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Abstract. Numerous studies have highlighted the critical role of soil organic matter (SOM) physical properties in simulating
hydrological and energy exchanges within Earth system models. However, current approaches in their land surface model
(LSM) components typically rely on empirically derived parameterizations that lack physical consistency and often fail to
distinguish between soil organic carbon (SOC) and total SOM. This conceptual simplification leads to inaccurate estimates of
the volumetric organic fraction of soils and, consequently, of their physical properties as highlighted in this study. A process-
based framework grounded in soil mixture theory is thus proposed to provide a physically consistent representation of the
effects of SOM on soil behavior. The volumetric fraction of SOM is derived using mass-volume relationships, combined with
an SOC-to-SOM conversion based on recent pedotransfer functions. For LSMs using the Brooks and Corey model to simulate
soil water retention and hydraulic conductivity, new parameterizations are proposed for SOM hydrodynamic properties as
functions of bulk density and depth, informed by recent observational datasets. Validation against experimental binary mixtures
and large in situ datasets shows significant improvements over conventional methods. Designed for compatibility with global
soil databases, the framework enables more physically consistent SOM representation in LSMs without requiring additional

inputs or calibration.

1 Introduction

Soil is a fundamental component of the land surface. It consists of solid particles surrounding pore spaces that contain water, ice,
and usually air. It forms gradually over time through the physical, chemical, and biological weathering of parent rock material
located beneath the surface. This process results from the combined influence of climate (notably temperature fluctuations,
precipitation, and freeze-thaw cycles), living organisms (such as roots, microorganisms, and earthworms), chemical weathering,
and the passage of time. Weathering breaks down the rock, releases minerals, and allows the accumulation of organic matter
derived from decomposing plant material, giving rise to a complex and evolving medium (Buol et al., 2011). The soil then
consists of a fine fraction, composed of particles smaller than 2 mm in diameter, and a coarse fraction, made up of rock
fragments or gravel larger than 2 mm (Blair and McPherson, 1999). This heterogeneous system plays an important role in
the functioning of the Earth’s climate system, particularly by regulating the exchange of water, energy, and gases with the
atmosphere. Soil acts as a temporary reservoir for rainfall: it can retain water, redistribute it to plants via capillarity, or allow

it to infiltrate into groundwater systems. Once its retention capacity is exceeded, excess water may flow over the surface into
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rivers. This hydrological dynamic, in interaction with the soil’s thermal and structural properties, directly influences plant

growth, local climate, and energy fluxes between the biosphere and the atmosphere.

The majority of soils contain in its fine fraction both mineral and organic components in the different horizons that consti-
tute it, although one of these components typically predominates. The organic component of soil, known as soil organic matter
(SOM), is a complex mixture of microbial biomass, partially decomposed plant and animal residues, and stable organic com-
pounds resulting from advanced stages of decomposition. Soil horizons with a SOM content of less than about 20% to 35% by
weight exhibit characteristics that are more akin to those of mineral soil (USDA, 1999). Despite this separation, the volume of
SOM often exceeds that of the mineral material in the fine-earth fraction, primarily due to its lower bulk density. A key con-
stituent of SOM is soil organic carbon (SOC), which refers specifically to the carbon elements present in organic compounds
within the soil. SOM typically contains more or less 50% by mass of SOC, although this proportion varies depending on the
degree of decomposition and organic matter composition. Other elements are oxygen, hydrogen and small quantities of sulfur,
nitrogen, phosphorus, potassium, calcium and magnesium. As such, SOC represents only the carbonaceous fraction of total
SOM, and although often used as a proxy in soil databases, it does not fully capture the physical and chemical contributions
of organic matter. For instance, according to the United States Department of Agriculture (USDA), a soil material is classified
as mineral when it exhibits a SOC content less than 12% by weight for soils devoid of clay and less than 18% by weight for
soils containing 60% by weight or more clay. If SOC content exceeds this threshold, the material is classified as organic and is
designated as peat. Importantly, mineral soils often have a superficial organic horizon formed by the gradual accumulation of

partially decomposed organic matter derived from the decomposition of fallen leaves and other plant residues.

SOM alters soil structure by reducing the bulk density of the fine fraction and increasing the porosity compared to pure min-
eral materials. This facilitates air and water movement, increases the soil’s water-holding capacity and facilitates plant growth
(Boggie, 1970; Walczak et al., 2002; Deeb et al., 2016; Willaredt et al., 2023). When SOM is only slightly decomposed, typi-
cally near the surface, it tends to increase the hydraulic conductivity of the soil compared to purely mineral soils. Conversely,
at greater depths, where SOM is more decomposed, it tends to reduce hydraulic conductivity, thereby contributing to greater
moisture retention in the soil (Boelter, 1966, 1969; Letts et al., 2000; Liu and Lennartz, 2019; Liu et al., 2020, 2022; Morris
et al., 2022). SOM has also a low thermal conductivity and a relatively high specific heat capacity compared to mineral soil
(Farouki, 1981; Zhu et al., 2019; Arkhangelskaya and Gvozdkova, 2019; Arkhangelskaya and Telyatnikova, 2023). It therefore
moderates the transfer of energy into the soil and acts as an insulator, preventing the soil from becoming too warm in summer
and too cold in winter (Lawrence and Slater, 2008; Decharme et al., 2016; Gaillard et al., 2025). In addition to this direct effect,

SOM also mainly influences soil thermal behavior indirectly through its impact on soil structure and porosity.

This brief overview underlines why a better modeling of the physical processes governing the influence of SOM on soil
properties is essential for improving the representation of soils in Land Surface Models (LSMs), and thus in Earth system
models. More than 50 years ago, LSMs were introduced into atmospheric general circulation models and then climate models
to provide realistic lower boundary conditions for temperature and moisture. From the simple bucket models of Manabe (1969)

or Noilhan and Planton (1989), their complexity has progressively increased to include sophisticated multilayer representations
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of soil and snow, with multiple parameterizations describing the physical processes associated with vegetation, soil, and snow,
as well as the biogeochemical processes linked to the carbon cycle (Bonan and Doney, 2018; Blyth et al., 2021). Originally,
soils were represented solely based on mineral materials using pedotransfer functions (PTFs) to derive physical properties from
soil texture (e.g. Van Looy et al., 2017). Since the late 2010s, building on pioneering works of Letts et al. (2000) and especially
Lawrence and Slater (2008), land surface modellers have developed empirical approaches to account for the influence of
organic matter on soil physical properties (Dankers et al., 2011; Chen et al., 2012; Chadburn et al., 2015; Decharme et al.,
2016; Chen et al., 2016; Guimberteau et al., 2018; Sun et al., 2021). While PTFs including organic matter have long existed
in soil science for hydrodynamic properties (Rawls et al., 2004; Weynants et al., 2009; Wosten et al., 1999; Té6th et al., 2015;
Van Looy et al., 2017), their use in LSMs has generally remained limited. For thermal properties, such PTFs are nearly absent,

with models usually relying on fixed values or simple mixing rules.

The primary challenges faced by LSMs in accounting for the physical effects of SOM lies in the need to determine its
volumetric fraction. It is indeed the volumetric proportions of the various soil components (mineral particles, organic matter,
water, and air) that govern its key physical properties (Farouki, 1981). For instance, soil porosity is defined as the ratio of
pore volume to total soil volume, while volumetric heat capacity, i.e. the ability of soil to store heat, is calculated based on the
heat required to increase the temperature by 1K of 1 m? of soil . Accurate estimation of the volumetric contribution of each
component is also critical for deriving soil thermal conductivity (Farouki, 1981; Peters-Lidard et al., 1998; Balland and Arp,
2005; He et al., 2020). However, current LSMs typically rely on global or regional soil databases, which often do not provide
direct information on volumetric composition. Instead, databases such as the Harmonized World Soil Database (HWSD; FAO,
2012; FAO and ITASA, 2023) and SoilGrids (Poggio et al., 2021) commonly report soil textures (sand, clay, loam) content by
weight, soil dry bulk density and SOC content by weight, but not the actual volumetric content of organic matter, which must
be inferred indirectly. To estimate this volumetric fraction of SOM, all the previously mentioned parameterizations compute it
as the ratio of the SOC density in each soil layers (possibly inferred from the product of SOC content by weight and the soil
dry bulk density) to a fixed maximum soil carbon density, typically set to 130 kg.m 3 (Lawrence and Slater, 2008), with the

questionable assumption that this value is equivalent to a standard bulk density of peat based on Farouki (1981).

This assumption is problematic for two main reasons. First, it overlooks the substantial variability in peat bulk density,
which can range from as low as 10 to 400 kg.m ™3, and even up to 800 kg.m 3, depending on peat type, total SOM content,
degree of decomposition, and compaction (Boelter, 1966; Letts et al., 2000; Schwirzel et al., 2002; Liu and Lennartz, 2019).
Second, Farouki (1981) does not explicitly relate a standard bulk density of peat to SOC density, but instead provides an
approximate average particle density of SOM of 1300 kg.m 3. When combined with a plausible peat porosity of 90%, this
yields a bulk density of around 130 kg.m ™3 for pure SOM material. However, since this value refers to total organic matter
and not specifically to SOC, using it as a direct threshold for SOC is inconsistent and potentially misleading. For instance,
Decharme et al. (2016) fell into the same conceptual trap. They combined the approximate average particle density of SOM of
Farouki (1981) with an idealized peat porosity profile based on Boelter (1966) and Letts et al. (2000) to derive this threshold
value. However, this method is theoretically flawed, as it conflates SOM-based bulk density with a threshold intended for SOC,
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leading to a potentially incorrect representation of the SOM volumetric fraction. To summarize, existing parameterizations in
LSMs that account for the influence of organic matter on soil physical properties, and are based on the pioneering work of

Lawrence and Slater (2008), exhibit conceptual inconsistencies that warrant reconsideration in light of recent understanding.

This last inconsistency highlights the second challenge faced by LSMs in accounting for the physical effects of SOM, which
arises from the often-overlooked distinction between SOC and total SOM. While SOC is often used as a proxy in LSMs
due to data availability, SOM includes not only carbon-based compounds but also a variety of other organic constituents.
Therefore, misinterpretation of SOC as a direct measure of SOM can lead to significant errors. This discrepancy is not only
an additional source of uncertainty, but also a potential source of systematic bias in the parameterization of soil physical
processes. Recent studies estimate the carbon fraction in SOM, historically based on van Bemmelen’s factor of 58%, to be
closer to a median value of 50%, but with significant variation (13% to 74%) depending on soil type and degree of organic
matter decomposition (Pribyl, 2010; Ruehlmann, 2020). Improving the accuracy of this estimate in LSMs is therefore essential
for more reliable representations of the physical effects of SOM. A final limitation lies in the uncertainty surrounding the
hydrodynamic parameters used in LSMs to represent organic-rich soils. Many models rely on the Brooks and Corey (1964)
water retention and hydraulic conductivity relationships to solve the Richards equation for soil water flow (e.g. Vereecken
et al., 2019). These closed-form equations, which link soil moisture, water potential and hydraulic conductivity, however often
lack well-constrained parameter values for organic soils. In contrast, LSMs that use the van Genuchten (1980) closed-form
equations could benefit from more recent pedotransfer functions that explicitly incorporate SOM content and soil dry bulk
density (e.g. Vereecken et al., 2010) or that are directly calibrated for organic soils and peatlands (Liu and Lennartz, 2019).

Theses pedotransfer functions are however rarely used by regional or global LSMs.

The aim of the present study is therefore to propose a robust, process-based framework for accurately representing the
physical properties of SOM in LSMs. As is common practice in current LSMs, we focus exclusively on the fine earth fraction
of the soil, neglecting the coarse fragment content (stones, gravels, etc.). First, we apply the theory of soil mixture (Stewart
et al., 1970; Adams, 1973; Raats, 1987; Rithmann et al., 2006; Reynolds et al., 2020) to estimate the "true" volumetric fraction
of SOM. This soil mixture theory is a mathematical framework that seeks to explain the composition and structure of soil.
Second, in order to derive SOM content from SOC measurements, we use the recent pedotransfer function developed by
Ruehlmann (2020) to provide a refined estimate of the van Bemmelen factor. Finally, for LSMs that use the Brooks and Corey
(1964) relationships, we propose accurate parameter values for SOM hydraulic properties, informed by recent observational
studies (Liu and Lennartz, 2019; Lennartz and Liu, 2019; Liu et al., 2022; Morris et al., 2022). The new modeling strategy is
presented in Section 2, along with a brief review of existing parameterizations. Section 3 details the data used for validation.
The main results are presented in Section 4 and discussed in section 5. While the study primarily focuses on LSMs that use
the Brooks and Corey (1964) model, Section 5 also discusses the viability of the proposed approach for LSMs that rely on the

closed-form equations of van Genuchten (1980). Finally, the main conclusions of the study are provided in Section 6.
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2 Modeling the physical influence of soil organic matter
2.1 Previous parameterization in LSMs
2.1.1 Soil organic volumetric fraction from SOC content

As previously mentioned, most parameterizations of the physical effects of SOM in LSMs rely on the formulation proposed by

Lawrence and Slater (2008) for estimating the soil organic matter volumetric fraction, f,,,, (m3.m™?), defined as:

o Psc
foom =

Psc,max

with Psc = fm,oC Pb (1)

Here, p,. (kg.m3) is the soil carbon density, which can be estimated from Frmoe (kg.kg™1), the SOC mass fraction (i.e. the
ratio of SOC mass to the total soil mass commonly expressed as a percentage or in g.cg ') and p;, (kg.m~3), the soil dry bulk
density. The parameter psc max = 130 kg.m ™3 represents the maximum soil carbon density, assumed equivalent to a standard
bulk density of peat. A similar formulation is provided by Decharme et al. (2016), but propose an expression for ps maq. based

on the relationship between SOM particle density and peat porosity that varies with depth. Specifically, they write:

Psc.,max(z) =[1.0— wsatom(z)] Psom @)

where p,, = 1300 kg.m~? is an estimates of the SOM particle density (the mass of SOM per unit volume of organic matter

within the soil, i.e., the density of the organic phase itself), and w4, (m3.m~3) is the porosity of the organic material, which

varies between 0.93 m3.m 3 and 0.845 m®.m 3 depending on a depth idealised profile, z (m), typically assumed to extend over
a 1-meter soil depth. When ws,¢,,, reaches 0.9 m3.m~—3, which corresponds to a few centimeters below the soil surface within
this idealised profile, this expression effectively becomes equivalent to the formulation used by Lawrence and Slater (2008).
Finally, Chen et al. (2012) proposed the following equation to estimate the volumetric fraction of SOM from the SOC content
by weight, the density of the mineral component, and the maximum soil carbon density intended to be typical of organic-rich
peat:

T Jroe Poos
Yo Psc,max (1 - fmoc) + fmoc Pbs

Here, pp,.. (kg.m™3) is the bulk density of the mineral component, defined as the mass of mineral matter per unit total soil

with Pbims = Psms (1 - wsatms) )

volume. It is derived from the porosity of the mineral phase, ws.;,,. (m®.m~2), and the standard value for the particle density of
mineral matter, ps, . = 2700 kg.m~3, which represents the mass per unit volume of mineral solids. The parameter psc maz =

130 kg.m 3 is adopted from Lawrence and Slater (2008).

However, as previously discussed, these formulation are conceptually problematic. If pgc maq. 1S interpreted as the mass of
organic carbon per unit soil volume (i.e., SOC density), these equations are formally valid but represent the SOC volumetric
fraction and thus could systematically introduce biases in the actual volumetric fraction of organic matter, as it neglects the
SOC-to-SOM conversion. Conversely, if psc ma. truly refers to the bulk density of peat, a material largely composed of SOM,
then the denominator should physically represent the density of total organic matter, not just its carbon content. In this case,

these equation become inconsistent with physical definitions, as it compares quantities of different nature.
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2.1.2 Soil mineral and organic properties, and applied mixing rules

In most existing parameterizations, LSMs estimate the thermal and hydraulic properties of soils by mixing the contributions of
mineral and organic components. For the mineral material, thermal properties are generally estimated based on the formulations
of Johansen (1977) and Farouki (1981), as adapted for LSMs by Peters-Lidard et al. (1998). The volumetric heat capacity of
the mineral solid phase is typically computed as the product of the specific heat capacity of quartz (733 Jkg='.K~!) and
the standard value for p;_ . The dry and solid thermal conductivities are generally derived from non-linear formulations that
depend on the same particle density, the mineral porosity (or saturated water content), the thermal conductivity of quartz, and
the soil’s quartz content. Hydraulic properties of the mineral material associated with the Brooks and Corey (1964) model,
such as the porosity, the air entry pressure head (or saturated matric potential), the pore-size distribution index (or the shape of
the soil water retention curve), and the saturated hydraulic conductivity, are usually derived from Clapp and Hornberger (1978)

or Cosby et al. (1984) PTFs.

The physical properties of organic materials are generally empirically derived from meta-analyses and literature values,
with thermal properties often taken from Farouki (1981), and hydraulic properties from studies such as Boelter (1969) and
Letts et al. (2000). For instance, Table S1 in the Supplement summaries the values used for organic soil physical properties
by Lawrence and Slater (2008) and Decharme et al. (2016). As previously discussed, these include prescribed thermal and
hydraulic properties from peat literature. Lawrence and Slater (2008) apply uniform values representative of fibric peat, while
Decharme et al. (2016) introduce depth-dependent profiles to reflect the transition from fibric to sapric material. Although these
values are broadly consistent with observed ranges reported in the literature, they remain empirical and do not account for the
structural variability or compositional differences of organic matter. This limitation motivates the physically based approach

developed in this study.

These mineral and organic properties are then combined in LSMs to estimate the thermal and hydraulic properties of soils,
denoted X in the following paragraph. Specifically, these properties are represented as a weighted average between those of
pure mineral material (X,,s) and pure organic matter (X,,,). Lawrence and Slater (2008) adopt a simple arithmetic mixing

formulation for all parameters, given by:
X, = fvom Xom + (1 - fvom) Xms “4)

This simple formalism is adopted by the majority of LSMs. The parameterization proposed by Decharme et al. (2016) adopts
the same arithmetic mixing approach for most soil parameters but applies a geometric mixing rule to compute both thermal

and hydraulic conductivities:
X, = X XS5 o) )

The rationale behind this geometric averaging is that it is more consistent with standard formulations for estimating effective
conductivities in heterogeneous porous media (Farouki, 1981; Nielson and Rogers, 1982; Prudic, 1991; Peters-Lidard et al.,

1998; Stepanyants and Teodorovich, 2003). Other non-linear mixing rules can also be used, both in existing models and in this
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study. For example, the weighted harmonic mean is often applied to average thermal conductivities in vertically heterogeneous

soils:

foom | (= Fo) ]
XO'ITL Xms

The geo-harmonic average, originally introduced by Nielson and Rogers (1982) in the context of radon diffusion through

X, =

(6)

heterogeneous porous media, may also provide a suitable alternative. This formulation was designed to better account for the
tortuous flow paths and variable phase continuity that arise in granular mixtures. It combines features of both geometric and
harmonic means, making it particularly suited for estimating effective transport properties, such as thermal or gas diffusivities,

in partially connected or stratified systems. The geo-harmonic mean is defined as:

. VXom Xons i )
° (1_fvo7n) \/m_‘_fvovn v Xms

This approach captures the non-linear blending behavior often observed in porous materials with strong contrasts between

constituents. It has proven useful in soil biophysics applications where both phase connectivity and interfacial resistance are
key factors (Nielson and Rogers, 1982; Morel et al., 2019).

However, none of these mixing approaches (linear or non-linear) have been formally or empirically demonstrated to be
physically justified for soils composed of both mineral and organic materials, at least not in the context of their application in
LSMs.

2.2 A new process-based framework

To address these limitations and the conceptual inconsistencies identified in the previous section, a physically-based framework
grounded in soil mixture theory is introduced. This framework aims to compute the "true" volumetric fraction of SOM and

derive consistent thermal and hydrodynamic soil properties using only standard inputs available in global soil databases.
2.2.1 Theoretical background

Before deriving the entire framework, it is useful to recall the fundamental physical relationships linking volume, mass, density,
and porosity. A soil can be described by the mass and volume of its solid matrix, along with the volume of voids within it. The
total or bulk dry soil volume, v;, (m?), is defined as the sum of the volume occupied by solid components, v, (m?3), and the pore

volume, v, (m3), which corresponds to voids that could then be filled with air, water, or ice:
Vp = Vs +Vp 3

Since the mass of the voids is null, the total dry soil mass, m, (kg), is equal to the mass of the solid matrix alone. From this,

we define the particle (or solid) density, p, (kg.m™2), and the dry bulk density, p, (kg.m~3), of the soil as follows:

ms

ps = —2 (%a)
Vs
Mg

pp=— (9b)
v
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Equation (9a) shows that the particle density p, characterizes the density of the solid phase alone, considering only the volume
actually occupied by the solid material and excluding any pore space. In contrast, the bulk density p;, given by equation (9b),
uses the same solid mass but relates it to the total bulk volume of the soil, which includes both solids and voids. As a result,
Py is always lower than p,, reflecting not only the composition of the soil solids, but also the internal void structure and the

degree of compaction.

The internal void structure of the soil is commonly referred to as porosity, which is defined as the ratio of pore volume to
total soil volume, wsq: = v, /vy (M*.m™3). By substituting Equations (9) into Equation (8), porosity can be expressed in terms

of either the solid volume fraction or the ratio of bulk to particle densities, as follows:

Vs

Wgat = 1—— (103)
Vp

_1_ P (10b)
Ps

Equation (10b) also shows that the dry bulk density of the soil can be determined from the total soil porosity and the soil solid

density, as follows:

pb:<1_wsat) Ps (11)

These two expressions (Equations 10b and 11) highlight the fundamental interdependence between porosity, bulk density, and

solid density. The knowledge of any two allows the calculation of the third.
2.2.2 Soil mixture theory

However, soil is not a homogeneous medium, and its fine solid fraction is composed of both mineral matter and SOM. As
comprehensively reviewed by Reynolds et al. (2020), the mixture theory provides a consistent framework to describe the mass-
volume-density-porosity relationships among bulk soil, mineral components, and organic matter (Stewart et al., 1970; Adams,
1973; Raats, 1987; Rithlmann et al., 2006). In this conceptualization, soil is treated as a composite of two domains, a mineral

matter domain and an organic matter domain, each with distinct mass and volume, as follow:

Mg = Mom + Mims (12a)
Vg = Us,,, + Vs, (12b)
Vb = Vb, Vb, (12¢)

where m,s and m,, (kg) are the masses of mineral substance and organic matter, respectively, vs,_  and vs_ (m3) the particle

(or specific solid) volumes of the mineral and organic matter materials, respectively, and vy, . and vy, (m?) the bulk volumes

occupied by the mineral and organic matter components with their own porosities, respectively.
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Next, each domain is characterised by distinct mass fractions (i.e., the ratio of each component’s mass to the total soil mass

defined by Equation 12a), particle densities, and apparent bulk volumes, as follows:

. mm,s

fmom == & fmms = (133)
Mg Mg

Pagy = & p, = e (13b)
Usom Sms

Do, = &y, = ms (13¢)
Up Uy

ms

where f,,, and f,,, . (kg.kg™!) are the soil organic and mineral mass fractions, respectively. It is then interesting to note that
fm,.. = (1= fu. ) using the transposition of Equation (12a) for m,, into Equation (13a). ps,. and p,_ . (kg.m~3) are the

particle densities of organic matter and mineral matter, respectively, and py, . and pp, . (kg.m~3) the apparent bulk densities

of each component. Substituting Equations (13b) and (13c) into Equations (12b) and (12c), and using Equations (9), yields:

-1

pe=ms (Z"" + ;”’”) (14a)
mOin m?’ns _1

Py = ( oy pbm) (14b)

Inserting the definitions of the mass fractions from Equation (13a) into Equation (14), and using f,, .. = (1 — fm.,.), leads to

expressions for both soil bulk and particle densities as functions of f,,_ . and the densities of the individual soil components:

m 1- m -

ps:(J; o pf om)> (15a)
m, 1- m -

pb:(J; om pf )> (15b)
bom b s

This formulation shows that both ps and py, are inversely related to the organic matter mass fraction f,, . Within this frame-
work, the solid and bulk densities of the soil can be interpreted as harmonic means (cf. equation 6) of the densities of the
organic and mineral components, weighted by their respective mass fractions. In other words, the overall density reflects not
just how dense each component is, but also how much of each is present in the mixture. Because organic matter is much less

dense than mineral matter, even a small proportion of organic material can significantly reduce the effective density of the soil.

Finally, Equation (10) states that the ratio between bulk density p; and particle density ps is equal to 1 minus the soil porosity

Wsqt. Substituting the expressions from Equation (14) into Equation (10) thus yields:
Mom Mms

(/USU’NL + Psms )
Mom Mms

(pbom T pbms)

Using volume mixing from Equation (12c) and the mass-volume relationships from equation (13c), we can demonstrate that

Weqt = 1 —

(16)

(see supplementary S1):

W — <1 B Pbom> Vbom | (1 B Pbms> Vb, (17)
pso'm Ub psan Up
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This expression reveals the contribution of the volumetric fractions of each soil component, organic and mineral, to the total
porosity. Setting the volumetric fraction of organic matter in the soil as f,, A = % (m?.m~3), Equation (17) can thus be
rewritten as:

Wsat = (1 - pbom) f'U()m, + (1 - pbm) (1 - f'Uom) (18)
Psom Psms

In full consistency with equation (10) and the soil mixture theory, the total soil porosity emerges as the volumetric-weighted

arithmetic mean of the porosities of the individual domains, defined as:

Waat,, =1— 222 and  wgy,, =1 Pme (19)
Psom Psms
with wsqat,,, being the porosity of the organic matter domain and wsqe,,, that of the mineral matter domain. This equation (18)

validates the arithmetic mixing formulation adopted by Lawrence and Slater (2008) and by most LSMs, at least in the case of

soil porosity.
2.2.3 "True" soil organic volumetric fraction

As expressed above, to pass from Equation (17) to Equation (18), the soil organic volumetric fraction is defined as the volu-

metric fraction of organic matter in the soil. It can be rearranged using Equation (13c) as follow:

Mom 1

foom = - 20)
pbom Ub

Recasting equation (20) in terms of mass fractions yields:
Mom ms 1

Joom =—— — — (21)

Ms Vb Pbop,

Then, substituting equation (9b) and the mass fraction definitions from equation (13a) into (21) leads to the "true" soil organic
volumetric fraction :

oy = o Pt (22)

Pbo,

Although Equation (22) is mathematically similar in form to commonly used SOC-based formulations in LSMs, it provides a
physically consistent estimate of f,, . (unlike these earlier approaches). Specifically, it avoids conflating SOC with total SOM
and ensures dimensional and physical consistency between the two terms in the equation: the numerator, representing the mass
of SOM per unit volume of bulk soil (i.e., how much organic matter is present per cubic meter of soil), and the denominator,
representing the mass of SOM per unit volume of the SOM domain (i.e., how much organic matter would fill one cubic meter

entirely composed of organic material).
2.2.4 SOM apparent bulk density

An essential requirement for deriving the "true" soil organic volumetric fraction from equation (22) is the knowledge of the

apparent bulk density of SOM. Although this is not commonly measured, it can be inferred from the principle of mass-volume

10
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relationships inherent to soil mixture theory, starting from equation (15b) as follows:

—1

1 1- Mom

Poom = Frmom ( = Imen) )) (23)
Po Py

Pb,,, can therefore be inferred from commonly available database, as many soil datasets provide observations or estimates of
both pp and fy,,, ., or more commonly f,,_ .. In the latter case, the SOC content must be accurately converted to SOM content,
for instance as proposed in Section 2.2.5. In contrast, the apparent bulk density of the mineral substance (pp,, ) is generally not
directly available, but it can be derived from equation (19) using the porosity of the mineral matter domain, estimated through
standard PTFs (Clapp and Hornberger, 1978; Cosby et al., 1984), in combination with the particle density of mineral matter
following equation (19):

Poe = (1= Wsat,,.) Psyns (24)

In LSMs, ps,, . is typically prescribed using a fixed value, often 2650 or 2700 kg.m 3 (Peters-Lidard et al., 1998; Chen et al.,
2012). However, observational studies report a wider range of values, from 2400 to 2900 kg.m~3 (Schjgnning et al., 2017;
Ruehlmann and Kérschens, 2020). To account for this inherent variability of p;, ., this study adopts an approach proposed by

Ruehlmann (2020), which estimates p;,, , as a function of the mass fractions of sand, silt, and clay:

—1
Ps,.. = (fmclay + fmsa"d + fmsm> (25)

pclay Psand Psilt

where fin 0, frsana> a0d fon ., (kg.kg™1) are the mass fractions of clay, sand, and silt, respectively. The corresponding
particle densities are taken from the PTF H-model of Ruehlmann (2020), with peiqy = 2761 kg.m™3, psana = 2656 kg.m =3,
and pgi;; = 2692 kg.m 3.

2.2.5 SOC-to-SOM conversion factor

Quantifying SOM content from SOC estimates is generally done using the van Bemmelen SOC-to-SOM conversion factor, £,

(kg.kg~!), which translates SOC into SOM as follow:

fmom = Kb fmoc (26)

However, this conversion remains problematic due to the uncertainty surrounding the appropriate value of .. Pribyl (2010)
demonstrated that x,; can vary substantially, from 1.35 kg.kg~! to as high as 7.5 kg.kg ™!, depending on the composition of

organic matter, although a median value of 2 kg.kg ! is recommended.

To address the limitations of using a fixed x5, we adopt the approach developed by Ruehlmann (2020). This method intro-
duces a mechanistic framework that accounts for the compositional variability of organic matter as a function of SOC content.
Rather than applying a single, static conversion factor, the H-model proposed by Ruehlmann (2020) differentiates between two
conceptual fractions of SOM: a low-density component ( fmomld ), associated with fresh organic inputs or microbial biomass,

and a high-density component (f,,,, ), representing more decomposed and stabilized material. The relative contribution of
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these two fractions varies with SOC, following a logarithmic mixing model. Each fraction is assigned a specific SOC-to-SOM
conversion factor: 2.37 kg.kg~! for frmom,, and 1.89 kg.kg~! for Jrmom, ,» reflecting their differing carbon concentrations. The
overall conversion factor k. is then calculated as a weighted harmonic mean of the two fractions, making it dynamic and
SOC-dependent:

0 Y fm,. < 0.001
Fmomyy = Tnlbnec 200 Y 0.001 < fin,. <05 (27a)
1 Y fm,, > 0.5
Smomyy, =1 = Fmom,, (27b)
o = (fnf_oénéb o f;.?%”)_l 270)

This H-model was calibrated using a comprehensive dataset from locations worldwide, covering the full range of observed
soil organic matter contents, diverse soil textures, and parent materials. As illustrated in Figure 1a, the conversion factor
derived from the H-model approaches a value of 2 kg.kg~! for SOC contents around 10%, and gradually decreases at higher
SOC levels, reaching 1.89 kg.kg~! at a SOC content of 50%. At lower SOC contents, however, ., increases sharply, reaching
2.37 kg.kg~! for SOC < 0.1%.

Substituting Equation (27) into Equation (26) yields an analytical function to directly estimate SOM content from SOC.
Fitting this function for the range 0.001 < f,,,,. < 0.5 results in the following formulation, which we used to convert SOC into
SOM:

frmon =min[1.0,1.848 f2%7]  (r? =0.99) (28)

This empirical expression (Figure 1a) provides an accurate and practical alternative to the piecewise formulation of the H-
model. It effectively captures the nonlinear relationship between SOC and SOM across the full range of typical SOC values
in mineral soils and peats, under the assumption that the H-model remains valid. The function is particularly well suited for
large-scale modeling applications, where computational efficiency and continuity are preferred over the use of more complex,

condition-based formulations.
2.2.6 SOM water-retention properties

To solve the Richards equation for soil water flow, the hydrodynamic properties of soils are often parameterized using the
relationships of Campbell (1974), a simplified variant of Brooks and Corey (1964) model, which relate matric potential to soil
water content as follow :
o \-F
PP 0 Cor) IR 09)
Wsat VY < sar
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Figure 1. Derived hydrodynamic properties for SOM domain as a function of its apparent bulk density (ps,,,) for the Brooks and Corey
(1964) model. (a) Conversion function from organic carbon fraction ( fy,,.) to organic matter fraction (fr,,,, ), shown in both analytic (blue)
and fitted (red dashed) forms, using the Van Bemmelen factor (k.s) as described by the PTF of Ruehlmann (2020). (b) Volumetric water
contents at saturation (wsqt), field capacity (wy.), and wilting point (w.¢) estimated with the PTFs of Liu et al. (2022). (c—d) Derived
pore-size distribution index (bom,) and air-entry potential (1sqt,,,) from analytical and fitted solutions. (e) Evaluation of the predicted
saturated hydraulic conductivity (Ksat,,, ) against observed data from Morris et al. (2022), with points colored by depth. The coefficient of
determination (r2) is shown for the current model, with the value obtained using the PTF of Lennartz and Liu (2019) indicated in parentheses
for comparison. Black and red dashed lines are the 1:1 line and the best fit, respectively. (f) Predicted ks4+¢,,, as a function of py_,,, and

depth (shaded contours). The red line corresponds to the mean observed depth Z. Results are compared with the depth-independent PTF from
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where w(1)) (m3.m~3) is the volumetric water content at matric potential 1 (m), 154 the air-entry pressure head, and b (-) the
pore-size distribution index. This Equation (29) is widely adopted in LSMs due to its simplicity and physical interpretability
(e.g. Vereecken et al., 2019).

To account for the effect of SOM on soil water retention, these parameters (wsqt, ¥sat, b) are typically estimated by com-
bining mineral soil and organic matter properties using arithmetic mixing (Equation 4), as reported in section 2.1.2. Equation
(18) supports the validity of this assumption, at least in the case of wg,;. While hydraulic parameters for mineral soils can be
readily estimated using standard PTFs (Clapp and Hornberger, 1978; Cosby et al., 1984), those for highly organic soils (e.g.,
peat) remain poorly constrained, at least for the Brooks and Corey (1964) model. Aside from the meta-analysis by Letts et al.
(2000), which proposed values for organic horizons based on a synthesis of field and laboratory observations, few efforts have
been made to define these parameters specifically for SOM-rich soils. Given the high porosity, unique pore structure, and often

hydrophobic nature of organic matter, extrapolating parameters from mineral soils is inherently challenging.

Recent research conducted at the University of Rostock has significantly advanced our understanding of the hydrodynamic
properties of peat soils, helping to address a longstanding gap in the modeling of organic-rich soils (Liu and Lennartz, 2019;
Lennartz and Liu, 2019; Liu et al., 2019, 2020, 2022). These studies demonstrated that the hydraulic parameters of peatlands
can be reliably predicted from their bulk density, which is largely governed by the organic matter content. Building on this
work, and assuming that the apparent bulk density of SOM, p;,_ (as defined in Equation 23), mainly dominates peat bulk

density, we estimate the porosity of the organic matter domain, ws,¢ ., using the PTF proposed by Liu and Lennartz (2019),

om?

which relates total porosity to dry bulk density in peats:
Wear,, =0.95 04371, V1, <lgem™® (30)

where 7, = pp,,, /1000, i.e. pp,,, exprimed in g.cm™3. According to this relationship (Figure 1b), porosity remains above

0.9 m®.m~? for bulk densities below 110 kg.m~3, reflecting the highly porous structure of undecomposed peat. It declines to
around 0.8 m®.m~3 at a bulk density of approximately 340 kg.m~2, and reaches 0.51 m*®.m~? for a density of 1000 kg.m 3, a

value approaching those of mineral soils.

To determine the parameters 54, and by, we rely on the study by Liu et al. (2022), which investigates the variation of
soil available water capacity (AWC) in peat soils. Soil AWC refers to the amount of water available to plants, defined as the
difference between the volumetric water content at field capacity, wy.,,, (m®.m~2), and at the wilting point, wy,,, (m®.m™3).
This study relates AWC to peat dry bulk density through the following pedotransfer functions (PTFs), providing a practical

basis for parameterizing the hydraulic properties of the organic matter domain:

Wre,,, = 3.1486 (0.12%m r07°) Y, <1gem™® (31a)

Wuwitt,,, = 0.9355 (0.20"om rp™) ¥, <1gem™® (31b)

om

These relationships are illustrated in Figure 1b. By definition, wy.,, corresponds to the volumetric water content at a matric

potential of ¢y, = —10 kPa, and w4z, to the content at 1),,;;; = —1500 kPa. Combined with the Brooks and Corey (1964)

om
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model (Equation 29), this leads to the following system of equations with two unknowns, 154+, and bey,:

__1

1;[}fc bom

Wsatom w " = waOTrl
satom

__1

Y\

Wsatym - = Wwiltom
77&3@7‘/0771,

Taking the logarithm of both equations and eliminating wgg;

(32)

the system can be solved analytically, yielding simple explicit

om?

expressions for by, and Vgq¢

om *

1n(wwilt> - ln(l/ch)

bom = (33a)
In(wse,,,) — In(wwit,,, )
bom

Wcom
Dsatom = Ve <f> (33b)

wsatom
where 1. = —1.01972 m and % = —152.958 m, while the remaining parameters are derived from py_ using Equations
(30) and (31). For more simplicity, these analytical form can be fitted according to 7, as follow:
bom = 2.933 +0.442 7463 4 (1321 Tvom) Vry, <1gem™® (12=0.99) (34a)
Ysat,,, = (101.663 1y —46.913 r) —61.625 ry0%) 0.0168m V1, <lgem™® (1°=0.99)  (34b)

The resulting analytical and fitted b,,,, and 1)54:,,, values are presented in Figures 1c and 1d, respectively.
2.2.7 SOM hydraulic conductivity

In addition to the water retention relationship (Equation 29), solving Richards’ equation requires an accurate description of soil
hydraulic conductivity. Campbell (1974), building on the Brooks and Corey (1964) model, proposed the following relationship
linking the soil matric potential to the hydraulic conductivity:

_ 2b43

bt (35) 7 V> b
ksat V) <tPsat

k(y) = (35)

where k(1)) (m.s™!) is the unsaturated hydraulic conductivity, and k.q¢ (m.s~!) the saturated hydraulic conductivity. This
formulation, like the water retention curve, is widely used in LSMs due to its simplicity and physical basis. The key unknown
is thus kg4, which must be estimated by combining mineral soil (Kkgq¢

) and organic matter (kg4 ) saturated hydraulic

ms om

conductivities. Some LSMs use arithmetic mixing (Equation 4), as proposed by Lawrence and Slater (2008), while others prefer
geometric mixing (Equation 5), as introduced by Decharme et al. (2016). The latter approach is supported by earlier studies
suggesting that the effective combination of saturated hydraulic conductivities is generally better captured using nonlinear

mixing formulations (Prudic, 1991; Stepanyants and Teodorovich, 2003).

While k54, for mineral soils can be readily estimated using standard PTFs (Clapp and Hornberger, 1978; Cosby et al.,

1984), these functions are not applicable to organic soils due to their poorly defined grain-size distribution and high organic
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matter content (Morris et al., 2022). To address this limitation, Lennartz and Liu (2019) proposed a peat-specific PTF, derived
from a reanalysis of the large secondary database compiled by Liu and Lennartz (2019), using dry bulk density as the primary
predictor (Section S2 in the Supplement). This PTF captures the steep decline in k4, With increasing dry bulk density from
0.01 to 0.2 g.cm ™3 (Figure 1f), reflecting the substantial reduction in macroporosity associated with peat degradation. Beyond
0.2 g.cm_3, ksat,,, tends to level off, although the data from Liu and Lennartz (2019) exhibit considerable variability across

the 0.2-1.0 g.cm~3 range, which remains difficult to explain.

Building on a large meta-analysis of northern peat samples, Morris et al. (2022) developed log-linear models to predict
ksat,,, based on variables such as depth, dry bulk density, von Post humification score, and categorical descriptors including
surface microform and peatland trophic type. Their results showed that incorporating multiple predictors, especially dry bulk
density, von Post score, and to a lesser extent depth, significantly improves kg,:,,, predictions. However, von Post score and
fine-scale descriptors such as microform type or trophic classification are not available at the global scale and are therefore
unsuitable for application in LSMs. Following the approach suggested by Morris et al. (2022), we selected dry bulk density

and soil depth as the only feasible predictors of k4, . for large-scale modeling. To this end, we used their dataset and retained

om

the 883 samples that included both dry bulk density and depth information.

This dataset also reveals that, in addition to the decrease in k44, With increasing bulk density, ksq¢,,, tends to decline with

om

depth in organic soils (Figure S1b in the Supplement). To model this behavior through a PTF, we developed a formulation

relating kg4, . to both bulk organic matter density (pp, ) and depth (z in m). This was achieved through a multi-step approach

om om

combining data filtering, non-linear regression, and performance evaluation. First, we retained 98% of the dataset by filtering
out outliers based on a two-dimensional kernel density estimate in the [pp, ., ,10g;o(ksaz, ., )] space. The threshold was set to the
2nd percentile of the estimated density values, ensuring that only the densest regions of the data cloud were preserved (Figure
Sla in the Supplement). From the filtered dataset, 80% of the observations (approximately 706 data points) were randomly
selected for model training, and the remaining 20% (about 177 points) were reserved for validation. We proposed a semi-
empirical model designed to reflect the asymptotic saturation behavior observed at higher densities and deeper horizons. The

functional form that was selected is quasi similar to that of Morris et al. (2022):
logy(ksat,,, ) = —7.955 — 1.89 log;o(2" +0.068) — 2.96 logo(r;,  +0.045) (1?=0.42) (36)

where z* = min(3,z) and z (m) is the depth at the center of each soil horizon, and r; ~=min(0.25,74,,,) (g.cm™?) is the
capped bulk density of the organic matter domain. These constraints reflect the upper bounds of the observational dataset,
which includes maximum values of approximately 2.92 m for depth and 0.25 g.cm ™2 for bulk density. To avoid extrapolation
beyond the empirical range, both variables are accordingly limited in the proposed framework. On the training dataset, this
model yielded a coefficient of determination 72 = 0.41, and on the validation set, R? = 0.46 (Figure S1c in the Supplement).
When applied to the entire filtered dataset (98% of the total), the model explained 42% of the variance in observations, i.e.

r? = 0.42 (Figure le).

These results indicate that, although the model explains a moderate share of the variance in kg, its performance remains

comparable to, or even exceeds, that of existing PTFs applied to similar datasets. For example, the original formulation by
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Lennartz and Liu (2019) yields a much lower r2 of 0.11 when applied to the same data subset (Figure le). Similarly, Liu and
Lennartz (2019) report values up to 2 = 0.4 using alternative models and datasets. Even the most comprehensive model from
Morris et al. (2022), which incorporates additional predictors such as the Kerner Oceanity Index and the distinction between
treed and open peatlands, achieves a maximum 72 of 0.48. Reaching higher predictive power, such as the % = 0.76 reported
for their full model, requires a much larger set of variables, including in addition von Post humification score, and multiple
categorical indicators representing peatland trophic status as well as local climatic conditions. However, these predictors are

not available for global LSMs, which limits the applicability of such complex models at large scales.

Figure 1f illustrates the behavior of the derived PTF for kg, , as a function of pp,, and depth z, based on the log-linear

formulation in Equation (36). Colored curves represent model predictions across a range of depths (0.025m to 3m), with
shading indicating increasing depth. The red solid line corresponds to the mean depth of the dataset (z =0.37 m), while
the dashed blue line shows the depth-independent predictions from Lennartz and Liu (2019). Observed kgq:,,, values from
the Morris et al. (2022) dataset (filtered 98% subset, n = 866) are overlaid, colored by sample depth. The figure illustrates
the main structural differences between the two models. Both predict a strong decrease in ksq+,,, at low bulk densities, and
flattens beyond 0.2 or 0.25 g cm 3. The inclusion of depth dependence in the proposed PTF aims however to better reflect the
vertical variation observed in the dataset (Figure S1d in the Supplement). This added flexibility results in a better fit to the data
(r? = 0.42 for this study compared to only 72 = 0.11 for the Lennartz PTF on the same dataset). Although the observational
scatter remains substantial, the proposed function reproduces the general trend in the data and accounts for the combined

influence of bulk density and depth on ks, -
2.2.8 SOM thermal properties

Although the impact of soil organic matter on thermal processes is not the primary focus of this study, we briefly review a
physically consistent approach to represent it within LSMs, as it complements the broader treatment of SOM hydrodynamics
presented here. In LSMs, soil heat transport is typically described by the one-dimensional heat diffusion equation, derived from
Fourier’s law:

or o oT
Csoila = E </\soilaz) (37)

where Cs,;; is the volumetric heat capacity of the soil (J.m~3.K~1), Ay, the soil thermal conductivity (W.m~1. K1), T the

soil temperature (K), ¢ the time (s), and z the soil depth (m).

In many LSMs, the thermal conductivity Ag.; is computed using a combination of dry and saturated soil conductivities,
weighted by the Kersten number, which reflects the degree of saturation of each soil layer (Johansen, 1977; Farouki, 1981;
Peters-Lidard et al., 1998). Within this framework, the saturated thermal conductivity is calculated as a volumetric-weighted
geometric mean of the thermal conductivities of the solid phase, liquid water, and ice. Lawrence and Slater (2008) or Decharme
et al. (2016) proposed that the dry conductivity (Ag,) and the solid-phase conductivity (A;) be calculated using arithmetic or

geometric mixing, respectively, based on the volumetric fractions of the organic and mineral components. The corresponding

17



480

485

490

495

500

505

conductivity values for the organic domain can be taken from Table S1 in the Supplement, while mineral values can be taken
from Peters-Lidard et al. (1998) as mentioned in section 2.1.2. In the present study, we focus exclusively on A4, and show that
the geo-harmonic mean also provides a suitable alternative, while the computation of A, is addressed in the companion paper

to this work.

The total volumetric heat capacity of soil, Cs,;;, can be derived from its fundamental physical definition, expressed as the

heat capacity per unit volume of bulk soil:
1
Csoil = o kack (38)
k

where vy, is the total soil volume, and my, (kg) and c;, (J.kg~!.K~!) denote the mass and specific heat capacity of each soil
constituent k, including the solid matrix, liquid water, ice, and air. Assuming that air has negligible heat capacity compared
to other phases, its contribution can be ignored. Grounding into the soil mixture theory and substituting the contributions of
each relevant phase (organic matter, mineral matter, liquid water, and ice) into Equation (38), the total volumetric heat capacity

becomes:

1
Csoil = o (Mom Com + Mins Cms + My Cow + M C;) (39)
where m,,,, and m,,,s (kg) are the masses of organic and mineral solids, m,, and m; (kg) the masses of liquid water and ice,
Coms Cms» Cw, and ¢; (J.kg~1. K1) their respective specific heat capacities. Each term in the summation of Equation (39) can be
decomposed as the product of a mass concentration (mass per unit volume of the constituent’s domain) and the corresponding
volume fraction within the bulk soil. This leads to the following equivalent formulation:
Mom Vom Mms Ums My Vu m; U;

+ Cms + Cw +c - (40)
Vom Vb Ums Vb Uy Vb Vi Vp

Csoil = Com

where v, (m?) denotes the volume of each soil constituent, with liquid water and ice occupying the pore space, and organic
matter and mineral substrate forming the soil solid. For liquid water and ice, the ratios m., /v,, and m;/v; are simply their
specific densities, p,, and p; (kg-m—3), and the ratios v, /vy and v; /v, correspond to their volumetric contents, w,, and w;
(m3-m~3), respectively. For the solid constituents, v, and v,,s correspond to the volumes of organic matter and mineral
substrate within the soil solid, i.e. vy, = vs,,, and v,,s = vs,,,. Consequently, in Equation (40), mMom/Vom = Mom /s,
and My s/Vms = Mms/Vs,,. are simply their solid densities, ps,,, and ps, _, as defined by Equation (13b). The computation

of the ratios v, /vp and vy, /vy is less trivial, but they can be expressed as the product of their respective solid-phase

S
Vom

volumetric fractions, v, /vs = and v, /vs = (1 — f; ) (infered via Equation 12b), and the fraction of solids in the
bulk soil, vs /vy = (1—ws,¢) (infered via Equation 10). Substituting these relationships into Equation (40) leads to the following
formulation for the total volumetric heat capacity Cs,;; expressed as an arithmetic mean of the product of density and specific

heat capacity of each soil constituent :

s
Vom

Cooil = Csu +Cyp +C;  with Cw = Cy puw Wy 41

+ Cms Psy, (1= fo )] (1 —wsat)

Vom

Cs, = [Com Psom

Ci=cipiw;
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Here, C,, (J.m~3.K~!) is the volumetric heat capacity of the dry solid matrix, while C,, and C; represent the contributions
of the liquid water and ice phases, respectively. As with porosity, Equation (41) supports the use of an arithmetic mixing
formulation, as adopted by Lawrence and Slater (2008) and most LSMs, to compute the volumetric heat capacity of the dry

soil matrix.

In Equation (41), the appropriate quantity to use is the volumetric fraction of SOM within the soil solid phase (f; ),
consistent with previous findings (Balland and Arp, 2005; Cuynet et al., 2025), rather than the volumetric fraction of SOM in
the bulk soil (f,,,, ) as commonly assumed in earlier LSM parameterizations. Consistently with Equation (22), f; (m3.m~3)
is defined as the ratio between the SOM density in the soil solid, expressed as the SOM mass fraction (f,,,,, ) relative to the

soil particle density (ps), and the SOM particle density (ps,,, ):

vsnm _ Jrom Ps (42)
) psonz
Ps.., can be related to its bulk density pp,, and porosity wse:,,, via Equation (19):
bO’"l
psonz = P (43)

]- - wsatom
As p; is related to p, through the soil porosity (wsq:), replacing ps and p;,,, using Equations (11) and (43) in Equation (42)

leads to the following relationship between f; and f,,,.:

5 1- sa
S = fy. 1~ Wsatom (44)

Vom 1 — Weat

This relationship shows that fjom can be readily obtained from f,, . Furthermore, substituting Equations (42) and (44) into
Equation (41) and applying the complement of Equation (18) with respect to unity (i.e. 1 — wsqt = fo,,, (1 — Wsar,,,) + (1 —
Svo ) (1 — Wsat,, . ), the volumetric heat capacity of the dry soil matrix can be expressed directly in terms of the bulk densities

and volumetric fractions of the organic and mineral domains:

Csu = Com Pbyy, f'Uom, + Cms Pboms (1 - fvom) (45)

Equation (45) may, in some cases, be more straightforward to apply than Equation (41), provided that the bulk densities of

each constituent are known.

A more usual form of C, currently used in LSMs can be derived from Equation (41) using solid heat capacities for each

soil component :

Som — Com Psom

(1=f3 )] (1—weqe) with (46)

ms Vom

Cy, = [Coon f2. +Cs

Som JVom

Sms — Cms Psms

where C

Som

and C'
be specified as in Lawrence and Slater (2008) from a lookup table (see Table S1 in the Supplement) or as in the proposed

(J.m~3.K~1) are the soil solid heat capacity for organic matter and mineral substance, which can

Sms

framework from their specific heat capacities and particle densities. Following Peters-Lidard et al. (1998), and based on the
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average values reported in Farouki (1981), we adopt ¢,,s = 733 J.kg—!.K~! for mineral matter and c,,,, = 1972 J.kg~*. K~ for
organic matter. The particle density of mineral solids (ps,, ) can be estimated using the PTF from Ruehlmann (2020) (Equation
25). For organic matter, the particle density ps,,, can be computed using Equation (43). Finally, the total soil porosity, wq¢, can
be computed via arithmetic mixing using the PTF from Liu and Lennartz (2019) for the organic matter domain (Equation 30),
and, for instance, the PTF from Cosby et al. (1984) for the mineral soil. This approach ensures physical consistency between

the volumetric heat capacity of the dry soil matrix, total soil porosity, and the particle densities of each solid soil component.

3 Materials and methods
3.1 Experimental datasets of soil binary mixtures

Before validating the full proposed framework summarized in Table 1, we first aim to evaluate the applicability of soil mixture
theory to soils composed of both organic and mineral materials. To this end, we used three experimental datasets based on
binary soil mixtures, each consisting of one organic and one mineral component. These controlled mixtures include direct
measurements of soil porosity (Walczak et al., 2002; Willaredt and Nehls, 2021) or dry thermal diffusivity (Arkhangelskaya
and Telyatnikova, 2023). These datasets serve two main purposes. First, to test the "true" formulation of the soil organic
volumetric fraction, computed solely from soil organic mass content and bulk density (Equation 22). Second, to evaluate the
performance of arithmetic mixing for estimating soil porosity, and nonlinear mixing for estimating dry thermal conductivity.

All three datasets were available in raw numerical form, making them easy to use.

The dataset from Walczak et al. (2002) consists of seven laboratory-prepared binary mixtures of peat and quartz sand,
designed to represent a gradient of organic matter content from 5% to 57.4% by dry weight. The peat used originated from
a sedge peat soil of moderate decomposition, while the mineral component consisted of a clean quartz sand with negligible
organic content (0.1%). The samples were prepared by hand mixing fixed proportions of dry peat and sand. The reported dry
bulk densities of the peat and sand are 330 and 1860 kg.m~3, respectively, values that are relatively high for these materials.
In the case of the peat, this elevated density likely results from its moderate degree of decomposition (35-40%) and its high
ash content (42.6%), both of which indicate a more compact and mineral-rich organic material than typical fibric peat. For the
sand, the high bulk density can be attributed to the use of a medium-grained quartz sand with low porosity and the absence of
organic content. For each mixture, key physical properties were measured, including dry bulk density and total porosity (Table
2). This dataset is particularly interesting for evaluating both the volumetric fraction formulation of organic matter and the

performance of mixing model used to estimate bulk properties such as porosity.
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Table 1. Summary of the proposed framework, including the steps to derive the "true" soil organic volumetric fraction, the PTFs used to
compute SOM hydraulic properties for the Brooks and Corey (1964) model, and the mixing rules applied to combine organic and mineral
contributions into bulk soil properties. The framework relies on a limited set of input data commonly available in all current regional and
global soil databases: the soil organic carbon mass fraction (f,,,_), the dry bulk density of the fine earth, and the mass fractions of clay
(fmcluy ), sand (fim,,,,), and silt (fm_,;,). In this study, the hydraulic properties of the mineral domain (Wsat,,.» bmss Ysatymss Ksatms)
are taken from the texture-based pedotransfer functions of Cosby et al. (1984). The dry thermal conductivity of the mineral domain can be

estimated using the approach proposed by Peters-Lidard et al. (1998).

Process Compute Formula / Method ‘ Ref.
1) SOM mass fraction from SOC fimom =min[1,1.848 f5.957] (Ruehlmann, 2020) Eq. (28)
Soil fm f f -1
organic 2) Particle density of mineral domain | ps,,, = (Zl)ay + WEZ;“ + nzz;l"d (Ruehlmann, 2020) Eq. (25)
. pclay Psilt Psand
volumetric
. 3) Bulk density of mineral domain Poms = (1 —Wsatims) Psms Eq. (24)
fraction 1 ) 1 f 1
4) Bulk density of organic domain Pbom = fmom (— - ﬂ) Eq. (23)
Po Pbyms
5) Bulk SOM volumetric fraction Jvom = fmom Pb/Pbom Eq. (22)
6) Specific SOM volumetric fraction Foom = Fmom Ps/Psom = foom (1= Wsato,)/(1—wsat) Eq. (44)
7) SOM porosity Waatyp = 0.95—0.437 rf" (Liu and Lennartz, 2019) Eq. (30)
Soil 8) SOM particle density Psom = Pboym /(1= Wsatgn ) Eq. (43)
hydrology cige i _ 0.463 | ,(1.321 7y, )
9) SOM pore-size index bom = 2.933 +0.442 ry +e om Eq. (34a)
of SOM om
domain 10) SOM air-entry potential Vsaton, = (101.663 1)~ —46.9137)  —61.62577035)0.0168 00m Eq. (34b)
11) SOM saturated conductivity logyg(Ksatom ) = —7.955—1.891og; o (2" +0.068) —2.96log o (r; +0.045) | Eq.(36)
12) Soil porosity Wsat = fogm Wsatom T (1 — foom ) Wsatms Eq. (18)
13) Soil pore-size index b= fuoom bom + (1 — fvom) bms Eq. 4)
14) Soil air-entry potential Ysat = foom Vsatom + (1= fvom ) Vsatms Eq. 4)
Total soil
15) Soil saturated conductivity Esat = (Ksatom ) vom (Ksaty,, )™ fvom Eq. (5)
16) Soil volumetric heat capacity Cs, = [céi{ Psom fogm T ) Psms (1= f5. I (1 —wsat) Eq. (41)
Afig) Adry ’
17) Dry thermal conductivity Adry = h \/A;TTZL T qu'::j Vs vr— (Nielson and Rogers, 1982) | Eq. (7)

(D oty = 2761 kem ™2, P p 0y = 2656 kgm ™3, (D p iy = 2692 kgm ™3, Dy, = py /1000, (Do = 19721 kg LKL, Do, =733 1kg7LK Y,
DN gryom = 0.05 Wm™ 1K1
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Table 2. Observed and estimated properties of peat-sand binary mixtures from Walczak et al. (2002). Observations include the organic
matter mass fraction (fp,,,, ), dry bulk density (ps), and total porosity (wsq+). Estimations include the organic carbon mass fraction (fm,..),
the organic volume fraction (fy,,,), and the bulk density of the organic phase (ps,,, ), computed using the referenced equations with fixed

end-member densities for the pure organic and mineral components.

Observations Estimations

Composition of samples fmom Pb Wsat rggo) ﬁfin Pz(yi)
(% dry mass) kgkg™! kg.m 3 m?.m~3 kgkg™! m?.m~3 kg.m ™3

100% peat 0.574 330 0.90 0.298 0.924 205

80% peat + 20% sand 0.459 410 0.88 0.237 0.918 213

60% peat + 40% sand 0.345 510 0.87 0.176 0.859 214

40% peat + 60% sand 0.230 680 0.84 0.116 0.763 218

20% peat + 80% sand 0.116 1050 0.75 0.057 0.594 243

5% peat + 95% sand 0.030 1570 0.55 0.014 0.230 260

100% sand 0.001 1860 0.38 0.000 0.0 —

(@) Inversion of Equation (28), (*) Equation (22) with pp, . fixed to 205 kg.m ™3, (¢) Equation (23) with py,, . fixed to 1860 kg.m—3

The dataset from Willaredt and Nehls (2021) consists of laboratory-prepared binary mixtures of compost and crushed brick,
representative of Technosols used in urban green infrastructure such as green roofs or roadside plantings. Compost serves as
the organic component and crushed brick as the mineral one, reflecting typical materials used in engineered soils for urban
applications. The crushed brick material was classified as a loamy sand, but with a non-negligible organic matter content
(2.4%). For each mixture, both the dry bulk density and the particle density were reported, allowing total soil porosity to be
derived. Organic matter content was estimated by loss on ignition (LOI), and values are summarized in Table 3. Compared to
the peat-sand mixtures of Walczak et al. (2002), which represent highly organic substances, the compost-brick mixtures from
Willaredt and Nehls (2021) span a lower range of organic matter contents (from 2% to 27%) and result in bulk densities
ranging from 640 to 1350 kg.m~3. This dataset therefore provides a complementary case study for assessing the formulation

of organic volumetric fractions and the applicability of arithmetic mixing for porosity in more mineral-dominated substances.
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Table 3. Observed and estimated properties of compost-brick binary mixtures from Willaredt and Nehls (2021). Observations include the
organic matter mass fraction (fim,,,,), dry bulk density (ps), and particle density (ps), total porosity (wsq+). Estimations include organic
carbon mass fraction (fm.,. ), organic bulk density (ps,,,, ), and the organic volume fraction ( f.,,, ), calculated using the equations referenced

below.

Observations Estimations

Composition of samples Frmom Pb Ds Wsat 7(,? O)c pl()l;)m éjfn
(% dry mass) kgkg™! kgm™3 kgm™3 m3>m~3 kgkg™! kgm™3 m?.m~3

100% compost 0.268 640 2060 0.689 0.136 248 0.691

67% compost + 33% bricks 0.151 830 2032 0.642 0.075 234 0.505

47% compost + 53% bricks 0.100 1000 2410 0.585 0.049 246 0.403

37% compost + 63% bricks 0.079 1080 2460 0.561 0.038 248 0.344

27% compost + 73% bricks 0.061 1160 2500 0.536 0.029 252 0.285

18% compost + 82% bricks 0.043 1240 2560 0.516 0.020 246 0.215

100% bricks 0.024 1350 2630 0.487 0.011 248 0.131

(@) Inversion of Equation (28), (?) Equation (23) with py, . fixed to 1515 kg.m ™3, (¢) Equation (22) with ps,, fixed to 248 kg.m~3. See section S3 in the

Supplement for the derivation of these fixed values for the pure mineral and organic domains.

Finally, the dataset from Arkhangelskaya and Telyatnikova (2023) was developed to investigate how thermal diffusivity
varies with moisture content across a wide range of organic matter contents in peat-sand mixtures. The study used laboratory-
prepared combinations of lowland peat and sieved quarry sand, both previously employed in the construction of Technosols.
Eight mixtures were prepared with peat mass fractions ranging from 1% to 80%. Particular attention was given to low peat
contents (1%, 3%, and 10%) to capture the non-linear sensitivity of thermal properties at modest SOC levels. Each sample was
packed into metal cylinders, and bulk density was determined gravimetrically. Thermal diffusivity was measured repeatedly
under varying moisture conditions, from full saturation to air-dry, using an unsteady-state method and a thermostated water
bath. This dataset complements those of Walczak et al. (2002) and Willaredt and Nehls (2021) by extending the analysis
to soil thermal behavior with a broad spectrum of SOC contents, with particular resolution in the low-to-intermediate range
typical of mineral-organic transitional soils. For our purposes, the key information provided by this dataset is the air-dry
thermal diffusivity, ovgry (m?.s~1), from which the air-dry thermal conductivity, Agry (W.m~L.K™1), can be estimated using

the relationship:
)\d'ry = Qqry Csv (47)

Assuming C, (J m 3K~ can be independently estimated from Equation (45) and the mixture composition (Table 4), this
formulation allows us to test whether an arithmetic, geometric or another mixing rule more accurately represents the dry

thermal conductivity of mineral-organic soils. The dataset thus provides a valuable benchmark for evaluating mixing models
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under dry conditions. Note that the air-dry thermal diffusivity values reported in Table (4) are extracted from their graphs using

the open-access WebPlotDigitizer software (Rohatgi, 2020).

Table 4. Observed and estimated properties of the peat-sand binary mixtures from Arkhangelskaya and Telyatnikova (2023). The table
includes measured organic carbon fractions (fy,,. ), dry bulk density (p), and air-dry thermal diffusivity (cary), along with derived values:
estimated organic matter mass and volume fractions (fm.,,,, fvom ), bulk density of the organic phase (ps,,,), volumetric heat capacity of
the dry matrix (Cs, ), and dry thermal conductivity (Agr,). Estimations are based on referenced equations, using fixed assumptions for pure

component densities.

Observations Estimations
Composition of samples |  fo,.. Db Qdry () 1o Pz()? ct? /\E;)y
(% dry mass) kgkg™! kgm™3 107" m2s7! kgkg™! m?.m~3 kg.m_3 10 Tm2K! WmlK!
100% peat 0.385 310 0.996 0.734 0.949 240 499 0.050
80% peat + 20% sand 0.308 370 0.936 0.592 0.913 241 525 0.049
60% peat + 40% sand 0.232 460 0.752 0.450 0.864 245 562 0.042
40% peat + 60% sand 0.155 460 1.235 0.305 0.585 174 766 0.095
20% peat + 80% sand 0.079 870 1.400 0.159 0.577 251 772 0.108
10% peat + 90% sand 0.040 930 1.577 0.082 0.320 161 960 0.151
5% peat + 95% sand 0.021 1130 1.976 0.044 0.208 148 1042 0.206
3% peat + 97% sand 0.013 1340 2.159 0.028 0.155 186 1080 0.233
1% peat + 99% sand 0.006 1400 4.897 0.013 0.077 121 1138 0.557
100% sand 0.002 1630 5.371 0.0045 0.00 — 1172 0.630

(@) Equation (28), (*) Equation (22) with p,__ fixed to 240 kg.m—3, (¢) Equation (23) with p;__ fixed to 1630 kg.m~3, (4) Equation (41), (¢) Equation

“47)

om ms

3.2 Natural soils data Collection

After evaluating the internal consistency of the soil mixture theory using controlled binary mixture experiments, we turn to
natural soil datasets based on in situ or laboratory measurements to assess the performance of the proposed framework under
realistic conditions. To this end, we use four independent datasets spanning a wide range of soil textures, organic matter
contents, and climatic contexts (Figure 2): (1) Keller and Hékansson (2010), which provides soil observations across Nordic
agricultural ; (2) Arkhangel’skaya (2009), based on field observations of thermal and structural properties in Russian soils;
(3) Kristensen et al. (2019), which compiles harmonized European in situ measurements of bulk density, porosity, and organic
carbon across multiple land uses and depths; and (4) Gupta et al. (2021), who assembled SoilKsatDB, a global database of
saturated hydraulic conductivity with associated data on soil texture, bulk density, water retention, and organic carbon across

diverse climates and land uses.
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Figure 2. Overview of the four in situ datasets used to evaluate the proposed framework. Ternary diagrams show the distribution of soil
texture (clay, silt, sand) for the selected horizons in: (top left) Keller and Hakansson (2010), (top right) Arkhangel’skaya (2009), (bottom left)
Kristensen et al. (2019), and (bottom right) Gupta et al. (2021). Points are colored by soil organic matter (SOM) content, and the number
of observations retained in each dataset (n,5) is indicated. The bottom panels display the probability density functions (PDF in %) of bulk
density (py) and SOM mass fraction (fy,,,,,,) across the four datasets, highlighting their diversity in terms of organic matter content and soil

density.
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The dataset from Keller and Hakansson (2010) consists of in situ measurements of reference bulk density (p,.y), particle
density, particle-size distribution (clay, silt, and sand fractions), and SOM content for 171 experimental sites across Sweden,
with additional data from Poland and Finland. For this study, we retained the subset of 123 samples for which complete
measurements of texture, organic matter, particle density, and bulk density were available. Figure 2 (top left) shows that these
samples span a relatively balanced range of textures, with a prevalence of loams, sandy loams, and silty loams, and SOM content
ranging from less than 1% to over 12%, as indicated by the color scale. The probability density functions (PDFs in bottom
panels) show that this dataset has bulk densities primarily between 1.0 and 1.5 g.cm ™3, and SOM contents generally above
1%, with a significant portion ranging from 2 to 8%. While textures are consistent with cultivated mineral soils (Figure 2), the
relatively low bulk densities and elevated SOM levels likely reflect the cold and humid climatic conditions prevailing in northern
Europe, which limit organic matter mineralization and promote its accumulation even under agricultural use. Following the
authors’ recommendation, we computed bulk density as p, = 0.83 p,.y and used it together with the measured particle density
to estimate porosity via Equation (10b). Indeed, p,.s defined by Keller and Hakansson (2010) is not a conventional soil
bulk density but the value obtained from uniaxial compression at 200 kPa. Following their recommendations (Eq. 17 in their
manuscript), we consistently used the so-called normal bulk density (p,, = 0.83 p,.s), which corresponds to our definition of

soil bulk density.

The dataset from Arkhangel’skaya (2009) consists of measurements from 33 soil horizons sampled in the Vladimir Opolie
region of Russia. For each horizon, bulk density, particle density, SOC content, and detailed particle-size distributions were
reported and are available in raw form. SOM mass fraction was derived from SOC using Equation (28), and porosity was
computed from measured bulk and particle densities using Equation (10b). As shown in Figure 2 (top right), the textural
diversity in this dataset is more limited, with most points falling within the sandy loam to clay loam region. It thus complements
the Keller dataset by covering a different part of the texture triangle. The SOM content ranges from 0.9% to 9.5%, and bulk
density spans from 1.0 to 1.6 g.cm 3. The PDFs (bottom panels) show a balanced spread, with bulk densities mostly below 1.5
g.cm ™3 and a substantial number of horizons exceeding 2% SOM. This dataset thus provides a complementary set of structured
mineral to moderately organic soils under cold-temperate continental conditions, bridging the gap between the more SOM-rich

dataset from Keller and Hakansson (2010) and the following more mineral-dominated datasets used in this study.

Indeed, the third dataset is based on the harmonised European soil profile database compiled by Kristensen et al. (2019),
commonly referred to as SPADE14. It includes over 4500 soil horizon records across Europe, linked to the Soil Geographical
Database of Europe. For our analysis, we retained the 4170 horizons with complete records of depth, bulk density, soil texture,
and SOM content. Figure 2 (bottom left) shows that this dataset spans a broad range of soil textures, from sand-dominated
to fine-textured clay soils, with SOM content varying from near-zero to over 60%. The PDFs (bottom panels) show that
bulk density is broadly distributed, with roughly equal representation of low-density (< 1.5 g.cm™2) and high-density (> 1.5
g.cm™2) soils. In contrast, SOM content is predominantly below 2%, although a notable number of horizons exceed this
threshold, including a few highly organic profiles (up to 66%). This dataset is therefore representative of mineral-dominated

soils, while still encompassing a range of organic matter contents, particularly in northern Europe, making it well suited to
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test the general applicability of our framework across both low- and high-SOM conditions. From this dataset, we also used
estimated volumetric water contents at four standard matric potentials (-1, -10, -100, and -1500 kPa), allowing assessment of
our framework’s predictions not only for porosity and SOM volumetric fraction but also for water retention behavior. These
volumetric water contents were not measured directly but estimated using linear regression models based on bulk density,

particle-size distribution, and organic matter content, calibrated on a subset of national observations.

Finally, the fourth dataset, compiled by Gupta et al. (2021), is derived from version 3 of the SoilKsatDB database (Gupta
et al., 2020), and specifically from the "sol_hydro.pnts" file, which contains a global compilation of over 150,000 laboratory
and field measurements of soil hydraulic properties collected from all continents. These data include saturated hydraulic con-
ductivity as well as water retention values at standard matric potentials (-6, -10, -33, and -1500 kPa), along with a range of
supporting soil physical properties. For this study, we retained the subset of approximately 68,000 samples for which bulk
density, texture, and organic carbon content were available, making it highly suitable for evaluating the framework’s ability
to predict both water retention parameters and Ksat under a wide range of environmental and methodological conditions. As
shown in Figure 2 (bottom right), the dataset spans the entire soil texture triangle, with substantial representation across all
textural classes. The PDF of bulk density shows a pronounced peak around 1.6 g.cm~3 and a consequent number of larger
values, indicating that soils in this dataset are generally denser than in the other collections. The SOM content distribution is
quasi similar in shape to that of the Kristensen dataset, although with slightly lower organic matter contents on average. This
combination makes the dataset highly complementary to the others, particularly for assessing the generality of the proposed
framework under mineral-dominated conditions worldwide, while still capturing a non-negligible gradient in organic matter

content.

4 Results

The evaluation of the proposed framework (Table 1) is structured in two main stages. First, we assess its internal consistency
using experimental datasets of binary soil mixtures. Second, we test the framework’s predictive performance on in situ soil
data from diverse field conditions, focusing in particular on porosity, water retention properties as described by the Brooks and
Corey (1964) model, and saturated hydraulic conductivity. The proposed framework outputs are compared against the PTF of
Cosby et al. (1984) for mineral soils, and the SOC-based parameterization of Lawrence and Slater (2008) representative of
current LSM implementations. These comparisons are used to benchmark the added value of our process-based formulation

across a wide range of soil textures and organic matter contents.
4.1 Evaluation Using Binary Mixture Datasets

The first stage of validation focuses on the three experimental binary mixture datasets previously described, composed of con-
trolled combinations of organic and mineral materials (Walczak et al., 2002; Willaredt and Nehls, 2021; Arkhangelskaya and
Telyatnikova, 2023). These mixtures emulate soils with varying SOM contents and allow us to assess several core components

of our framework. Specifically, we use them to evaluate: (i) the theoretical formulation of the volumetric organic matter frac-
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tion (Equation 22); (ii) the soil mixture theory introduced in Section 2.2.2, which leads to the arithmetic mixing of porosity as

formalized in Equation (18); and (iii) the performance of different mixing rules for estimating dry thermal conductivity.

Figure 3a (left) shows the estimation of the volumetric organic matter fraction f,  as a function of the organic matter
mass fraction f,, = using the binary mixture data from Walczak et al. (2002). The round markers represent the values of f,,
derived by applying Equation (22) to each sample, using the observed bulk density and fixing the organic matter bulk density
(py,. ) to 205 kg.m~3. This fixed value corresponds to the pure peat sample in the dataset (100 % peat), and is consistent

with the bulk density computed from Equation (23) assuming a mineral bulk density (pp,.) of 1860 kg.m™3 (given by the

pure sand sample). This approach assumes that the bulk density of the organic material remains constant across the mixture
series. In other words, it considers that the peat component used by Walczak et al. (2002) retains a consistent internal structure
regardless of its proportion in the mix. We then compare these data-derived estimates with the predictions of f,,,  from our
framework (Equations 22 to 25) and from earlier parameterizations. Our theoretical relationship closely follows the derived
values, supporting the internal consistency of the proposed formulation. In contrast, previous approaches (Lawrence and Slater,
2008; Chen et al., 2012) show larger discrepancies, especially at higher SOM contents. The formulation of Decharme et al.
(2016) is not shown here, as it depends on a depth-varying peat porosity prescribed from an idealized vertical profile, which

is not applicable to binary mixture data. Assuming a typical value of 0.9 for the peat porosity, their formulation becomes

equivalent to that of Lawrence and Slater (2008), which is thus more generally applicable in this context.

Previous approaches estimate the SOM volumetric fraction from SOC using a fixed bulk density, typically 130 kg.m—3.

This value does not reflect the wide variability in SOM compaction and structure. Additionally, using SOC rather than total
SOM introduces another approximation, as SOC typically represents only about half of SOM. These two simplifications,
namely relying on SOC and assuming a low fixed SOM bulk density, introduce opposing biases that tend to partially offset
one another. In practice, combining a SOC-to-SOM factor close to 2 (equation 28) with a fixed bulk density of organic carbon
of 130 kg m—? fixed in previous approaches is equivalent to a bulk density of organic matter of 260 kg m~3, which can be
directly compared to the values of 205, 248, and 240 kg m~? obtained for the three laboratory datasets using the present
framework. As a result, the predicted f,, , may appear reasonable in some cases, but this is due to compensating errors rather
than a physically sound model. Here, this method tends to systematically underestimate the volumetric contribution of organic
matter, especially in SOM-rich samples. As shown on Figure 3a, the discrepancy between these predictions and the data-derived
estimates increases with rising SOM content. By contrast, our framework directly links SOM mass content and bulk density
through a consistent formulation, incorporating an empirically derived organic matter bulk density pp,,, that remains close to
the observed value of 205 kg.m~3 (see Table 2). This approach better captures the structural properties of SOM and aligns

more closely with the observed values across the full mixture range.

These results are further supported by Figure 3a (right), which compares the observed wsq; of the binary mixtures with
predictions from various approaches as a function of f,,,, . In our framework, soil mixing theory directly leads to an arithmetic

mixing rule for porosity (Equation 18), where w,,; is computed as a volumetric-weighted average of wyq¢, . and wgqe,,,, based

ms om?

on their respective contributions. To apply this equation, we estimated these pure component porosity by using the measured
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Figure 3. Evaluation of the proposed framework against experimental binary mixture datasets. Each panel compares observed or estimated
values (open circles) with predictions from this study (red), and approaches of Lawrence and Slater (2008) (blue) and Chen et al. (2012)
(green). Panels (a) and (b) show the volumetric organic matter fraction (f,,,,) and porosity (wsq+) as functions of the organic matter mass
fraction (fy,,,), based on data from Walczak et al. (2002) and Willaredt and Nehls (2021), respectively. Panel (c) shows results based
on the dataset from Arkhangelskaya and Telyatnikova (2023), comparing the volumetric organic matter fraction f ,, (left) and the dry
thermal conductivity kg, (right). For kg, various mixing rules are compared to same estimates (open circles) in the inset: arithmetic
(dash-dotted line), geometric (solid line), harmonic (dashed line), and geo-harmonic mean (dotted line), each computed using the f,,,,
values estimated directly from the data (open circles in the right panel). In the main right panel, the tested parameterizations are shown
with their corresponding averaging schemes, using the same line styles as in the inset: Lawrence and Slater (2008) (blue) and Chen et al.
(2012) (green) rely on arithmetic means (dash-dotted), while the presented framework (red) relies on either a geometric mean (solid) or a

geo-harmonic mean (dotted).
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properties of 100% sand and the 100% peat samples in the dataset of Walczak et al. (2002). We first derived the particle
density of the mineral phase (ps,,,) from the pure sand sample using Equation (11). Following the same principle, we then
estimated the particle density of the organic matter phase (ps,,, ) from the pure peat sample, using inversion of Equation (15a).
Given the previously calculated bulk density of the organic component (205 kg.m~2), and using Equation (11), which defines
porosity as the complement of the bulk-to-particle density ratio, we obtained a reconstructed wsq¢, . of 0.94 m®.m~3. This
value was then used as a fixed reference in our arithmetic mixing rule to predict w,; of all intermediate mixtures. As shown
in the figure, older approaches systematically underestimate wgq;, particularly in SOM-rich mixtures. This bias is primarily
due to their underestimated f,_ _ and the simplistic assumptions about the structure and density of organic matter. In contrast,
our framework provides predictions that better match the observed ws,; across the full composition range, reinforcing both
the validity of the volumetric fraction formulation and the soil mixture theory. While some discrepancies remain, the overall

agreement confirms that our approach is able to more accurately represent the bulk structural properties of mixed soils.

We now turn to the dataset from Willaredt and Nehls (2021), which provides a complementary case to the Walczak mixtures
by focusing on substances with lower SOM content (Table 3). These mixtures allow us to test the robustness of the soil
mixture theory under more mineral-dominated conditions (Figure 3b). To determine the pure component properties (organic
and mineral) from the Willaredt and Nehls (2021) dataset, we used the two most compositionally distinct samples: the one with
the highest organic matter content (100% compost) and the one with the lowest (100% crushed brick). These two endmembers
form the basis of a two-equation system with two unknowns, derived from the porosity relationship (Equation (10b)) and the
general mixing formulation (Equation (15a)). We first solved this system to estimate the properties of the mineral component,
assuming the crushed brick sample represents the pure mineral phase. Using the measured bulk and particle densities of the two
selected samples, we derived a p,, . of 1515 kg.m~3 and a p, . of 2715 kg.m~? for the mineral phase, yielding a wsq,,. of
0.44 m®>.m~3. We then used the inverse of the mixing formulation (Equation (15a)) to infer the organic component properties
from the pure compost sample. This yielded a py,,, of 248 kg.m ™3 and a p,, of 1230 kg.m~3, corresponding t0 a Wy, of
0.80 m3.m~3. These reconstructed pure component properties lie within the typical ranges reported for mineral and organic
soils (Boelter, 1966; Clapp and Hornberger, 1978; Cosby et al., 1984; Letts et al., 2000; Rithlmann et al., 2006; Hossain et al.,
2015; Liu and Lennartz, 2019; Ruehlmann, 2020; Ruehlmann and Korschens, 2020; Robinson et al., 2022). These values
served as fixed references to estimate f,, . using Equation 22, and were subsequently used in the arithmetic mixing rule
(Equation 18) to predict wgq; of each mixture in the Willaredt dataset. In both cases, our framework predictions align well
with the observations across the full range of mixtures, confirming its robustness even in soils where SOM is less dominant. In
contrast, previous approaches (Lawrence and Slater, 2008; Chen et al., 2012) systematically slightly underestimate both f,,_
and porosity. As discussed earlier, the relatively low discrepancy observed for previous approaches stems from compensating
biases in their assumptions, i.e. the use of SOC instead of SOM and the application of fixed, underestimated SOM bulk density

values.

We finally turn to the dataset of Arkhangelskaya and Telyatnikova (2023), which offers a well-balanced set of samples

across a wide SOM gradient, including both mineral-dominated and organic-rich compositions. This dataset offers a valuable
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opportunity to evaluate the thermal component of our framework, especially under contrasting SOM conditions. The left panel
of Figure 3c compares the estimate of f,,  with the predictions from our framework and previous approaches. To estimate and
predict f, ., the SOM content was converted from SOC using Equation (28). We then derived the pure component densities

of 1630 kg.m™3. p;,.  was

om

from Table (4): the mineral component was taken from the 100% sand sample, providing a pp,__
reconstructed from the peat-rich sample using Equation (23), resulting in a value of 240 kg.m 3. As in the other binary mixture
datasets, our predictions align relatively well with the empirical estimates across the full range of SOM content. In contrast,
older formulations tend to underestimate f, , particularly in samples with higher organic content. However, the data point
corresponding to the "40% peat + 60% sand" sample (f,,_ . = 0.155 in Table 4) stands out as showing a substantial deviation
between our framework prediction and estimate. While the estimate of f,_ gives a value near 0.5, our prediction approach
0.8, producing an apparent overestimation. This discrepancy can be traced to the reported bulk density of this sample, which is
460 kg.m~3, and suspiciously identical to that of a sample with higher SOC content (f,,,. = 0.232). Given the lower organic
content, a higher bulk density would be expected for this sample. Using Equation (22) and assuming p;_, = = 240 kg.m~3 and
fm.,, = 0.305, we estimate that a more physically consistent bulk density for this sample would be around 600 kg.m~3. This
value falls well within the observed range for the dataset (460-870 kg.m~2) and suggests that the deviation is likely due to
an experimental underestimation of bulk density. This misestimation propagates into the f,  estimate, artificially inflating
its value and explaining the bias observed in the figure. Interestingly, the approach of Lawrence and Slater (2008) does not
show this deviation, though for fundamentally different reasons. Their method estimates f,, from f,, . using a fixed carbon-
to-organic matter conversion factor and a constant low SOM bulk density (typically 130 kg.m~3), without relying on the
observed bulk density of the soil. As a result, it is not affected by potential measurement errors in p,. However, once again,
the apparent agreement with observations is likely due to a compensation of biases: the use of SOC instead of total SOM
tends to underestimate organic content, while assuming a low fixed SOM bulk density tends to overestimate the associated
volume. These two opposing errors can partially cancel each other, producing seemingly reasonable values. While this makes
the method somewhat robust to data uncertainties in some cases, it comes at the cost of physical realism. In contrast, our
framework uses observed bulk density to reconstruct f,,, , providing a more mechanistic and composition-specific estimate.

However, this method is inherently more sensitive to measurement uncertainties.

This dataset from Arkhangelskaya and Telyatnikova (2023) also provides direct measurements of dry thermal diffusivity,
from which dry thermal conductivity (Ag,,) can be inferred. We reconstructed A4, for each binary mixture by applying
Equation (47), using air-dry diffusivity values and estimating the volumetric heat capacity (Cs,) with Equation (41). The latter
was computed based on the predicted or estimated f,,  and the specific heat capacities (c,y, and ¢,,s) and bulk densities of
the organic and mineral components, as detailed in Section 2.2.8. From this, we derived Ag,, values of approximately 0.63
W.m~!.K~! for the mineral phase and 0.05 W.m~!.K~! for the organic matter component. Notably, the latter value matches
the organic )4, commonly used in LSMs following Farouki (1981). Using these pure component values, we evaluated several
mixing rules to model Ag;, across the full SOM gradient. Specifically, we tested arithmetic mixing (equation 4) as in Lawrence
and Slater (2008)), geometric mixing (equation 5) as in Decharme et al. (2016), harmonic mixing (equation 6), and the hybrid

geo-harmonic mixing (equation 7).
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The right panel of Figure 3c presents the relationship between kg, and fy,, .. The circular markers represent the estimated
values of kg, for each binary mixture. These estimates were obtained by combining observed dry thermal diffusivity with
calculated volumetric heat capacity as described above. In the inset, the same estimated kg, are plotted (white markers), but
here compared against predicted kg, values obtained by applying different mixing rules. These predictions are computed
using the estimated f, . values from the left panel and the reconstructed pure component dry thermal conductivities. This
comparison enables a direct assessment of which average formulation best captures the effective thermal conductivity behavior
across the SOM gradient. Among the different mixing rules, only the non-linear formulations are able to capture the observed
decline in kg, with increasing SOM content, in line with the hypothesis of Decharme et al. (2016). While the geometric
mean tends to slightly overestimate and the harmonic mean to slightly underestimate k4, the geo-harmonic mean offers
an interesting compromise between the two, providing a balanced representation across the full SOM gradient. The figure
also shows the kg, predicted using our framework (red curves), combined with either a geometric (solid) or geo-harmonic
(dotted) mixing rule. Both approaches capture the overall trend of the observations. However, the geo-harmonic formulation
provides a closer match to the data and further supports the validity of our framework, not only for predicting k4, but also
for estimating the underlying volumetric heat capacity. Logically, earlier parameterizations, which rely on simple arithmetic

mixing (Lawrence and Slater, 2008; Chen et al., 2012), substantially overestimate k4, particularly at higher SOM contents.
4.2 Porosity of natural soils

We now assess the ability of the proposed framework to reproduce ws,; of natural soils across a wide range of conditions. Once
again, the accurate simulation of wg,; directly validates the soil mixture theory introduced in Section 2.2.2. In our approach,
and wsqy

Wsqt 1S computed as a volumetric weighted average (Equation 18) between wgq¢ based on the predicted f,,,,, .

ms om?

The accuracy of this prediction depends not only on the quality of the pure component porosity estimates, but also on the
internal consistency of the volumetric formulation across observed gradients in SOM and bulk density. f,,, is derived from
the observed p;, the organic matter mass fraction f,,, , either observed directly or converted from f,,,,, via Equation (28), and
a reconstructed pp,,, . This reconstructed value is obtained through Equations (23) to (25), using p,,,, predicted by Ruehlmann
(2020) and wsqt,, ., estimated from the Cosby-SC PTF (i.e. sand and clay only) given in Table 5 of Cosby et al. (1984). We adopt
this Cosby-SC PTF because it has been identified as the most reliable PTF for simulating soil water balance with the Brooks
and Corey (1964) model (e.g., Weihermiiller et al., 2021). Finally, wsqt,,, 1S estimated using the PTF of Liu and Lennartz
(2019), which relates py,
Hékansson, 2010; Arkhangel’skaya, 2009; Kristensen et al., 2019), each providing in situ measurements of pp, fm,, Of fimn,..>

t0 Wsqt,,, (Equation 30). To evaluate this framework, we use three independent datasets (Keller and

om

and soil texture (fi,,» fmoana @0d frn,,,,) across a broad range of soil types and land uses.

As shown in Figure 4, we compare the performance of our framework against two commonly used parameterizations, applied
separately to each dataset. First, the mineral soil Cosby-SC PTF of Cosby et al. (1984) serves as a benchmark representative
of LSMs that do not account for organic matter. Second, we include the parameterization of Lawrence and Slater (2008) using

fm,. content (either directly observed or estimated from f,, by inverting Equation 28) and assuming fixed p;,,, of 130

om
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Figure 4. Comparison of observed and predicted soil porosity across three in situ datasets: (a) Keller and Héakansson (2010), (b)
Arkhangel’skaya (2009), and (c) Kristensen et al. (2019). Each row corresponds to a different prediction method: the first row uses the
mineral-soil PTF of Cosby et al. (1984), which ignores the presence of organic matter; the second row applies the method of Lawrence and
Slater (2008), which includes SOM effects using a simplified approach; and the third row shows results from the process-based framework
developed in this study. The 1:1 line is shown in black, and the blue line represents the linear regression between predicted and observed

values where its slope and intercept provide an additional measure of agreement. Finally, skill scores are given for each panel.

kg.m_3 and wsge,,, of 0.9 m3.m~3. As in our framework, Wsat,,, for the parameterization of Lawrence and Slater (2008)
is given by the Cosby-SC PTF. The comparisons reveal systematic differences between the three approaches. The Cosby-SC

PTF, which does not account for organic matter, consistently underestimates w4 in soils with moderate to high SOM content.
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The parameterization of Lawrence and Slater (2008), although it includes organic soil properties, shows slightly improved
skill scores and linear regression slopes compared to the purely mineral-based Cosby PTF. This suggests a partial correction
effect due to the inclusion of organic properties. However, it still fails to accurately capture wg,; across the full SOM gradient.
In particular, it systematically overestimates porosity in organic-rich soils. This overestimation partly stems from its fixed

assumptions of a low pp . and a constant wsqt which do not reflect the variability estimated in natural soil structures

(Figure 5). In contrast, the proposed framework shows improved agreement across all datasets. By explicitly accounting for
the variability in SOM content and structure, it captures both the lower porosities of mineral soils and the higher porosities
of organic-rich soils with greater realism. Because porosity estimates are constrained by bulk density in the mixture-theory
formulation, this agreement also reflects the consistency of the inferred p,,,, and ps ., which fall within reported ranges
as shown by Figure 4 and Figure S3. This consistent performance highlights the robustness of the underlying soil mixture

theory and its adaptability across a wide range of soil conditions, requiring only observed f,, or f,  content as well as

measurements of p, and soil texture as inputs.

While the overall agreement between our framework and the observed porosities is strong, a closer examination of Figure 4
(lowest line) reveals a tendency to overestimate w,; for samples with observed low porosity value (< 0.4 m®.m~3) generally
associated with low SOM content. This deviation is not due to the soil mixture theory itself, but rather to the porosity of the
mineral reference phase, which is derived from the Cosby-SC PTF. This texture-based model rarely predicts wsqe,,, below
0.4 m®.m~3, even in dense mineral soils. The same pattern is visible in the Arkhangelskaya dataset. To isolate this effect, we
recalculated model performance metrics by retaining only the samples with f,,, = > 4% or with f,, . > 2% (see Figure S2
in the Supplement). In this subset, the 72 of our framework increases significantly from 0.73 to 0.90 in the Kristensen dataset
and from 0.93 to 0.95 in the Arkhangelskaya dataset. In contrast, the performance of the Lawrence and Slater (2008) approach
deteriorates sharply, with r2 dropping from 0.17 to 0.02 in the Kristensen dataset. This highlights the limited realism of older
SOC-based parameterizations when applied to organic-rich soils. As expected, the scores for the Cosby PTF remain largely
unchanged, since this method is independent of organic matter content. These results confirm the validity of our process-based
framework. They also indicate that the residual biases in porosity predictions are primarily attributable to uncertainties in

mineral property estimations rather than limitations in the soil mixture formulation itself.

Figures 5a and 5b compare the predicted f,, , as a function of SOM content across the three in situ datasets. In Panel (a), the
parameterization of Lawrence and Slater (2008) is shown. The overall trend of increasing f,,_ with SOM content is expected,
but the relationship is highly non-linear and remarkably narrow: at any given SOM content, nearly all points collapse onto the
same predicted value. This reflects the fact that structural variability is not accounted for in this approach. Moreover, for SOM
contents above 20%, most f,  predictions saturate near I m®.m~3, which appears excessive. Finally, the distribution of colors
associated with p;, shows no clear organization, highlighting that this variable has no explicit influence on the prediction. As
a result, the approach can yield physically inconsistent outcomes: for instance, some very low-density soils (in yellow) with
high SOM content (> 10%) are assigned unrealistically low f,, values (< 0.2 m.m~3), while denser soils with lower SOM

contents may be assigned disproportionately high f,_ _ values.
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Figure 5. Diagnostic analysis of the soil mixture theory framework behavior, based on the three in situ datasets used in Figure 4. Panels (a)
and (b) show the volumetric organic matter fraction (f,,,,) as a function of SOM content for the parameterization of Lawrence and Slater
(2008) and for the current study, respectively. Points are colored by observed bulk density (ps). Panel (c) compares the reconstructed organic
bulk density (ps,,,) from our framework with p,, with point color indicating SOM content. The dashed black line represents the 1:1 line.
Panel (d) shows the PDF (in %) of py,,, (main plot) and of the associated organic porosity wsat,,, (inset), both estimated across all data

points using Equations (23) and (30).

By contrast, our framework (Figure 5b) accounts explicitly for both p, and py,,, in the derivation of f,,__ . This allows to
incorporate structural information about the soil, which older approaches do not. As a result, the relationship appears more

dispersed but also more physically meaningful. As expected, low-density soils correspond to higher f,, ., while denser soils
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show lower values. For a given SOM content, f,,  varies depending on the soil’s bulk density: lighter soils (shown in light
yellow) have higher f, . than compact soils (dark brown), which is consistent with the idea that a looser structure allows
organic matter to occupy a larger volume. Unlike the Lawrence and Slater (2008) approach, which quickly saturates toward
fv,,, =1 for SOM-rich soils, the proposed method shows a smoother and more gradual transition. In particular, when SOM
content exceeds 10%, the previous method systematically predicts larger values of f,_ than the proposed approach. This also
explains why the Lawrence and Slater (2008) formulation systematically overestimates porosity in organic-rich soils (Figure 4).
More generally, our framework captures the structural heterogeneity of the fine-earth fraction by accounting for both the actual
bulk density of the soil and the reconstructed apparent density of SOM. This allows for the representation of a wider diversity

of soil profiles, particularly when two soils have the same SOM content but differ in bulk density.

Indeed, Figure 5c shows the estimated p,_ . as a function of total soil bulk density p;, with SOM content indicated by color.

om

Denser soils tend to be associated with more compact organic components. This is consistent with our formulation, where

Pb,,, 1s computed from mineral structure and SOM content (via Equations 23 to 25). For a given py__, soils with higher SOM

content (warmer colors) usually show lower p;. This reflects the more porous structure of organic-rich soils. As SOM increases,
Pb,,, and pp get closer. This is expected, since in organic-dominated soils, the total bulk density becomes close to that of the
across all in situ datasets. The distribution of py,_,

organic phase. Figure 5d shows the PDF of the estimated p, = and wgq

om om

is centered between 210 and 250 kg.m™3, with main values ranging from about 10 to 400 kg.m~3. This is consistent with
previous observations from organic-rich horizons and peat soils (Adams, 1973; Boelter, 1966; Letts et al., 2000; Ruehlmann
and Korschens, 2009; Liu and Lennartz, 2019). In comparison, a considerable number of LSMs adopt a fixed py,,,, value of
130 kg.m—3. While this value is physically plausible, it falls toward the lower bound of our estimated values. The distribution
of Wsqt,,, spans mainly from 0.8 to 0.95 m3.m~3, in good agreement with empirical ranges reported for organic horizons in
natural and managed soils (Liu and Lennartz, 2019). Together, these results support the internal consistency of the framework
in deriving physically realistic properties for the organic soil component. A complementary quality check can be provided by
the inferred particle density of organic matter (ps_, ), obtained from p;, and wsqe,,, (Equation 11). The distribution shown in
Figure S3 (mean 1380 kg m—3, and median 1490 kg m~2) is centered within the typical range of 1100-1500 kg m~3 reported by
RiihImann et al. (2006) and Ruehlmann (2020) or 900-1550 kg m 3 reported by Redding and Devito (2006), further supporting

the physical consistency of the framework.
4.3 Water retention of natural soils

We now evaluate the ability of the framework to reproduce water retention properties across a wide range of soil types using
the Brooks and Corey (1964) model. In addition to validating ws,: as done in the previous section, this also allows us to assess
the air-entry potential (¢/s,¢) and the pore-size distribution index (b). For mineral soils, both parameters are estimated using the
Cosby-SC PTF, consistent with the porosity benchmarks used earlier. For organic soils, they are predicted from py_, using the
empirical relationships introduced in Section 2.2.6. In all cases, an arithmetic mixing (Equation 4) is applied to combine the

mineral and organic components. Additional tests on the water retention curves from the binary mixture datasets of Walczak
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et al. (2002) and Willaredt and Nehls (2021) did not show any evidence that nonlinear formulations would perform better
than this linear approach. To evaluate the framework’s performance, we compare simulated water contents to in situ estimates
from two large-scale datasets of Kristensen et al. (2019) and Gupta et al. (2021). Both datasets offer independent validation

opportunities across diverse climates, textures, and SOM contents.

Figure 6 is drawn from the European soil profile database of Kristensen et al. (2019), which includes estimations of water
contents at four standard matric potentials (-1, -10, -100 and -1500 kPa) for over 4000 soil horizons. We evaluate our framework
by comparing it with the mineral soil PTF from Cosby et al. (1984) and the SOC-based parameterization of Lawrence and
Slater (2008). At low suctions (-1 kPa), our framework outperforms the others. The predicted values align more closely with
observations, as indicated by a tighter regression along the 1:1 line, higher coefficients of determination, and reduced bias.
This better performance is mainly due to improvement in simulating wg, a key determinant parameter in near-saturation
water retention. At intermediate suction (-10 and -100 kPa), the three approaches seem to converge, though our framework
maintains a robust advantage (especially the 72 score). This suggests that while the influence of porosity lessens, the model’s
performance still benefits from the organic-specific prediction of the shape parameter b and the air-entry potential 4,; in
the Brooks and Corey formulation. At high suction (-1500 kPa), the performance gap between models narrows considerably,
although our model still has a slight advantage. This is consistent with the experimental literature showing that the influence of
SOM on water retention decreases under strong suctions. In particular, several binary mixture datasets reported by Willaredt
et al. (2023) indicate that differences in water retention between mineral-organic mixtures are more pronounced at low to

moderate suctions, but tend to fade at higher tension levels (e.g. -1500 kPa).

Figure 7 presents the evaluation against the global SoilKsatDB dataset (Gupta et al., 2021), which provides in situ measure-
ments of texture, bulk density, organic carbon, depth and water retention at four matric potentials (-1, -10, -33, and -1500 kPa)
for a wide range of soils worldwide. The number of available samples increases with matric potential, from around 1,000 at
saturation to over 66,000 near the wilting point (-1500 kPa). The overall patterns are consistent with those observed for the
previous dataset (Figure 6). At low suction (-1 kPa), our framework shows superior performance compared to the two bench-
mark approaches, although absolute scores remain modest. At intermediate potentials (-10 and -33 kPa), all three approaches
tend to converge, yet our framework consistently maintains an advantage, at least, in terms of square correlation and c-rmse.
Finally, near the wilting point, the three models yield similar performance, though the overall shape of the regression fit re-
mains slightly better with our approach. These results confirm, across a broad diversity of soil types and climates, the added
value of our physically based framework. They reinforce the validity of the porosity formulation and support the assumption

of arithmetic mixing for the water retention parameters 15,; and b.
4.4 Saturated hydraulic conductivity of natural soils

We finally evaluate the ability of our approach to predict ks, using the observational dataset compiled by Gupta et al. (2021).
The SoilKsatDB contains approximately 16000 measurements of kg,:, covering a broad range of soil types, textures, and

organic carbon contents. From these, we retain a subset of more than 14000 samples for which soil texture, bulk density,
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-1500 kPa) from the Kristensen et al. (2019) dataset. Each column shows results for a different model: (a) the mineral soil PTF of Cosby
et al. (1984), (b) the SOC-based parameterization of Lawrence and Slater (2008), and (c) the framework developed in this study. Points are
colored by SOM content, the blue line represents the least-squares regression between predicted and estimated values, and dashed black

lines indicate the 1:1 line. Each panel includes the regression equation, bias, centered root mean square error (c-rmse), and coefficient of

organic carbon content, and sampling depth are available. Figure 8 compares predicted and observed kg, for the mineral
soil PTF of Cosby et al. (1984), the SOC-based approach of Lawrence and Slater (2008), and the method proposed in this

study, which explicitly accounts for the bulk density of the organic matter domain and its variation with depth. In these two
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Figure 7. As in Figure 6, but for the dataset of Gupta et al. (2021) with four matric potentials at -1, -10, -33, and -1500 kPa.

last approaches, the mineral component of ks, is computed using the formulation of Cosby et al. (1984). For the organic

component, a fixed value of 1 x 1074 m.s™!

is used in Lawrence and Slater (2008), whereas we apply Equation (36) in our
approach. The final kg,; value is then computed as an arithmetic mean in the case of Lawrence and Slater (2008), and as a

geometric mean in our formulation.

915 Figure 8a to 8c show the comparison across the full dataset. The Cosby et al. (1984) PTF exhibits a negative bias and a
weak correlation with the observations (2 = 0.15, and 0.40 on the log-transformed scale). The color distribution of the points,
which reflects SOM content, suggests that mineral soils (light colors, low SOM) tend to be overestimated, whereas soils with

higher SOM content (warmer colors) are more frequently underestimated. The SOC-based approach of Lawrence and Slater
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Figure 8. Comparison between predicted and observed ksq: using the dataset of Gupta et al. (2021). Predictions are based on (a) the mineral
soil PTF from Cosby et al. (1984), (b) the SOC-based approach of Lawrence and Slater (2008), and (c) the process-based approach proposed
in this study. Colors indicate SOM content. Each panel includes the least-squares regression (blue line), the 1:1 reference line (black dashed),
the regression equation, the c-rmse, the bias, and the 2 score calculated in linear and log-transformed space (in parentheses). Panel (d) shows
the same comparison restricted to samples with SOC content > 8%. Results are displayed in green for Cosby et al. (1984), blue for Lawrence
and Slater (2008), and red for this study.

(2008) slightly reduces the bias, but the predicted variability remains poorly correlated with observations (r? = 0.11, and 0.43
on the log-transformed scale). The color distribution shows a general overestimation of ks, in SOM-rich soils (warm colors

systematically above the 1:1 line), which may indicate that the fixed value of 1 x 104 m.s™*

is too high, or that the organic
fraction is overestimated for these conditions. Our approach yields improved agreement, with a higher 72 of 0.21 (0.46 on the
log-transformed scale), a lower c-rmse, and a better representation of the kg, distribution across the SOM gradient. Although
performance remains limited for mineral soils, due to reliance on the Cosby et al. (1984) PTF for the mineral component,

results seem to show non negligible improvements for soils with higher SOM content.
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This is further illustrated in Figure 8d, which focuses on soils with SOC content above 8% (corresponding to SOM content
greater than 16%), where organic matter strongly influences k,,;. Differences between the parameterizations are more pro-
nounced in this subset. The mineral-only approach (green) shows no correlation with observations (r2 = 0.00, 0.02 on the log
scale), and systematically underestimates k4. The SOC-based method of Lawrence and Slater (2008) (blue) has limited pre-
dictive power (2 = 0.19, 0.13 on the log scale) and overestimates low observed values. Our formulation (red) produces a slope
closer to the 1:1 line, a smaller bias, and a higher coefficient of determination (r?2 = 0.25, 0.42 on the log scale), indicating

improved consistency with the measurements.

5 Discussion

The evaluation presented in the previous section confirms the internal consistency and predictive skill of the proposed frame-
work across a wide range of soil types and conditions. We will now move on to a more general discussion of its conceptual
implications, beginning with an examination of Table 1, which summarizes the key computation steps used to derive the "true"
soil organic volumetric fraction and the associated physical properties of soil from a limited set of input data. These input data
are the SOC mass fraction, the dry bulk density of the fine earth, and the mass fractions of clay, sand, and silt. These data
are commonly available in widely used global and regional soil databases such as SoilGrids (Poggio et al., 2021) or HWSD
(FAO, 2012; FAO and ITASA, 2023). This framework can be readily implemented without requiring additional measurements,

making it compatible with the simple data infrastructure currently used by most regional and global LSMs.

In contrast to existing SOC-based parameterizations that rely on fixed reference densities, the proposed formulation derives
fv,,, from fundamental mass-volume relationships using soil mixture theory. This physically consistent approach ensures
dimensional coherence and directly links standard input variables (SOC, bulk density, texture) to key volumetric properties
such as porosity and hydraulic or thermal parameters. Its implementation is detailed step by step in Table 1. This conceptual
clarification helps prevent structural inconsistencies in LSMs by ensuring a physically grounded representation of soil organic
matter properties. However, as illustrated in Figure 3c, this physically consistent formulation also makes the estimation of
fv.,, sensitive to the quality of input data. In particular, uncertainties in SOC, bulk density, or mineral fraction can propagate
through the computation steps. One limitation of this approach lies also in the fact that key parameters, such as the SOC-to-
SOM conversion and p;,__, are not directly observed but are instead estimated using a texture-based PTF model (Ruehlmann,
2020). Although widely used in LSMs, such PTF approximations may reduce accuracy in soils with unusual mineralogical
properties. Regardless, the improvements offered by the proposed framework also hold when applied to observational data
from natural soils. As shown in Figure 4, our framework reproduces measured porosity with high accuracy, whereas SOC-
based or mineral-only formulations lead to systematic biases, especially in organic-rich soils. In addition, p_,, derived from
the soil mixture theory are consistent with values reported for peat soils, further supporting the physical realism of the proposed
approach. This consistency also reflects the ability of our framework to distinguish soils that have similar SOM content but
differ in bulk density, by explicitly accounting for structural variability (Figure 5). Such differentiation is not captured in

previous SOC-based formulations used in LSMs.
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This physical behavior of the proposed framework gives further confidence in the choice to use p;_, as the main proxy for
describing the hydrodynamic parameters of the SOM domain (second section of Table 1). While all the proposed PTFs are
based on robust observational datasets and scientifically sound protocols, they rely on measurements taken in peat materials.

The assumption that p,__ can be assimilated to the bulk density of peats governing theirs hydraulic properties is a strong, yet

physically justified choice. As a soil becomes increasingly organic, its SOM content increases, its bulk density p, decreases, and
Pb,,, tends to converge toward p. This behavior, illustrated in Figure Sc, supports the validity of this assumption, especially for
SOM-rich soils where the organic domain dominates the fine-earth fraction. The results presented in Figures 6 and 7 provide
also further support for the use of p,_ _ as the main proxy for describing SOM hydrodynamic behavior. When w¢7;, bop,, and

sat»

o are reconstructed using our framework and applied to simulate soil water retention, the resulting curves show improved
agreement with observations compared to SOC-based or mineral-only formulations. This improvement is consistent across both
SOM-poor and SOM-rich soils, indicating that the underlying assumption linking py_,. to the structural state of the organic
domain holds across a wide range of soil conditions. However, our approach is most effective at low to moderate soil water
suctions. The gains in performance are strongest in the wet to intermediate moisture range, while differences tend to diminish
near the wilting point. This behavior is consistent with several binary mixture experiments which show that differences in water
retention between mineral-organic mixtures are more evident under low to moderate tension, but tend to converge under high
suction (Willaredt et al., 2023). This perhaps reflects the dominance of mineral pore structures in controlling residual water

content, regardless of organic composition, or a shift from macropore-dominated retention to finer pore contributions, leading

to a convergence of retention behavior across soil types at high matric potentials.

While the proposed framework clearly improves the simulation of soil water retention across a broad range of SOM contents,
its performance for predicting ks, is more nuanced (Figure 8). As reported by Gupta et al. (2021), ks, is intrinsically difficult
to model with PTFs, given its high spatial variability and strong dependence on measurement conditions, soil structure, and
climatic context. In addition, many k,,; values in the SoilKsatDB lack critical metadata such as soil structure, land use, or
vegetation cover, despite their known influence on saturated conductivity. The database also includes measurements taken under
diverse and sometimes undocumented conditions, with limited information on sampling depth or saturation status. Combined
with the fact that k,,: can vary by several orders of magnitude within a single site, these limitations introduce substantial
uncertainty in model calibration and evaluation. Their work shows that even advanced machine learning approaches suffer
from limited transferability across regions and measurement protocols, with substantial drops in predictive accuracy when
moving from temperate to tropical settings or from lab to field observations. Furthermore, as emphasized by Morris et al.
(2019, 2022) for peat soils, proxies such as bulk density and depth are not sufficient to capture the entire variability of kgq:.
Accurate prediction requires accounting for additional factors like the degree of humification or even the specific composition
of the SOM that are currently beyond the scope of global or regional LSMs. This highlights an inherent limitation in current
modeling capabilities. Nonetheless, when focusing on the most SOC-rich soils in the dataset of Gupta et al. (2021), our
approach does show a modest improvement in the prediction of kg, compared to the other methods (Figure 8d). These results

confirm that explicitly incorporating py,,, and depth into k,,; predictions for organic-rich soils can provide added value. While
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our approach offers a more physical basis for modeling k., its predictive performance remains constrained by the limitations

of available data and the structural complexity of the soil.

The third section of Table 1 addresses the choice of mixing rules used to compute the bulk soil properties from the mineral
and organic components. For porosity, there is no ambiguity. The application of soil mixture theory leads directly to a volume-
weighted arithmetic mean, which is both physically justified and analytically derived. In contrast, for the Brooks and Corey
(1964) parameters b and v, there is no theoretical or empirical evidence favoring a nonlinear or more complex mixing
approach. As already mentioned in section 4.3, to investigate this, we analyzed water retention curves of each sample from
the binary mineral-organic mixture datasets of Walczak et al. (2002) and Willaredt et al. (2023). The fitted values of b and
1sq¢ for each mixture showed no consistent trend or deviation that would support an alternative to arithmetic averaging. In
the absence of a clear nonlinear relationship, the arithmetic mean remains the most computational time-efficient, parsimonious
and transparent choice for these parameters. A geometric mean formulation is adopted for kg,:. This choice is supported by
both theoretical and empirical studies. Prudic (1991) proposed the geometric mean as a realistic approximation for layered
or structured soils with high contrasts in hydraulic properties. Stepanyants and Teodorovich (2003) further demonstrated,
using stochastic models, that the geometric mean emerges naturally as the effective conductivity of randomly heterogeneous
porous media. Paleologos et al. (1996) shows that, in statistically isotropic and unstructured heterogeneous media, the effective
saturated hydraulic conductivity tends toward the geometric mean of the local conductivities. Assuming that mineral-organic
soils present such random distributions of hydraulic contrasts, this supports the use of a geometric mean formulation in our
framework. More recent experimental work on binary mixtures by Sakaki and Smits (2015) and Rojas et al. (2022) also supports
this choice. In both cases, ks, varies non-linearly with the proportion of fine or low-conductivity material, often decreasing
exponentially with increasing content. While no single mixing rule captures all configurations, we assume that the geometric
mean offers a physically consistent approximation for combining mineral and organic domains in soils, especially when their

conductivities differ by several orders of magnitude.

The selection of mixing rules used to compute soil thermal properties can also be discussed, with the exception of volumetric
heat capacity, for which we have shown that starting from its physical definition and applying the soil mixture theory leads
analytically to an arithmetic mixing rule, similar to what is found for porosity. In contrast, there is no analytical justification
for using a specific mixing rule to compute the dry thermal conductivity (Ag,). However, experimental data suggest that the
arithmetic mean as proposed by Lawrence and Slater (2008) is not appropriate in this case. In particular, the measurements
from Arkhangelskaya and Telyatnikova (2023) clearly demonstrate that dry conductivity does not vary linearly with the organic
volumetric fraction (Figure 3c). This means that a nonlinear mixing approach is needed. As proposed by Decharme et al. (2016),
a geometric mean provides a simple option that gives reasonable results. Still, we observed that a geo-harmonic mean, which
was developed to represent transport through heterogeneous porous materials (Nielson and Rogers, 1982), performs even better
in this context. It more accurately captures the decline in conductivity as the proportion of organic matter increases. That said,
this remains a modeling choice. More datasets of the same type would be needed to confirm whether this mixing rule should

be preferred more generally. Regarding the thermal conductivity of the soil matrix (\), even though it is not addressed in this
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study, several lines of evidence from the literature support the use of the geometric mean. Previous studies, including those

by Johansen (1977), Farouki (1981), and Peters-Lidard et al. (1998), have shown that this approach provides consistent and

physically reasonable estimates across a wide range of soil types.
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Figure 9. Comparison of observed and predicted soil porosity across three in situ datasets, as in Figure 4, but using PTFs designed for the van

Genuchten (1980) model. Each row corresponds to a different prediction method. The first row uses the proposed framework combined with

the mineral-based PTF of Carsel and Parrish (1988) in its continuous form (Decharme et al., 2011). The second row applies the continuous

PTF of Weynants et al. (2009), which includes bulk density effects. The third row shows results from the continuous PTF of Wosten et al.

(1999), which includes both bulk density and SOM content as predictors.

Unfortunately, the full proposed framework cannot be directly applied in all LSMs, as some of them simulate soil water

retention using the van Genuchten (1980) model rather than the Brooks and Corey (1964) formulation. Nevertheless, although
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the hydrological component is specifically designed for Brooks and Corey-based LSMs, its core principles can also be adapted
to models that rely on the van Genuchten (1980) formulation. In particular, the estimation of the true SOM volumetric fraction
and the computation of thermal properties remain independent of the retention model and can be directly applied. For the van
Genuchten (1980) model parameters, an analogous procedure could be developed. Mineral-only texture-based PTFs calibrated
for the van Genuchten (1980) model, such as those of Carsel and Parrish (1988), may be combined with the same mixing rules
used in this study for Brooks and Corey parameters. This hypothesis was tested using the evaluation framework developed in
this study and applied to porosity predictions (Figure 9). Results show that combining our framework with a mineral PTF such
as Carsel and Parrish (1988), in its continuous form (Decharme et al., 2011) designed for the van Genuchten (1980) model,
yields similar or even better performance than using our framework with the mineral PTF of Cosby et al. (1984) developed
for the Brooks and Corey (1964) model (Figure 9 versus Figure 4). For other soil hydrodynamic parameters, the evaluation
framework used here could be readily extended to test equivalent or alternative mixing strategies tailored to the van Genuchten

(1980) model, as all required input data are readily available.

An additional advantage in the van Genuchten (1980) context is that several pedotransfer functions already exist, which, in
addition to soil texture, incorporate either bulk density, SOC/SOM content, or both (e.g., Wosten et al., 1999; Weynants et al.,
2009; Téth et al., 2015). This hypothesis is also tested in Figure 9. The PTF of Weynants et al. (2009), which accounts for
bulk density effects, captures part of the observed trend but fails to reproduce the full range of porosity values. The PTF of
Wosten et al. (1999), which incorporates both bulk density and SOM content in addition to texture, provides improved results.
However, it does not outperform our framework combined with the mineral PTF of Carsel and Parrish (1988). In particular, the
Wosten et al. (1999) PTF tends to systematically underestimate porosity, whatever the dataset used. In the SOM-rich soils of
the Kristensen et al. (2019) dataset, predicted porosity values show large dispersion compared to observations, suggesting that
this PTF is likely not suited for organic-rich or peat soils. We also extended the comparison to soil water retention (Figures S4
and S5 in the Supplement) and saturated hydraulic conductivity (Figures S6 in the Supplement), for which the mixture-theory
approach provided equal or better agreement with observations than existing PTFs. The Weynants PTF performed poorly for
both variables, while the Wosten PTF gave more promising results but with two clear limitations: a large dispersion at high
SOM contents, as also noted for porosity (Figure 9), and a systematic overestimation of saturated conductivity. These results
highlight that, while promising, the continuous PTF of Wosten et al. (1999) would likely require recalibration using for instance

the datasets presented in this study.

However, one may argue that the well-documented interactions between organic and mineral components are not captured
by mixture theory and would only be represented by PTFs. Numerous studies (e.g., Stewart et al., 1970; Adams, 1973; Raats,
1987; Rithlmann et al., 2006; Reynolds et al., 2020) have demonstrated that soil bulk density, particle density, and porosity
can be expressed as the sum of the effective volumes of mineral and organic domains, highlighting that these interactions are
indeed included in mixture theory. This theory provides mathematical formulations conceptually comparable to PTFs, which
rely on empirical regressions between texture, organic matter, and hydraulic properties, while mixture theory captures these

relationships through conservation-based analytical expressions. The two approaches should therefore be considered comple-
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mentary rather than exclusive. Moreover, for porosity our mixture-theory approach provides a closer match to observations
than existing PTFs (Figure 9), and similar behavior is found for retention and saturated conductivity (Figure S4 to S6), indicat-
ing that mixture theory can serve as a useful complement or alternative to existing PTFs. For thermal properties, the situation
differs. Conduction models (Johansen, 1975; De Vries, 1974; Balland and Arp, 2005) require the volumetric fractions of each

soil constituent, which makes mixture theory not only suitable but indispensable in this domain.

6 Conclusions

The aim of this study was to propose a physically consistent framework to represent the influence of soil organic matter on key
physical properties required in LSMs. This is the case for instance for the Community Land Model (CLM, Lawrence et al.,
2019) of the National Center for Atmospheric Research (NCAR), the Noah-Multiparameterization model (Noah-MP, Niu et al.,
2011) of the National Centers for Environmental Prediction (NCEP), the Joint UK Land Environment Simulator model (JULE,
Best et al., 2011) of the met-Office, or the Interaction Soil Biosphere Atmosphere model (ISBA, Decharme et al., 2019) of
Météo-France. In these models, the volumetric fraction of organic matter (f,,, ) is a critical quantity used to estimate soil
porosity, thermal conductivity, heat capacity, and hydrodynamic parameters. Since global databases typically provide SOC
content rather than total SOM, many LSMs rely on empirical formulations derived from the pioneer work of Lawrence and
Slater (2008) to infer £, from SOC content only. Although these formulations (Equations (1), (2) and (3)) are mathematically
valid, they are physically flawed. The numerator is expressed in mass of carbon per unit soil volume, whereas the denominator
represents the mass of organic matter per unit soil volume. This subtle confusion between SOC and SOM contents by weight

leads to a fundamental misrepresentation of soil composition.

To address this issue, we proposed a framework that explicitly accounts for the volumetric composition of the soil as mixture
of organic and mineral components. f,  is derived from its mass content, the dry bulk density, and the bulk density of the
organic matter component. This latter is not empirically prescribed, but computed from the soil mixture theory as a function
of the total soil bulk density and the mineral bulk density, both of which can be estimated from standard inputs or pedotransfer
functions. In summary, the derivation of f,_ . from the soil mixture theory ensures internal consistency between SOC, SOM,
and volumetric properties. The results of this study show that the proposed formulation is not only theoretically consistent, but
also performs reliably across a wide range of real-world conditions. It yields improved agreement with in situ measurements of
soil porosity and water retention, especially in SOM-rich soils where previous formulations tend to produce systematic biases.
A key advantage of the proposed framework is that it applies a unified and physically consistent treatment across porosity,
hydraulic, and thermal properties, using a single theoretical basis. Moreover, it does not rely on any tuning or soil-specific

calibration parameters.

Based on this volumetric formulation, we derived a physically consistent scheme to compute key soil properties as a mixture
of mineral and organic domains. For the Brooks and Corey (1964) model, the hydrodynamic parameters of the organic matter
domain are predicted from the apparent bulk density of SOM, with the saturated hydraulic conductivity also depending on

depth. These parameters are then combined with standard mineral soil estimates using arithmetic or geometric mixing rules.
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For thermal properties, the framework provides physically consistent expressions based on mass-volume relationships for the
volumetric heat capacity, while experimental data support non linear mixing for the dry thermal conductivity. Indeed, the choice
of mixing rules is guided by theoretical considerations and supported by experimental data, with arithmetic averaging used for
porosity and heat capacity, and geometric or geo-harmonic means for conductivity parameters. Importantly, the formulation is
designed to work with standard soil inputs, including SOC content, texture, and dry bulk density, which are available in global
databases such as SoilGrids (Poggio et al., 2021) or HWSD (FAO, 2012; FAO and ITASA, 2023). This makes the framework
directly applicable in LSMs at regional or global scales. This fact is supported by the study results. Indeed, the framework
was evaluated using both experimental binary mixtures and in situ datasets. It shows consistent improvements over existing
approaches for predicting soil porosity and water retention curves across a wide range of SOM contents. For saturated hydraulic

conductivity, performance remains limited overall, but non negligible improvements are observed in SOM-rich soils.

While the proposed parameterizations were developed for the Brooks and Corey (1964) model, the underlying structure
of the framework can be extended to the van Genuchten (1980) formulation. As shown in the discussion, applying the same
mixing principles to van Genuchten-based PTFs yields comparable or even improved results, particularly when combined with
mineral PTFs such as that of Carsel and Parrish (1988). In contrast, continuous PTFs directly calibrated for van Genuchten
parameters, such as those of Wosten et al. (1999), may require recalibration, especially for organic-rich or peat soils where
predictions tend to show systematic biases or larger dispersion. Further development is needed to establish a framework for
the van Genuchten (1980) model with the same level of physical consistency and robustness demonstrated here for the Brooks
and Corey formulation. This effort could be facilitated by the collection of observational datasets compiled in this study, which

provide a solid basis for testing and calibrating mixing schemes across a wide range of soil conditions.

The next step will be addressed in a companion paper, where the proposed framework is implemented and evaluated within
a global LSM. While the improvements in physical consistency are clear, the overall impact on model outputs could remain
moderate. This hypothesis is supported by several factors. First, outside the near-saturation range, the previous and proposed
formulations produce similar water retention behavior. Since many soils rarely reach full saturation, especially at large scales,
the differences in hydrodynamic properties may have limited influence on simulated fluxes. Second, although previous ap-
proaches produce biased estimates of the organic volumetric fraction, they still capture part of the thermal insulating effect
of SOM on soil temperature. Third, compensating errors in physically inconsistent formulations can, in some cases, lead to
reasonable results despite conceptual flaws. Indeed, results obtained with binary mixture data show that the use of a fixed bulk
density together with SOC-based estimates leads to partial error compensation, resulting in seemingly acceptable predictions

of the organic volumetric fraction at intermediate SOM levels.

Despite this, results from both the previous and proposed formalisms diverge more strongly in SOM-rich soils, where
their limitations become more apparent. This highlights the importance of accurately representing the volumetric fraction and
intrinsic properties of SOM in soils with high organic matter content. More generally, regardless of SOM content, the proposed
framework offers a physically grounded and internally consistent solution to a longstanding issue in LSMs. It provides a robust

method for deriving the volumetric fraction and intrinsic properties of SOM from standard soil inputs. Now that a physically
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robust framework is available and requires no additional data or calibration to improve the representation of soil organic matter
physical properties in LSMs, maintaining inconsistent parameterisations is no longer justifiable. The next step will be to test its
integration in a full LSM in order to assess its added value in realistic land-atmosphere simulations. In the companion paper,
the proposed approach will be implemented into the ISBA LSM (Decharme et al., 2019; Decharme and Colin, 2025). This
model provides a suitable platform for global-scale testing, allowing the framework to be evaluated under a wide range of
climate and soil conditions. Input data for soil texture, SOC content, and dry bulk density will be derived from the SoilGrids
database, ensuring compatibility with standard global datasets. This implementation will make it possible to assess not only

the impact on individual soil properties, but also on land surface fluxes and their coupling with the land surface hydrology.

This next step will provide a clear baseline for land-surface physics and a necessary preliminary stage before attempting
any more complex prognostic coupling to a dynamic soil carbon scheme, which will in turn deserve specific consideration.
The framework proposed in this study, which assumes a time-constant bulk soil density to determine the bulk density of the
organic domain, is not, in its current form, directly applicable in LSMs that would couple it with an interactive simulation
of the soil carbon cycle. Indeed, attempting to dynamically couple the organic carbon mass simulated by an LSM with our
diagnostic relations between py, pp,,, and f, = raises questions that are outside the scope of this work. On the one hand, if
such a coupling were attempted, and in order to avoid any potential circularity, a single structural variable (e.g. pp or pp_ )
should be prognostic, with the other diagnosed using the mixing relations presented here. On the other hand, the desirability
of such a coupling can be questioned given the structural and parametric uncertainties of current soil carbon schemes. A tight
coupling with soil physics could add uncertainty to the simulated physical state of the land surface and generate undesired
feedbacks on the carbon cycle. These points should be studied specifically before any coupling is proposed. Nevertheless, by
providing a consistent and physically based link between organic and mineral components of the soil, the present framework

offers a solid basis for future developments toward more integrated representations of soil processes in land surface models.

Code availability. All Python 3-compatible scripts used in this study, including the implementation of the proposed framework, data pro-

cessing routines, and figure generation codes, are publicly available at https://doi.org/10.5281/zenodo.15837794 (Decharme, 2025)

Data availability. This study uses seven datasets. Five are directly available in raw numerical form in the original publications as detailed
below: (1) the sand-peat binary mixtures with porosity measurements of Walczak et al. (2002); (2) the compost-brick mixtures used to model
Technosols of Willaredt and Nehls (2021); (3) the sand-peat mixtures with thermal diffusivity data of Arkhangelskaya and Telyatnikova
(2023); (4) the Nordic agricultural soil profiles with bulk density and texture data of Keller and Hakansson (2010); (5) the Russian soil
profiles with thermal and structural measurements of Arkhangel’skaya (2009). The remaining two datasets are available from public data
servers: (6) the harmonized European profile database (SPADE14) of Kristensen et al. (2019), available from the EU Soil Data Centre
(ESDAC) at https://esdac.jrc.ec.europa.eu/content/spade-14; (7) the "sol_hydro.pnts_horizons" version of the global SoilKsatDB
for saturated hydraulic conductivity of Gupta et al. (2020), accessible via Zenodo at https://zenodo.org/record/4541586.
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