
 

 

Response to Reviewer 1 1 

Comment1：The manuscript is well-organized, with a clear structure that guides 2 

readers through the methodology, results, and implications. However, the study could 3 

be strengthened by addressing some scientific gaps, such as the mechanisms behind 4 

machine learning’s temporal downscaling, the reliability of results in data limited 5 

regions like the southwest, and the lack of comprehensive uncertainty quantification. 6 

Additionally, minor typographical errors and inconsistent figure formatting slightly 7 

detract from the presentation. Overall, this is a high quality study with significant 8 

contributions to hydrology and climate adaptation, but it requires minor revisions to 9 

enhance clarity, rigor, and practical applicability. 10 

Response: We sincerely thank you for your careful review of our manuscript and for 11 

providing valuable suggestions for its improvement. We have thoughtfully considered 12 

each of these suggestions and have provided point-by-point responses below. We hope 13 

that these responses have adequately addressed the reviewer’s concerns, and enhanced 14 

the quality of our work.  15 

 16 

Comment2: The manuscript contains numerous acronyms and would benefit from a 17 

consolidated list or table of definitions. 18 

Response: We have compiled a table for important but uncommon acronyms. This table 19 

will be added as an appendix to serve as a convenient reference for readers. 20 

  21 

Table R1. List of acronyms and their definitions 22 

Acronym Definition 

ET Extremely Randomized Trees 

GB Gradient Boosting 

GEV Generalized Extreme Value 

IDF Intensity-Duration-Frequency 

IDW Inverse Distance Weighting 

KED Kriging with External Drift 



 

 

KED_AP Kriging with External Drift using Mean Annual Precipitation 

KED_DEM Kriging with External Drift using Elevation 

KGE Kling-Gupta Efficiency 

LDLR Long Duration-Large Return Period 

LDSR Long Duration-Small Return Period 

LR Linear Regression 

ML Machine Learning 

MLP Multilayer Perceptron 

NE Northeastern Monsoon Region 

NSE Nash-Sutcliffe Efficiency 

NW Northwestern Arid Region 

OK Ordinary Kriging 

PBIAS Percent Bias 

RF Random Forest 

RMSE Root Mean Square Error 

SDLR Short Duration-Large Return Period 

SDSR Short Duration-Small Return Period 

SE Southeastern Monsoon Region 

SW Southwestern Tibetan Plateau Region 

 23 

Comment 3: The study demonstrates that ML models, like gradient boosting, can 24 

estimate sub-daily intensities from daily gridded data with accuracy comparable to 25 

interpolation methods using hourly data. However, the manuscript lacks a detailed 26 

explanation of how ML achieves this temporal downscaling. What specific features or 27 

model structures enable this capability? For example, are statistical features like daily 28 

extreme precipitation or skewness critical? A discussion or sensitivity analysis of key 29 

input variables (Table 1) would clarify this process. 30 

Response: We agree that a more detailed explanation of the machine learning model’s 31 

performance would strengthen the manuscript. Conceptually, the gradient boosting (GB) 32 



 

 

model does not disaggregate rainfall temporally in a mechanistic sense. Rather, it makes 33 

attempts and learns a cross-scale statistical mapping. To appreciate this mapping, we 34 

have conducted a feature importance analysis using Shapley Additive Explanations 35 

(SHAP) (Lundberg & Lee, 2017). This method, grounded in cooperative game theory, 36 

allows us to attribute the model’s prediction to each input feature, providing a 37 

quantitative explanation of the model’s behavior. 38 

The feature analysis shows that daily-scale features, particularly those that 39 

summarize the right-tail characteristics of the daily precipitation distribution, carry 40 

information about the local storm climatology (Figure R1). The GB model leverages 41 

this information, in conjunction with static covariates like latitude, longitude, and 42 

altitude, to predict the expected intensity of sub-daily extreme events at each location. 43 

In all four cases we examined, the dominant drivers were features derived from the 44 

gridded precipitation data characterizing daily extremes, specifically the gridded daily 45 

precipitation of return periods and the average annual maximum daily precipitation. 46 

Collectively, these features contributed approximately half to two-thirds of the total 47 

feature importance.  48 

In addition, the model preferentially relies on daily-scale tail metrics that are 49 

closest in frequency to the sub-daily target frequency. For instance, for the SDLR case, 50 

the daily 100-year feature was the most influential. For the LDSR case, the daily 5-year 51 

feature was the most significant. This finding is reasonable. When an extreme 52 

precipitation event occurs at a station, regardless of its duration, it is expected that the 53 

corresponding daily gridded precipitation would also be large with strong spatial 54 

correlations. The machine learning model, with its ability to capture non-linear 55 

relationships, leverages this common pattern observed across a vast number of samples 56 

to infer the station’s extreme precipitation at various scales (including sub-daily scales) 57 

from the daily extreme data. For the LDLR case, yet, the daily 50-year feature was more 58 

informative than the 100-year feature. A possible explanation is that the extremeness of 59 

precipitation is somewhat moderated over longer durations. This may allow the model 60 

to rely on daily precipitation metrics that are slightly less extreme. Because 50-year 61 

events are more common than 100-year events, they offer a more stable signal of local 62 



 

 

tail behavior with less sampling noise and reduced difficulty in extrapolation. This 63 

stability makes the 50-year feature a more reliable predictor for the model to utilize. 64 

Furthermore, geographic variables such as altitude, latitude, and longitude 65 

consistently rank as highly important secondary features. This indicates that the model 66 

is not simply performing a statistical scaling but is also effectively learning and 67 

incorporating fundamental climatological and topographical controls on precipitation. 68 

Given the general trend of precipitation decreasing from the lower-altitude southeastern 69 

coastal areas to the higher-altitude northwestern regions in mainland China, a pattern 70 

driven by monsoonal weakening with inland distance and continental topographic 71 

gradients, these geographic features provide the model with a crucial climatological 72 

baseline. They establish the large-scale spatial context for extreme precipitation 73 

intensity, which the model then refines using the daily precipitation data. In short, the 74 

model’s ability to leverage these spatial features in conjunction with daily extreme 75 

precipitation statistics is central to its capacity to produce spatially heterogeneous IDF 76 

estimations. 77 

While this analysis clarifies which features are most critical for this cross-scale 78 

statistical prediction, we acknowledge that it does not fully elucidate the specific 79 

internal mechanisms of the downscaling process. we agree that a deeper mechanistic 80 

exploration is an interesting and important challenge for future studies. We believe our 81 

interpretability provides a valuable first step in the right direction and a foundation for 82 

such future investigations. 83 

 84 



 

 

  85 

Figure R1. SHAP feature importance for GB-based IDF regionalization in mainland 86 

China (four target cases). Horizontal bars show global importance as mean absolute 87 

SHAP values (mean|SHAP|) with percentages; beeswarm points show sample-level 88 

signed SHAP values; point color encodes the standardized feature value (z-score) 89 

from low to high. Lat: latitude; Lon: longitude; Elev: elevation; AnnMean: mean 90 

annual precipitation; AnnSD: standard deviation of annual precipitation; DayMean: 91 

mean daily precipitation; DayKurt: kurtosis of daily precipitation; MaxDayMean: 92 

multi-year mean of the annual maximum daily precipitation; P95DayMean: multi-year 93 

mean of the annual 95th percentile of daily precipitation; P95ExTot: multi-year mean 94 

annual total precipitation from days exceeding the 95th percentile; DRL2y-95 

DRL1000y: daily return level for a 2-1000 year return period. 96 

 97 

Comment 4: Table 1 lists geographic coordinates, elevation, and precipitation statistics 98 

as independent variables for ML. Why were these variables chosen, and were other 99 

meteorological variables, such as temperature or humidity, tested? Given their potential 100 



 

 

influence on extreme precipitation, justifying their exclusion or inclusion would 101 

enhance the robustness of the ML approach. 102 

Response: Our study set out to provide a comprehensive comparison between site-103 

observation-based and gridded-precipitation-based IDF regionalization methods across 104 

mainland China. For the interpolation methods, the foundational data set consists of the 105 

IDF curves derived from station-level precipitation records. Advanced geostatistical 106 

techniques like Kriging with External Drift (KED) can incorporate covariates to 107 

improve accuracy, and previous studies have shown that variables such as elevation and 108 

mean annual precipitation are common and effective choices (Van De Vyver, 2012; Yin 109 

et al., 2018; Zou et al., 2021). To ensure a methodologically fair and direct comparison 110 

between the two approaches, we constrained the machine learning models to use a set 111 

of predictors in parallel. This approach can also show the potential inherent within 112 

precipitation data itself, without introducing additional meteorological variables.  113 

Our findings demonstrate that high levels of accuracy were achieved using only 114 

these features. For instance, the best-performing interpolation method, KED with mean 115 

annual precipitation, yielded KGE values greater than 0.96 for 1-hour-5-year storms 116 

and greater than 0.84 for 1-hour-100-year storms. The top machine learning model, 117 

Gradient Boosting, achieved comparable accuracy with KGE values exceeding 0.94 118 

and 0.87 for the same respective storm events. This high performance underscores that 119 

the predictive ability of our models stems from the precipitation data rather than the 120 

simple aggregation of numerous meteorological variables. An evident advantage of this 121 

methodology is its enhanced applicability to regions where other meteorological data, 122 

such as temperature and humidity, may be unavailable, less reliable, or of coarser 123 

resolution. We do, however, acknowledge that our models showed reduced performance 124 

in certain complex regions. The inclusion of additional meteorological variables could 125 

indeed have the potential to improve accuracy in these specific areas, and this represents 126 

a valuable and promising direction for our future research. 127 

 128 

Comment 5: Line 291, you mention it was repeated five times. Clarify if this was with 129 

or without replacement. 130 



 

 

Response: The five-fold cross-validation was performed using sampling without 131 

replacement, ensuring that each data point was used for validation once only. We will 132 

clarify this in the revised manuscript. 133 

 134 

Comment 6: Section 2.1, the division of mainland China into four regions (NE, SE, 135 

NW, SW) is based on climate and topography, with the Eastern Monsoon region split 136 

along the Qinling-Huaihe line due to its heterogeneity. Was this subdivision sufficient 137 

to capture regional variability, particularly in the SE region with extreme precipitation? 138 

Could further sub-regionalization or alternative regionalization schemes improve 139 

model performance? 140 

Response: The primary purpose of our initial four-region division was to assess 141 

whether the methods, despite their strong performance at the national scale, would 142 

exhibit significant performance degradation for distinct climatic and topographical 143 

zones. This objective was successfully met by demonstrating that model accuracy varies 144 

regionally, most notably highlighting the need for caution when applying the dataset in 145 

the SW region. However, we agree with the reviewer that a more granular subdivision 146 

could capture regional variability in greater detail and provide more specific guidance 147 

for users, thereby increasing the practical value of our work. We have conducted an 148 

additional analysis using an alternative regionalization scheme based on the nine major 149 

river basins of China (Figure R2).  150 

The results from this basin-level analysis corroborate the findings presented in our 151 

manuscript (Tables R2-R9). For instance, both the GB and KED_AP methods 152 

consistently show the poorest performance in the Southwest Basin across all four test 153 

cases, reaffirming the challenges posed by its complex topography and the sparse 154 

station network. The Southeast Basin also exhibited reduced predictive accuracy, a 155 

result likely attributable to the combined effects of extreme precipitation and hilly 156 

topography, which present inherent challenges to spatial modeling. In contrast, basins 157 

with denser gauge networks and more stable precipitation patterns such as the Huaihe 158 

and Haihe basins retain high precision. This basin-based perspective provides a useful 159 

alternative view for readers who focus on these specific hydrologic regions. We will 160 



 

 

include these results as the supplementary materials for reference. 161 

 162 

  163 

Figure R2. Similar to Figure 1 in the main text, yet this map illustrates the spatial 164 

distribution of the nine major river basins in mainland China, which were used as an 165 

alternative regionalization scheme for performance evaluation. The numbered basins 166 

are: 1: Songhua and Liaohe River Basin; 2: Haihe River Basin; 3: Huaihe River 167 

Basin; 4: Yellow River Basin; 5: Yangtze River Basin; 6: Pearl River Basin; 7: 168 

Southeast Basin; 8: Southwest Basin; 9: Continental Basin. 169 

 170 

Table R2. Accuracy metrics for the KED_AP interpolation method across the nine 171 

major river basins for the SDSR 172 

Region NSE PBIAS (%) RMSE KGE 

1.Songhua and Liaohe 

River Basin 0.85 0.38 2.68 0.88 

2.Haihe River Basin 0.9 -0.41 3.19 0.93 

3.Huaihe River Basin 0.96 -0.17 3.9 0.97 

4.Yellow River Basin 0.89 -0.03 3.28 0.92 

5.Yangtze River Basin 0.82 0.13 4.03 0.86 

6.Pearl River Basin 0.72 -0.02 5.25 0.8 

7.Southeast Basin 0.58 0.36 3.62 0.7 

8.Southwest Basin 0.09 -0.72 3.44 0.25 

9.Continental Basin 0.72 -0.06 3 0.83 

Mainland China 0.94 0.03 3.79 0.96 



 

 

Table R3. Accuracy metrics for the KED_AP interpolation method across the nine 173 

major river basins for the SDLR 174 

Region NSE PBIAS (%) RMSE KGE 

1.Songhua and Liaohe 

River Basin 0.66 0.64 8.24 0.73 

2.Haihe River Basin 0.73 -0.4 14.99 0.78 

3.Huaihe River Basin 0.91 0.49 12.27 0.92 

4.Yellow River Basin 0.65 -0.27 15.26 0.72 

5.Yangtze River Basin 0.57 0.09 15.22 0.65 

6.Pearl River Basin 0.52 -0.07 18.33 0.62 

7.Southeast Basin 0.43 0.68 15.53 0.48 

8.Southwest Basin 

-

0.22 -2.5 14.42 

-

0.25 

9.Continental Basin 0.27 -0.48 11 0.46 

Mainland China 0.79 -0.01 14.72 0.84 

 175 

Table R4. Accuracy metrics for the KED_AP interpolation method across the nine 176 

major river basins for the LDSR 177 

Region NSE PBIAS (%) RMSE KGE 

1.Songhua and Liaohe 

River Basin 0.9 0.14 0.19 0.92 

2.Haihe River Basin 0.88 0.11 0.27 0.92 

3.Huaihe River Basin 0.96 0.15 0.42 0.96 

4.Yellow River Basin 0.87 -0.19 0.34 0.89 

5.Yangtze River Basin 0.86 -0.1 0.44 0.89 

6.Pearl River Basin 0.86 -0.02 0.67 0.89 

7.Southeast Basin 0.61 0.93 0.73 0.69 

8.Southwest Basin 0.42 0.84 0.55 0.56 

9.Continental Basin 0.78 0.18 0.28 0.85 



 

 

Mainland China 0.95 0.07 0.45 0.96 

 178 

Table R5. Accuracy metrics for the KED_AP interpolation method across the nine 179 

major river basins for the LDLR 180 

Region NSE PBIAS (%) RMSE KGE 

1.Songhua and Liaohe 

River Basin 0.71 0.97 0.66 0.77 

2.Haihe River Basin 0.67 -0.56 1.41 0.73 

3.Huaihe River Basin 0.9 0.35 1.36 0.9 

4.Yellow River Basin 0.56 -0.15 1.58 0.65 

5.Yangtze River Basin 0.64 -0.04 1.64 0.71 

6.Pearl River Basin 0.72 0.37 2.12 0.77 

7.Southeast Basin 0.48 0.75 2.16 0.52 

8.Southwest Basin 0.2 -0.69 1.48 0.21 

9.Continental Basin 0.31 -0.63 1.09 0.48 

Mainland China 0.82 0.05 1.6 0.87 

 181 

Table R6. Accuracy metrics for the GB machine learning method across the nine 182 

major river basins for the SDSR 183 

Region NSE PBIAS (%) RMSE KGE 

1.Songhua and Liaohe 

River Basin 0.77 -0.78 3.26 0.8 

2.Haihe River Basin 0.87 -0.23 3.52 0.91 

3.Huaihe River Basin 0.94 -1.36 4.74 0.94 

4.Yellow River Basin 0.82 -0.14 4.26 0.86 

5.Yangtze River Basin 0.78 0.51 4.55 0.82 

6.Pearl River Basin 0.69 -1.02 5.72 0.81 

7.Southeast Basin 0.39 0.86 4.33 0.49 

8.Southwest Basin -0.23 -1.72 3.99 0.18 



 

 

9.Continental Basin 0.75 1.43 2.86 0.82 

Mainland China 0.92 -0.01 4.34 0.94 

 184 

Table R7. Accuracy metrics for the GB machine learning method across the nine 185 

major river basins for the SDLR 186 

Region NSE PBIAS (%) RMSE KGE 

1.Songhua and Liaohe 

River Basin 0.68 -1.18 7.9 0.71 

2.Haihe River Basin 0.79 0.48 13.18 0.82 

3.Huaihe River Basin 0.91 -0.45 12.24 0.91 

4.Yellow River Basin 0.67 -0.36 14.87 0.74 

5.Yangtze River Basin 0.66 1.07 13.57 0.75 

6.Pearl River Basin 0.68 -1.54 15.23 0.77 

7.Southeast Basin 0.57 0.66 13.51 0.63 

8.Southwest Basin 

-

0.27 -4.19 14.7 0.12 

9.Continental Basin 0.4 0.49 9.93 0.52 

Mainland China 0.83 0.1 13.3 0.87 

 187 

Table R8. Accuracy metrics for the GB machine learning method across the nine 188 

major river basins for the LDSR 189 

Region NSE PBIAS (%) RMSE KGE 

1.Songhua and Liaohe 

River Basin 0.87 2.39 0.22 0.92 

2.Haihe River Basin 0.92 -0.07 0.22 0.96 

3.Huaihe River Basin 0.96 -0.7 0.39 0.94 

4.Yellow River Basin 0.83 0.28 0.39 0.91 

5.Yangtze River Basin 0.88 0.08 0.42 0.93 

6.Pearl River Basin 0.83 -0.83 0.77 0.89 



 

 

7.Southeast Basin 0.7 -0.39 0.63 0.75 

8.Southwest Basin 0.46 -1.64 0.53 0.74 

9.Continental Basin 0.86 0.74 0.23 0.9 

Mainland China 0.95 -0.08 0.44 0.96 

 190 

Table R9. Accuracy metrics for the GB machine learning method across the nine 191 

major river basins for the LDLR 192 

Region NSE PBIAS (%) RMSE KGE 

1.Songhua and Liaohe 

River Basin 0.68 3.94 0.69 0.81 

2.Haihe River Basin 0.77 -0.17 1.16 0.82 

3.Huaihe River Basin 0.92 -0.09 1.23 0.91 

4.Yellow River Basin 0.61 -0.06 1.48 0.73 

5.Yangtze River Basin 0.77 0.47 1.3 0.85 

6.Pearl River Basin 0.79 -1.11 1.88 0.85 

7.Southeast Basin 0.68 -0.85 1.7 0.75 

8.Southwest Basin 

-

0.08 -3.37 1.72 0.39 

9.Continental Basin 0.5 -0.31 0.93 0.63 

Mainland China 0.88 -0.05 1.36 0.91 

 193 

Comment 7: The study interpolates missing hourly data for gaps <12 hours and assigns 194 

zero for gaps ≥12 hours (beginning on line 157). How was the impact of this 195 

imputation strategy assessed, and what are its implications for IDF curve accuracy in 196 

regions with frequent missing data? 197 

Response: The core of our methodology for developing the station-level IDF curves 198 

involves identifying the annual maximum series for various durations and subsequently 199 

fitting a Generalized Extreme Value (GEV) distribution to these series. A crucial aspect 200 

of this process is that it relies on the peak rainfall values within each year, rather than 201 



 

 

the entire continuous record. We first applied a quality control filter, ensuring that only 202 

stations with less than 10% missing data per year were included in the analysis. This 203 

initial screening reduces the probability that a gap in the data record would coincide 204 

with the annual maximum rainfall event for that year, which by its nature represents a 205 

very small fraction of the total time in any given year. Furthermore, the statistical fitting 206 

of the GEV distribution across a long-term series of annual maxima provides an 207 

additional layer of robustness. Even if the maximum value for a small number of years 208 

in the series were slightly affected by missing data, the overall integrity of the GEV 209 

distribution is largely maintained by the majority of years when the record was complete. 210 

To quantitatively quantify the effect of our data-filling strategy, we conducted a 211 

comparative analysis. We recalculated the IDF curves for all stations from the raw data, 212 

treating the missing periods as having no precipitation, and compared these results to 213 

the IDF curves generated using the data-filling procedure described in the manuscript. 214 

For the four representative cases of SDSR, SDLR, LDSR, and LDLR, the Pearson 215 

correlation coefficients between the two sets of results were 0.9996, 0.9995, 1.0000, 216 

and 0.9998, respectively. This high level of consistency confirms that our approach for 217 

managing missing data has a negligible effect on the derived IDF curves. While we 218 

acknowledge the small chance that a significant number of extreme precipitation events 219 

could occur during periods of missing data and thereby affect the results, we believe 220 

that the chosen method has been a practical and effective solution given the available 221 

data, ensuring the high quality of the station-level IDF curves that form the basis of our 222 

regionalization study. 223 

 224 

Comment 8: The SW region shows significantly lower accuracy (KGE as low as 0.31 225 

for KED_AP and 0.14 for GB), attributed to sparse station density and complex 226 

topography. Given the lack of validation stations in parts of the NW and SW regions, 227 

how reliable are the IDF curves in these areas? Should users be explicitly cautioned 228 

against using these curves without further validation? 229 

Response: We agree that the predictive accuracy in the NW and SW regions is lower, 230 

and we appreciate the reviewer highlighting this point. In fact, a key reason for dividing 231 



 

 

the study area into distinct regions was to demonstrate that a model performing well at 232 

the national level may have reduced accuracy at a regional scale, which warrants 233 

caution during application. In our revised manuscript, we will place emphasis on this 234 

point as a caution about the limitations of reliability when applying the IDF curves in 235 

these specific regions. 236 

 237 

Comment 9: The manuscript notes that hyperparameter tuning via grid search did not 238 

significantly improve ML performance, so default settings were used. Why do you think 239 

tuning was ineffective? Were the default parameters near-optimal, or were the tuning 240 

ranges too narrow? Clarifying this would help readers assess the robustness of the ML 241 

models. 242 

Response: We acknowledge that our initial grid search, which used manually selected 243 

nodes with relatively large intervals and a limited scope, might have overlooked 244 

hyperparameter combinations that could enhance model accuracy. To address this 245 

limitation, we employed Bayesian optimization, a more advanced and efficient method 246 

for hyperparameter tuning (Mockus, 1998; Snoek et al., 2012). This technique is 247 

particularly suitable for exploring large and complex parameter spaces because it uses 248 

the results from previous iterations to inform which set of hyperparameters to test next. 249 

For this new analysis, we also expanded the search range for the hyperparameters of 250 

our machine learning models to ensure a more thorough exploration (Tables R10-R13). 251 

After 100 iterations, the results of this extensive tuning process revealed that the 252 

performance of our models is stable and not highly sensitive to hyperparameter 253 

variations within these broad ranges (Table R14 and Table 3 in the manuscript). While 254 

the Bayesian optimization did yield some minor improvements in accuracy, the overall 255 

gains were marginal and did not alter the fundamental conclusions of our study. This 256 

indicates that the default hyperparameter settings already provide near-optimal 257 

performance for this model in the context of our study. Additionally, in our study, the 258 

main findings are based on the outputs of the GB model, given its superior performance. 259 

However, a comparison of the performance metrics before and after optimization shows 260 

that GB exhibited only a slight increase in accuracy. For any other model to challenge 261 



 

 

the primary findings, it would require a substantial increase in accuracy from 262 

hyperparameter tuning, enough to surpass the performance of GB. Our comprehensive 263 

search demonstrated that such a significant improvement was not attainable. Therefore, 264 

our original choice to proceed with default hyperparameters for simplicity and 265 

consistency is further supported by this new analysis. 266 

Nevertheless, we agree that no search can be truly exhaustive, and it remains 267 

possible that parameter combinations outside the already extensive ranges we tested 268 

could provide incremental benefits. We will state this point in the Discussion section of 269 

our manuscript to acknowledge this inherent limitation. 270 

 271 

Table R10. Hyperparameter search ranges for the Random Forest model using 272 

Bayesian optimization.  273 

Hyperparameter 

Search range for Bayesian 

optimization 
SDSR SDLR LDSR LDLR 

n_estimators 50 - 1000 914 173 943 1000 

min_samples_split 2 - 50 2 2 2 2 

max_features 

0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 

0.70, 0.80, 0.90, None, “sqrt”, 

“log2” 

None None 0.90 None 

 274 

Table R11. Hyperparameter search ranges for the Gradient Boosting model using 275 

Bayesian optimization. 276 

Hyperparameter 

Search range for 

Bayesian optimization 
SDSR SDLR LDSR LDLR 

n_estimators 50 - 1000 826 1000 640 607 

max_depth 2 - 50 4 2 2 6 

max_features 

0.10, 0.20, 0.30, 0.40, 

0.50, 0.60, 0.70, 0.80, 

0.90, None, “sqrt”, “log2” 

0.90 0.40 0.20 0.10 



 

 

subsample 0.10 - 1.00 0.3771 0.8657 0.9867 0.2546 

learning_rate 0.01 - 0.50 0.0791 0.1145 0.2807 0.0100 

 277 

Table R12. Hyperparameter search ranges for the Extremely Randomized Trees model 278 

using Bayesian optimization. 279 

Hyperparameter 

Search range for Bayesian 

optimization 
SDSR SDLR LDSR LDLR 

n_estimators 50 - 1000 938 899 72 1000 

min_samples_split 2 - 50 2 12 4 11 

max_features 

0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 

0.70, 0.80, 0.90, None, “sqrt”, 

“log2” 

None None None 0.10 

 280 

Table R13. Hyperparameter search ranges for the Multilayer Perceptron model using 281 

Bayesian optimization. 282 

Hyperparameter 

Search range 

for Bayesian 

optimization 

SDSR SDLR LDSR LDLR 

hidden_layer_sizes 

(50,), (64,), 

(100,), (128,), 

(256,), (500,), 

(750,), (1000,), 

(64, 64), (128, 

64), (64, 128), 

(150, 150), 

(200, 200), 

(250, 250), 

(15, 30, 45), 

(30, 45, 30), 

(128,64) (150,150) (150,150) (30,45,30) 



 

 

(45, 30, 15), 

(10, 10, 10, 

10), (15, 15, 

15, 15) 

activation 

“logistic”, 

“tanh”, “relu”, 

“identity” 

“tanh” “relu” “relu” “relu” 

alpha (1e-6) - 1 0.7277 0.01525 (1e-6) 0.7825 

 283 

Table R14. Accuracy metrics of machine learning methods after hyperparameter 284 

tuning via Bayesian optimization. 285 

 SDSR SDLR LDSR LDLR 

 NSE 
PBIA

S (%) 
RMSE KGE NSE 

PBIA

S (%) 
RMSE KGE NSE 

PBIA

S (%) 
RMSE KGE NSE 

PBIA

S (%) 
RMSE KGE 

RF 0.92  0.11  4.30  0.94  0.83  0.33  13.40  0.87  0.94  0.00  0.47  0.96  0.88  0.18  1.37  0.91  

GB 0.93  0.19  4.18  0.95  0.84  -0.06  13.16  0.89  0.95  0.00  0.44  0.97  0.88  0.07  1.36  0.90  

ET 0.92  0.08  4.48  0.93  0.82  0.24  13.82  0.86  0.94  0.01  0.49  0.95  0.86  0.02  1.42  0.89  

MLP 0.92  -0.35  4.33  0.93  0.83  -0.16  13.38  0.88  0.95  -0.15  0.43  0.97  0.88  -0.61  1.34  0.92  

 286 

Comment 10: Line 291, The introduction references non-stationarity in IDF curves due 287 

to climate change, but the methodology does not account for it (for example, different 288 

RCP scenarios). Were tests conducted to evaluate the impact of non-stationarity, 289 

particularly for long return periods, 100 or 1000 years? A brief discussion or analysis 290 

of this issue would align the study with current climate research trends. 291 

Response: We agree that in the context of global warming, the distribution functions 292 

used to establish IDF curves are expected to change with the observed increase in 293 

extreme rainfall events. Since the estimates for cases with large return periods are 294 

calculated from the tail of the distribution, they would be more sensitive to such changes, 295 

which could indeed alter the results for these cases. Given that our current study has 296 

already achieved good results using stationary IDF curves based on historical 297 



 

 

observations, it is a worthwhile endeavor to explore how these methods would perform 298 

with non-stationary IDF curves in a warming world. We will add a brief discussion in 299 

the discussion section to acknowledge this point and suggest a further exploration in 300 

the future. 301 

 302 

Comment 11: The manuscript cites a high-resolution IDF dataset in the introduction 303 

for the Qinghai-Tibet Plateau (Ren et al., 2025). A quantitative comparison with this 304 

dataset in the SW region would benchmark the study’s results and highlight its unique 305 

contributions. 306 

Response: Thank you for your constructive suggestion. We have conducted this 307 

quantitative comparison analysis. In our analysis, we extracted the gridded IDF values 308 

from the Ren et al. (2025) product at the locations of our observation stations within 309 

the SW region as examples and compared them against the predictions from our GB 310 

models (Figure R3). The comparison shows a moderate degree of correlation for cases 311 

with smaller return periods, but a weaker relationship for cases with larger return 312 

periods. We also observed that our model’s estimates for short-duration extreme 313 

precipitation tended to be lower than those from the Ren et al. dataset. We attribute 314 

these discrepancies primarily to the differences in spatial resolution between the two 315 

studies. Events with short durations and large return periods represent the most intense 316 

and often localized rainfall phenomena. As discussed in our paper, the SW region is 317 

characterized by exceptionally complex topography and high regional heterogeneity. 318 

These characteristics exert a strong influence on extreme precipitation, leading to 319 

significant local variations. Our model, which was trained on a national scale with a 320 

spatial resolution of 0.1 degrees, is designed for broad applicability and generalizability 321 

across mainland China. This coarser resolution may inherently smooth over the sharp 322 

and localized peaks of extreme rainfall that a high-resolution model is better equipped 323 

to capture. The study by Ren et al., by focusing its training and prediction specifically 324 

on samples from the SW region, was able to achieve a finer spatial resolution (1/30°) 325 

that is likely more sensitive to these localized extremes. However, as the study by Ren 326 

et al. does not provide an explicit accuracy assessment against IDF curves from ground 327 



 

 

stations, it is difficult to evaluate quantitatively which set of predictions is more 328 

accurate for this specific region.  329 

Despite this challenge in direct benchmarking in terms of accuracy, we believe that 330 

both studies using machine learning hold distinct and important value. Our study 331 

successfully demonstrates the robustness and general applicability of a machine 332 

learning framework on a larger spatial scale by regionalizing IDF curves across 333 

mainland China, an area encompassing diverse climates and topographies. The work by 334 

Ren et al., in contrast, serves as a valuable complement, providing a high-resolution 335 

analysis tailored specifically to one of the nation’s most complex regions.  336 

 337 

 338 

Figure R3. Scatterplots comparing IDF estimates from this study’s GB model 339 

against the Ren et al dataset for four representative cases in the SW region. 340 

 341 

Comment 12: The IDF curves are provided at 0.1° and 0.5° resolutions, but their 342 



 

 

alignment with specific applications (such as urban drainage design, flood modeling) is 343 

unclear. Are these resolutions optimized for particular use cases, and how should users 344 

select between them? Providing guidance would enhance the dataset’s practical utility. 345 

Response: We thank the reviewer for this helpful suggestion. The high-resolution 0.1° 346 

product can better preserve the steep local gradients and high spatial variability 347 

characteristic of extreme, short-duration precipitation events. Therefore, we 348 

recommend the 0.1° dataset for detailed urban hydrology studies, the design of urban 349 

drainage networks, flood modeling in small catchments, and the design of hydraulic 350 

infrastructure such as culverts and bridges. In these contexts, the 0.5° product could 351 

lead to an underestimation of peak rainfall intensity, potentially resulting in undersized 352 

infrastructure. The 0.5° product is intended to represent areal-mean rainfall conditions 353 

over a larger area. This resolution is preferable for large-scale hydrologic modeling and 354 

basin-wide water resource assessments. This coarser resolution offers benefits in terms 355 

of computational efficiency, with fewer grid cells leading to reduced data storage 356 

requirements and faster model run times. This also aligns with the input data 357 

assumptions of some models which operate on a similar resolution.  358 

To provide a more intuitive understanding of this scale difference, a user can 359 

consider the number of IDF curves available for a given area. For instance, for a 2500 360 

km2 region, our 0.1° product provides approximately 25 distinct IDF curves, whereas 361 

the 0.5° product yields approximately one, representing an averaged condition. Taking 362 

the city of Beijing (approximately 16000 km2) as another example, an area with a 363 

relatively dense network of observation stations, the existing hourly gauges provide 364 

about 20 station-level IDF curves. Our 0.1° dataset increases this to about 170 available 365 

IDF curves, while the 0.5° dataset provides about 8 curves. 366 

In short, the 0.1° dataset should be selected for local-scale and urban studies that 367 

demand higher spatial fidelity to capture localized extremes, while the 0.5° dataset is 368 

suitable for regional and basin-scale analyses where computational efficiency and a 369 

representation of areal-average conditions are the priority. In our revised manuscript, 370 

we will add a statement to provide this guidance, helping users select the appropriate 371 

dataset resolution for their specific application. 372 



 

 

 373 

Comment 13: GB outperforms other ML methods, but the manuscript does not discuss 374 

its interpretability or the relative importance of input features. A feature importance 375 

analysis would provide insights into which variables drive performance, aiding future 376 

model development. 377 

Response: To address this, we have performed an interpretability analysis using 378 

Shapley Additive Explanations (SHAP), as our response to the previous comment 379 

(Figure R1). This analysis allows for a clear quantification of the relative importance 380 

of each input feature. In the revised manuscript, we intend to include this feature 381 

importance analysis in the supplementary materials to assist the readers interested in 382 

model development. 383 

 384 

Comment 14: Figure 7: The caption mentions 500 samples but does not explain the 385 

sampling method (for example, bootstrap or Monte Carlo). Add a brief clarification. 386 

Response: Thank you for your suggestion. We used the Monte Carlo method to 387 

generate the samples. We will add this clarification to the caption of Figure 7 in the 388 

revised manuscript. 389 

 390 

Comment 15:  391 

(1) Inconsistent spacing in “machine learning” vs. “machinelearning” appears in several 392 

instances (for example lines 103, 408). Standardize to “machine learning.” 393 

(2) Inconsistent spacing before references (for example, line 108, 110, 113). Check 394 

formatting. 395 

(3) Line 735: “Deepseek R1” clarify the tool’s name and provide a citation or link for 396 

transparency. 397 

(4) Figure 1: Include a description of the inset in the caption.  398 

(5) Standardize color scales across panels (a–d for KED_AP, e–h for GB) to facilitate 399 

direct comparisons. Ensure units (mm/h) are explicitly labeled in the caption or legend. 400 

(6) Table 2 and Table 3: Ensure consistent formatting of numerical values (for example, 401 

PBIAS values should all include the % symbol). Add a footnote clarifying that negative 402 



 

 

PBIAS indicates underestimation. 403 

Response: We appreciate the reviewer pointing out these issues with formatting and 404 

clarity. We will carefully check the entire manuscript and correct all the points 405 

mentioned. 406 
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