
General comments 
The paper compares the extreme events between two simulations, a control and an 
Amazon deforestation, using the ICON global model at 5-km resolution. The simulations are 
based on the two three-year runs, using climatological sea surface temperature.  It is an 
interesting article, well-written and well-organized. However, several conclusions should be 
drawn more carefully. It is not clear that the CTL run is producing a realistic Amazon 
climate;  validation at the local scale with direct model output variables would give a clearer 
picture. The unchanged total precipitation with deforestation has implications on the 
precipitation recycling topic, which requires more attention. 

We thank the reviewer for his/her careful reading of our manuscript and valuable comments. As 
this work builds on the work by Yoon and Hohenegger (2025), some points mentioned by the 
reviewer had already been addressed in that study, especially concerning validations, root depth 
values, and simulation period. But we agree that we should have been more explicit on those 
points, and we improved this point in the revised version. We also expanded the validation of Yoon 
and Hohenegger (2025) to the specific variables considered in this study, especially extreme 
precipitation, 2-m temperature, wind, and a simple measure of recycling ratio, using local Fluxnet 
and global datasets. Concerning the recycling topic, we agree that the unchanged total 
precipitation has implications for the precipitation recycling topic, as more moisture is supplied from 
moisture convergence after deforestation. This would mean a reduction in recycling. Unfortunately, 
we don’t have the output that would be required to really trace backwards the origin of the moisture 
that is falling as precipitation over the Amazon, so we cannot say at the outset how much recycling 
is changed. Please find below our detailed response, with the reviewer’s comments. 

Specific comments 

Major concerns about the model setup 

1. The result of no change to the total precipitation after deforestation should be treated 
with care.  

As models increase horizontal resolution and switch off the convective parameterization, 
convective mixing is not treated within its timescale, and stronger updrafts are produced at 
the grid scale. This lifting of the air by the updraughts leads more easily to air saturation. 
The cloud microphysics produces a lot of rain due to saturation, but it does not treat 
column mixing. If some convective mixing is allowed, those extreme precipitation events 
should probably decrease. 



Figure R1. Distribution of hourly precipitation [mm/hour] over the Amazon basin from IMERG 
(grey) and ICON-CTL (black) regridded into a resolution of 0.1°.


 The reviewer’s comment suggests that improper convective mixing in our simulations with 
explicit convection should lead to too intense precipitation extremes. To check this, we validated 
ICON's hourly precipitation distribution against observations (see Fig. R1). ICON has a grid 
spacing of 5 km, whereas IMERG has a resolution of 0.1 degrees. We regridded ICON onto the 
IMERG grid using an area‑weighted interpolation and computed Amazon‑wide normalized PDFs. 
Figure R1 shows that ICON doesn’t overshoot the hourly precipitation tail compared to IMERG. In 
contrast, models with parameterised convection are known to strongly underestimate extreme 
precipitation, which has been shown repeatedly in past studies (e.g., Kendon et al., 2017; Prein et 
al., 2015). For the Amazon region, particularly, Paccini and Stevens (2023) found already that high-
resolution ICON simulation reproduces realistic daily precipitation in the upper bound than the 
low-resolution ICON simulation. We note that ICON slightly overestimates the frequency of violent 
and heavy rain (0.76% against 0.46% in IMERG), which is compensated by a corresponding slight 
underestimation of the remaining rain categories. However, the differences are small, also given 
the uncertainties associated with the IMERG dataset. We add this discussion to the manuscript in 
the method section, lines 88-97.    




2. Local validation of control run. Switching off convective parameterization completely may 
need additional verification at the local scale. I recommend including maps of precipitation 
over the Amazon region to validate precipitation, temperature, and winds at the local scale. 

 We agree that the submitted manuscript lacked a concise model-validation summary. Because 
this study builds upon Yoon & Hohenegger (2025), which was published and where the CTL 
simulation was validated, we added a summary of their findings in the revised version. Those can 
be seen in Yoon and Hohenegger (2025), their Figure S2b and S3. The CTL simulation reproduces 
the spatial distribution of precipitation and the seasonal migration of the rain belt extremely well 
(Fig. S3). The amount of precipitation is also well captured within the Amazon, as the vast area 
has the difference in precipitation smaller than the standard deviation of IMERG (white area from 
Fig. S2b). The hourly precipitation is also reasonably well reproduced according to Figure R1. 




Figure R2. (a) ICON 2m-temperature anomaly (K) to ERA5. (b) Diurnal cycle of 2 m temperature 
averaged over the Amazon from ERA5 and ICON, and (c) temperature distribution of the daily 

(thick solid), daily maximum (thin solid), and daily minimum (thin dashed) temperature for those 
gridpoints from ERA5 (navy) and ICON (grey) datasets. The same distribution from (d, f) averaged 

from two Fluxnet sites (BR-Sa1: 2.8567°S, 54.9589°W; BR-Sa3: 3.0180°S, 54.9714°W) with a 
black line and interpolated nearest gridpoint from ICON-CTL with a grey line.




 To validate temperature, we use ERA5 2m temperature, and two Fluxnet observation datasets 
(BR-Sa1: 2.8567°S, 54.9589°W; BR-Sa3: 3.0180°S, 54.9714°W). ICON has a spatially consistent 
and uniform cold bias over the Amazon (Fig. R2a). It is a well-known feature of the ICON-Sapphire 
model (Hohenegger et al. 2023, Segura et al. 2025), which has persisted across model versions. 
Also, when looking at the diurnal cycle, the 2-m temperature is systematically about 2 K too cold. 
Finally, Figures R2c and f show the PDF of 2-m temperatures, the daily maximum temperature, 
and the daily minimum temperatures. Again, we see the systematic too cold temperatures, 
whereas the bias disappears when looking at the daily range (maximum-minimum temperature) 
due to compensation of the systematic bias. Hence, as the bias in 2-m temperature is a 
systematic model bias and as we are interested in the difference between DEF and CTL, we 
believe that the effect of this bias on the results is minimal. 





Figure R3. (a) Normalized probability density function of hourly 10 m wind speed from ERA5 with 
black lines and from ICON-CTL with grey lines. (b) Wind speed anomaly between ERA5 and 

ICON.


 The 10 m surface wind is validated against ERA5 hourly data, which also has hourly temporal 
resolution available and values at 10 m (see Figure R3). In Figure R3a, ICON shows a higher 
probability of both weak and strong near-surface winds compared to ERA5. When averaged over 
the simulation period, ICON produces, on average, stronger winds over the Amazon, with a mean 
RMS of 1.68 m/s. However, ERA5 is reported to underestimates the surface wind over the 
Amazon basin (Schmitt et al., 2023), and ICON’s finer resolution of surface heterogeneity likely 
enhances wind contrasts, particularly between the ocean and the land.


 In summary, CTL realistically captures the spatial–seasonal pattern and hourly statistics of 
Amazon precipitation when evaluated against IMERG, whereas near-surface temperature shows a 
systematic cold bias. Wind is slightly stronger compared to ERA5. All in all, we conclude that CTL 
reproduces reasonably well the climate over the Amazon. These biases are systematic across 
experiments and thus do not affect our conclusions, which rely on differences between 
simulations subject to the same issue. We document these biases in the method section, lines 
97-105. We didn’t add the validation Figures, as the paper is about the response to deforestation.


3. Forest parameters: Rooting depth is too shallow; Amazon forest roots are much deeper 
and should sustain evapotranspiration during dry periods. 

 The used value of the rooting depth for the forest over Amazon (in the CTL simulation) is the 
default value that JSBACH is using, and this value has been used in other climate simulations. We 
are aware that the value is too small compared to the value of 4.0 m given in Gandu et al. (2004). 



This is also why, for the deforested case, we took a value of 0.05 m (from Correia et al. 2008) and 
not 1 m as given in Gandu et al. (2004), and reported in Yoon and Hohenegger (2025). 


4. Integration length: Three-year length is short for the runs to reach a stable climatic 
condition. The 15-day spin-up time to reach climatic conditions is also short. 

 Yoon and Hohenegger (2025) already discussed the short integration time period and the 
evolution of soil moisture, see their discussion in the method section and corresponding Fig. S1. 
We added a corresponding sentence referring back to the findings of Yoon and Hohenegger 
(2025) in the method section, lines 84-86. 

5. Validations: The work requires validation at the local scale of direct output variables. 
Differences and statistics are not enough to show the realism of the simulations 
(precipitation, temperature, evapotranspiration, winds, in different seasons) in the CTL run. 
There is not enough discussion on precipitation recycling. This is a major topic. 



Figure R4. Monthly ratio between evapotranspiration and precipitation from two sites of FluxNet 
observation, averaged (black triangle), and the corresponding area from ICON (grey circles).


Please see answer 2 for the validation part. 


 About precipitation recycling, we did not attempt a quantitative recycling estimate because 
reliable diagnostics typically require tagged tracers or Lagrangian/Eulerian moisture-tracking (as in 
the references suggested by the reviewer below), which is beyond the scope of this study (and we 
do not have the required output). Instead, as a simple proxy, we computed the ratio between 
evapotranspiration and precipitation (Fig. R4). First of all, we validated the ratio of 
evapotranspiration and precipitation simulated in ICON against the FluxNet dataset. Except for 
July, September, and October, the simulated values agree well with the observations, and the 
seasonal cycle is generally well reproduced. Throughout the year, ICON slightly overestimates 
both latent heat and precipitation compared to FluxNet. July is the only month when ICON 
simulates less precipitation than FluxNet, resulting in a higher ratio. In contrast, because ICON 
shows a faster recovery from the dry season, precipitation is higher in September and October 
than in FluxNet, leading to a lower ratio. Second, in DEF, as the mean annual precipitation is 



maintained but evapotranspiration decreases, the recycling ratio decreases. Still, as we cannot 
properly diagnose recycling ratios and changes in the mean are not the focus of this paper, we 
decided not to discuss the recycling ratio in the manuscript.


6. Concerning Citations that deserve to be mentioned: 
 Thanks for the suggestions. We will add Bottino et al. 2024 to the introduction (see line 61). In 
contrast, we didn’t cite Brito et al (2023) and Pilotto et al (2023) as they are not comparable to our 
simulation settings/ variables that we want to focus on. Brito et al (2023) investigated the impact 
of combined warming and deforestation effects, whereas we only consider deforestation. Pilotto 
et al (2023) implemented historical land use change, only focusing on the southwestern Amazon. 
Moreover, they didn’t examine extreme events, but rather monthly precipitation and average 
temperature.


• Works on deforestation in the Amazon, that have carried out analysis on the impacts 
and extremes. 

Bottino et al. 2024 (https://doi.org/10.1038/s41598-024-55176-5) 
Brito et al. 2023 ( https://doi.org/ 10.1002/joc.8158), 
Pilotto et al. 2023 – (https://doi.org/10.1007/s00382-023-06872-x) 
• Works on precipitation recycling: 

Rocha et al. 2017 (http://dx.doi.org/10.1590/0102-77863230006) 
Salati et al 1979: https://doi.org/10.1029/WR015i005p01250 . Classic paper 

Technical corrections 
1. Missing the reference page 1: RAISG, 2022 

Thank you for spotting the missing reference. It is updated. 


2. Line 190: violent rains can be attributed to increased updraughts, not the other way 
round. 

Thanks for the correction. We rephrased the sentence to, “While our results suggest that violent 
rains can be attributed to increased updrafts through convergence, one might wonder why we see 
more no-rain events.” 


3. Line 63: Typo: not global but globe. 
Thanks for the correction.


4. Line 86: Typo: not ourpur but output 
Thanks for the correction.
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Review of “Extreme events in the Amazon after deforestation” 
This study employs a global storm-resolving climate model (ICON-Sapphire, 5 km 
resolution) to simulate the impacts of complete Amazon deforestation on short-duration 
extreme events. The model captures precipitation, temperature, and wind extremes more 
realistically than coarse-resolution models. The authors find that while annual mean 
precipitation remains largely unchanged, the tails of the distributions shift markedly: violent 
rainfall and no-rain events increase, heat stress intensifies, and extreme winds strengthen. 
The analysis attributes violent rainfall increases to enhanced moisture convergence, and 
stronger winds to both reduced surface roughness and storm downdrafts. Overall, the 
study concludes that deforestation exacerbates climatic extremes. This is an excellent and 
important paper that provides novel insights into how Amazon deforestation alters extreme 
events. I have only a few comments, detailed below. 

We thank the reviewer for his/her careful reading of our manuscript and valuable comments. We 
agree that some sentences were unclear and rephrased those to clarify, and we also added 
information about biophysical parameters, which were lacking in the submitted version. Please 
find below our detailed response, with the comments of the reviewer for clarity.  


Major Comments 
1. At the bottom of page 2, the authors mention that several biophysical changes following 
deforestation but do not explicitly discuss the role of surface albedo. Since Table 1 shows a 
notable increase in albedo after deforestation, please clarify how this factor interacts with 
evapotranspiration and surface energy fluxes in your interpretation. 

We added a few sentences clarifying the impact of albedo on evapotranspiration and surface 
energy fluxes in the introduction, lines 56-60. We added: Although pasture has a higher albedo 
that reduces net surface radiation, deforestation shifts the energy partitioning toward sensible 
heat to the cost of evapotranspiration (Perugini et al., 2017; Duveiller et al., 2018; Butt et al., 
2023). The shift in Bowen ratio outweighs the reduction from increased albedo, leading to higher 
sensible heat flux and higher near-surface temperature. The reduced surface roughness length 
weakens turbulence heat transport, further contributing to near-surface heat accumulation 
(Baldocchi and Ma, 2013; Winckler et al., 2019).


2. Page 4: Please clarify what vegetation or land cover is prescribed after deforestation. 
Relatedly, explain why the leaf area index is still set to 2.7 rather than 0, despite “complete” 
deforestation. 

The pasture values are taken from Gandu et al. (2004), who compiled them from multiple earlier 
studies, which based their values on observations. Gandu et al. (2004) also used a value of 2.7 for 
leaf area index. We clarify the source by adding the table number from Yoon and Hohenegger 
(2025).




3. Page 7: how about CAPE a few hours earlier? Why was 1 hour selected? Justify why 
CAPE was calculated only one hour before violent rainfall events. Would the results differ if 
CAPE were considered several hours earlier 
 

Figure R1.  CAPE [J kg−1] (a) two hours and (b) three hours before violent precipitation over the 
Amazon. The logarithmic probability density function of CAPE is represented with the mean (solid 

vertical lines) and the 90th percentile (dashed vertical lines). CTL is in dark green and DEF is in 
dark magenta. 


 We calculated CAPE one hour prior to violent rainfall events to capture the immediate pre-storm 
environment. In the tropics, CAPE can vary substantially on sub-hourly to hourly timescales and is 
rapidly depleted once convection begins (e.g., Sherwood, 1999; Zhang, 2002). By focusing on the 
1-h lead, we ensure CAPE reflects the state of the atmosphere just before storm initiation, which 
aligns with our objective of testing whether violent rainfall occurs in association with enhanced 
instantaneous instability. We additionally examined CAPE 2 h and 3 h prior to the events (2 h lead 
time: Fig. R1a; 3 h lead time: Fig. R1b). While the signal weakens with increasing lead time, the 
results consistently show the same tendency as for the 1 h lead. This gives confidence that our 
conclusion does not depend sensitively on the exact choice of lead time, although a 1 h primer is 
the most conservative representation of the pre-storm environment. We mentioned in the 
manuscript that the results do not depend upon the chosen lead time and that we chose 1 hour 
as the most conservative representation of the pre-storm environment. Please see lines 184-186.


4. On page 10, lines 198–200, the authors state: “The post-deforestation nighttime 
temperatures become comparable to pre-deforestation daytime values.” What does this 
mean in practice? Please clarify the significance. Do you mean that the nighttime minimum 
after deforestation is as large as daytime maximum before deforestation? A clearer 
formulation would help readers interpret the magnitude and implications of this result. 

Yes, this is indeed what we described. We rephrased accordingly and see lines 224-225.




5. Wet bulb temperature is a widely used indicator of heat stress. You could use both 
temperature and humidity changes to represent heat stress. If the sign change of wet bulb 
temperature differs from other indices, it is possible that the heat stress change is not 
significant. 
 

Figure R2. Box-and-whisker plots of heat stress indices (HSI) are the same as Figure 8 for CTL 
and DEF simulations (green and magenta), additionally with two sensitive simulations: (i) fixing 

humidity at the CTL values while allowing temperature to change after deforestation (red boxes), 
and (ii) fixing temperature at the CTL values while allowing humidity to change (blue boxes).


We agree with the reviewer that Twb shows an insignificant impact of deforestation. To further 
examine the role of temperature and humidity for each heat stress, we conducted an additional 
sensitivity test (Fig. R2). We calculated each heat stress by (i) fixing humidity at the control (CTL) 
values while allowing temperature to change due to deforestation (red boxes), and (ii) fixing 
temperature at the CTL values while allowing humidity to change (blue boxes). The results show 
that the strongly increased temperature after deforestation leads to high heat stress in all indices, 
whereas the decreased humidity after deforestation reduces heat stress. Among all indices, Twb is 
the only one where the humidity reduction (-1.88 °C) manages to compensate for the increase in 
temperature (+1.64 °C). This follows from the different formulations of the indices and speaks for 
using more than one index. We added this discussion in lines 267-275.


6. Page 14: I do not understand: In summary, the relative contributions to the total wind 
speed anomaly are 60% R/C, 13% D, and 27%. Please re-explain the factor separation 
results more clearly.


We rephrased the last two paragraphs of section 3.3 as follows: 
We aim to quantify the additional increase in 10 m wind speeds after deforestation that is due to 
downdrafts associated with violent rain, separating this effect from changes caused by surface 
roughness and background circulation. To achieve this, we use the Alpert-Stein factor separation 



method (Stein and Alpert, 1993). We cannot distinguish between the effect of surface roughness 
and of background circulation, as we do not have simulations with unchanged
roughness at hand. We refer to this factor as R/C and to the downdraft effect as D. We categorize 
cases into ’no-light rain’ (including no rain and light rain) and ’violent rain’ in both the CTL and DEF 
simulations (Table 2). The mean wind during no-light rain in CTL is the baseline case. We then 
assume that wind changes between no-light rain and violent rain in CTL are due to D. Wind 
changes in the no-light rain events between CTL and DEF primarily reflect the influence of R/C, 
whereas wind changes in violent rain events in DEF compared to no-light rain in CTL entail the 
three components: R/C, D, and synergy between R/C and D.

In CTL, the mean wind speed during no-light rain is 0.92 m/s (see value in Tab. 2). For the violent 
rain, it is 1.40 m/s. This is an increase of 0.48 m/s, which we attribute to the effect of D alone. By 
contrast, the mean wind speed for no-light rain in DEF is  3.11 m/s, giving an increase of 2.19 m/s.  
Hence, the effect of R/C is much larger (f(R/C)=2.19 m/s) compared with D (f(D)=0.48 m/s), 
showing that R/C dominates the response. In DEF, the mean wind speed during violent rain rises 
to 4.56 m/s. Compared to the no-light rain in CTL, this is an increase of 3.64 m/s (4.56 – 0.92). 
Given the contributions of 2.19 m/s for R/C and of 0.48 m/s for D, their synergy account for 0.97 m/
s. Expressed in percentage, this gives contributions of 60% from R/C, 13% from D, and 27% from 
their synergy.

Minor comments 

On page 3, please add a map clearly showing the spatial extent of the deforested region in 
the simulations. 
We agree that a reader would like to know the spatial extent of the deforested region. Since the 
requested area is shown in Fig. 7a and to avoid redundancy while ensuring clarity, we explicitly 
referred to Fig. 7a on page 3.
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