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Subject: Final author comments (ACs) 

Title: Integrated approach for characterizing aquifer heterogeneity in alluvial plains 

Author(s): Igor Karlović et al. 

MS No.: egusphere-2025-327 

MS type: Research article 

We sincerely thank the reviewers for their thorough evaluation and valuable suggestions to 

improve our manuscript. Below, we provide point-by-point responses to all comments (reviewer's 

text underlined), followed by the corresponding revisions made to the text. We begin by 

responding to the comments from Reviewer 1 (Thomas Hermans, RC1), followed by Reviewer 2 

(Anonymous Referee, RC2), and finally the community comments from Lee Slater (CC1). 

 

RC1 (https://doi.org/10.5194/egusphere-2025-327-RC1) 

Dear authors, 

I read with interests this paper entitled: “Integrated approach for characterizing aquifer 

heterogeneity in alluvial plains”. In this article, a methodology is proposed to integrate geophysical 

data as a constraint for geostatistical simulations meant for generating realistic realizations of 

alluvial aquifer heterogeneity. The topic is relevant, as these aquifers are amongst the most 

complex to characterize, while there are often exploited for drinking water production and highly 

contaminated in and around cities due to industrial activity. I support any effort related to a better 

characterization of these complex systems. In that sense, the paper is interesting, but from my point 

of view, the reader is left with a feeling of unfulfilled expectations. My major concerns are 

described below: 

1. Geophysical data are not really used as a soft constraint in this study, but merely to estimate 

correlation lengths. This is a strong limitation of this work since correlation lengths from 

tomographic methods are known to be biased (Day-Lewis and Lane, 2004). This likely 
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explains the limited added value of ERT for the evaluation criteria compared to other studies 

that used ERT in a similar context (e.g. Hermans et al., 2015). Actually, looking at your 

objectives, I see many similarities withy the study by Hermans et al. (2015). They used ERT 

to constrain hydrofacies simulated by MPS. They also used falsification to deduce the most 

realistic training image. They further constrained their simulations by hydrogeological data 

collected during a pumping test. Also see the work by Barfod et al. (2018) for a similar 

approach. Therefore, I think it is important to better describe the global context of using 

geophysical data to constrain geological models, and discuss the proposed methodology in 

that perspective. Ideally, it would be good to also include simulations where the geophysical 

data are actually used as soft constraints for the detailed area where data is available. 

We acknowledge that geophysical data are not used as a "soft constraint" in exact same 

context as in the works cited by the reviewer. In our study, these data serve to estimate the 

length and geometry of characteristic sediments with distinct hydrogeological properties, i.e. 

hydrofacies units. As Turner (2021) explains, soft data consist of "indirect observations of 

geological properties, as well as qualitative and interpretative information from geophysical 

surveys or conceptualizations of the depositional system.” We maintain that our approach 

using ERT data still represents soft data, though applied in a different context. To ensure 

clarity for readers, we have modified the text to provide a better description of our 

methodology and the broader context of using geophysical data to constrain geological 

models, as suggested by the reviewer (also in line with another reviewer, CC1). Throughout 

our revised paper, we have consistently accompanied the term "soft data" with its specific 

description as "ERT-derived lens lengths." We emphasize that our ERT-derived soft 

constraints (both vertical and lateral) are grounded in the actual vertical positions of 

hydrofacies units observed in wells, addressing the reviewer's concerns about potential bias. 

We also note that this does not contradict or is in conflict with the work of Day-Lewis and 

Lane (2004).  

Regarding the limited added value of ERT data, the observed similarities between ERT-

derived lens lengths and T-PROGS default values in Model Area 2 offer a potential 

explanation for the similar prediction outcomes. We outline this interpretation in Section 

3.2.2 and our response to CC1. 
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Based on the clarifications made about the methodology and general use of geophysical data, 

we consider unnecessary to perform MPS simulations to estimate the facies probability linked 

to a dc-resistivity value (or range of values) as suggested by the reviewer (similar to cited 

works). However, we recognize the value of this perspective and will certainly consider 

applying such methods for estimating key hydrogeological parameters in future research. 

Reference: Turner, K. A.: Discretization and Stochastic Modeling, in: Applied 

Multidimensional Geological Modeling: Informing sustainable human interactions with the 

shallow subsurface, edited by: Turner, K. A., Kessler, H., and van der Meulen, M. J., John 

Wiley & Sons, Ltd, https://doi.org/10.1002/9781119163091.ch13, 2021. 

2. The introduction should focus more on studies which investigated heterogeneity 

characterization, which is also the topic of this paper. Here are a few references that are 

relevant, there are many more (and more recent): Baines et al. 2002; Bowling et al. 2005, 

2007; Bersezio, Giudici, and Mele 2007; Mastrocicco et al. 2010; Doetsch et al. 2010, 2012a. 

Gottshalk et al., 2017. 

We have carefully reviewed all references suggested by the reviewer and have incorporated 

those most relevant to support our research. 

3. The methodology uses thresholds on resistivity to classify the deposits in hydrofacies (L120-

122). But with such a low number of validation wells, the uncertainty cannot be captured, 

does it? See Hermans and Irving (2017) for a study dedicated to uncertainty analysis in a 

similar context. This paper shows that such a threshold actually does not exist. For any 

resistivity value, every hydrofacies has a specific probability of occurrence. This comes 

mostly from the limitation of geophysical inversion which smooths interfaces, but can also 

results from the heterogeneity within the sediments. This has also been demonstrated by 

Isunza-Manrique et al. (2023) in another context. To me, this aspect is essential for any study 

aiming at a robust integration of geophysical data in a stochastic framework. I would also 

extract 1D resistivity distribution at the location of borehole and show in parallel the 

hydrofacies (L182). Because of the smoothing effect of inversion, I really doubt that fixed 

boundaries can be used. It could reveal a lack of co-located data to derive these ranges. 
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We recognize that the number of wells used to define the resistivity thresholds is limited to 

two wells located near four ERT profiles. However, the resistivity anomalies (defining 

hydrofacies units up to 20 m depth in each profile) are very well defined, with clear resistivity 

contrasts between them that align with vertical lithological contacts observed in the wells. 

This result is very important to consider, because it allows us to confidently establish 

resistivity thresholds for each hydrofacies within the first 20 m depth, without uncertainty. 

Thus, we differ with reviewer’s point of view of implicitly suggesting that uncertainty 

analysis would show each hydrofacies having a probability of occurrence for any resistivity 

value, implying no distinct resistivity thresholds exist. From a mathematical perspective, this 

approach appears unsustainable given the physical and chemical properties of porous media 

under an electric field. For instance, between clays and gravel, resistivity thresholds can be 

clearly defined based on well-understood physical characteristics (grain size, pore geometry, 

grain density, tortuosity) and chemical properties (mineral composition, CEC), along with 

saturation conditions and pore fluid salinity. The clear differentiation of materials in the 

Varaždin ERT data (through resistivity thresholds) arises from their distinct physico-

chemical properties, producing strong resistivity contrasts. This interpretation is validated by 

its consistency with vertical lithological contacts observed in wells.  

Regarding the limitations of geophysical inversion using the R2 code (ResIPy), we have used 

synthetic modeling to address potential artifacts associated with the geometries and resistivity 

contrasts among hydrofacies units in the upper part (above 20 m depth), as well as for the 

conductive materials at 20 m depth or below (Sgcs, CSs) with unknown geometries (as 

explained in the text). We also used it to address the limited depth of investigation caused by 

conductive materials at greater depths (Sgcs, CSs), along with the typical loss of resolution 

with increasing depth. The smoothed interfaces observed in all synthetic models were not 

associated with artifacts when using reasonable theoretical (true) resistivity values. We 

obtained very similar results to those for the field data, validating the quality of field 

measurements and inversion protocols. Also, synthetic modeling suggests that each unit in 

the field is in its interior not heterogeneous (at least for the resolution and sensitivity of used 

electrode array), and that the smoothed interface in the inverted model are reliable. Overall, 

these synthetic modeling results demonstrate that the smoothness-based regularization 

approach (Occam’s inversion) used by R2 (ResIPy) does not produce any misinterpretation 
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linked to the smooth appearance of electrical resistivity distribution. In fact, it effectively 

resolves the geometric characteristics of hydrofacies with minimal residual error, meaning it 

fits the synthetic resistivity data very well. Therefore, for the field data-based model, we 

conclude the inversion settings used in R2 were the most suitable (relative to a blocky 

inversion approach for example) for characterizing the expected smooth-shape structures of 

alluvial deposits at the study site, resulting in an excellent fit, as indicated by the low misfit 

error. 

While the study by Isunza-Manrique et al. (2023) provides valuable insights, its focus on 

artificial environments such as municipal landfills makes it fundamentally incompatible with 

our investigation of natural deposits. These artificial settings involve complexities that extend 

far beyond simple heterogeneities, which is why we consider their methodology inappropriate 

as a reference for our work.  

In our revised manuscript, we have clarified that our approach does not involve robust 

integration of geophysical data within a stochastic framework, but is rather related to 

estimating lens dimensions. In our response to the first comment, we have explained why 

determining probability of occurrence for each unit is unnecessary in our study context. 

Following the reviewer's suggestion, Fig. 4 displays the resistivity values extracted from the 

ERT profile (1D resistivity distribution) alongside borehole SPV-5. To avoid confusion and 

maintain clarity, there is no need to show the boundaries of ρhf values or resistivity lines 

contours next to the borehole (SPV-5) that correspond to different lithologies in Fig. 4, as 

suggested by RC1. To address this point, we have provided a detailed explanation in the text 

describing how these values were determined (Section 3.1), which are also shown above the 

resistivity color scale in Fig. 4 for direct comparison. The fixed resistivity boundaries for each 

unit using a smooth resistivity distribution are completely validated from synthetic modeling 

results. Given the type of deposits in the alluvial system and the horizontal dimensions of 

hydrofacies of several tens of meter, we would expect to find rounded units with flat surfaces 

as those in synthetic models, which can be perfectly delineated with Wenner or Wenner-

Schlumberger array configurations, as we have successfully achieved in our work. 
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4. I find n=10 realizations a very low number to look at uncertainties. In particular, the objective 

of a stochastic studies should be to deduce posterior probabilities, and not only deduce the 

most likely model (see line 162). I think more realizations are needed given that 4 facies are 

considered. 

During hydrofacies model development, four alternative modeling approaches were tested 

alongside the maximum entropy method (Carle, 1999), each with 10 stochastic realizations. 

The results showed no statistical deviation from the maximum entropy method's performance 

range. Since these alternatives offered no substantial advantage while increasing 

computational demands, they were excluded from further analysis. Given this, we proceeded 

with the maximum entropy approach for subsequent analysis, as the method provides intuitive 

way to observe vertical transition patterns between hydrofacies. 

While we acknowledge that additional realizations could benefit uncertainty quantification 

studies, this work focused primarily on methodological development for subsurface 

heterogeneity characterization and identification of the most probable hydrofacies model, as 

it forms the basis for defining hydraulic conductivity fields. Future work will expand on 

utilizing the hydrofacies model as direct input for groundwater flow and contaminant 

transport simulations to support groundwater management in the study area. 

5. Some important elements of the methodology are unclear. For example, it is not explained 

how the correlation lengths are extracted from the geophysical inversion (L169-170). It is 

crucial to the methodology, and any subjective element or involved parameters should be 

identified, also considering my other remarks (see point 3 above). 

In the revised manuscript, we have provided a detailed step-by-step explanation of our 

approach for estimating lens dimensions in Sections 2.2 and 3.1. Briefly, we used a joint 

interpretation of ERT data, borehole records, and synthetic ERT modeling to systematically 

characterize all identifiable hydrofacies lenses and estimate their lengths across the 10 ERT 

profiles. Based on these measurements, which are now presented in the updated Table 1, we 

calculated mean length values for each hydrofacies type. 
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6. L197-203. This part is presented as one of the novelty of the paper. However, as explained 

above, other studies using TI for hydrofacies simulations proposed a more thorough analysis 

of this (see Hermans et al., 2015 for MPS, and Hermans and Irving, 2017 for synthetic studies 

and Gottshalk et al. 2017 for indicator simulations). Here, a deterministic approach is first 

used to derive some correlation lengths that are then integrated in geostatistical simulations, 

this is not really an integration of ERT into stochastic modelling, which would imply some 

consideration of the related uncertainty (i.e. probability distributions). Note also that the 

approach of using synthetic models to validate interpretation is not new. See Caterina et al. 

2013 for example. The modelled lenses are very thin. Can they really explain the low 

resistivity observed, or is it simply a loss of resolution with depth ? How can you be sure only 

the background profile is found at depth? 

We revised the sentence related to the novelty of the approach used in our work, since we did 

not perform full integration of ERT into stochastic modelling (i.e. probability distributions). 

Regarding synthetic modeling, we have revised the text to remove any implication of novelty, 

as the reviewer correctly pointed out that this technique is not new. While we do not cite the 

work of Caterina et al. (2013), the exercise of carrying out synthetic modeling dates back to 

the early days of the computer era, initially applied to VES, or to modeling lateral changes 

and near-surface inhomogeneities prior to ERT. However, we would like to emphasize that, 

based on the synthetic modelling results, the conductive anomaly at 20–22 m depth plays a 

key role in defining the depth of investigation for ERT measurements in the Varaždin area, 

and consequently affects the resolution at greater depths. These two aspects are clearly and 

easily observed in both the pseudo-3D model shown in Fig.3 and the refined ERT 

interpretation of each measured line, such as VIN-1 shown in Fig. 4. We are aware, and fully 

agree with RC2, that synthetic models are equally affected by the conductive layer (CSs-Sgcs 

lenses or layer), i.e., simulated ERT measurements will exhibit loss of resolution and limited 

depth of investigation at around 20 m depth. As Reviewer 2 (RC2) points out, our synthetic 

models explicitly incorporate prior geological knowledge, which cannot be neglected in 

synthetic modelling. Borehole data confirms the presence of a conductive layer formed by 

CSs and Sgcs materials with a thickness of approximately 3 m at this depth. The extent of 

low resistivity values below the depth of the CSs-Sgcs material (whether as a thin layer or 

lenses) is explained as an artifact due to the loss of ERT resolution, limited by current 
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penetration depth, rather than representing a true geological feature. Furthermore, borehole 

data reveal that beneath the conductive CSs/Sgcs layer lies the Gsc hydrofacies, which should 

exhibit significantly higher resistivity relative to CSs/Sgcs. Refined deterministic analysis of 

ERT data from iso-resistivity contours maps was very effective in confirming that the 

apparent extensive conductive zone below 22 m depth in VIN-1 is caused by two distinct 

conductive anomalies whose depths are underestimated by the inversion approach (i.e., their 

iso-resistivity contour lines are observed deeper, about 35–40 m). This is observed in both 

the synthetic model and field data, demonstrating that the CSs-Sgcs materials are highly 

conductive and significantly affect the ERT data (resolution and depth of investigation). 

Overall, our expectation from synthetic modeling was to define a plausible geometry of the 

upper boundary of these materials (as a thin layer or lenses), then constrain their thickness 

based on borehole data for final interpretation and estimate horizontal lengths used in 

statistical modeling. This exercise forms the foundation of synthetic modeling work and 

represents best practice in any geophysical investigation. 

Specific comments: 

We have carefully addressed all of the specific comments to the best of our ability. For those 

suggestions that did not include specific line references, we have made reasonable interpretations 

about their intended locations in the manuscript. Should any of these require adjustment, we would 

greatly appreciate further clarification to ensure we implement the suggested improvements 

precisely. 

1. There are too many technical details for an abstract. It is not understandable what the grid 

refers to (ERT inversion grid, hydrofacies simulation grid?). I also miss some context. 

Typically an abstract should be structured as: 1) Global context 2) Specific research gap 3) 

Proposed methodology 4) Main results 5) Conclusion. 

We have restructured the abstract to follow the recommended format, avoiding excessive 

technical details while providing clearer context and research approach. We believe that the 

revised version more effectively communicates our findings to a broader audience. 

2. The resolution of ERT always decreases with depth. 
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We fully agree with the reviewer's observation about ERT resolution decreasing with depth. 

While our results show the characteristic resistivity decrease with depth (Fig. 4), borehole 

data demonstrate that coarser, more resistive units underlie the fine-grained Sgcs-CSs 

hydrofacies lenses. This highlights that thin conductive lenses mask deeper resistive 

formations. The current tends to flow through conductive materials, which fundamentally 

limits depth of investigation and affects resolution (i.e. its capability to demarcate the 

boundaries of such conductive materials). The text has been revised to clarify that borehole 

data support this interpretation. 

3. Not clear what is meant by boundary conditions in this context. 

The text has been revised to eliminate potential confusion. 

4. MPS can also be pixel-based. The original SNESIM algorithm was a pixel-based MPS 

algorithm (Strebelle, 2002), so is the direct sampling algorithm (MAriethoz et al., 2010). 

We appreciate the insight and have revised the text to improve clarity, avoiding 

overgeneralization of simulation methods. 

5. “Depending on” rather than “Given”. 

We have implemented the suggested modification in Section 2.1. 

6. Reference to specific Excel functions is not necessary. 

We have implemented the suggested change by removing the Excel function reference in 

Section 2.3.1. 

7. Reference to an automated python script is not necessary. It is expected that you made the 

process automatic. 

All Python references have been removed from the validation methodology sections for both 

model areas (2.3.1 and 2.3.2) as suggested. 

8. A resistivity of 4600 Ohm.m seems very high for alluvial sediments. Is this realistic? 
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The 4,600 ohm·m reflects an inversion artifact resulting from using 10,000 ohm·m as an 

upper boundary constraint during ERT inversion. Synthetic modeling demonstrates that 

hydrofacies G exhibits resistivities of 500-1,500 ohm·m, which aligns with expected values 

for coarse alluvial sediments (as seen in Fig. 4). 

9. I don't see any sharp boundaries in the figure, which is a result of the smoothness constrained 

used for inversion. Have you considered other inversion approaches (blocky inversion, 

minimum gradient support, etc.)? 

We have revised the text to describe boundaries as gradual transitions rather than sharp 

contrasts, consistent with our use of smoothness-constrained inversion. This method is more 

adequate to represent the deposition environment, reflecting the expected smoothed, rounded 

geometries of different materials in the study area. 

10. Figure 4. You select different values for the different lenses, why? Why is the CSs layer 

discontinuous? Wouldn't a continuous layer also explain the data? 

Our approach integrates borehole data, ERT measurements, and synthetic model simulations. 

The geometries of the materials and their resistivity values in these models were constrained 

by ranges from the field ERT data, as outlined in Section 3.1. A fundamental step in synthetic 

modeling involves evaluating different initial (true) resistivity values within the possible 

range for geologic materials, which are primarily influenced by moisture content and, 

consequently, salinity variations. It is well-known and standard practice to correlate bulk 

resistivity with electrolyte (pore water) resistivity as a function of moisture and/or salinity 

variations at laboratory scale. However, in the Varaždin study area, field measurements 

surprisingly revealed minimal variation, i.e., each material or hydrofacies exhibited well-

defined, nearly constant resistivity values, with only slight differences depending on their 

spatial position (see Fig. 3 for example). Based on this observation, it is reasonable to infer 

that moisture and/or salinity variations may occur within the same material at different 

locations. Accordingly, we assigned slightly different true resistivity values to represent 

natural variability. For the Sgcs-CSs materials, we used values of 150 and 180 ohm·m near 

the surface and 20 ohm·m at greater depths, reflecting the expected decrease in resistivity 

with depth due to increasing moisture content and salinity. For the G materials, we applied 
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true values of 1500 ohm·m and 1000 ohm·m, with the 500 ohm·m difference representing 

plausible spatial variations in moisture or salinity. 

Revisiting RC2's remark, prior geological knowledge constrains our synthetic modeling. 

While a continuous layer CSs could also explain the data, borehole records clearly 

demonstrate its discontinuous nature across the study area, as several boreholes did not 

intersect this layer. Additionally, the resistivity contrast between Gsc and CSs-Sgcs in the 

first 0-3 m depth is clear, showing the discontinuity (i.e., lenses) of these materials. Note 

again that the moisture content between these two types of textures plays an important role 

in generating such resistivity contrasts. We have clarified these points in the revised 

manuscript to improve understanding. 

11. What is “the virtual position of the borehole”? Do you mean a projection of the borehole on 

the profile? 

Thank you for this observation. We have revised the text to use more precise terminology in 

the Section 3.1. 

12. Table 1 gives mean values and ranges, but it is not mentioned how many lenses are detected 

to calculate them. 

As suggested, we have added the number of lenses (n) used to calculate the mean lengths in 

Table 1. 

13. Figure 8. The number of correct predictions is quite low. What would be the score if the most 

abundant facies (background?) would be predicted everywhere? 

The results in Figure 8 are based on 1,200 stochastic realizations, showing a range of correct 

predictions, with mean values used to compare performance across different grid resolutions. 

While the number of correct predictions may seem low, the key focus was to evaluate the 

relative improvement in predictive capability between models developed using only borehole 

data and those incorporating ERT-derived lens lengths (in addition to testing grid 

resolutions). The choice of Gcs as the background hydrofacies is the most logical from a 

sedimentological point of view, representing transitional deposits between coarser and finer 
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hydrofacies and reflecting shifts between high- and low-energy depositional environments. 

This interpretation is supported by the ERT profile in Fig. 4, which shows Gcs located 

between other hydrofacies lenses. Predicting the most abundant facies everywhere would 

oversimplify the system, ignoring the spatial heterogeneity our method aims to resolve. Such 

an approach would produce accuracy scores matching the hydrofacies proportions in borehole 

data, but fail to capture realistic geological structures. As our goal is to reproduce plausible 

heterogeneity, this hypothetical scenario is not directly applicable. However, if assessed, the 

accuracy would align with the relative hydrofacies proportions observed in boreholes, as 

outlined in Section 3.2.2. 

14. It is not clear to me what “oversegmentation of the lenses” is. Aren’t you overinterpreting 

distributions that are not significantly different given the low number of samples (n=10)? 

Wouldn’t you need many more validation data to analyze the risk of oversegmentation? 

We evaluated grid resolution effects using 1,200 simulations in Model Area 2. The results 

demonstrated that optimal cell size corresponds to estimated lens lengths. Increasing model 

detail beyond these dimensions did not improve accuracy, making finer grids computationally 

inefficient. We acknowledge that “oversegmentation” was an imprecise term and have 

modified it throughout the text. 

15. L335-340. Maybe refer to the work of Danish colleagues who developed a scale of 

“reliability” when building their geological models using hard and soft data (e.g., Enemark 

et al., 2024 and references therein). 

The suggested paper, while valuable, addresses propagating interpretation uncertainties from 

3D hydrostratigraphic models to groundwater models, representing a different research phase 

from our current borehole-based hydrofacies identification in section 4 (1). We maintain our 

qualitative reliability framework (defined in Fig. 1) as the appropriate approach for this phase 

of research, though we will consider the suggested methodology in future research. 

16. L342-359. See my main comments related to other studies which proposed more advanced 

methodologies. 
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We reviewed the suggested literature and adopted relevant elements that we believe added 

value to our manuscript. 

 

RC2 (https://doi.org/10.5194/egusphere-2025-327-RC2) 

General comments 

Thank you for submitting this manuscript. Personally, I am curious about applying stochastic 

modelling for the purposes of electrical resistivity response of the subsurface, so I found it an 

interesting and engaging read. The reasoning, or wider context, behind the research is well formed 

(in that the aquifer which is the subject matter of the research is critical to the local water supply). 

The methodology in this manuscript seems competent, though I’m not familiar with the T-PROGS 

software that underpins the stochastic modelling efforts. I find the results insightful, however, I do 

have concerns about the statistical significance the stochastic outputs with and without the benefit 

of geoelectrical information. 

Regardless I wish the authors well, and hope my comments are useful to them. Furthermore, I 

would like to recommend that this manuscript be accepted on the basis of moderate revisions. 

Specific comments 

Lines 93 – 95: Is it known how K is determined in these boreholes? Are they determined in situ 

(e.g. falling/rising head tests) or via laboratory investigations on samples. 

The reliability classes presented in Figure 1 were developed to reflect the range and quality of 

available hydrogeological data in the boreholes, where parts related to information for K 

determinations refer to all possible estimation methods, including grain-size distribution analyses, 

permeameter tests from borehole samples, field investigations such as slug tests, pumping tests 

etc. 

Lines 198 – 202: As the ERT is sensitive to 20 m below the ground level, I agree that the synthetic 

modelling should also be limited to 20 m. Although, I’m unsure if the inclusion of synthetic 

modelling improves the sensitivity of the electrical measurements to various hydrofacies below 20 
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m depth. If one proposes a tomography model (be it through a smoothness regularised gauss 

newton approach, as with R2, or via stochastic approaches) the raw data is still fundamentally only 

sensitive to the upper 20 m in this case. It’s a limitation of where the electrical current flows, as 

the authors point out (Lines 198-199). Nevertheless, I think the authors could argue here that the 

synthetic modelling benefits ground model development by incorporating prior knowledge of the 

geology. 

We agree with the reviewer that both field data-based and synthetic models are reliable down to a 

depth of approximately 20 meters. More precisely, this sensitivity limit corresponds to the depth 

where the conductive CSs/Sgcs layer is encountered, e.g. in borehole SPV-5 these two materials 

form thin conductive layer ranging from 20.7 to 23 m depth. We fully agree with the reviewer's 

observation that ERT measurements are fundamentally sensitive to the upper 20 meters, regardless 

of the approach used to estimate a possible geological model. This is the primary reason why 

Model Area 2 was limited to the upper 20 meters, allowing us to assess how ERT-derived lens 

lengths and varying grid resolutions influenced model prediction accuracy, while avoiding 

potential uncertainties arising from synthetic modeling at deeper levels. The purpose of employing 

synthetic modeling was not to improve sensitivity of ERT measurements, but rather to assess or 

test different possible geometries, improving the ERT imaging interpretation. The synthetic 

modeling was beneficial because it provided reliable and realistic hydrofacies dimension estimates 

that were used as critical input parameters for the T-PROGS model, which in turn improved the 

procedure for constructing the hydrofacies model in the subsurface. We acknowledge that our 

original text may have created some confusion about ERT sensitivity limitation, and we have 

carefully corrected this in the revised manuscript in Section 2.2. 

Figure 4: How did the authors build the lens shapes in the mesh? The results are quite exciting. 

What is the data misfit of the traditional tomography section and synthetic model versus the real 

data? 

In the revised manuscript, we include a step-by-step description of our methodology for estimating 

lens dimensions in Sections 2.2 and 3.1. The synthetic model development in ResIPy was informed 

by both ERT field data interpretations and borehole records. Particularly valuable were the 

borehole data, which provided information about depth intervals and thicknesses of individual 
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hydrofacies units. Some boreholes did not intersect the CSs and Sgcs layer, indicating its 

discontinuous, lens-shaped nature. In the revised manuscript, we included the final RMS misfit 

values for both the synthetic model and real data inversions in the caption of Fig. 4. 

Figure 5 b: Referring to Figure 2 (which shows a 3D visualisation of the boreholes) the “Clay to 

silt, sandy” (CSs) hydrofacies appears to dominate the near surface, furthermore, previous 

studies (Karlović et al., 2021) suggest that the geology is layered. Yet in this figure (5 b) the CSs 

hydrofacies distribution has little lateral continuity. Can the authors comment on why that might 

be? 

The main purpose of developing the hydrofacies model was to more accurately characterize 

subsurface heterogeneity. Previous aquifer characterizations relied on simplified, layer-based 

conceptual models that often overlooked the covering layer. As discussed in the text, this layer is 

typically thin or absent, suggesting high infiltration potential and increased groundwater 

vulnerability to surface contamination. Consequently, the layer likely exhibits limited lateral 

continuity near the surface. Fig. 5b was constructed using 80% of the boreholes from Fig. 2 as 

hard constraints, ensuring the presence of the CSs hydrofacies at borehole locations. Another 

important aspect is the model scale, the entire Model area 1 domain (27,984 m × 16,142 m × 100 

m) was discretized into 1,000,000 cells (100 × 100 × 100 in the x, y, and z directions), resulting in 

a horizontal resolution of approximately 280 m × 161 m per cell. 

Line 254: What is not clear to me is which information from the electrical resistivity tomography 

is included or how it is included into the T-PROGS software. Is it just the lens lengths as stated 

on line 167? 

This observation aligns with Reviewer 1's comments (RC1). In response, we have revised the text 

to more clearly define the role of ERT data as soft constraints within our methodological 

framework, specifically as ERT-derived hydrofacies lens lengths. 

Figure 7 b: See above comment about Figure 5 b. 

Similar to our response regarding Fig. 5b, the lateral continuity of the CSs hydrofacies is limited 

at the surface of Model Area 2 (Fig. 7b), but remains well-constrained at borehole locations. Note 

that the hydrofacies model in this figure has a horizontal cell resolution of 20 m × 20 m. Moreover, 
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Fig. 3 effectively illustrates this pattern, as high-resistivity materials, consistent with the gravel 

and sand observed during field ERT measurements, are frequently present at the surface of the 

Vinokovščak wellfield. 

Lines 308 – 309: Is an improvement of 0.3 to 5.0 % statistically significant enough to argue that 

the inclusion of ERT has improved the outcome of stochastic modelling? My experience with 

Markov chain Monte Carlo methods is that the answer can differ for repeated runs by a few 

percentage points. If the T-PROGS software is utilising Markov chains as the authors state (Line 

136) then the question is whether the results are repeatable. 

Both approaches (combining borehole data with either ERT-derived lens lengths or default lens 

lengths) produce a range of prediction accuracies. The mean values for all tested horizontal grid 

resolutions (10 × 10 m, 20 × 20 m, 40 × 40 m, 60 × 60 m, 80 × 80 m, and 100 × 100 m) consistently 

demonstrate better performance with ERT-derived lengths across 1,200 realizations (Fig. 8). While 

these results demonstrate repeatability, the observed improvement remains slight, as noted in the 

Abstract, Sections 3.2.2 and 4 (4). Other reviewers (RC1 and CC1) similarly observed the modest 

improvement in the prediction of hydrofacies distribution when ERT is added. In our discussion 

in Section 3.2.2, we propose a possible explanation to comparable results, related to similarities 

between ERT-derived lens lengths and T-PROGS default values (set at 10 × hydrofacies 

thickness). Additional details are presented in our response to CC1. 

 

CC1 (https://doi.org/10.5194/egusphere-2025-327-CC1) 

This is an interesting contribution to studies that aim to improve hydrofacies distribution by 

combining electrical geophysical datasets with discrete borehole logging datasets. The approach 

is applied to an important study area and addresses issues with nitrate contamination of critical 

aquifers used for water supply.   

The comments posted to date identify some key areas for improvement. In particular, I agree with 

the need to [1] better define this contribution within the scope of previous similar (foundational?) 

work [2] better recognize the limitations of using smooth electrical resistivity tomography (ERT) 

inversions for defining discrete hydrofacies boundaries, and [3] reassess the use of the synthetic 
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models to assess the reliability of the estimated hydrofacies models. With respect to the third point, 

I am not entirely sure what was done. The approach described by the following statement is hard 

to follow: “This issue has been addressed by introducing synthetic models into the ERT 

interpretation, based on the assumption that if the ERT imaging from synthetic modeling matches 

or closely resembles to ERT imaging obtained from field measurements, the interpretations and 

resulting hydrofacies models are reliable”.  As already noted, it is not reasonable to synthetically 

infer structures at depth beyond the resolution of the acquired field measurements. Perhaps I am 

misunderstanding the strategy applied. I suggest that the revisions include a better 

illustration/justification of the approach with a concrete example of the value added. 

In response to point [1], we have reviewed the literature and incorporated relevant prior research, 

including studies on heterogeneity characterization and previous investigations that utilized 

geophysical data to constrain geological models. 

We have addressed point [2] in our response to comment 3 by RC1. Although we acknowledge 

that the regularization parameter helps determine a stable solution, we must note that it can also 

introduce spurious heterogeneity in the solution. However, as demonstrated in our synthetic 

modeling, the Occam's inversion approach employed by R2 is very effective for determining the 

regularization parameter to achieve the smoothest possible model that fits the data within 

acceptable misfit errors, while avoiding both over- and under-fitting. 

Regarding point [3], we recognize that the original text may have caused some confusion. We used 

synthetic modeling as a well-established and reliable tool to assess the sensitivity of our field 

electrode arrays, depth of investigation, and capability to electrically resolve lithological contrast 

and geometry between different subsurface units. Beyond these applications, the results of 

synthetic modeling were very useful to strengthen and validate the final hydrofacies model 

developed for the Varaždin study area. We have revised the manuscript to describe how synthetic 

modeling contributed to different aspects of our analysis. Below, we summarize the specific 

purposes and advantages of our synthetic modeling approach: 

1) To validate the reliability of field ERT measurements to depths of 20 m with a very high 

quality/noise ratio. More precisely, this depth corresponds to the appearance of conductive 

CSs/Sgcs layer. This was confirmed by synthetic models, resolving the lithology and geometry 
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within this depth range, suggesting a range of resistivity values consistent with those from field 

measurements. 

2) To detect and validate the influence of the Sgcs and CSs hydrofacies at 20-23 m depth. With 

synthetic models, we were able to estimate the conductivity/resistivity magnitude of these 

materials, confirming their role in limiting the depth of investigation of our field ERT 

measurements. Synthetic modeling results were very useful, demonstrating that the Sgcs/CSs 

materials exhibit high conductivity at these depths, greater than initially anticipated. This explains 

the conductive anomaly visible in our ERT imaging (Figs. 3 and 4). 

3) To determine whether the Sgcs/CSs materials at 20-23 m depth form lens-shaped features or 

constitute a single layer. The Sgcs/CSs units are not at depths beyond resolution, but are rather 

responsible to limit the depth of investigation and resolution. This was the main challenge 

concerning geophysical analysis. Using synthetic models, we wanted to evaluate the effects of 

these two possible scenarios (lens-shaped and single layer) to establish the most probable geometry 

and resistivity magnitudes of these materials. The lens-shaped geometry shown in Fig. 4 emerged 

as one plausible configuration. Our acceptance criteria for this interpretation rely on strong 

similarities in the shape of the conductive anomaly appearing at 20 m depth in the synthetic model 

and the equivalent anomaly in the field-data inversion model. We note that the thickness of the 

layer is consistent with well-constrained measurements from borehole data. Moreover, since this 

layer is absent in certain boreholes, we infer that it is not a continuous across the study area.  

We acknowledge that the original text lacked clarity regarding this analysis. In response, we have 

substantially revised Sections 2.2 and 3.1 to provide a better explanation of our strategy applied 

and justification for the modeling approach. With these textual improvements clarifying the 

purposes and results of our approach, we believe the illustrated example in Fig. 4 now 

appropriately demonstrates our findings. 

One additional point to consider in the revisions is that the paper implicitly assumes that variations 

in grain size primarily control variations in electrical resistivity. Of course, resistivity also depends 

strongly on porosity, fluid conductivity, and the degree of saturation. Although variations in 

porosity sensed with resistivity could contribute to improved hydrofacies discrimination, 

variations in fluid conductivity and degree of saturation would likely complicate the delineation 
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of hydrofacies. Is there any field data available to constrain the magnitude of these variations? 

Presumably, water tables are available in the wells. Significant variations in fluid conductivity 

might be expected given the nitrate contamination problem. Perhaps these complicating factors 

can partly explain why the improvement in the prediction of hydrofacies distribution is modest 

when ERT is added? Some further discussion of this issue is required. 

This paper will make a valuable contribution to the hydrogeophysics literature once the comments 

provided in the posted discussions are addressed. 

While we acknowledge that electrical resistivity depends on multiple factors including porosity, 

fluid conductivity, and degree of saturation, our study considers grain size variations as the primary 

control for hydrofacies discrimination. Although variations in fluid conductivity and saturation 

could potentially complicate facies delineation, our observations in Model Area 2 demonstrate 

limited saturation effects for hydrofacies G. Long-term water table records (2005–2019) from 

observation wells (prefix SPV; Fig. 1) reveal water table fluctuating between 3.68 and 10.95 m, 

depending on the hydrological season, wellfield pumping regime, proximity to pumping wells, and 

Drava River levels. More recent field measurements from monthly campaigns in the Vinokovščak 

wellfield area show a stable water table, ranging from 4.49 m to 7.65 m (median: 6.74 m). Field 

measurements from 2018-2022 revealed stable groundwater electrolytic conductivity (479-501 

μS/cm, median = 492 μS/cm), indicating consistent total dissolved solids content. Due to its 

negative charge, nitrate is mobile, resulting in conservative transport behavior. We expect that 

nitrate mobility follows the hydrofacies sequence: G > Gsc > Sgcs > CSs. In the Varaždin aquifer, 

nitrate concentrations are typically higher in shallow zones due to proximity to contamination 

sources. Unfortunately, multi-depth screened wells at the Vinokovščak wellfield yield mixed 

samples during pumping, preventing depth-specific parameter analysis and any direct correlations 

with resistivity measurements. As shown in the Fig. 4, the high-resistivity lens associated with 

hydrofacies G at the beginning of the profile exhibits comparable resistivity values in both dry 

(surface) and saturated (deeper) zones. Variations between lenses along the profile (500 ohm·m in 

the field data model, and 700 ohm·m in the synthetic model computed using average resistivity 

values) suggest these differences are primarily spatial rather than related to saturation state. 
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Degree of saturation in the vadose zone is expected to be a function of lithology, i.e. it decreases 

with increasing the grain size and pore radius. At shallow depths, the resistivity of Sgcs-CSs 

material exhibits resistivity values twice as high as those at 20-25 m depth in the saturated zone 

(low resistivity, 60 ohm·m from inverted field data, 140 ohm·m estimated from synthetic model 

and 20 ohm·m suggested as the true resistivity value from synthetic model). The hydraulic 

conductivity (K) of the four hydrofacies units is the subject of a separate paper currently under 

review. While these results are not yet published and we cannot discuss them in detail, our 

methodology involves estimating K values from grain-size distribution curves using empirical 

methods, followed by validation against pumping test data. The derived K ranges for individual 

hydrofacies show clear separation, with only minor overlaps occurring in transitional deposits 

(Sgcs and Gsc) that vary in their sand and gravel ratios, as extensively documented in the literature. 

However, our analysis revealed that similarities between ERT-derived lens lengths and default T-

PROGS values (set at 10 × hydrofacies thickness) may account for the comparable prediction 

outcomes between the two approaches, a point we have now included in our discussion in Section 

3.2.2. The ratios of ERT-derived to default lens lengths vary across different hydrofacies, with 

hydrofacies G showing ratios of 2.9–3.1, Sgcs 1.8, and CSs 1.2–1.5 (derived from the data in Table 

1). While hydrofacies G exhibits the greatest dimensional discrepancy, its volumetric 

predominance within the system compensates for these variations, making it the dominant control 

on the overall hydrofacies model.  

 


