clay to silt, sandy (CSs). The spatial distribution of hydrofacies was modeled using the combination of geostatistical and 

stochastic tools. Entropy factor analysis reveals a lack of consistent vertical transition patterns between hydrofacies, 15 

highlighting the role of relative proportions in determining their spatial distribution. As the thin and electrically conductive 

Sgcs-CSs layer limited the ERT resolution below 20 m depth, synthetic models were incorporated used to assess their geometry 

and resistivity magnitudes, estimating a model  into the ERT analysis to provide more reliable delineation of these hydrofacies 

at greater depths. The resulting dimensions of the lens-shaped structures revealed the horizontal extent of the hydrofacies 

continuity, and were incorporated into horizontal Markov chain models. The 3D Markov chain models were used to generate 20 

10 stochastic realizations of the hydrofacies distribution. The vValidation results identified the representative hydrofacies 

model for the Varaždin aquifer with a prediction accuracy of 63 %. , which is consistent with findings from similar studies. 

Results from simulations focused on the Vinokovšćčak wellfield area show that the integration ofincorporating ERT-derived 

lens lengths data into the model development improves slightly improved the hydrofacies prediction accuracy by 0.3 to 5.0 %, 

depending on the hydrofacies model grid resolution. The analysis of different grid resolutions demonstrates that increasing 25 

model detail beyond the characteristic lens dimensions provided no accuracy improvement, suggesting that the optimal cell 

size is closely related to the estimated lens lengths. While smaller grids fail to capitalize on finer resolution due to 

oversegmentationIn contrast, coarser grids provide a simplified hydrofacies model, potentially increasing prediction accuracy 

but losing spatial resolution. This methodology forms a basis for integrating spatial heterogeneity into groundwater models, 

serving as a practicalproviding a useful tool for sustainable management in alluvial and other similar sedimentary environments 30 

worldwide. 

 



2 

 

 

1 Introduction 

Alluvial plains, geological formations created by sediment deposition from rivers and streams, often contain complex aquifer 35 

systems due to the variability of sedimentary conditions over space and time. This heterogeneity in alluvial aquifers is defined 

by the spatial distribution of characteristic sediments with distinct hydrogeological properties, i.e., hydrofacies units (Carle, 

1999). The accurate characterization of subsurface heterogeneity is essential for successful modeling of groundwater flow and 

contaminant transport (Zhao and Illman, 2017; Rambourg et al., 2022), controlling the reliability of these models for effective 

groundwater management (Guo et al., 2019; Janža, 2009). This accuracy is typically limited by sparse datasets, as simulations 40 

are highly dependent on the completeness and accuracy of the data (Gong et al., 2023). To overcome the major challenges in 

characterizing geological heterogeneity - facies delineation and hydraulic property assignment (Savoy et al., 2017), it is 

important to integrate different methods for acquiring relevant datasets for modeling, commonly referred to as “hard” and 

“soft” data. Hard data are typically obtained through direct observation of outcrops or borehole logs, providing relatively 

accurate information on the vertical sequence of hydrofacies. However, acquiring these data is expensive and often limited to 45 

well-studied locations, resulting in insufficient spatial coverage to capture the horizontal heterogeneity and determine the 

lateral hydrofacies dimensions.  

Consequently, soft data, such as indirect inferred geological observations informations and qualitative insights from 

geophysical surveys or conceptual models, are used to provide complementary information on the studied system (Turner, 

2021). The use of geophysics has proven to be effective in analyzing aquifer materials and mapping boundary conditions 50 

(Slater, 2007). In particular, the electrical resistivity tomography (ERT) has been used effectively in sedimentary basins for a 

variety of applications. Examples include the detection of waste-filled gravel pits (Breg Valjavec et al., 2018), the delineation 

of landfill leachate plumes (Acworth and Jorstad, 2006), mapping of buried paleochannels (Green et al., 2005) and floodplain 

fluvial sediments (Ward et al., 2012), and the identification of spatial heterogeneities to parameterize hydraulic conductivity 

and permeability reconstructions (De Clercq et al., 2020). Furthermore, previous studies have demonstrated a close relationship 55 

between electrical resistivity and hydraulic conductivity in alluvial aquifers (e.g., Mastrocicco et al., 2010; Gernez et al., 2019; 

Vogelgesang et al., 2020). In recent decades, the modeling and characterization of aquifer heterogeneity, such as structural 

geometry and hydrofacies tendencies, has evolvedhave advanced significantly through the use of geostatistical and stochastic 

methods. In contrast to deterministic models that produce a single, consistent output for a given set of initial conditions, 

stochastic simulations generate multiple equally probable geostatistical realizations of the subsurface to better capture smaller-60 

scale phenomena (e.g., facies within stratigraphic units) that cannot be adequately modeled using deterministic methods 

(Hermans and Irving, 2017; Turner, 2021). Well-known stochastic methods for generating realizations of facies distributions 

include object-based techniques (e.g., Geel and Donselaar, 2007), multiple point statistics (MPS) that rely on training images 

to capture complex spatial patterns (e.g., Hermans et al., 2015; Gottschalk et al., 2017; Zhou et al., 2018;), and other pixel-
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based simulation methods such as sequential Gaussian simulation (SGS), sequential indicator simulation (SIS), and transition 65 

probability geostatistical simulation (T-PROGS) (e.g., Lee et al., 2007; He et al., 2009; Gong et al., 2023). In addition, several 

studies have performed comparative analyses to evaluate the ability of different stochastic modeling techniques to characterize 

heterogeneity (Falivene et al., 2006; dell’Arciprete et al., 2011; Deveugle et al., 2014). The choice of simulation method 

depends on both the geological structure and the intended predictions (Scheibe and Murray, 1998).  

This study focuses on an alluvial aquifer located in thebeneath Varaždin area in northwestern Croatia. As the main water source 70 

for approximately 170,000 inhabitants, this aquifer has experienced nitrate contamination in the last decades due to the 

irresponsible use of organic fertilizers in agriculture and an underdeveloped sewage network (Marković et al., 2022). Thus, 

understanding nitrate transport is essential for its sustainable water management. However, previous numerical models 

simulating groundwater flow and nitrate dynamics in this aquifer were deterministic (Karlović et al., 2022; Šrajbek et al., 2022; 

Brkić et al., 2021), constrained by hard data and interpolations between boreholes, resulting in a layered representation of the 75 

aquifer. In this study,Therefore, the T-PROGS simulation method (Carle and Fogg, 1996, 1997; Carle et al., 1998; Carle, 1999) 

was used in this study to generate more realistic 3D representations of subsurface heterogeneity. This method, based on Markov 

chain models and transition probability matrices as random functions, was chosen for its proven effectiveness in modeling 

heterogeneity in alluvial environments and other sedimentary environments (Zhang et al., 2006; Frei et al., 2009; Janža, 2009; 

Engdahl et al., 2010; Koch et al., 2014; Bianchi et al. 2015; Guo et al., 2019). Hydrofacies characterization of alluvial 80 

environments based on ERT imaging, supported by geological data from boreholes, has been successfully demonstrated 

(Berzesio et al., 2007; Mele et al., 2012). This approach can enhance stochastic geological realizations, particularly because 

the geostatistical characteristics in the T-PROGS method are derived from borehole data, which offer limited geological 

information in the horizontal direction (He et al., 2014). In the present work, resistivity ERT data is not directly integrated into 

the stochastic T-PROGS simulations, but is instead used to more accurately estimate hydrogeological features such as the 85 

mean horizontal lengths of identified hydrofacies, which are then incorporated as key input parameters in the simulation 

process. 

The main objective of this research is to develop an effective robust approach to incorporatethat utilizes both hard and soft 

data to characterize heterogeneity in alluvial aquifers. This integrated comprehensive approach consists of four steps: (1) 

identification of hydrofacies using borehole data; (2) specification estimation of the lateral extent of hydrofacies using based 90 

on ERT measurements; (3) stochastic modeling to generate the spatial distribution of hydrofacies; (4) selection of the most 

plausible realization of hydrofacies distribution. Other important objectives of this work are to test whether the inclusion of 

ERT-derived lens lengths integration of ERT data into model development improves predictions accuracy of hydrofacies 

spatial distribution, and to evaluate the influence of grid resolution on prediction accuracy.  

  95 



4 

 

2 Materials and methods 

2.1 Site description and hydrofacies characterization 

The study was conducted in northwestern Croatia, within the Varaždin alluvial aquifer located in the western part of the Drava 

River valley (Fig. 1). The aquifer covers an area of about 264 km2, at an altitude ranging from 155 to 200 m above sea level. 

Detailed descriptions of the geological and hydrogeological settings are available in previous publications (e.g.e.g., Karlović 100 

et al., 2022; Marković et al., 2022; Brkić et al., 2021). The following text provides a brief overview of the main stratigraphic 

and hydrogeological characteristics relevant to this study. The aquifer consists mainly of gravel and sand, with varying amounts 

of silt and clay (Urumović et al., 1990). The changes in the flow patterns and sediment deposition of the Drava River during 

the Pleistocene and Holocene have resulted in the heterogeneous stratigraphy of the aquifer. According to the layer-based 

conceptual model, which simplifies the distribution of hydrogeological properties, a low-permeability interlayer divides the 105 

aquifer into two layers (Karlović et al., 2021). The overlying semi-permeable layer of the aquifer is thin or non-existent, 

indicating a high infiltration potential and an increased vulnerability of groundwater to contamination from surface sources. A 

very low permeable layer consisting of marl, silt, and clay lies beneath the aquifer. 
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 110 

Figure 1. Distribution of boreholes and ERT profiles in the study area used for T-PROGS modeling (blue boreholes are used for model 

development, while orange boreholes represent validation points in Model Area 1). Data reliability classes: highly reliable - original logs 

and reports available for checking procedures and hydraulic conductivity (K) determination; reliable - original logs and reports available, 

but lack details on lithology or information for K determination; less reliable - original logs not available, but consistent with nearby reliable 

data (modified from Ross et al., 2005). 115 

The dataset used in this study to identify hydrofacies consists of 180 boreholes collected from the Croatian Geological Survey 

database (Fig. 1). Given Depending on the quality and consistency of the driller's descriptions, the dataset reflects varying 

levels of reliability, as the borehole logs were collected over decades by multiple investigators. Based on the lithological 

descriptions from the boreholes, four distinct hydrofacies were defined: gravel (G), gravel, sandy to clayey (Gsc), sand with 

gravel, clayey to silty (Sgcs), and clay to silt, sandy (CSs) (Table 1). Each lithological unit identified in the borehole logs was 120 

assigned to one of these hydrofacies (Fig. 2). All spatial data were organized in ArcGIS software. All maps are presented in 

the official coordinate system of the Republic of Croatia (HTRS96/TM). 
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Figure 2. Distribution of hydrofacies units in boreholes within the study area. 

2.2 Application of ERT data to improve characterization of heterogeneity 

For modeling heterogeneity, data along the vertical axis are typically obtained from borehole logs at a finer resolution, while 

horizontal data are limited, with coarser resolutions up to the kilometer-scale, depending on the distance between boreholes. 130 

The ERT method was used to better characterize the horizontal extent of hydrofacies. Specifically, a grid set of 10 ERT profiles 

was measured in the Vinokovščćak wellfield catchment area to delineate estimate the lateral dimensions of hydrofacies, with 

5 profiles along (x-axis) and 5 profiles perpendicular to the direction of the Drava River flow (y-axis) (Model Area 2 in Fig. 

1). The field measurements were performed in March 2024, using the POLARES 2.0 electrical imaging system. The 

measurements were taken at a frequency of 20 Hz. Each profile was 315 m long and equipped with 64 electrodes spaced 5 m 135 

apart. To collect data, Wenner-Schlumberger (W-S) electrode configuration was used, obtaining a pseudo section of 1250 data 

points and reaching a maximum depth of investigation of approximately 40 m. Apparent resistivity was inverted using the R2 

code, on the ResIPy standalone platform (Blanchy et al., 2020). Lithological information from the SPV-5 and SPV-8 

observation wells, located few meters from the nearest ERT profiles VIN-1, VIN-4, and VIN-10 provided hard data to support 

the interpretation of the resistivity models. In particular, the projection of the boreholes onto the ERT profiles allowed aligning 140 

matching the depths and thicknesses of the hydrofacies observed in the boreholes with an iso-resistivity value (ρhf) derived 

from overlapping the boreholes with contour resistivity maps (as explained below), thereby delineating their resistivity 

boundaries. These three ERT profiles were is procedure was used to define the resistivity range of the four hydrofacies across 

the study area. using the three ERT profiles (VIN-1, VIN-4, and VIN-10) as references. Then, by simple delineation of the ρhf 

boundary values using the contour resistivity maps, the lateral and vertical extents of each hydrofacies in the other ERT profiles 145 

were determined. However, artifacts and a high degree of uncertainty in the inverted ERT images may occur due to the 

complexity of structural geometries (e.g., lenses), emplacement, depth, thickness, and resistivity contrast among the different 
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geologic materials, as well as limitations inherent to the inversion approaches associated with parameters settings. In the study 

area, ERT sensitivity was affected by very low resistivity values at approximately 20 m depth, resulting in a loss of resolution 

and limited depth of investigation, thus preventing to delineate with certainty the extent of ρhf for such conductive material.  150 

To improve our interpretation of ERT datareduce this uncertainty, and better estimate geometric characteristics of hydrofacies 

below 20 m depth, a series of ERT measurement simulations were performed using synthetic models. These models tested, 

testing different possible structures such as a continuous, layered lens or discrete, smaller lens-shaped conductive material. 

The simulations replicated the electrode array (W-S) and sequence from the field. The thickness (vertical extent) of hydrofacies 

in the synthetic models was constrained using observations from nearby wells (SPV-5 and SPV-8), while the lateral extent of 155 

hydrofacies above 20 m depth was approximated based on length estimates from the field-data based model. Using this joint 

interpretation, the procedure for constructing a more reliable model of hydrofacies extent below 20 m depth was refined, 

improving critical input parameters for the T-PROGS model.  

2.3 Modeling the spatial distribution of the hydrofacies 

The spatial distribution of the hydrofacies at the site was modeled using a combination of geostatistical and stochastic methods 160 

using T-PROGS software (Carle, 1999) within the Groundwater Modeling System 10.4 platform (Aquaveo, 2018). This 

approach uses transition probabilities derived from boreholes and a three-dimensional Markov chain model to integrate 

conceptual geological information, forming a realistic model of subsurface heterogeneity (Carle and Fogg 1996, 1997; Carle 

et al. 1998). In this study, borehole depth intervals were classified into four hydrofacies based on the borehole log descriptions 

(Table 1). The hydrofacies models were constructed at different scales, regional and local. The regional model, referred to as 165 

Model Area 1 (MA1), represents the entire aquifer, while the local model, referred to as Model Area 2 (MA2), focuses on the 

Vinokovščćak wellfield (Fig. 1). 

2.3.1 Model Area 1 

Of the 180 boreholes in MA1, 80 % were used for model development (n=144), while the remaining 20 % were used for 

validation (n=36). Transition probability curves were calculated using a lag interval of 0.3 m, which is less than the minimum 170 

hydrofacies thickness in 144 boreholes. These curves were used to construct a Markov chain models in the vertical (z) direction. 

The maximum entropy approach was used to fit the vertical Markov chain models to the measured transition probabilities. The 

maximum entropy factors represent the ratio between the observed and maximum entropy transition rates. A factor of 1 

indicates a random distribution of hydrofacies, depending only on their proportions. Values greater than 1 indicate transitions 

between hydrofacies that are more frequent than random and vice versa. The probabilistic constraints of the Markov chain 175 

model eliminate the need to specify transition rates for the background category, as they are automatically adjusted to balance 

the equations (Carle, 1999). Based on the ERT interpretation, the Gsc hydrofacies was selected as the background material, 

filling areas not occupied by other hydrofacies. Mean lengths and widths for non-background hydrofacies were assigned based 

on ERT profile interpretations (Table 1). The x, y, and z Markov chain models were then combined into a 3-D Markov chain 
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model that provided input to a conditional simulation that resulted in multiple (n=10), equally probable 3-D realizations of the 180 

spatial distribution of the hydrofacies. The grid was configured as 100 × x100 ×x 100 cells in the x, y and z directions, resulting 

in 1,000,000 cells. The selection of validation boreholes (n=36) considered their spatial distribution as well as their depth and 

was performed in four steps: i) boreholes were grouped into three depth categories; ii) borehole proportions were calculated 

for each depth category; iii) Excel function RAND was used to select boreholes were randomly selected within each depth 

category; iv) validation boreholes were compiled proportionately from each depth category. Finally, 10 stochastic 3-D 185 

realizations of the hydrofacies spatial distribution were compared with the corresponding borehole data in each cell, using a 

Python-based script to automate the analysis at 1 m vertical resolution. This validation process allowed the identification of 

the most plausible realization of the spatial distribution of the hydrofacies, with accuracy expressed as the percentage of correct 

predictions.  

2.23.2 Model Area 2 190 

The hydrofacies models in MA2 were constructed using the same procedure as in MA1, based on data from 10 highly reliable 

boreholes in the Vinokovščćak wellfield. The model depth was limited to the top 20 m to manage the computational load and 

to test: i) whether the inclusion of soft data, specifically ERT-derived lens lengths, improves model prediction accuracy 

compared to the model developed using only borehole data, and ii) the effect of grid resolution on prediction accuracy. 

Accordingly, mean lens lengths for non-background hydrofacies, derived from ERT profile interpretations, were adjusted to 195 

include only lenses within the first 20 m (Table 1). A leave-one-out validation procedure was applied across 10 boreholes 

using a Python-based script, checking 10 realizations for both ERT-derived and default lens lengths in T-PROGS (i.e., 10 

times the hydrofacies thickness), resulting in 200 simulations per grid resolution. In total, 1200 simulations were conducted in 

MA2, using grid resolutions of 10x10x1 m, 20x20x1 m, 40x40x1 m, 60x60x1 m, 80x80x1 m, and 100x100x1 m. 

3 Results and discussion  200 

3.1 Implementation of ERT data to improve characterization of hydrofacies 

The entire ensemble of the 10 ERT profiles resulted in a pseudo 3D resistivity model that allowed visualization of the 

subsurface electrical resistivity distribution up to about 40 m depth throughout the study area (Fig. 53). The model shows a 

broad range of resistivity values from 60 to 4677 ohm·m from the surface to about 20 m depth, with predominantly conductive 

values ≤ 100 ohm·m from 20 m to 40 m depth, reflecting the degree of heterogeneity characteristic for alluvial environments. 205 

However, at greater depths, from 20 to 40 meters, we observe low resistivity values (≤ 100 ohm·m), which limit the depth of 

investigation and reduce the resolution of ERT measurements. At shallow depths, a clear transition from a low to intermediate 

resistivity zone in the north to a high resistivity zone in the south is observed, suggesting a progression from fine-medium size 

to coarser material, consistent with the lithological information provided from boreholes. However, a very high resistivity 

anomaly in the western part of VIN-1 profile suggests the presence of coarser material in this area. High resistivity anomalies 210 
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linked to coarse materials mostly appear as elongated, lens-shaped bodies with a flat top surface. Their thickness varies over a 

depth range from 5 m to 20 m, although they are often distinguished near the surface, resulting in a well-defined lateral 

resistivity contrast with surrounding intermediate and low resistivity values within the first 5 m, particularly towards the 

southern part of the study area. Intermediate resistivity values are consistently observed across all profiles, representing the 

background material within which the high and low resistivities are embedded. 215 

Using lithological information from boreholes, a range of resistivity (ρhf) was determined for each hydrofacies (Table 1). High 

resistivity values (> 500 ohm·m) are associated with hydrofacies G, intermediate-high resistivity values (200–500 ohm·m) 

with Gsc, low-intermediate resistivity range (100–200 ohm·m) is linked to Sgcs, and low resistivity values (< 100 ohm·m) 

correspond to CSs. There is a strong continuity of resistivity in the intersections between profiles, providing a good 3D 

approximation of the shape and extent of high and low resistivity anomalies at the scale of the study area, i.e., a rough estimate 220 

of the lateral and vertical extent of hydrofacies. From a depth of about 20 m, the observed low resistivity anomaly coincides 

with the presence of thin layers of fine material observed in the boreholes, i.e., hydrofacies CSs and Sgcs. However, the bottom 

of this layer is not resolved in the ERT imaging, preventing to delineate the lateral and vertical extent of these hydrofacies by 

the electrical signature, which is explained by the high conductivity values of these materials. Consequently, all the materials 

underneath is masked with underestimated resistivity values. This interpretation is corroborated by borehole data, which 225 

consistently show that Gsc hydrofacies occurs below the CSs and Sgcs units. 

The pseudo 3D model based on ERT data was not sufficient to obtain detailed lateral and vertical extent of hydrofacies below 

20 m depth, which presents input information for stochastic modelling and predicting spatial distribution of hydrofacies. 

Therefore, we modified our strategy to interpret the ERT inverted data for each profile by generating contour maps of iso-

resistivity values (0.1 ohm·m resolution, log scale) through kriging interpolation over a refined grid mesh of four cells between 230 

electrodes. As a result, we obtained ERT images for each profile, as illustrated by the VIN-1 example in Fig. 4, which 

demonstrates our interpretation approach and serves as the basis for our final analysis. By correlating lithological information 

from boreholes with iso-resistivity contour maps, we determined the characteristic resistivity values (ρhf) for each hydrofacies 

at every vertical lithological change (Table 1). For example, the depth boundaries of gravel (G) in boreholes SPV-5 and SPV-

8 corresponded to the 500 ohm·m iso-resistivity contour in profiles VIN-1, VIN-4, and VIN-10, establishing this value as the 235 

lower resistivity threshold for hydrofacies G. Following the same procedure, intermediate-high resistivity values (200–500 

ohm·m) are associated with Gsc, low-intermediate resistivity range (100–200 ohm·m) is linked to Sgcs, and low resistivity 

values (< 100 ohm·m) correspond to CSs. We note that the ρhf boundary values for the CSs and Sgcs materials were determined 

by matching their depth intervals (20-23 m and 0-3 m in SPV-5, and 25-29 m and 0-3.4 m in SPV-8), with the 100 ohm·m and 

150 ohm·m in the nearby VIN-1, VIN-4, and VIN-10 profiles, respectively. 240 
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Figure 3. Pseudo 3D ERT model for the 10 profiles measured in the Vinokovščćak wellfield. 

Geoelectrically, a clear transition from a low to intermediate resistivity zone in the north to a high resistivity zone in the south 

is observed at shallow depths, suggesting a progression from fine-medium size to coarser material. However, a very high 245 

resistivity anomaly in the western part of VIN-1 suggests the presence of coarser material in this area. High resistivity 

anomalies mostly appear as elongated, lens-shaped bodies with a flat top surface. Their thickness varies over a depth range of 

5 m to 20 m, although they are often present at the surface, marking sharp lateral contrast with surrounding intermediate and 

low resistivity values within the first 5 m, particularly towards the southern part of the study area. Intermediate to high 

resistivity values are observed across all profiles, forming sharp lateral boundaries with low and high resistivity anomalies.  250 

From a depth of 20 m, the observed low resistivity anomaly coincides with thin layers of fine material in the boreholes, i.e. 

hydrofacies CSs and Sgcs. However, the bottom of this layer is not resolved and the ERT measurements fail to delineate its 

lateral and vertical extent, which is explained by the high conductivity values of these materials, consequently masking the 

material below.  

The refined field data-based geoelectrical model for VIN-1 (Fig. 4a) indicates that the CSs material, found at 0–2 m and 20.7–255 

22 m depth in borehole SPV-5, is delineated by the continuous and undulated conductivity line contour at ρhf = 100 and 125 

ohm·m, respectively. However, the line contour at ρhf = 80 ohm·m suggests a separated conductivity anomalies at 60 m and 

160 m distance, with the latter located very close to the projection distance of SPV-5. Another well-defined and separated 

conductive anomaly is observed from 220 m to 280 m distance with ρhf = 125-160 ohm·m (Fig. 4a). 

These results led us to conduct synthetic models to assess whether the lateral extent of CSs and Sgcs materials in the study 260 

area could be better characterized as either a single continuous layer or discontinuous lenses. Given that the contour lines at 

ρhf = 80 ohm·m and ρhf = 160 ohm·m in VIN-1 suggest separated continuous lenses below 20 m depth, we focused our synthetic 

modelling on two co-existing lenses with both CSs and Sgcs materials emplaced together (Fig.4c), systematically varying the 

length, separation distance and resistivity contrast (theoretical values) relative to the other hydrofacies. The proposed lens-
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shaped geometry is supported by borehole data, with the incomplete presence of this layer indicating its discontinuous nature 265 

across the study area. 

After evaluating over 20 geological scenarios, including a single continuous layer at 20 m depth, the model in Fig. 4c 

demonstrated the closest match (the geoelectrical model in Fig. 4b) to the field data-based model shown in Fig. 4a. The ResIPy 

software based on R2 was very useful to draw the rounded geometry of hydrofacies in synthetic models, using the same 

triangular mesh as for the inversion of field data. The acceptance criteria of synthetic simulations were based on the similarities 270 

in the shape of the conductive anomaly appearing at 20 m depth in the synthetic model and the equivalent anomaly in the field-

data inversion model. This issue has been addressed by introducing synthetic models into the ERT interpretation, based on the 

assumption that if the ERT imaging from synthetic modeling matches or closely resembles to ERT imaging obtained from 

field measurements, the interpretations and resulting hydrofacies models are reliable. To the best of the author's knowledge, 

the presented integration of ERT data with synthetic modeling is an original contribution to stochastic modeling of hydrofacies. 275 

In the synthetic models, the geometries of the materials and their resistivity values within the first 20 m of depth were set 

according to the ranges suggested by the field ERT model. The optimal synthetic model configuration was achieved by 

reducing CSs and Sgcs resistivities at 20 m depth to 20 ohm·m, which are values more representative of clay-silt materials. 

This implies that estimated resistivity values from field data inversion are likely overestimated for these hydrofacies below 20 

m depth. 280 

The observed resistivity values from field data inversion associated with the CSs and Sgcs below 20 m depth are likely to be 

overestimated, so lower values of 20 ohm·m, more representative of clay-silty materials, were set to model these hydrofacies 

as a single unit. An example of a hydrofacies model derived from joint interpretation, i.e. synthetic modeling superimposed 

with the field ERT imaging is presented for the VIN-1 profile (Fig. 4). The same approach was applied to the other ERT 

profiles, resulting in the mean hydrofacies dimensions in both horizontal directions (Table 1).  285 
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Figure 4. ERT profile VIN-1 (RMS misfit  1.23 %) showing the distribution of hydrofacies, built from: (a) joint interpretation of field ERT 

imaging and lithological information observed in borehole SPV-5; (ab), coupled with ERT imaging results (RMS misfit = 1.01%)  from a 

synthetic model;  (bc) based on lens-shaped geometries of hydrofacies and associated resistivity values. (c). 290 

The combined ERT results at VIN-1 show a heterogeneous subsurface configured by resistive and conductive lens-shaped 

structures. Within the first 20 m, the ERT methodology provides an excellent characterization of hydrofacies, as confirmed by 

synthetic modeling. Although the resistivity values are overestimated, the lateral and vertical extent of the hydrofacies are well 

resolved and consistent with the field ERT results. Specifically, the first 20 m of depth in VIN-1 consist of two highly resistive 

hydrofacies G lenses with average values of 1500 ohm·m and 800 ohm·m, embedded in less resistive hydrofacies Gsc (Fig. 295 

4a). It is important to note a discrepancy between hydrofacies G and the associated ρhf values at the virtual projected position 

of borehole SPV-5, suggesting that the borehole does not intersect the VIN-1 profile at its actual location. However, 

approximately 15 m from the virtual projected borehole, the thickness of hydrofacies G in SPV-5 aligns perfectly with the 

high-resistivity anomaly towards the western part of the profile, further highlighting the lateral heterogeneity at the site. 

Moreover, given that the ERT profile endpoints were recorded with a pocket GPS, potential inaccuracies in horizontal 300 

positioning may have contributed to this discrepancy. Below 20 m depth, a sharp, gradual decrease in resistivity is observed, 

from 200 ohm·m to 63 ohm·m at the maximum depth. The iso-resistivity contour lines, which outline the shape and extent of 

the conductive anomalies, reveal the presence of two lens-shaped conductive bodies in the VIN-1 profile, as suggested by ERT 
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results from synthetic modeling (Fig. 4b-c). Hydrofacies CSs and Sgcs, observed in borehole SPV-5 between 20.7 m and 23 

m, align well with the top of the conductive anomaly between the iso-resistivity lines at 160 ohm·m (20 m depth) and 100 305 

ohm·m (25 m depth). Using the same procedure, the conductive anomaly at the end of profile VIN-1 corresponds to a CSs-

Sgcs lens, bounded by the iso-resistivity values of 160 ohm·m and 125 ohm·m between 28 m and 32 m depth. The same 

approach was systematically applied across all 10 ERT profiles, allowing comprehensive estimation of mean hydrofacies 

dimensions in both horizontal directions, derived from all identified lenses (Table 1). The synthetic modeling results improved 

the procedure for constructing hydrofacies models using ERT data by suggesting reliable estimates of hydrofacies dimensions 310 

below 20 m depth, which serve as critical input parameters for the T-PROGS model.  

Table 1: . Attributes of the hydrofacies 

Hydrofacies  G Gsc Sgcs CSs 

Common descriptions Gravel, sandy, medium-

coarse grained 

Gravel, sandy-clayey, 

fine-medium grained 

Sand with gravel, 

clayey-silty 

Clay to silt, 

sandy 

Electrical resistivity (ohm·m) >500 200–500 100–200 < 100 

Model area 1 

Mean thickness (m)a 11.81 4.42 1.97 1.54 

Mean length (m)b (n*) 230 (6) background material 77 (20) 91 (14) 

Mean width (m)c (n*) 213 (6) background material 93 (17) 111 (12) 

Volumetric proportion (-) 0.73 0.11 0.07 0.09 

Model area 2 

Mean thickness (m)a 7.45 5.62 1.89 1.63 

Mean length (m)b (n*) 230 (6) background material 34 (11) 20 (5) 

Mean width (m)c (n*) 213 (6) background material 33 (10) 24 (5) 

Volumetric proportion (-) 0.50 0.26 0.16 0.08 

a: Mean thickness determined from diagonal entries in the vertical transition rate matrix (Carle, 1999) 

b: Mean length estimated according to ERT profiles in the direction of the Drava River flow (x-axis) 

c: Mean width estimated according to ERT profiles perpendicular to the Drava River flow (y-axis) 315 

*: number of lenses (n) analyzed for each parameter 

3.2 Transition probability geostatistical simulation 

3.2.1 Model Area 1 

The Markov chain model identified the vertical tendencies of the hydrofacies in the borehole data (Fig. 5a). The volumetric 

proportion and mean thickness of each hydrofacies are shown in Table 1. The mean thickness is determined along the diagonal 320 

elements of the matrix, representing auto-transitions. Hydrofacies G is the thickest, followed by GSc, Sgcs, and CSs. Since 

GSc is assigned as a background hydrofacies, its transition rates are computed in relation to the transition rates of other 
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hydrofacies. The entropy factors (EF) observed between hydrofacies pairs show similar, near-random, or below random 

vertical tendencies (Fig. 5a). The only significant difference is between CSs and Sgcs, with a preference for CSs to transition 

into Sgcs (EF 1.65) rather than vice versa (EF 0.59). Hydrofacies Sgcs tends to occur above G (EF 1.26), although less 325 

frequently than the reverse sequence (EF 1.53). The occurrence of G over CSs (EF 0.89) and the reverse sequence (EF 0.35) 

are less probable than random. The lack of consistent vertical transition patterns between hydrofacies suggests that their relative 

proportions play an important role in determining their spatial distribution. 

 

     330 
 

Figure 5. T-PROGS results in MA1: (a) Entropy factors in the vertical direction generated by a Markov chain model from borehole logs - 

diagonal boxes represent unobservable auto-transitions, gray boxes display values computed for the background material; (b) the 

representative stochastic hydrofacies model of the Varaždin aquifer (vertical exaggeration is 50-fold). 

The integration of ERT-derived lens lengths data into the model facilitated the development of horizontal Markov chain 335 

models. Lateral continuity of hydrofacies is observed, with similar mean lengths in both horizontal directions, ranging from 

18 times (G in the y-direction) to 72 times (CSs in the y-direction) greater than the vertical thickness recorded in the borehole 

data, depending on the hydrofacies (Table 1). The 3D Markov chain models were used to generate 10 stochastic realizations 

of the hydrofacies distribution. The validation results identified the most plausible realization of the hydrofacies distribution, 

i.e., the representative hydrofacies model of the Varaždin aquifer (Fig. 5b). The percentage of correct predictions across 10 340 

realizations ranges from 53 to 63 % (mean 57.3 %, standard deviation 2.5 %), with realization 8 (R8) being the most accurate 

(Fig. 6a). These values are consistent with those observed in heterogeneous environments, as reported by Bianchi et al. (2015), 

where prediction accuracy ranges from 47 to 57 %, and by He et al. (2014), with values between 33 and 77 %, depending on 

the inclusion of soft data in model development. Furthermore, mismatches between hydrofacies G and Gsc contribute to 16 % 

of discrepancies. This difference has no significant impact on the assignment of hydraulic conductivities for the groundwater 345 

flow model, as both hydrofacies are highly conductive. Two validation boreholes in R8 achieved 100 % prediction accuracy 

(Fig. 6b), both located in the northwestern part of the study area. Apart from this, no clear trend emerges, with lower prediction 

accuracy occurring in central areas, as well as near the western and southern edge of the aquifer.  
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Figure 6. Validation test results: (a) percentage of correct predictions in 10 stochastic realizations; (b) percentage of correct predictions in 350 

boreholes for representative realization R8 (dashed lines indicate the mean percentage of correct predictions). 

A detailed R8 analysis revealed that the model reproduces spatial distribution of the G hydrofacies most accurately, with an 

86 % match between the model and the validation boreholes. The matches of the other hydrofacies are considerably lower, 

with 18 %, 15 %, 13 % for CSs, Sgcs, and Gsc, respectively. The significantly higher accuracy in the case of hydrofacies G 

can be attributed to its high volumetric proportion (73 %) and consequently its high reproducibility when using a coarse grid 355 

(which exceeds the dimensions of the other hydrofacies). Estimation of the volumetric proportions of hydrofacies is based on 

borehole data of varying reliability. The purpose of many boreholes used in the study, classified as either reliable or less 

reliable, was originally to determine aquifer boundaries and not to delineate intervals of deposits with different sand and gravel 

ratios, such as Sgcs and Gsc. 

3.2.2 Model Area 2 360 

The simulations in MA2 were performed to evaluate whether incorporating ERT-derived lens lengths improves model 

prediction accuracy, compared to models developed using only borehole data and default lens lengths. To ensure that the 

results are not influenced by data reliability, the simulations were conducted in the Vinokovščćak wellfield area, using only 

highly reliable borehole data available in this area. In addition, the model depth was limited to the upper 20 m, corresponding 

to the depth interval where the ERT methodology provided high-quality characterization of hydrofacies, thus avoiding the 365 

effects of low resistivity anomalies and any potential ambiguities from synthetic modeling at greater depths. The limited area 

of MA2 also allowed testing the impact of different grid resolutions on model prediction accuracy, as the T-PROGS software 

supports simulations with up to 3.5 million cells (XMS Wiki, 2025). The Markov chain model identified the vertical tendencies 

of hydrofacies in 10 boreholes within MA2 (Fig. 7a). As in MA1, the entropy factors in MA2 indicate an absence of vertical 

patterns, pointing to the relative proportions of hydrofacies as the main driver of their spatial distribution. 370 
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Figure 7. T-PROGS results in MA2: (a) Entropy factors in the vertical direction generated by a Markov chain model from borehole logs; 

(b) one of the geostatistical realizations of the spatial distribution of hydrofacies in the Vinokovščćak wellfield area, constructed using ERT-

derived lens lengths data with a grid resolution of 20 x 20 x 1 m (vertical exaggeration is 20-fold). 375 

After combining vertical and horizontal Markov chain models, developed using both ERT-derived (Table 1) and default lens 

lengths (i.e., 10 times the hydrofacies thickness), the 3D Markov chain models were used to generate 10 stochastic realizations 

of hydrofacies distribution by leaving one borehole out of each simulation. This process was repeated for all 10 boreholes, 

resulting in 200 simulations per grid resolution. Figure 8 displays a comparison of the MA2 simulation results, showing the 

prediction accuracy for horizontal grid resolutions of 10x10 m, 20x20 m, 40x40 m, 60x60 m, 80x80 m, and 100x100 m.  380 
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Figure 8. Comparison of prediction accuracy of models in the Vinokovščćak area based on ERT-derived lens lengths (white box-whisker 

plots) and default lens lengths (gray plots) at different grid resolutions. Note: The edges of the box represent the standard deviation, the 

whiskers represent the minimum and maximum, and the central line represents the mean of the data. 

The mean values of the correct predictions for simulations based on ERT-derived lens lengths data are consistently higher for 385 

all grid resolutions compared to models using default data. However, the differences are not significant and range from 0.3 to 

5.0 % depending on the grid resolution. The standard deviations indicate that models based on both datasets exhibit wide 

variability across all grid resolutions. In addition, the min-max ranges are relatively consistent, suggesting that both models 

handle prediction extremes similarly, regardless of grid resolution. The similar prediction outcomes between the two 

approaches may be attributed to the comparable lens lengths derived from ERT and default data, with ERT-to-default length 390 

ratios varying by hydrofacies: 2.9–3.1 for G, 1.8 for Sgcs, and 1.2–1.5 for CSs (calculated according to the data in Table 1). 

The relationship between model prediction accuracy and grid resolution reveals a distinct pattern that requires further 

exploration. To better understand this pattern, it is important to highlight that the ERT-derived lens lengths used in the MA2 

simulations are 20 and 24 m for CSs, and 33 and 34 m for Sgcs (Table 1). The prediction accuracy of the models using 10x10 

grid is the lowest, despite its high spatial resolution. This suggests that increasing model detail beyond the characteristic lens 395 

dimensions produced subdivisions that did not enhance model performance, the use of grid cells smaller than the lens lengths 

may lead to oversegmentation of the lenses, causing artifacts and thus reducing the potential benefits of using fine resolution 

grids. In contrast, the 20x20 m horizontal cell size closely matches the lens lengths and better captures the spatial patterns of 

the ERT data. It seems that the 20x20 grid resolution resolves the lens features (Fig. 7b), avoids excessive segmentation and 

provides the most reliable simulation results, and is therefore the optimal configuration. As the grid resolution increases to 400 

40x40 and 60x60, a decrease in mean prediction accuracy is observed for both data sets. The coarser grid resolution leads to a 

decrease in the spatial representation of hydrofacies, as larger grid cells cannot adequately resolve the lens lengths. 

Interestingly, the trend changes for the 80x80 and 100x100 grid resolutions. Contrary to intuitive expectations, these grids 

show better prediction accuracy than the 60x60 grid resolution. A possible explanation for this is that larger grid cells provide 

a more homogeneous representation that better matches validation borehole data. This smoothing effect may help to mitigate 405 

inaccuracies caused by incomplete representation of lens lengths, resulting in better performance despite compromising the 

spatial resolution of the hydrofacies representation. 

4 Summary and conclusions  

The characterization of aquifer heterogeneity in alluvial plains requires the integration of geological, geophysical, 

geostatistical, and modeling tools. Advancing these methods and improving data integration is crucial for better understanding 410 

and management of these vital groundwater resources. The presented hydrofacies model is the first hydrogeological 

representation of the studied aquifer developed using geostatistical processing and stochastic modeling. Its advantages lie in 

the transparency and reproducibility of scientifically based procedures. The hydrofacies distribution can be used as a basis for 
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defining hydraulic conductivity fields, a critical input for groundwater flow and contaminant transport modeling, which will 

support future aquifer management in the study area. The four-step approach summarized below is straightforward, and 415 

adaptable to other alluvial or similar sedimentological environments. 

(1) Identification of hydrofacies using borehole data. 

The ability to model aquifer heterogeneity depends on the density quality and spatial distribution of hard data, such as 

boreholes. Due to the varying quality and consistency of borehole logs, the dataset may reflect different levels of reliability, 

as borehole logs are often compiled over decades by different investigators. Interpreting borehole descriptions and classifying 420 

them into hydrofacies is challenging, as well as subjective. It is recommended to use no more than five hydrofacies, as 

additional categories rarely justify the increased detail and time required (XMS Wiki, 2025).  

(2) Delineation of lateral extent of hydrofacies using ERT. 

Complex heterogeneous environments, such as alluvial aquifers, can be difficult to characterize using simple resistivity data 

analysis. Therefore, more robust approaches such as the one proposed in this study are needed.  A joint interpretation of ERT, 425 

borehole data, and synthetic ERT modeling resulted in a more reliable delineation of the hydrofacies below 20 m. This 

approach helped to overcome some of the limitations of the ERT method, in particular the presence of a thin, electrically 

conductive layer at 20 m depth. This layer prevented the current from penetrating deeper, which affected the ERT resolution 

and limited its ability to accurately resolve lens lengths below this depth. While synthetic modeling addressed this issue, other 

techniques, such as induced polarization and GPR, should be considered in future research to strengthen hydrofacies 430 

characterization. 

 (3) Stochastic modeling to define the spatial distribution of hydrofacies. 

Developing vertical Markov chain models from borehole data requires accurate fitting of Markov chain curves to measured 

transition probabilities and assignment of lag distances that reflect all hydrofacies occurrences in boreholes. In addition to the 

maximum entropy approach used in this study, the modeler can choose between four alternative fitting approaches (Carle, 435 

1999). The entropy factor analysis indicates a lack of consistent vertical transition patterns between hydrofacies, highlighting 

the importance of relative proportions in shaping their spatial distribution. Hydrofacies lengths from the ERT interpretation 

showed dominant horizontal continuity relative to thickness and supported the development of horizontal Markov chain 

models. T-PROGS demonstrated robust integration of borehole and ERT data into a geologically meaningful 3D representation 

of the subsurface heterogeneity. Although this study focused onused T-PROGS software, other stochastic approaches that 440 

integrate borehole and geophysical data for hydrofacies distribution modeling can be considered.  

(4) Selection of the representative realization of the hydrofacies distribution. 

The validation procedure ensures that different parts of the study area are represented by dividing the boreholes into depth 

ranges, as used here, or alternatively into zones, borehole clusters, etc., based on their spatial distribution and site 
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characteristics. An independent set of boreholes or a split of the borehole data into two subsets (for model development and 445 

validation) can be used, with random selection to reduce bias. Validation showed that R8 was the most plausible hydrofacies 

distribution among the 10 generated stochastic realizations in the studied aquifer. Despite the use of a coarse grid resolution 

in the MA1 simulations, the prediction accuracy remains within an acceptable range, comparable to previous studies in similar 

heterogeneous settings. In addition, the MA2 simulation analysis revealed that integration of soft data, i.e., ERT-derived 

hydrofacies lens lengths, provides a slight improvement in model prediction accuracy compared to models based on borehole 450 

data alone. To understand the balance between model performance and computational efficiency, model prediction accuracy 

was analyzed as a function of grid resolution. The results show that the optimal cell size is the one that closely matches the 

lengths of the hydrofacies lenses. High-resolution grids failed to improve predictions despite capturing finer detailsfail to 

capitalize on their finer resolution due to oversegmentation, while coarser grids provide a simplified hydrofacies representation 

that may improve model prediction accuracy, but at the expense of the spatial resolution of the hydrofacies representation. At 455 

first impression, if the performance differences between models using different grids are small, it may be preferable to choose 

a coarser grid to reduce computational requirements. However, the obvious disadvantage is the potential loss of the ability to 

resolve specific geological features of interest, which could limit their use in developing reliable hydrofacies models. 

Therefore, future research efforts should focus on using hydrofacies models developed with different grid resolutions and 

evaluating their reliability through numerical groundwater flow simulations. 460 

 

Author contributions. IK and MJ designed the methodological workflow. TM contributed to the conceptualization and 

provided access to the input data for model development. All authors participated in the field ERT measurements. EPG 

interpreted the ERT data and designed the synthetic models. IK developed the T-PROGS models and performed the 

simulations. MJ performed the validation and supervised the work. IK prepared the original draft, with contributions from all 465 

co-authors, followed by review and editing. 

 

Competing interests. The authors declare that they have no conflict of interest. 

 

Acknowledgements. The authors would like to thank the Varaždin Utility Company (VARKOM) for providing input data for 470 

the model development, and Maja Briški for assistance with field measurements. While preparing this work, the author(s) used 

AI tools for minor language editing. After using this service, the authors reviewed and edited the text as needed and take full 

responsibility for the content of the publication. 

 

Financial support. The presented research was conducted in the scope of the internal research project „NITROVERT“ at the 475 

Croatian Geological Survey, funded by the National Recovery and Resilience Plan 2021–2026 of the European Union – 

NextGenerationEU, and monitored by the Ministry of Science, Education and Youth of the Republic of Croatia. It was also 

supported by the Croatian Scientific Foundation (HRZZ) through the Mobility Program – outgoing mobility of senior research 



20 

 

assistants (MOBODL-2023-08-4470) and by the Slovenian Research Agency (research core funding Groundwaters and 

Geochemistry (P1-0020)). 480 

References 

Acworth, R. I., and Jorstad, L. B.: Integration of multi-channel piezometry and electrical tomography to better define chemical 

heterogeneity in a landfill leachate plume within a sand aquifer, J. Contam., 83(3-4), 200–220, 

https://doi.org/10.1016/j.jconhyd.2005.11.007, 2006. 

Aquaveo, L.L.C.: Groundwater Modeling System Version 10.4, release date November 2018, Utah, USA, 2018. 485 

Bianchi, M., Kearsey, T. and Kingdon, A.: Integrating deterministic lithostratigraphic models in stochastic realizations of 

subsurface heterogeneity. Impact on predictions of lithology, hydraulic heads and groundwater fluxes, J. Hydrol., 531 (3), 

557–573, https://doi.org/10.1016/j.jhydrol.2015.10.072, 2015. 

Bersezio R., Giudici M. and Mele M.: Combining sedimentological and geophysical data for high resolution 3D mapping of 

fluvial architectural elements in the Quaternary Po Plain (Italy). Sediment. Geol., 202, 230–248, 490 

https://doi.org/10.1016/j.sedgeo.2007.05.002, 2007. 

Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P., and Binley, A.: ResIPy, an intuitive open source software for complex 

geoelectrical inversion/modeling. Comput. Geosci., 137, 104423, https://doi.org/10.1016/j.cageo.2020.104423, 2020. 

Breg Valjavec, M., Janža, M., and Smrekar, A.: Environmental risk resulting from historical land degradation in alluvial plains 

considered for dam planning, Land Degrad. Dev., 1–12, https://doi.org/10.1002/ldr.3168, 2018. 495 

Brkić, Ž., Larva, O., and Kuhta, M.: Groundwater Age as an Indicator of Nitrate Concentration Evolution in Aquifers Affected 

by Agricultural Activities, J. Hydrol., 602, 126799, https://doi.org/10.1016/j.jhydrol.2021.126799, 2021. 

Carle, S. F. and Fogg, G. E.: Transition probability-based indicator geostatistics, Math. Geol., 28(4), 453–477, 

https://doi.org/10.1007/BF02083656, 1996. 

Carle, S. F. and Fogg, G. E.: Modeling spatial variability with one- and multi-dimensional continuous Markov chains, Math. 500 

Geol., 29(7), 891–918, https://doi.org/10.1023/A:1022303706942, 1997. 

Carle, S. F., LaBolle, E.M., Weissmann, G. S., Brocklin, Van D., and Fogg, G. E.: Conditional simulation of hydrofacies 

architecture: a transition probability/Markov chain approach, in: Hydrogeologic models of sedimentary aquifers, edited by: 

Fraser, G. S., and Davis, J. M., Concepts Hydrogeol. Environ. Geol. Series 1, SSG, Tulsa, OK, 147–170, 

https://doi.org/10.2110/sepmcheg.01.147, 1998. 505 

Carle, S. F.: T-PROGS: Transition Probability Geostatistical Software, Version 2.1. Hydrologic Sciences Graduate Group, 

University of California (Davis), 1-78, 1999. 

De Clercq, T., Jardani, A., Fischer, P., Thanberger, L., Vu, T. M., Pitaval, D., Côme, J.-M., and Begassat, P.: The use of 

electrical resistivity tomograms as a parameterization for the hydraulic characterization of a contaminated aquifer, J. Hydrol., 

587, 124986, https://doi.org/10.1016/j.jhydrol.2020.124986, 2020. 510 

https://doi.org/10.1016/j.jconhyd.2005.11.007
https://doi.org/10.1016/j.jhydrol.2015.10.072
https://doi.org/10.1016/j.sedgeo.2007.05.002
https://doi.org/10.1016/j.cageo.2020.104423
https://doi.org/10.1002/ldr.3168
https://doi.org/10.1016/j.jhydrol.2021.126799
https://doi.org/10.1007/BF02083656
https://doi.org/10.1023/A:1022303706942
https://doi.org/10.2110/sepmcheg.01.147
https://doi.org/10.1016/j.jhydrol.2020.124986


21 

 

Dell’ Arciprete, D., Bersezio, R., Felletti, F., Giudici, M., Comunian, A., and Renard, P.: Comparison of three geostatistical 

methods for hydrofacies simulation: a test on alluvial sediments. Hydrogeol. J., 20(2), 299–311, 

https://doi.org/10.1007/s10040-011-0808-0, 2011. 

Deveugle, P. E. K., Jackson, M. D., Hampson, G. J., Stewart, J., Clough, M. D., Ehighebolo, T., Farrel, M. E., Calvert, C. S. 

and Miller, J. K.: A comparative study of reservoir modeling techniques and their impact on predicted performance of fluvial-515 

dominated deltaic reservoirs, AAPG Bulletin, 98(4), 729–763, https://doi.org/10.1306/08281313035, 2014.  

Engdahl, N. B., Vogler, E. T., and Weissmann, G. S.: Evaluation of aquifer heterogeneity effects on river flow loss using a 

transition probability framework. Water Resour. Res., 46(1), https://doi.org/10.1029/2009WR007903, 2010. 

Falivene, O., Arbués, P., Gardiner, A., Pickup, G., Muñoz, J. A., and Cabrera, L.: Best practice stochastic facies modeling 

from a channel-fill turbidite sandstone analog (the Quarry outcrop, Eocene Ainsa basin, northeast Spain). AAPG Bulletin, 520 

90(7), 1003-1029, https://doi.org/10.1306/02070605112, 2006. 

Frei, S., Fleckenstein, J. H., Kollet, S. J., and Maxwell, R. M. (2009). Patterns and dynamics of river–aquifer exchange with 

variably-saturated flow using a fully-coupled model, J. Hydrol., 375(3-4), 383–393, 

https://doi.org/10.1016/j.jhydrol.2009.06.038, 2009. 

Geel, C. R. and Donselaar, M. E. Reservoir modelling of heterolithic tidal deposits: sensitivity analysis of an object-based 525 

stochastic model. Neth. J. Geoscie., 86 (4), 403–411, https://doi.org/10.1017/S0016774600023611, 2007. 

Gernez, S., Bouchedda, A., Gloaguen, E., and Paradis, D.: Comparison Between Hydraulic Conductivity Anisotropy and 

Electrical Resistivity Anisotropy From Tomography Inverse Modeling. Front. Environ. Sci., 7, 

https://doi.org/10.3389/fenvs.2019.00067, 2019. 

Gong, K., Wen, Z., Li, Q., and Zhu, Q.: Geostatistical simulations of the spatial variability of hydraulic conductivity in an 530 

alluvial-marine sedimentary system in Beihai City, China, J. Hydrol., 620, 129528, 

https://doi.org/10.1016/j.jhydrol.2023.129528, 2023. 

Gottschalk, I. P., Hermans, T., Knight, R., Caers, J., Cameron, D. A., Regnery, J., and McCray, J. E.: Integrating non-colocated 

well and geophysical data to capture subsurface heterogeneity at an aquifer recharge and recovery site, J. Hydrol., 555, 407–

419, https://doi.org/10.1016/j.jhydrol.2017.10.028, 2017. 535 

Green, R., Klar, R., and Prikryl, J.: Use of Integrated Geophysics to Characterize Paleo-fluvial Environments, Geotechnical 

Special Publication 138: Site Characterization and Modeling. ASCE, New York, NY, https://doi.org/10.1061/40785(164)15, 

2005. 

Guo, Z., Fogg, G. E., Brusseau, M. L., LaBolle, E. M., and Lopez, J.: Modeling groundwater contaminant transport in the 

presence of large heterogeneity: a case study comparing MT3D and RWhet, Hydrogeol. J., https://doi.org/10.1007/s10040-540 

019-01938-9, 2019. 

He, Y., Hu, K., Li, B., Chen, D., Suter, H. C., and Huang, Y.: Comparison of sequential indicator simulation and transition 

probability indicator simulation used to model clay content in microscale surface soil, Soil Sci., 174, 395–402, 

https://doi.org/10.1097/SS.0b013e3181aea77c, 2009. 

https://doi.org/10.1007/s10040-011-0808-0
https://doi.org/10.1306/08281313035
https://doi.org/10.1029/2009WR007903
https://doi.org/10.1306/02070605112
https://doi.org/10.1016/j.jhydrol.2009.06.038
https://doi.org/10.1017/S0016774600023611
https://doi.org/10.3389/fenvs.2019.00067
https://doi.org/10.1016/j.jhydrol.2023.129528
https://doi.org/10.1016/j.jhydrol.2017.10.028
https://doi.org/10.1061/40785(164)15
https://doi.org/10.1007/s10040-019-01938-9
https://doi.org/10.1007/s10040-019-01938-9
https://doi.org/10.1097/SS.0b013e3181aea77c


22 

 

He, X., Koch, J., Sonnenborg, T. O., Jørgensen, F., Schamper, C., and Refsgaard, J. C.: Transition probability-based stochastic 545 

geological modeling using airborne geophysical data and borehole data. Water Resour. Res. 50, 3147–3169, 

https://doi.org/10.1002/2013WR014593, 2014. 

Hermans, T. and Irving, J.: Facies discrimination with ERT using a probabilistic methodology: effect of sensitivity and 

regularization. Near Surf. Geophys. 15, 13–25., https://doi.org/10.3997/1873-0604.2016047, 2017. 

Hermans, T., Nguyen, F., and Caers, J..: Uncertainty in training image-based inversion of hydraulic head data constrained to 550 

ERT data: Workflow and case study. Water Resour. Res. 51, 5332–5352, https://doi.org/10.1002/2014WR016460, 2015. 

Janža, M.: Modelling heterogeneity of Ljubljana Polje aquifer using Markov chain and geostatistics, Geologija, 52 (2), 233–

240, https://doi.org/10.5474/geologija.2009.023, 2009. 

Karlović, I., Marković, T., Vujnović, T., and Larva, O.: Development of a Hydrogeological Conceptual Model of the Varaždin 

Alluvial Aquifer, Hydrology, 8, 19, https://doi.org/10.3390/hydrology8010019, 2021. 555 

Karlović, I., Posavec, K., Larva, O., and Marković, T.: Numerical groundwater flow and nitrate transport assessment in alluvial 

aquifer of Varaždin region, NW Croatia, J. Hydrol. Reg. Stud., 41, 101084, https://doi.org/10.1016/j.ejrh.2022.101084, 2022. 

Koch, J., He, X., Jensen, K. H., and Refsgaard, J. C.: Challenges in conditioning a stochastic geological model of a 

heterogeneous glacial aquifer to a comprehensive soft data set, Hydrol. Earth Syst. Sci., 18, 2907–2923, 

https://doi.org/10.5194/hess-18-2907-2014, 2014. 560 

Lee, S. Y., Carle, S. F., and Fogg, G. E.: Geologic heterogeneity and a comparison of two geostatistical models: sequential 

Gaussian and transition probability-based geostatistical simulation. Adv. Water Resour. 30 (9), 1914–1932, 

https://doi.org/10.1016/j.advwatres.2007.03.005, 2007. 

Marković, T., Karlović, I., Orlić, S., Kajan, K., and Smith, A.: Tracking the nitrogen cycle in a vulnerable alluvial system 

using a multi proxy approach: Case study Varaždin alluvial aquifer, Croatia, Sci. Total Environ. 853, 158632, 565 

https://doi.org/10.1016/j.scitotenv.2022.158632, 2022. 

Mastrocicco, M., Vignoli, G., Colombani, N., and Zeid, N. A.: Surface electrical resistivity tomography and hydrogeological 

characterization to constrain groundwater flow modeling in an agricultural field site near Ferrara (Italy), Environ. Earth Sci., 

61(2), 311–322, https://doi.org/10.1007/s12665-009-0344-6, 2010. 

Mele, M., Bersezio, R. and Giudici, M. Hydrogeophysical imaging of alluvial aquifers: electrostratigraphic units in the 570 

quaternary Po alluvial plain (Italy). Int. J. Earth Sci. (Geol. Rundsch.), 101, https://doi.org/10.1007/s00531-012-0754-7, 2012. 

Rambourg, D., Di Chiara, R., and Ackerer, P.: Three-dimensional hydrogeological parametrization using sparse piezometric 

data, Hydrol. Earth Syst. Sci., 26, 6147–6162, https://doi.org/10.5194/hess-26-6147-2022, 2022.  

Ross, M., Parent, M., and Lefebvre, R.: 3D geologic framework models for regional hydrogeology and land-use management: 

a case study from a quaternary basin of southwestern Quebec, Canada. Hydrogeol. J., 13, 690–707, 575 

https://doi.org/10.1007/s10040-004-0365-x, 2005. 

Savoy, H., Kalbacher, T., Dietrich, P., and Rubin, Y.: Geological heterogeneity: Goal-oriented simplification of structure and 

characterization needs. Adv. Water Resour., 109, 1–13, https://doi.org/10.1016/j.advwatres.2017.08.017, 2017. 

https://doi.org/10.1002/2013WR014593
https://doi.org/10.3997/1873-0604.2016047
https://doi.org/10.1002/2014WR016460
https://doi.org/10.5474/geologija.2009.023
https://doi.org/10.3390/hydrology8010019
https://doi.org/10.1016/j.ejrh.2022.101084
https://doi.org/10.5194/hess-18-2907-2014
https://doi.org/10.1016/j.advwatres.2007.03.005
https://doi.org/10.1016/j.scitotenv.2022.158632
https://doi.org/10.1007/s12665-009-0344-6
https://doi.org/10.1007/s00531-012-0754-7
https://doi.org/10.5194/hess-26-6147-2022
https://doi.org/10.1007/s10040-004-0365-x
https://doi.org/10.1016/j.advwatres.2017.08.017


23 

 

Scheibe, T. D. and Murray, C. J.: Simulation of geologic patterns: a comparison of stochastic simulation techniques for 

groundwater transport modeling, in: Hydrogeologic models of sedimentary aquifers, edited by: Fraser, G. S., and Davis, J. M., 580 

Concepts Hydrogeol. Environ. Geol. Series 1, SSG, Tulsa, OK, 107–118, https://doi.org/10.2110/sepmcheg.01.107, 1998. 

Slater, L.: Near Surface Electrical Characterization of Hydraulic Conductivity: From Petrophysical Properties to Aquifer 

Geometries—A Review. Surv. Geophys., 28(2-3), 169–197, https://doi.org/10.1007/s10712-007-9022-y, 2007. 

Šrajbek, M., Kranjčević, L., Kovač, I., and Biondić, R.: Groundwater Nitrate Pollution Sources Assessment for Contaminated 

Wellfield, Water, 14, 255, https://doi.org/10.3390/w14020255, 2022. 585 

Turner, K. A.: Discretization and Stochastic Modeling, in: Applied Multidimensional Geological Modeling: Informing 

sustainable human interactions with the shallow subsurface, edited by: Turner, K. A., Kessler, H., and van der Meulen, M. J., 

John Wiley & Sons, Ltd, https://doi.org/10.1002/9781119163091.ch13, 2021.  

Urumović, K., Hlevnjak, B., Prelogović, E., and Mayer, D.: Hydrogeological conditions of Varaždin aquifer, Geol. Vjesn., 43, 

149–158, 1990.   590 

Vogelgesang, J. A., Holt, N., Schilling, K. E., Gannon, M., and Tassier-Surine, S.: Using High-Resolution Electrical Resistivity 

to Estimate Hydraulic Conductivity and Improve Characterization of Alluvial Aquifers, J. Hydrol., 123992, 

https://doi.org/10.1016/j.jhydrol.2019.123992, 2020. 

Ward, A. S., Gooseff, M. N., and Singha, K.: How Does Subsurface Characterization Affect Simulations of Hyporheic 

Exchange?, Ground Water, 51(1), 14–28, https://doi.org/10.1111/j.1745-6584.2012.00911.x, 2012. 595 

XMS Wiki: https://www.xmswiki.com/wiki/GMS:T-PROGS (last access: 21 January 2025), 2025. 

Zhang, H., Harter, T., and Sivakumar, B.: Nonpoint source solute transport normal to aquifer bedding in heterogeneous, 

Markov chain random fields. Water Resour. Res., 42 (6), https://doi.org/10.1029/2004WR003808, 2006. 

Zhao, Z. and Illman, W.A.: On the Importance of Geological Data for Three-dimensional Steady-State Hydraulic Tomography 

Analysis at a Highly Heterogeneous Aquifer-Aquitard System, J. Hydrol., 544, 640–657, 600 

https://doi.org/10.1016/j.jhydrol.2016.12.004, 2017. 

Zhou, D., Zhang, Y., Gianni, G., Lichtner, P., and Engelhardt, I.: Numerical modelling of stream–aquifer interaction: 

Quantifying the impact of transient streambed permeability and aquifer heterogeneity. Hydrol. Process. 32, 2279–2292, 

https://doi.org/10.1002/hyp.13169, 2018. 

https://doi.org/10.2110/sepmcheg.01.107
https://doi.org/10.1007/s10712-007-9022-y
https://doi.org/10.3390/w14020255
https://doi.org/10.1002/9781119163091.ch13
https://doi.org/10.1016/j.jhydrol.2019.123992
https://doi.org/10.1111/j.1745-6584.2012.00911.x
https://www.xmswiki.com/wiki/GMS:T-PROGS
https://doi.org/10.1029/2004WR003808
https://doi.org/10.1016/j.jhydrol.2016.12.004
https://doi.org/10.1002/hyp.13169

