Nutrient Flows and Biogeomorphic Feedbacks: Linking Seabird Guano to Plant traits and Morphological Change on Sandy Islands F.F. van Rees^{1,2,3}*, L.L. Govers^{1,4}, P.Guseva², M.P.A. Zwarts², C. Tuijnman², C.J. Camphuysen¹, G. Ruessink², V.C. Reijers² ¹ Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Texel, the Netherlands; ² Utrecht University; ³ Deltares; ⁴ Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen, Groningen, the Netherlands *corresponding author: floris.van.rees@nioz.nl ## 1 Supplements S1: Number of breeding pairs per species per islands. | | Zuiderduin | Rottumerplaat | Rottumeroog | Richel | Griend | |-----------------------------------|------------|---------------|-------------|--------|--------| | Larus argentatus and Larus fuscus | 796 | 4519 | 794 | 687 | 1270 | | Chroicocephalus ridibundus | 13 | | | | 5282 | | Phalacrocorax carbo | 267 | | | 64 | | | Larus canus | 13 | | 45 | | | | Thalasseus sandvicensis | | | | | 2797 | | Platalea leucorodia | | | | | 54 | | Sterna paradisaea | | | | | 67 | | Sterna hirundo | | | | | 312 | S2: Contributions and loadings per environmental variable to the primary PC axes that explain at least 85% of total variance. | | Contribu | tions (%) | Loadings | | | |------------------------|----------|-----------|----------|-------|--| | | PC1 | PC2 | PC1 | PC2 | | | Distance from coast | 32 | 36 | 0.56 | -0.60 | | | Soil organic matter | 52 | 0 | 0.72 | 0.03 | | | Mean Elevation in 2022 | 16 | 64 | -0.40 | -0.80 | | S3: Contributions and loadings per vegetation trait to the primary PC axes that explain at least 85% of total variance. | | Contributions (%) | | | Loadings | | | |-----------------------|-------------------|-----|-----|----------|-------|-------| | | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | | C:N ratio | 3 | 48 | 1 | -0.18 | -0.69 | -0.08 | | С | 26 | 0 | 11 | -0.51 | -0.04 | -0.33 | | N | 1 | 49 | 2 | -0.10 | 0.70 | -0.12 | | Vegetation height | 33 | 0 | 10 | -0.58 | -0.05 | 0.31 | | Vegetation root depth | 14 | 1 | 46 | -0.37 | 0.08 | -0.68 | | Vegetation biomass | 23 | 2 | 31 | -0.48 | 0.16 | 0.56 | S4: Number of cells, Coordinates and descriptive statistics of the five islands analysed in this study. Descriptive statistics of NDVI, GI and Z are given for the years 2022 and 2021 and displayed as (Mean \pm SD). | Variable | Zuiderduin | Richel | Rottumeroog | Rottumerplaat | Griend | | |-----------------|------------|--------|-------------|---------------|--------|---| | Number of cells | 68279 | 10979 | 128465 | 501266 | 79591 | _ | | Area (ha) | 61 | 10 | 116 | 451 | 72 | | | Longitude | 53°31'0"N | 53°17'50"N | 53°32'25"N | 53°32'30"N | 53°15'55"N | |--------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | Latitude | 6°35'0"E | 5°8'5"E | 6°34'55"E | 6°28'51"E | 5°15'15"E | | $NDVI_{2021} \\$ | 0.311 ± 0.212 | 0.334 ± 0.153 | 0.332 ± 0.186 | 0.343 ± 0.199 | 0.461 ± 0.180 | | $NDVI_{2022}$ | 0.312 ± 0.180 | 0.328 ± 0.156 | 0.327 ± 0.173 | 0.302 ± 0.189 | 0.442 ± 0.200 | | GI_{2021} (d ⁻¹) | 0.001 ± 0.001 | 0.002 ± 0.002 | 0.002 ± 0.001 | 0.001 ± 0.001 | 0.003 ± 0.001 | | GI_{2022} (d ⁻¹) | 0.001 ± 0.001 | 0.002 ± 0.001 | 0.001 ± 0.001 | 0.001 ± 0.001 | 0.002 ± 0.001 | | Z_{2021} (m) | 1.437 ± 0.425 | 1.517 ± 0.343 | 2.113 ± 1.042 | 1.858 ± 1.095 | 1.569 ± 0.990 | | Z_{2022} (m) | 1.426 ± 0.408 | 2.210 ± 0.734 | 2.210 ± 1.098 | 1.908 ± 1.126 | 1.866 ± 0.760 | S5: Prediction of organic matter in the soil (a), and foliar $\delta^{15}N$ (b) based on NMDS scores of plot locations. Here, organic matter and foliar $\delta^{15}N$ values are explained by a smoothed interaction effect between NMDS1, and NMDS2 (s(NMDS1,NMDS2)), p<0.05. We solved for larger scale spatial autocorrelation by a tensor smoother on coordinates (te(X,Y)), p<0.05. Smoothers were performed by GAMs from the mgcv package in R (Wood & Augustin, 2002), however this was term was not used for prediction purposes, only for improving the accuracy of the s(NMDS1,NMDS2) smoother. S6: Relationship between $\delta^{15}N$ and theoretical guano deposition computed by the data-informed model for different dispersion lengths (1, 10, 50, 100, 200, 300 m) for panels A-F respectively. Panel G shows the change of the R^2 as a function of the dispersion length. S7: Summary of posterior distributions of coefficient values are expressed as (Mean \pm SD). | Predictor | GI-Based Model | NDVI-Based Model | |---------------------------------------|--------------------|--------------------| | (Intercept) | 0.132 ± 0.035 | 0.134 ± 0.042 | | Log(Guano+1) | 0.050 ± 0.024 | 0.037 ± 0.028 | | Vegetation Change (ΔGI or ΔNDVI) | -0.038 ± 0.012 | 0.038 ± 0.026 | | Vegetation State in 2021 (GI or NDVI) | -0.014 ± 0.011 | 0.010 ± 0.014 | | Elevation (2021) | -0.080 ± 0.007 | -0.081 ± 0.007 | | Island (Richel) | 0.731 ± 0.144 | 0.802 ± 0.169 | | Island (Rottumeroog) | 0.085 ± 0.095 | 0.071 ± 0.112 | | Island (Rottumerplaat) | -0.182 ± 0.078 | -0.203 ± 0.093 | | Island (Zuiderduin) | -0.259 ± 0.103 | -0.294 ± 0.123 | | Log(Guano+1) × Vegetation Change | 0.010 ± 0.005 | -0.033 ± 0.010 | | Vegetation Change × Richel | -0.034 ± 0.015 | -0.187 ± 0.034 | | Vegetation Change × Rottumeroog | 0.111 ± 0.021 | -0.029 ± 0.036 | | Vegetation Change × Rottumerplaat | 0.033 ± 0.017 | -0.054 ± 0.032 | | Vegetation Change × Zuiderduin | 0.014 ± 0.017 | 0.001 ± 0.029 | S8: Relationships between delta Z (m) (change in elevation), and delta NDVI (change in vegetation presence), per island. Delta's are computed based on the difference between 2022 and 2021. The color expresses log-transformed guano deposition in $g/m^2/y$ on the original scale. S9: Relationships between delta Z (m) (change in elevation), and delta GI (change in vegetation presence), per island. Delta's are computed based on the difference between 2022 and 2021. The color expresses log-transformed guano deposition in $g/m^2/y$ on the original scale. S10: Spatially explicit values of ΔGI , $\Delta NDVI$, and ΔZ .