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Abstract.: The variation in seasonal precipitation intensity impacts the dynamic interaction between the

karst aquifer and stream. However, the interaction mechanism between the karst aquifer and stream is |
currently still unclear, and characterizing the impact of dynamic saturation process of groundwater in

karst media on the interaction process remains a challenge. This study provides an in-depth analysis of

the interaction processes between karst aquifer systems and adjacent streams, along with water-air two-

phase flow in aquifer media. Multiple water retention models were employed to characterize the soil-

water characteristics of porous media and variably saturated groundwater flow. The research reveals that

rainfall intensity variations significantly influence the interactions between karst aquifer systems and
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streams. These interactive processes become increasingly complex with higher rainfall intensities.

involving multi-media collaborative recharge and dynamic interactions, while the contribution
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proportions of different media to streamflow also change accordingly. By comparing the modeling

differences and numerical results between CFPv2 and DBS approaches in generalized models, the

validity of the DBS model for groundwater modeling was verified. Under consecutive rainfall events,

total rainfall intensity plays a crucial role in hydrological process variations of adjacent streams.

Groundwater stored in porous media of karst systems during the first rainfall event was found to influence

stream water levels during subsequent rainfall events, while conduit storage exhibited minimal impact.

Multi-level conduit configurations under specific conditions, particularly during intense rainfall, can

significantly affect hydrological processes in both streams and karst conduits. Uncertainty analysis
demonstrates that conduit geometry, diameter, epikarst permeability, and porosity differentially influence

hydrological processes in karst aquifer systems. Variations in these parameters induce corresponding

changes in peak flow rates, peak timing of stream and karst spring discharges, as well as redistribution

of discharge contributions among different media, ultimately affecting the overall hydrological dynamics

of the coupled karst aquifer-stream system.Fo-delve-into-the-impaets-of varying preeipitation-intensities;
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the-influence-of precipitation- It can accurately depict the two-phase interactive flow between various

media controlled by the dynamic saturation process, and reveal the dynamic interaction process between
karst aquifers affected by the epikarst, sinkholes, and conduits under infiltration recharge and stream.
Meanwhile, it can precisely explain the processes of infiltration, overflow, and recession.

Keywords: the karst aquifer and stream; precipitation recharge; two-phase flow; Darcy-Brinkman-

Stokes equation; interaction mechanism

1 1]Introduction b

Karst aquifer is not only a repository of substantial freshwater resources (Li et al., 2017; Ford & Williams,+
2007; Sivelle et al., 2021), but also provides drinking water for 10% to 25% of the global population
(Longenecker et al., 2017; Goldscheider et al., 2020; Mahler et al., 2021). However, karst-developed
areas feature intricate pore structures and fractures (Kuniansky, 2016), leading to pronounced
heterogeneity and anisotropy in the movement and storage of water within them (Zhang et al., 2020). In
particular, the complex coupled flow involving various flow paths such as karst conduits, sinkholes, and
epikarst, along with porous media, further intensifies the nonlinear recharge and discharge processes and
the formation of preferential flow paths in the karst aquifer. With seasonal variations in precipitation
intensity, the heterogeneity of the groundwater flow field is further exacerbated, and water levels in the
karst aquifer and stream fluctuate, leading to complex interactions between the aquifer and stream
(Bonacci, 2015). Unveiling the interaction mechanism between the karst aquifer and stream under
varying precipitation intensities is crucial for assessing the storage of water resources in karst regions
(Gao et al., 2021; Guo and Jiang, 2020).

The interaction process between the karst aquifer and stream is significantly influenced by karst<
media. In epikarst where the soil layer is shallow and dissolution weathering is pronounced, most
precipitation can directly recharge the karst aquifer (Lee and Krothe, 2001; OLello et al., 2018). Karst

conduits and sinkholes are important media involved in karst hydrological cycle. As rapid discharge

3
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channels, the size, connectivity, and distribution of karst conduits have a significant impact on karst
hydrological processes (Duran et al., 2020; Bittner et al., 2020). Surface water collected into sinkholes
can directly recharge the karst aquifer (Bianchini et al., 2022), thereby regulating the water level of the
aquifer and the discharge volume to the stream, which is influenced by precipitation intensity, size and
distribution of sinkhole-—. The permeability of sinkholes and conduits typically exhibits multilevel
characteristics and varies with scale (Halihan et al., 1999), meaning there are strata structures with

different permeabilities, which complicates the flow of water within the karst aquifer and increases the

catchment area. Therefore. the recharge items to the stream adjacent to the karst aquifer usually include

Numerical methods are commonly employed as effective means to accurately simulate karst
groundwater movement and assess karst groundwater resources. Shoemaker et al. (2008) proposed a
method that discretely embeds conduits, connected by nodes, into the porous media grid (MODFLOW-

CFP). This method not only evaluates the water resources of the entire karst aquifer but also considers

the geometric shape and distribution of karst conduits on the hydrological processes. Moreover, this

methodology has been extensively applied worldwide for estimating karst groundwater flow and water

resources (Chang et al., 2015; Qiu et al., 2019; Kavousi et al., 2020; Gao et al., 2020, 2024), as well as

in integrated modeling studies coupling SWAT with MODFLOW to investigate groundwater-surface

water interactions (Fiorese et al., 2025; Yifru et al., 2024). While MODFLOW-CFP provides robust

capabilities for regional-scale karst groundwater simulations, it currently supports only single-phase

groundwater flow modeling.

- Although MODFLOW-CFP
is relatively comprehensive for regional karst groundwater simulation studies, the current version of

MODFLOW-CFP only supports modeling single-phase groundwater flow.

The interaction process between the karst aquifer and stream is also regulated by the dynamic

saturation process within the aquifer. The degree of dynamic saturation in different media determines

the path and velocity of water flow. Unsaturated aquifers gradually saturate the underlying aquifers under
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the influence of gravity, while saturated underlying aquifers can cause water to overflow (Worthington,

1991; Huang et al., 2024). In addition, the dynamic saturation processes within the karst aquifer are

regulated by factors such as seasonal water level fluctuations, the infiltration and flow of groundwater.

and the periodic filling and draining of karst conduits (Huang et al., 2024).it is necessary to couple

seepage (porous media) with free flow (conduits and stream) and to describe the dynamic saturation

process of the karst aquifer. The Hydrus simulation method based on the Richards equation is capable

of simulating variably saturated flow (Dam and Feddes, 2000). However, this approach lacks a built-in

conduit flow solution scheme, making it difficult to adequately address the coupling requirements

between rapid conduit flow and porous media seepage in karst areas.

Constructing an interaction model between the karst aquifer system and the stream under rainfall

event-driven conditions requires coupling free flow and seepage processes while simultaneously

supporting two-phase variably saturated flow. (1) The Navier-Stokes (N-S) equations combined with the

Darcy equation can effectively couple free flow and seepage processes (Soulaine and Tchelepi, 2016;

Carrillo et al., 2020).Fhi

(2)The Phase Indicator Function for two-phase flow, combined with the phase transition method, can

effectively describe the variable saturation process within the karst aquifer (Huang et al., 2024; Zhai et
al., 2024). The Darcy-Brinkman-Stokes equations have been utilized to couple seepage flow and free
flow (Huang et al., 2024; Nillama et al., 2022; Carrillo et al., 2020). Lu et al. (2023) analyzed a model
that integrates fast discharge channels in fractures and conduits with slow seepage in porous media . The
results demonstrate that the Darcy-Brinkman-Stokes equations can effectively describe two-phase flow
in karst aquifers, and Soulaine (2024) proposed that mixed-scale models based on the Darcy-Brinkman-
Stokes equations have strong potential for simulating coupled processes in porous systems.

The karst aquifer are typically accompanied by turbulent flow. Reimann et al. (2011) conducted
thorough research on turbulent flow in the karst aquifer. To reflect the dissipation of turbulent processes
throughout the system, the N-S and Darcy-Brinkman-Stokes equations can be studied using the Reynolds
Averaged Network System (RANS) method, where the k-¢ turbulence model effectively characterizes

turbulent flows in porous media, as demonstrated by del Jesus et al. (2012). The RANS method has been
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progressively refined for evaluating turbulent flow in both free-flow regions and porous media (Huang
et al., 2024; Zhai et al., 2024; Higuera et al., 2014).

This study aims to employ a two-phase variably saturated model capable of coupling free flow and

seepage flow to reveal the interaction mechanisms between the karst aquifer system and adjacent stream

under rainfall infiltration recharge-driven conditions. Specifically, it focuses on further investigating how

groundwater saturation variations in different media (e.g., conduits, fractures, matrix) of the karst aquifer

system influence inter-media interactions. This research addresses the gap in existing studies where

current numerical methods struggle to accurately characterize the collaborative recharge processes

among various media within karst aquifer systems. Currently,—the-interaction-mechanism-between-the

during preeipitationinfiltrationthis- This study employs the Darcy-Brinkman-Stokes equations to model

the coupled processes of seepage in porous media and free flow in karst conduit and stream. The Brooks-
Corey (BC) and van Genuchten-Mualem (VGM) models are used to characterize the unsaturated seepage
in karst media. The Volume of Fluid (VOF) method is applied to monitor the dynamic changes in aquifer
saturation. This research elucidates how saturation dynamics in different karst media impact the
coordinated recharge among media during precipitation infiltration, and examines the evolving
interaction between the karst aquifer and stream under such recharge conditions. Given the complexity
of the interaction mechanism between the karst aquifer and stream, this study specifically investigates
the impact of four factors on the interaction mechanism: (1) changes in precipitation intensity, (2)

different water retention models, (3) multi-stage conduit arrangements, and (4) parameter sensitivity

analysismultiple-precipitation-events. The research results can further reveal the interaction mechanisms

between karst systems and adjacent streams under rainfall infiltration recharge, and provide an in-depth

discussion on the impacts of rapid seepage, overflow, and sudden changes in spring discharge on flood

control and overflow management along the stream. This study offers a scientific basis for accurately

and rationally assessing karst water resources. Fhis-study-elucidates-the-interaction-mechanisms-between
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2.2-1 Numerical modelling <5

,The numerical model is developed according to the conceptual model of the karst aquifer adjacent+

to a stream, as depicted in Fig. 1. The model construction incorporates distinct rainfall intensities and

temporal rainfall patterns (Figure 1(a)-(b)), while explicitly accounting for characteristic karst

geomorphological features including sinkholes. epikarst, and karst conduits. Fhe-model-incorporates-the

- The karst

conduit is connected to the epikarst through a sinkhole. The outcrop of the karst spring is located at the
end of the karst conduit, directly leading to the stream.

Recharge Pathways in a Single Recharge Event: During a single recharge event, precipitation

follows two main pathways: a portion directly recharges the adjacent stream, while another portion

infiltrates into the epikarst zone (shallow karst system). A fraction of the water stored in the epikarst zone

discharges laterally to the stream, while the remaining water disperses vertically through porous media

to recharge the deeper porous aquifer. The residual water in the epikarst zone further recharges the karst

conduit system via sinkhole point infiltration (Figure 1(a.1)).

Conduit Network-Matrix Interaction: Under moderate recharge events, conduits receive water from

both sinkhole point recharge and porous media recharge, rapidly transporting it to discharge at karst
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springs. During intense precipitation events, water in the conduits may temporarily reverse flow to

recharge the porous media before returning to the conduits (Bailly-Comte et al., 2010).

Karst Aquifer-Stream Interaction: Lateral recharge from the porous aquifer to the stream requires

prior vertical dispersion recharge from the overlying epikarst zone. During a single precipitation event.

direct lateral recharge from the epikarst zone and rapid discharge of groundwater from karst springs to

the stream cause an earlier stream stage rise. As the stream stage gradually increases, the stream begins

to recharge the deeper porous media of the karst aquifer (Figure 1(a.1)). Due to the high flow velocity of

the stream, its stage declines rapidly. allowing groundwater in the deeper porous media to discharge back

into the stream (Figure 1(a.2)).

The precipitation influences the dynamic variation process of saturation within porous medialn-the

ion, and

the water levels in both the karst conduit and the stream experience substantial fluctuations. As a result,
the interaction between the porous media and the stream displays a clear multi-scale characteristic. From
a hydrological perspective of the watershed, the recharge and discharge processes of karst conduit are
controlled by the saturation degree of the surrounding porous media and the water level within the conduit
themselves. Based on spatial relationships, the area between the karst conduit and the epikarst is divided
into Porous Medium I (PM I) above the conduit, Porous Medium II (PM II) on the sides, and Porous

Medium IIT (PM III) directly below the conduit(Figure 1(a.1)). Based on the aforementioned dynamic

interaction processes between the karst aquifer system and the adjacent stream, this study constructs the

DBS numerical model and employs the CFPv2 (Shoemaker et al., 2008; Giese et al., 2018) to simulate

groundwater flow. Through analyses of precipitation intensity variations, multiple precipitation events

different water retention models, multi-level permeability configurations, and parameter sensitivity

analyses under repeated rainfall influences, the interaction mechanisms between the karst aquifer system

and the stream are elucidated.
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ermeability (Yang etal., 2019), indicating that pore tortuosity-connectivity plays a dominant role
in groundwater two-phase flow. Therefore, this study conducts simulations and parameter

sensitivity analyses for both the Brooks-Corey (BC) and van Genuchten-Mualem (VGM) models.
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MODFLOW-CFP, including groundwater flow simulation methodologies, is provided by Shoemaker

et al. (2008). Successful applications and evaluations of the model have been reported in studies
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Shirafkan et al. (2023).
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computational power for handling complex 3D meshes.

2.4.2 Model Comparison and Discretization Schemes -

karst groundwater and adjacent streams, this study compares the differences between the

MODFLOW-CFP and DBS models. As shown in Figure 3(a.1), the comparison begins with their

coupling modes of conduits and porous media from the perspectives of governing equations and

streams relies on stable hydraulic heads between conduit-porous media and stream-porous media

interfaces (Figure 3(a.2)). Flow interactions between porous matrix and discrete conduits are

linear and driven by head differences (Barenblatt et al, 1960). DBS Model; Groundwater

interactions among conduits, streams, and porous media are governed by saturation and pressure

gradients between adjacent grid nodes, allowing simultaneous recharge or discharge across

interfaces (Figure 3(a.3)). However, this requires calculating flux variations across all grids.

Comparison of Stream-Porous Media Interaction Modes; MODFLOW-CFP; Streams are

discretized into single grid cells, with exchange fluxes determined by head differences. Fluctuating
stream stages are simplified to a uniform water level, and "dry zones" cannot be simulated in

porous media (Figure 3(a.4)). DBS Model; Media properties (e.g., porosity, permeability) are

assigned at grid nodes, and interface values are interpolated. Direct conduit-stream interactions

eliminate the need for porous media as an intermediary. Stream geometry can be defined as regular

rectangular) or irregular (Figure 3(a.5)). The DBS model employs the Volume of Fluid (VOF) and

Front-tracking methods to reconstruct dynamic water-air interfaces, enabling simulation of

fluctuating interfaces under sufficiently refined grids.
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Regions are divided into free-flow zones (streams, sinkholes, conduits) and porous media. Free-

flow zones use locally refined grids to capture micro-scale variations in water levels and interfaces.

Porous media zones adopt gradually coarsening grids (edge cells twice the size of conduit-adjacent

cells), balancing accuracy and computational efficiency. Permeability is graded, decreasin

outward from conduits to reflect dissolution effects.
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3: Results «

3.1 Interaction process between the karst aquifer and stream under precipitation infiltration<

recharge

3.1.1 Karst Aquifer-Stream Interactions Under Varying Precipitation Intensities

.The changes in hydrological process curves, water level fluctuations, and their differences<
during the interaction between karst media and stream under different precipitation intensities

are shown in Fig—3Fig. 4., In the early stage of precipitation, the flow in the stream primarily

originates from direct precipitation recharge and lateral groundwater recharge from epikarst (Eig:
3Fig. 4(a)). As the water level in the stream gradually rises, the flow not only continues
downstream but also begins to recharge the karst aquifer, particularly the PM II. The peak recharge
to PM II coincides with the peaks of epikarst recharge to the stream (Epikarst in Eig—3Fig. 4) and
direct precipitation recharge (P-River in Eig—3Fig. 4). Therefore, the interaction process between
the karst aquifer and stream during the early precipitation stage is significantly influenced by
lateral groundwater discharge from the epikarst and the direct precipitation recharge. As
groundwater recharge from epikarst to the stream declines (Fig—3Fig. 4 (a)), groundwater moves

downward through the epikarst to PM, I, and begins to gradually recharge the stream. Due to the

low permeability of the epikarst, lateral discharge from PM, [ ,to the stream will be delayed. During

this process, the discharge volume of PM, |  exhibits two distinct peaks, The first peak is due to the

recharge of groundwater from the epikarst, while the second peak is caused by the gradual

saturation of PM I[,and the karst conduit, with a proportion of groundwater overflowing from PM

I and discharging laterally to the stream. After the end of precipitation recharge, the hydrological
process curve of PM I rapidly declined, and the discharge volume of the karst conduit, PM Il and

PM, II, gradually increase, causing the water level in the stream to rise (Fig-3Fig. 4 (d)). When the

water level in the stream gradually exceeds that of PM, I, the stream begins to gradually recharge

PM I, The karst conduit, PM,II and PM [I] continue to discharge to the stream during this stage
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due to higher internal water pressure, forming a local hydrological cycle with the upper layer. In
the late stage of precipitation, the hydrological process of the stream primarily shows a gradual

decline in baseflow.
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As depicted in Figs. 3b and 3c, the recharge and discharge dynamics between the karst aquifer
and stream across different media shift notably with escalating precipitation intensity. The

recharge volumes from the stream to PM, I, and PM I, both decrease. The reduction in the

recharge to PM II, from the stream is primarily due to the acceleration of groundwater movement

downward as precipitation intensity increases, causing groundwater to move more rapidly to the
bottom of the karst aquifer, thereby recharging PM II. Consequently, part of pore space that should
have been recharged by the stream is instead recharged from PM I downward. The decrease in the

recharge to PM, I can be attributed to its high internal saturation level and the rise in water level.

On the other hand, the water level in the stream does not significantly exceed that of the upper
aquifer, making it difficult for the stream to effectively recharge the aquifer. Due to the reduced
recharge volume to the aquifer, the discharge from the stream is partially lower than the discharge
from the epikarst during the early stage of the hydrological process.

With changes in precipitation intensity (b = 3, 5,and7), the water level variations and their

differences between the karst aquifer and stream exhibit complex dynamic characteristics (Figs.
3d, 3e and 3f). During the early stage of precipitation, despite the increasing water level difference,
the discharge from the stream to the aquifer is gradually decreasing (as shown by the negative

values for PM I and PM Il in Eig—3Fig. 4a, 3band 3c). This phenomenon indicates that water level

is not the only factor controlling the interaction between the karst aquifer and stream; changes in
the degree of saturation also play a significant role. As shown in Eig—3Fig. 4d, under low
precipitation intensity, the water level difference between the karst aquifer and stream is often
greater than the water level of the stream during the middle and later stages of precipitation.
However, as precipitation intensity increases, the water level difference tends to decrease (¥ig-3Fig.
4b and 3c). This change is primarily due to the increased precipitation intensity leading to a faster
saturation of the karst aquifer, thereby limiting the ability of the stream to recharge the aquifer.
After the middle stage of precipitation, the interaction between the stream and the upper part of
the aquifer gradually intensifies, while the lower part of the aquifer discharges to the stream (Fig-
3Fig. 4a). Due to the gradual decrease in water level difference, it is difficult for the stream to

effectively recharge the aquifer. In this process, the interaction between the aquifer and stream is
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controlled by the dynamic changes in saturation.

Based on the comparison between DBS and Modflow-CFPv2 results in Figs 4(a), (b), and (c)

the CFPv2 model exhibits a single-peak hydrograph with exponential recession characteristics
failing to capture flow process line disturbances caused by multi-media interactions. Under
precipitation intensities b=3 and 5, the CFPv2 model shows an immediate rapid increase in stream

discharge during early stages rather than gradual enhancement, though total discharge and

baseflow during later stages remain comparable (as shown in Table 3). Specifically, for b=3, the

peak stream discharge in Modflow-CFPv2 occurs at 2520 s, earlier than in the DBS model. This

discrepancy arises because the precipitation recharge package in CFPv2 directly elevates water
levels, whereas the DBS model simulates a gradual vertical infiltration process along the Z-axis.
Lower precipitation intensity reduces groundwater infiltration rates and prolongs water table
replenishment time, consequently delaying lateral discharge timing. At b=7, both models exhibit
comparable first discharge peaks, but the DBS model generates a secondary peak through overflow
effects that rapidly recedes after overflow cessation. In contrast, CFPv2 demonstrates smooth

exponential recession without secondary features due to its simplified vertical stratification that

neglects multi-component interactions.

The comparable results between DBS and Modflow-CFPv2 models under variable recharge

conditions demonstrate the reliability and stability of DBS in simulating karst aquifer systems.

Although the DBS model captures more interaction details, it requires greater computational

resources. The absence of overflow mechanisms and multi-media interactions in CFPv2 leads to
simplified discharge recession patterns that fail to reflect intense component interactions within
the system. This comparative analysis highlights the DBS model's advantages in characterizing

complex conduit-stream-aquifer interactions while acknowledging its computational demands.

It is self-evident that changes in precipitation intensity significantly affect the recharge and
discharge processes between the karst aquifer and stream. The water levels and saturation
degrees of the respective media act as core controlling factors that jointly influence the interactive

dynamics between the aquifer and stream. To gain a deeper understanding of these influencing
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factors and their interaction mechanisms, and to further elucidate the interaction process
mechanisms between the karst aquifer and stream, this study focuses on the hydrological

interaction process between the two during the early stage of precipitation.
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PM II gradually reaches saturation. According to the analyses in Section 3.1, the ability of PM II to

receive recharge is limited by its own saturation level, making it difficult to receive vertical recharge.
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Therefore, despite the increased precipitation intensity, the discharge volume of PM II, does not

increase significantly. Conversely, due to the influence of the saturation state of the underlying

aquifer medium, the second peak (overflow peak) of PM, [ is more pronounced, indicating a more

evident overflow phenomenon. Under higher precipitation intensity, the recharge contribution of

PM, I, to the stream dominates.

Thus, variations in precipitation intensity notably influence the interaction volume between
the karst media and stream. As precipitation intensity increases, the discharge volume and peak
values of each medium are altered. Specifically, the two peaks of PM [ show sequential changes in

intensity, which are modulated by the saturation levels of the adjacent media.

saturated-

can accurately capture the interactive processes between various media (e.g.

unsaturated zones, conduit-stream systems) influenced by dynamic saturation processes during

precipitation infiltration recharge. As the interactions between adjacent media are governed by

variations in saturation levels, the numerical results under rainfall intensity b=>5 are selected for
further analysis of dynamic inter-media interactions. For instance: How does the threshold
attainment of storage capacity in the lower porous media affect the hydrological processes of the

upper porous media?

s shown in

in the saturation levels of epikarst, porous media, and the karst spring; the saturation fields and

the interaction between various media at 4000 s, 6105 s, and 7363 s; the interaction amounts

between epikarst, porous media L II, III, and the stream. From Eig-12Fig. 6 (a.1), it can be seen

lis rel

low, and it is in a completely unsaturated flow state. Porous media I and III rise synchronously
before 5000 s, while porous media II and the karst spring rise rapidly at 4611 s. At 7409 s, the
karst spring and porous media [ successively enter the decline stage. Due to the rapid drainage of
the conduit, the saturation level decreases. The saturation level of the kKarst spring decreases faster

than that of porous media I and intersects with porous media [ at 9670 s.
25
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amon rous media can be divided into the infiltration stage (green), the overflow stage (red

and the recession stage (blue). During the infiltration stage from 4000 s to 4611 s, as shown in Fig:

lenish

However, the infiltrating water does not reach the lower media. Meanwhile, the saturation levels

of porous media II, III, and the conduit gradually increase (see Eig-12Fig. 6 (a.1)). Combining with

ig—12Fig. 6 (a.3), it can be seen that epikarst laterally replenishes the stream, and quickly drops
to the bottom of the riverbed due to gravity. At this time, the lower aquifer system (porous media
IL 111, and the conduit) is in a dry state, so the stream replenishes the lower aquifer. The amount of
recharge received orous medium III and the conduit is less than that of porous medium II

analyzed by combining Eig-—12Fig. 6 (a.3) and (a.4)), but their saturation levels increase faster.

water level of the stream needs to submerge the 1 m water level before it can recharge the conduit.

Second, porous medium III is not only replenished by the stream, but also the sinkhole diverts the
groundwater in epikarst and porous medium [ to the conduit (the sinkhole flow velocity and
saturation as shown in Eig-12Fig. 6 (a.2.1)), and then replenishes porous medium III. As the lower
aquifer media gradually tends to be saturated with rainfall recharge, as shown in Eig—12Fig. 6
a.2.2 rous media II and III tend to be saturated (see Fig-—12Fig. 6 (a.2.1)). Due to the weak
compressibility of water, after the upper part infiltrates and replenishes porous medium I, it tends
laterally replenish the stream from the interf: ween por medium II and stream. As th
saturation level of porous medium I gets higher, the lateral recharge to the stream becomes more
significant, showing an obvious overflow state. The depression between the two peaks is caused

by the rapid rise of the stream water level. During the flood peak stage, the discharge from porous

media to stream decreases. At the same time, the rise of the stream water level makes it difficult

for the lower porous media to replenish the stream, and porous medium II tends to be saturated

making it difficult to replenish porous medium I. During this stage, the flow between porous media

ig. 6 (a.2.3), during the recession
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groundwater vertically replenishes porous medium [, the conduit, and porous medium II

successively recedes. And the water level of the stream drops rapidly (see Fig. 3 (e)). The

groundwater tends to be discharged to the stream through porous medium I and the karst spring.
Porous medium [ is replenish I medium IT on the one hand and dischar: he stream
on the other hand. Therefore, during a single rainfall event, during the infiltration stage, part of the
amount of water replenished from epikarst to the stream is discharged, and other partis redirected
to replenish the lower porous media; during the overflow stage, the stream is mainly replenished
through the karst conduit and porous medium I1. Porous medium I and the stream are in a dynamic
equilibrium state. During the recession stage, the porous media act as the main medium to

replenish the stream.

As shown in Eig-12Fig. 6 (a.4), the karst spring reaches its peak at 7409 s. This is due to the
rainfall infiltration, the recharge from por: medium [, and th nt dischar, h
stream. As the storage volume decreases, the amount of recharge from the karst spring to the
stream decreases. A trough appears at 11642 s. This is because as the water level of the stream
drops, groundwater is more easily discharged into the stream. However, as the overall storage

volume continues to decline, after a peak appears at 13057 s, it enters a complete recession stage.

Affected by the decline of the stream water level, the discharge from porous medium III to the

Under the recharge of rainfall infiltration, the interaction process between the karst aquifer
affected by epikarst, sinkholes, conduit and the stream shows dynamic changes in terms of staged
characteristics, main interaction media, and the dynamic equilibrium process among different
media. The accurate simulation of the above complex processes depends on the support of a three-

dimensional two-phase numerical model (Darcy-Brinkman-Stokes model).
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carstaq yifer-and-stream-

3.25. Impact of multiple precipitation events on the interaction process between the karst aquifer<
and stream

Rainy seasons typically experience multiple precipitation events, during which differences in+
precipitation peaks, durations, and cumulative precipitation events can all impact the interaction

process between the karst aquifer and stream. Does the groundwater stored in the porous media

of the karst aquifer system during the initial rainfall event influence the interactions between

multi-component media during subsequent precipitation episodes?

Based on understanding the interaction mechanism of a single precipitation event, this study
further analyzes the impact of multiple precipitation events on the interaction process. Figure 8-7
shows the changes in water level of stream under continuous precipitation events. When the
intensities of two consecutive precipitation events remain constant, the water level of stream
reaches both the highest and the lowest points, indicating that the water level is related to the total
precipitation intensity. Even with different intensities of the first precipitation event (), =3 and b,
=5), the trend of the water level changes in stream is consistent (Fig. 87 and @). After the first
precipitation event, the karst aquifer receives infiltration recharge from the precipitation and can
store part of the water, so the water level of stream will be higher during the second precipitation
event, and the greater the intensity of the second precipitation event, the higher the water level of
stream (Fig. 87D and @), or @) and @). This indicates that the intensity of the second precipitation
event determines the amount of recharge from each medium to stream. Therefore, when the
intensity of the first precipitation event is the same, the amplitude of the water level change in
stream during the second precipitation event is only related to the intensity of the second
precipitation event. When the intensity of the second precipitation event is the same, the storage
capacity of the karst aquifer during the first precipitation event determines the amplitude of the
water level change in stream during the second precipitation event. When the total precipitation
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intensity is the same (Fig. 8-7 @ and ®), if the intensity of the first precipitation event is lower
than that of the second one, the amplitude of the water level change in stream is higher, and vice
versa. This is because, in the case of two consecutive precipitation events, part of the precipitation
infiltrates and recharge the storage during the first event, and the other part is discharged to
stream through the aquifer. Combining Fig. 3é-4d and 3ee, during the first precipitation event, the
water level in the porous medium rises and stores a proportion of water, but the discharge volume

to stream is greater when the precipitation intensity is higher (b;,= 5) compared to when it is

lower (by,= 3, Fig. 3a-4a and b). When the second precipitation event occurs, due to the similar

saturation levels of the karst aquifer, the greater the intensity of the second precipitation event, the
larger the amount of groundwater recharged to stream through the aquifer, and the more
pronounced the amplitude of the water level in stream.

Figure 9-8 illustrates the hydrological process curves of the stream during two consecutive
precipitation events, as well as the interaction processes between the various media of the karst
aquifer and stream. Under different precipitation intensities, the various media of the karst aquifer
recharge the stream with varying intensities, resulting in significant fluctuations in the water level

of stream. Based on Fig. 8(a) and Fig. 7 (2)and @), it can be observed that under two consecutive

precipitation events, when the intensity of the second precipitation event is equal to or greater than

the first, the stream hydrograph exhibits more pronounced fluctuations. The comparison between

the DBS model and MODFLOW-CFPv2 model under different b, parameter combinations

demonstrates distinct characteristics in streamflow hydrographs: the DBS model shows higher

peak discharge with greater fluctuations, while the MODFLOW-CFPv2 model displays relatively

smoother discharge variations. Notably, under the second precipitation event, the MODFLOW-

CFPv2 model exhibits delayed peak elevation timing. Furthermore, its recession phase still follows
an exponential decay pattern, failing to capture the rapid interactive response between multi-

media systems during successive precipitation events.Combining Fig—9a-and Fig-8-(2)and- @)t

hydrological processof streamistarger- As shown in Fig. 9b8b, the epikarst discharges quickly and
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782 is not easily affected by multiple precipitation events, However, when the intensity of the first [Formatted: Font: (Default) Cambria Math, 10 pt
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783 precipitation is high and the intensity of the second precipitation is the same (@ and ®), the
784 discharge volume of the epikarst to stream during the second precipitation period is slightly larger.
785 When the intensity of the first precipitation is different and the intensity of the second precipitation
[786 is the same (Fig. 9¢-8c @ and @), the discharge volume of groundwater through karst conduit to
787 stream during the second precipitation period is almost the same. This is because karst conduit
788 discharge quickly, and the storage volume of the conduit during the first precipitation period has
[789 little impact on the storage volume during the second precipitation period. Therefore, combining
790 with Fig. 87, it is known that the storage effect of the karst aquifer mainly occurs in the porous
791 medium, and it also indicates that relying solely on changes in the water level of stream makes it
792 difficult to clearly determine the storage volume of the porous medium and conduit during the first
793 precipitation event, and their respective impacts on the second precipitation period (Fig. 87).
[794  When the intensity of the second precipitation is higher (Fig. 9¢-8c @), ®) and @), the discharge
[795 volume of the porous medium (PM II) to stream does not increase significantly. This is because the
796 intensity of the second precipitation is larger, causing the water level of stream to rise (Fig. 87),
797  making it difficult for the porous medium (PM II) to recharge stream.

798 Therefore, under the influence of two consecutive precipitation events, the greater the total
799 precipitation intensity, the larger the discharge volume of the karst aquifer to stream. The storage
800 effect of the karst aquifer occurs in the porous medium and affects subsequent precipitation
801 processes. The lower-level porous medium (PM II), due to the high water level and large
802 fluctuations of stream, is more difficult to recharge stream, and the recharge from stream mostly

803  comes from overflow supply from the media in other layers.

804 3.3. Effects of Water Retention Characteristics on Karst Aquifer-Stream Interactions < [Formatted: b2

805 The external recharge of the system significantly influences the interaction processes among< [Formatted: Font: 10 pt

{Formatted: Indent: First line: 2 ch, Line

806 different media. This study further investigates how the inherent hydrogeological properties of karst spacing: 1.5 lines

807 systems affect these interactive processes. Variable saturated flow in the karst vadose zone plays a critical

80K role (Dvory et al., 2018), where the water retention characteristics of porous media govern unsaturated

809 flow dynamics. However, the CFPv2 model struggles to simulate variable saturation processes. This
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paper compares the DBS model results with two distinct experimental datasets to elucidate the

advantages and limitations of the DBS approach in simulating variable saturated flow.

Case 1: A typical unsaturated-unsteady seepage problem in sandy clay loam (Warrick et al., 1985),«—

where the soil hydraulic properties are provided by the international UNSODA database (Leij et al.,

1996). Key parameters include: k=1 X 10—6 m/s, &= 0.363, a,,= 0.186, and n = 1.53, The model
1N

consists of a vertical soil column (1 m_thickness) with an initial pressure head of -8 m across the domain.

The top boundary is set to a pressure head of 0 m to simulate free surface infiltration.

Case 2: A 2D laboratory infiltration experiment by Vauclin et al. (1979), widely used for evaluatin,

saturated-unsaturated unsteady seepage models. The soil slab measures 2.00 m _in height, 6.00 m_in

width, and 0.05 m_in thickness, with an impermeable base and free drainage boundaries on both sides.

Initially, the water table is set at 0.65 m. A central 1.00 m section of the top boundary receives uniform

precipitation at 0.148 m/h for 8 hours, during which free surface evolution is monitored. Soil hydraulic

properties are described using the van Genuchten-Mualem model with parameters: J,= 0.35 m/h, g, =

0.30,a,,= 0.01. Due to symmetry, the DBS model simulates the right half of the domain.

As shown in Fig. 9, the DBS model demonstrates strong agreement with both experimental datasets,+

highlighting its capability to capture spatiotemporal variations in water-air two-phase flow. Comparative

analysis between DBS simulations and experimental data not only validates model reliability but also

enhances understanding of soil moisture transport mechanisms. This provides critical support for

simulating interactions between karst aquifers and adjacent streams.

Based on the well-validated two-phase flow DBS model, this study analyzes the impacts of different

water retention models on interactive flow between media. Fig. 10 presents the hydrograph curves under

different water retention model parameters (BCn=3, 2.5, 2 and VGMm=0.85, 0.8) for (a) stream, (b)

karst spring, (c) epikarst, (d) PM I, (e) PM II. and (f) PM III. Fig. 10(c.1) illustrates the parameter effects

on porous media morphology, where n=2 and higher n values indicate more heterogeneous pore space

and complex structures. Fig. 10(d.1) compares water retention curves between BC and VGM models.

Combining Figs. 10(a) and (b), in the BC model, increasing n values progressively reduce

hydrograph curves of stream and karst spring, attributed to irregular pore media impeding groundwater

flow and reducing discharge. In the VGM model, decreasing m values (equivalent to increasing n)
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enhance pore structure irregularity, similarly lowering hydrograph curves. As shown in Fig. 10(c),

epikarst discharge increases with higher n values due to its low permeability (K0) during relative

permeability correction, facilitating enhanced groundwater discharge through epikarst to the stream.

From Figs. 10(d) and (e), larger n values correspond to decreased epikarst-stream discharge and

increased downward recharge to porous media, thereby enhancing stream recharge from PM I and II.

Integrating Figs. 10(c) and (e)., reduced epikarst-stream hydrographs with higher n values lead to

diminished stream-porous media recharge. Fig. 10(f) demonstrates that PM 111 is primarily influenced b

conduit flow and shows minimal sensitivity to n and m parameters.

Fig. 10(d.1) displays saturation variations derived from two karst groundwater retention models:

Brooks-Corey (BC) model (Equations (20)-(21)) and van Genuchten-Mualem (VGM) model (Equations

(22)-(23)). For identical infiltration periods, BC model predicts higher moisture retention than VGM.

The BC model emphasizes static water retention in karst media, while VGM prioritizes dynamic

groundwater transport and distribution. The VGM model predicts longer groundwater migration

distances, suggesting greater sensitivity in simulating karst groundwater diffusion and infiltration

processes. These differences hold significance for unsaturated two-phase flow dynamics and accurate

prediction of groundwater migration paths in karst aquifer systems.

Furthermore, discrepancies exist between BC and VGM models in simulating saturation variations

(Fig. 10(d.1)), manifesting as distinct saturation degrees and groundwater migration distances under

identical conditions. Therefore, selecting appropriate models based on lithological characteristics is

crucial for precise description and prediction of two-phase flow in karst groundwater systems.

3.4. Impact of multi-stage permeability and porosity arrangement on the interaction process< [ Formatted: b2

between the karst aquifer and stream

comparing the effects of multi-level versus single-level conduit configurations on interactive+ [Formatted: Font: 10 pt

Formgtted: Indent: First line: 2 ch, Line

processes, the adoption of both multi-level and single-level conduits in the karst conduit system and spacing: 1.5 lines, Use Asian rules to control
first and last character

underlying media did not induce significant changes in the hydrological processes of the epikarst and

porous media (I, IT) (Fig. 11).B




866  @MIandPMI Fiec7)—As shown in Fig-7Fig. |1a, when multi-level conduit arrangements are adopted,
867 the peak of stream hydrological process increases, indicating that multi-level conduit arrangements
868 enhance the recharge volume of stream. However, during the recession phase, the flow under multi-level
869  conduit arrangements is relatively low. This is because multi-level conduit collects a proportion of the
870 flow that should have been contributed by the later stage matrix recession and discharge it to stream,
871 thereby affecting the peak of the recession process. As shown in Fig-7Fig. 11b, under multi-level conduit
872 arrangements, sinkhole can absorb more water and discharge it through karst conduit. This indicates that
873 multi-level conduit arrangements can more effectively play their roles in water absorption and discharge
874 during heavy precipitation events. However, in the case of lower precipitation intensity in the early stage,
875 the water absorption priority of multi-level conduit is not fully manifested. By comparing Figs. 7ellc,
876 7d11d, and Zel le, it is found that multi-level conduit arrangements have no significant impact on the
877 hydrological processes of the epikarst and porous media (PM I and PM 1II). This suggests that multi-
878 level conduit arrangements mainly affect the interaction between the karst conduit and stream, with
879  relatively little impact on other media. The hydrological responses of the karst conduit and PM II under
880  multi-level conduit arrangements are shown in Figs. 7£-11f and 7b11b. Under multi-level conduit
881 arrangements, the discharge volume of the karst conduit significantly increases. At the same time, due
882 to the increase in karst conduit flow, PM II also receives more recharge, leading to a corresponding
883 increase in the discharge volume of this portion of porous media to stream. This further indicates that
884 multi-level conduit configurations can notably influence the hydrological processes of stream and karst

885 conduit under specific precipitation intensities, with minimal effects on other media.

886

887 4. Uncertainty Analysis and Discussion b Formatted: Font: (Asian) Times New Roman, 10 pt,
Font color: Black, English (United Kingdom), Kern
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888 The multi-level conduit configuration inherently affects multi-media interactions by simultaneously+ Formatted: Level 1, Space Before: 24 pt, After:
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889 altering permeability, conduit diameter, and porosity parameters. This study will further conduct

890 sensitivity analyses on individual variables to investigate their impacts on the vulnerability of karst {Formgtted: lgldlept: First line: 2 ch, Line }
spacing: 1. ines

891 aquifer systems.
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892  4-Comparison-with-the simulationresults-of MODFLOW—CEP4.1 Impacts of Conduit Diameter«—{ Formatted: b2

893 and Geometry on Interactions Between Karst Aquifer Systems and Streams

894 Jig. 12 presents hydrographs under conditions of circular conduits with varying radii (r=0.2, 0.3,+ [Formatted: Font: 10 pt, Not Bold

Formatted: Indent: First line: 2 ch, Line
895 0.3, and 0.5 m) and square-section conduits (r=0.5 m) for (a) stream-connected flow, (b) karst spring spacing: 1.5 lines, Don’t use Asian rules to
control first and last character

896  discharge, (c) epikarst flow, (d) porous medium I (PM I), (¢) PM II, and (f) PM IIL. Fig. 12(c.1) illustrates

897 different conduit cross-sectional shapes to analyze their impacts on the interactive flow between karst

898  aquifer systems and adjacent streams.

899 As shown in Fig. 12(a), larger conduit radii correspond to higher initial discharge peaks and shorter

900 peak arrival times, indicating enhanced porous medium recharge and faster fluid transmission through

901 larger conduits. Notably, the square-section conduit (s-r;=0.5) exhibits higher peak discharge than its '[Formatted: Font: 10 pt, Not Bold, Subscript

[Formatted: Font: 10 pt, Not Bold

902 circular counterpart (rc=0.5) due to its surplus cross-sectional area accommodating greater fluid

D03  discharge under identical nominal radii.

904 Fig. 12(b) demonstrates that karst spring peak discharge increases with conduit radius. At r=0.5 m.

905 the square-section conduit (s-r,=0.5) achieves higher peak discharge than the circular conduit (rz=0.5) Formatted: Font: 10 pt, Not Bold, Subscript

906 but displays lower recession flow. This occurs because identical precipitation infiltration recharge leads

(Pormatted: Font: 10 pt, Not Bold
(Formatted: Font: 10 pt, Not Bold, Subscript

907 to greater porous medium storage depletion during peak periods in square conduits, subsequently {Formatted: Font: 10 pt, Not Bold

o )

908 reducing porous medium-to-conduit recharge during baseflow recession.

909 Combined analysis of Figs. 12(c), (d), and (e) reveals that conduit radius variations do not

910 significantly affect epikarst hydrographs or PM /Il hydrographs. However, square-section sinkholes

O11 modify flow patterns: epikarst hydrographs show lower values under square conduits, while PM I/IT

912  hydrographs exhibit higher values due to enhanced epikarst groundwater collection in square cross-

013 sections, increasing recharge to PM I/I1.

014 Fig. 12(e) indicates that larger conduit radii correspond to lower negative values. Combined with

915 Fig. 12(a), this demonstrates that increased stream recharge through larger conduits elevates both stream

016 peak discharge and water levels, thereby enhancing porous medium-stream interactions. Similarly, Fig.

917 12(f) shows that larger conduit radii increase karst spring discharge and PM III hydrograph elevation

P18  through enhanced gravity-driven groundwater recharge.

919 Conduit geometry (radius and shape) constitutes a critical factor in karst aquifer hydrological
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modeling. Larger circular conduits accelerate peak discharge arrival and amplify stream-connected flow

peaks and karst spring discharge. Square-section conduits outperform circular equivalents in peak

discharge capacity under identical nominal radii due to cross-sectional area advantages. Enlarged

conduits intensify porous medium-stream interactions and amplify PM III recharge through gravitational

effects. Comprehensive consideration of conduit geometry impacts on hydrological elements is essential

for improving model accuracy and reliability in simulating karst aquifer-stream interaction processes.

4.2 Influence of Permeability on the Interaction Processes Between Karst Aquifer Systems and+—

Streams

JThe permeability of the epikarst directly controls the ease of fluid infiltration from the surface into<

the conduit system. Fig. 13 illustrates the hydrological process curves under different epikarst

permeability coefficients (Kg=10"° 107, 10®, 10° when Kz=10"°, the permeability matches that of

porous media, rendering the epikarst incapable of rapid groundwater leakage) for: (a) stream, (b) karst

spring, (c) epikarst, (d) PM 1, (e¢) PM II, and (f) PM III. This aims to reveal how epikarst permeability

regulates groundwater flow patterns in complex conduit systems and intermedia interactions.

As shown in Fig. 13(a), under high epikarst permeability (Kgz=10"°): the discharge curve rises rapidly

to a peak of ~4.5 3 /s, followed by a sharp decline. This indicates that high permeability enables rapid

groundwater leakage from the epikarst to the stream, causing swift flow increases. Peak stream discharge

diminishes with decreasing permeability. High permeability reduces flow resistance, facilitating faster

fluid entry into the conduit system and generating sharp discharge peaks, while low permeability

increases resistance, resulting in gradual fluid release and broader, lower discharge curves.

Fig. 13(b) demonstrates that epikarst permeability differences from porous media have minimal

impact on conduit flow. However, when epikarst permeability equals that of porous media (Kg=10"°)

the peak discharge at the karst spring decreases while maintaining identical baseflow recession

characteristics. Combining Figs. 13(c) and (c.1), higher epikarst permeability enhances lateral discharge

to the stream. At Kg=10"°, gravitational forces dominate vertical recharge to lower media without lateral

discharge.

Fig. 13(d) reveals decreasing discharge from Porous Medium I to the stream with reduced epikarst

ermeability. Cross-referencing Figs. 13(a) and (e), lower epikarst permeability reduces both stream
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discharge and water level, limiting recharge to Porous Medium II. Fig. 13(f) shows negligible epikarst

permeability influence on Porous Medium III's hydrograph.

Epikarst permeability constitutes a critical factor in hydrological modeling of karst aquifer systems.

Highly permeable epikarst produces rapid streamflow peaks followed by sharp declines, reflecting

efficient groundwater leakage to the stream. Conversely, low permeability yields diminished peaks and

broader discharge curves. While karst spring discharge remains relatively stable when epikarst
permeability differs from porous media, proper characterization of epikarst permeability is essential for

accurately simulating hydraulic interactions between media, regulating groundwater flow pathways and

velocities. This enhances model reliability in capturing complex flow dynamics within karst conduit-

stream systems.

4.3 Influence of Porosity on the Interaction Between Karst Aquifer Systems and Adjacent Streams+— { Formatted: b2

Jig. 14 presents the hydrographic process curves under different porosity conditions (¢=0.4, ¢ =0.3s - [ Formatted: Font: 10 pt

Formatted: Indent: First line: 2 ch, Line
®=0.2, ¢ =0.1) for (a) stream, (b) karst spring. (c) epikarst, (d) PM I, (e) PM II. and (f) PM III. Fig. spacing: 1.5 lines, Don’t use Asian rules to
control first and last character

14(c.1) illustrates the schematic diagram of groundwater flow under different pore sizes. The study aims

to elucidate how porosity regulates fluid flow patterns in complex conduit systems.

As shown in Fig. 14(a), lower porosity results in higher flow peaks and earlier peak times. This

occurs because reduced pore space limits groundwater storage capacity., forcing excess water to discharge

rapidly and elevating the stream hydrograph. Fig. 14(b) demonstrates that lower porosity drives

groundwater to preferentially flow through karst conduits and discharge at springs. In Fig. 14(c), the peak

discharge of epikarst at ¢ =0.4 slightly exceeds those at ¢ =0.3, ¢ =0.2, and ¢ =0.1.

Fig. 14(d) reveals that at ¢ =0.1. the storage capacity of porous medium I reaches critical limits.

Groundwater recharged from epikarst to porous medium I is rapidly discharged, resulting in significantly

higher discharge rates compared to ¢ =0.3, ¢ =0.2, and ¢ =0.1. Fig. 14(e) indicates increased discharge

from porous media to the stream as porosity decreases. Combined with Fig. 14(a), reduced porosity

enhances stream stage and discharge but diminishes the stream's ability to recharge porous media due to

limited storage capacity. Fig. 14(f) shows negligible porosity effects on the hydrograph of porous

medium I11, as its behavior is primarily governed by conduit flow.

In hydrological modeling, porosity parameters must be calibrated to accurately simulate
38
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groundwater flow paths and storage-release dynamics. For low-porosity regions, models should

emphasize rapid drainage capacity of conduit systems and transient flow variations. In high-porosity

areas, considerations should include fluid retention risks, stream-porous media interactions, and their

long-term impacts on geological stability and water resource allocation. Proper porosity parameterization

enhances simulation accuracy for diverse hydrological processes, enabling improved prediction and

management of karst water resources.

Karst hydrological vulnerability manifests prominently through rapid infiltration, epikarst runoff,

groundwater table fluctuations, and abrupt spring discharge variations. The DBS model effectively

simulates multi-media interactions during extreme recharge events, enabling temporal analysis of media-

stream exchanges, identification of peak interaction values, and applications in coupled conduit flow-

seepage processes for two-phase flow systems.
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122 karst aquifer and stream, as well as within the karst media. The VOF phase change method was used to spacing: 1.5 lines

123 illustrate the two-phase flow of water and air in porous media, while various water retention models were
124 applied to describe the unsaturated flow processes in the karst aquifer. The results indicate that changes
125 in precipitation intensity have a significant impact on the interaction between the karst aquifer and stream.
126 As the precipitation intensity increases, the interaction process between the two becomes more complex,
127  involving multi-media synergistic recharge and dynamic interaction with the karst aquifer. The
128 contribution ratios of the epikarst, upper layer, and PM II to the stream change with increasing
129 precipitation intensity. In the early stages of precipitation, the recharge effects of each medium on the
130 stream are relatively balanced; as the precipitation intensity increases, the discharge volumes of PM I
131 and PM II both increase, especially the increase in PM II is more significant, and the timing of its
132 discharge peak advances; when the precipitation intensity further increases, PM II gradually reaches
133 saturation, limiting its discharge capacity; and during this process, the double peak intensity of PM I
134 changes with the precipitation intensity; at the same time, due to the saturation of PM II, a more
135 pronounced overflow phenomenon occurs in PM I, which dominates the contribution of recharge volume
136 to the stream. Therefore, the change in precipitation intensity not only affects the discharge volume and
137 discharge peak of each medium in the karst aquifer but also is influenced by the dynamic saturation

138 process of adjacent media. By analyzing the modeling differences between MODFLOW-CEFPv2 and DBS

139 for the conceptualized model of this study and conducting comparative validation through stream

140 hydrographs, results demonstrate that the DBS model can effectively simulate the interaction process

141 between karst aquifer systems and adjacent streams under precipitation influences, while refining two-

142 phase interactive flows between different media subjected to dynamic saturation processes.

143 Under two consecutive precipitation events, total rainfall intensity directly governs stream water

144 level variations. Different rainfall intensities induce distinct changing trends in stream water levels.

145 During the first rainfall period, porous media in the karst aquifer system store a portion of groundwater.
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which subsequently influences stream water level changes in the second rainfall period. Due to the rapid

drainage characteristics of karst conduits, the storage capacity of conduits during the first rainfall period

shows negligible impact on storage during the second rainfall period. When the first rainfall intensity

exceeds the second, stream water level fluctuations exhibit smaller amplitudes, and vice versa. Variations

in stream water levels can alter the recharge potential from different layered media in the karst aquifer

system to the stream. Different water retention models also demonstrate significant impacts on

hydrological processes in both the stream and various media. The accuracy of two-phase flow simulation

in the DBS model was validated against benchmark experiments from two literature sources. The VGM

model causes greater water retention in porous media, thereby reducing stream discharge.

During heavy rainfall events, multi-level conduit configurations significantly affect interaction

processes between karst aquifer systems and adjacent streams, demonstrating higher drainage efficiency.

However, such configurations exhibit relatively minor impacts on other media, indicating that multi-level

conduit arrangements primarily influence hydrological processes by regulating interactions between

karst conduits and the stream.

In uncertainty analysis: For circular conduits, larger diameters result in higher initial peak discharge<+— {

in streams and shorter time-to-peak. with corresponding increases in peak discharge from karst springs.

Under identical diameters, square-section conduits demonstrate higher peak stream discharge and karst

spring discharge than circular counterparts due to surplus space advantages. Epikarst permeability

significantly influences hydrological processes in karst aquifer systems. High-permeability epikarst

produces rapid stream discharge peaks followed by steep recessions. With decreasing permeability, peak

stream discharge diminishes and hydrographs become lower and broader. Concurrently, karst spring peak

discharge decreases, with epikarst only vertically recharging underlying media without lateral discharge.

Reduced epikarst permeability decreases discharge from porous media to streams.

Porosity proves crucial in governing hydrological processes of karst aquifer systems: Lower

porosity leads to higher and earlier discharge peaks in both streams and karst springs, as reduced pore

spaces limit groundwater storage and force faster drainage. Higher porosity results in lower peaks and

broader hydrographs. Decreasing porosity increases discharge from porous media to streams but reduces

the stream's recharge capacity to porous media due to diminished storage space. Hydrological modeling
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should prioritize rapid drainage and transient flow variations in conduit systems for low-porosity areas

while high-porosity regions require consideration of fluid retention risks, interactive flows between

streams and porous media, along with long-term impacts on geological stability and water resource

allocation.
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510
511

Table 1: Variable Definition Table

Variable Description Unit
1) Porosity field
14 Volume of the averaging-volume m?
Vv, Water Volume m?
/A Gas Volume m?
a; Water Saturation
ag Gas Saturation
a . Effective Saturation
p Average Fluid Density kg/m?
Py Gas Density kg/m?
o Water Density kg/m?
u Viscosity Pa-s
Ug Gas Viscosity Pa-s
I Water Viscosity Pa-s
Hess effective viscosity Pa-s
v velocity m/s
v, relative flow rate of the gas phase to the liquid phase m/s
v, turbulent velocity vector m/s
Vpe relative velocity of gas-phase and water-phase turbulence m/s
Viurd turbulent kinetic viscosity m?/s
p pressure Pa
p” pressure Pa
E, Surface tension force N
Ss Drag Source Term N/m?
Cy Dimensionless Constant
k, Turbulent Kinetic Energy m?/s?
£ Turbulent Dissipation m?/s®
k Apparent permeability m?
ko Absolute permeability m?
kyg Gas Relative Permeability
Ky Water Relative Permeability
g Gravitational Acceleration m/s*
X position vectors in Cartesian
o Interfacial tension N/m
Pe Capillary pressure Pa
n Brooks and Corey Coefficient
m Van Genuchten Coefficient
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512 Table 2: Different parameter used in Models

Parameters Unit Value
Conduit radius 7, m 0.5
Sinkhole radius 7y m 0.5
Conduit height hg m 2

River width L, m 2
EpiKarst thickness m 4
Porous medium [ thickness m 13
Porous medium I thickness m 3
Porous medium [II thickness m 1
Porous medium length pr m 200
Porous media width pr m 200
Gravitational acceleration g m/s? 9.81
Porous medium Porosity ¢ / 0.4
Porous medium Permeability coefficient k, m? 107
Gas phase viscosity i, m? /s 1.48%10°
Gas phase density p_ Kg/m? 1.29
Liquid phase viscosity W, m? /s 10°
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515 Table 3: Comparing DBS and MODFLOW results for key variables

Numerical Peak Lag Time (s) Peak Flow (m3 /s) Total Qutflow (m*)
Model b=3 b=5 b=7 b=3 b=5 b=7 b=3 b=5 b=7
3242.  1870. 2985. 65984 15415 27294
DBS Model g 18 30 4500 1214 2196 7 RS T
MODFLOW  2520. 1920.  1860. 63916 15754 24551
-CFPv2 00 00 00 431 1187 18.87 15 365 926
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518

Precipitation intensity b=3 Early-Precipitation Precipitation intensity b=5
. a

519
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1520

521
522
523
524
525
526
527

O e Sy ey

(a) Precipitation intensity b=3 Early stage OfPTeC'Pllal'(m Precipitation intensity b=5

| Z

(b) Precipitation intensity b=3 Middle stage of precipitation _ _ Precipitation intensity b=5

S

(b. 1 ) > Flow 5> lmeramon {Recharge

JFigure 1. Schematic diagrams of the modelling of the interaction between the karst aquifer (epikarst, sinkhole,«

karst conduit, PM |, PM II, and PM lll) and stream under dimensionless precipitation intensities (b=

and b = 5). (a) and (a.1) Schematic diagram of the interaction flow between each medium and stream in the

early stage of a precipitation event; (b) and (b.1) Schematic diagram of the interaction flow between each
medium and stream in the middle stage of a precipitation event. The size of the arrows represents the
magnitude of the flow rate, and the direction of the arrows represents the direction of interaction between the

two.
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JFigure 98. (a) Hydrological process curves of the stream; (b) Discharge process of groundwater through the<
epikarst to the stream; (c) Discharge process of groundwater through the karst conduit to the stream; (d)

Discharge process of porous media (PM II) to the stream, for two consecutive precipitation events with first

and second precipitation intensities @

ba.= 5.and by,= 5, respectively.
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Figure 10. Hvdrological process curves under different water retention model parameters (BCn=3,2.5,2 and< [ Formatted: Font: /NTi, Bold
VYGMm = 0.85, 0.8) for (a) stream, (b) karst spring, (¢) epikarst, (d) PM L, (¢) PM II, and (f) PM III. Subplots Formatted: Indent: First line: 0 ch, Line
] spacing: single, Widow/Orphan control
c.1) and (d.1) show the schematic diagram of parameter effects on porous media morphology and the water

retention curves of the BC and VGM models, respectively.

77



1583

1584
1585
1586

[ES-Stream
s-Stream

e

Discharge (ms.'s)
-

0
o 10000 20000 30000
Time (s)
os [0 s-PM 1
_- EIM-pM I
=
-
Eus
@
b
=]
=
]
03 1 1 I
0 10000 20000 30000

Time (s)

=
&

Discharge (m3.'s)
=
=
%

10000 20000 30000

[IS-Epikarst
M-Epikarst

Discharge (mJ.’s)

10000 20000 30000

L " L
10000 20000 30000
Time (s)

Time (s) Time (s)

ol Es-pvn [

Em-Pm 1l 037 EM-pM 11
724 =
B 2
g E
~ ~
2 o
= g

2oa Son

2 S
2 E
= &

10000 20000 30000
Time (s)

78

'[Formatted: Font: /NF, Bold
[Formatted: Justified
\ [Formatted: Font: /ML
‘\‘{Formatted: Font: /NF, Bold

U A




1587

588

589
590
591
592
593
594
1595

e e S e e O e S e S

MODFLOW-CEP Model

Channel
Regular § Imegular

Darcy-Brinkimas-Stokcs Mod|

5 2 124
1)
‘Conduit Cross-Sectional Shape
‘-4 _ 16 093 Circular Square
2 2 =2
Es E1a )
= = o
2 E 00,62
£2 £08 E
E] 2 2 7 Water Level
a a =pen £ Interactive Interface
, 04 - & Unsaturated Karst Conduits
0 L L i i o 1 0 L 1 I
0 750015000 22500 30000 37500 a 7500 15000 22: 30000 37500 0 7500 15000 22500 30000 37500
Time (s) Time (s) Time (s)
0.4
(6]
16
_ - PRUEY S
= = =
rg 1S & "z
5 Py w02l
Eoss Zo g
= = =
F 2 2
& & a0l
0.175 0.
03 ' L L L 15 L L ' ' o L 1 f L
0 7500 15000 22500 30000 37500 ] 7500 15000 22500 30000 37500 0 7500 15000 22500 30000 37500
Time (s) Time (s) Time (s)

Figure 1012. Hydrological process curves for (a) stream, (b) karst spring, (¢) epikarst, (d) PM I, (¢) PM II.« [ Formatted: Font: /NT, Bold

and (f) PM III under conditions of circular conduits with radii rc = 0.2, 0.3, 0.3, and 0.5, and square-cross- [Formatted: Indent: First line:

spacing: single, Widow/Orphan

0 ch, Line
control

section conduits with S-rc = 0.5. Subplot (c.1) shows a schematic diagram of different conduit cross-sectional
shapes.
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1598 Figure 13. Hydrographs under different epikarst permeability conditions (KE=10"° KE=10"7, KE=10%+ [Formatted: Font: /NTi, Bold
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600 a schematic diagram of media interactions under varying epikarst permeability conditions.Figure H—a-H
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