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Abstract. Urban heatwaves are intensifying due to climate change, posing significant risks to public health and 

infrastructure in densely populated cities. This study develops a spatially explicit framework to assess urban heat 

vulnerability in the Dhaka Metropolitan Area (DMA), Bangladesh, by integrating vegetation and soil moisture indicators 10 

derived from Synthetic Aperture Radar (SAR). Sentinel-1 imagery was used to compute the Radar Vegetation Index (RVI) 

and estimate surface soil moisture (SSM) through empirical modelling, combining a modified Water Cloud Model (mWCM) 

with regression calibration against SMAP data. MODIS-derived Land Surface Temperature (LST) was used to characterize 

thermal variation. A Geographically Weighted Regression (GWR) model, supported by Principal Component Analysis 

(PCA), quantified local relationships between LST, RVI, and SSM. Spatial autocorrelation analysis using Moran’s I 15 

confirmed clustering in both thermal and environmental variables. Results show that areas with higher vegetation and soil 

moisture correspond to lower LST, highlighting their cooling effects. The model achieved strong performance (R² = 0.8835; 

RMSE = 0.6126; MAE = 0.4753), demonstrating its robustness and applicability in data-scarce contexts. A Heat 

Vulnerability Index (HVI) was constructed to spatially map susceptibility to extreme heat. This SAR-based approach 

supports targeted urban heat adaptation strategies through spatially informed planning. 20 

1 Introduction 

Urban areas worldwide are experiencing intensified warming due to the combined effects of global climate change and rapid 

urbanization (Cheval et al., 2024). This phenomenon, known as the Urban Heat Island (UHI) effect, results in higher 

temperatures in urban regions compared to their rural surroundings, exacerbating heat-related health risks and energy 

demands (Diem et al., 2024). Recent studies have highlighted the increasing frequency and intensity of heatwaves in cities, 25 

emphasizing the need for comprehensive assessments of urban heat vulnerability (Deng et al., 2024; Liu et al., 2025). Dhaka, 

the capital of Bangladesh, is one of the fastest-growing megacities in the world, facing significant challenges related to urban 

heat (S. Islam et al., 2024). The city's dense population, rapid urbanization, and limited green spaces contribute to 
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pronounced UHI effects (Shanto et al., 2025). Recent research indicates that Dhaka experiences higher temperatures 

compared to its rural surroundings, with implications for public health and urban liveability (Abrar et al., 2022).  30 

Several recent studies have examined the urban heat island (UHI) effect in Dhaka, highlighting its spatial heterogeneity and 

underlying drivers. Dewan et al. (2021) found that, until 2019, the mean annual daytime surface UHI intensity (SUHII) in 

Dhaka was 2.88 °C, with surface imperviousness and vegetation loss acting as key determinants. Tabassum et al. (2024) 

employed the Weather Research and Forecasting (WRF) model to simulate thermal and wind environments in Dhaka, 

demonstrating that anthropogenic heat and urban morphology amplify UHI effects, particularly at night. Recent geostatistical 35 

approaches, such as hotspot analysis of remotely sensed land surface temperature (LST) data, have shown substantial 

increases (93.73%) in thermal hotspots across Dhaka, driven by land use changes from 1991 to 2015 (Hussain et al., 2023). 

Another study by Abrar et al. (2022) utilized a heat vulnerability index (HVI) based on 26 demographic and environmental 

indicators, analysed through principal component analysis (PCA), to identify high-risk zones at the sub-city level. Shanto et 

al. (2025) presented a 23-year trend analysis of LST in Dhaka, highlighting an alarming rise of up to 1.98 °C during summer 40 

seasons, largely attributable to increased impervious surfaces and diminishing vegetation.  

Radar remote sensing, particularly using SAR data from Sentinel-1, has gained prominence for its ability to retrieve key 

biophysical variables even under cloudy and low-light conditions (Aishi et al., 2023). Among the SAR-based indices, the 

Radar Vegetation Index (RVI) has proven effective for assessing vegetation dynamics and surface conditions in urban and 

peri-urban environments (Oh & Kim, 2014). RVI exploits the dual-polarization capacity of Sentinel-1 (VV and VH) to 45 

delineate vegetation structure and moisture variability, offering complementary insights to optical indices such as NDVI 

(Holtgrave et al., 2020). This index is particularly useful in densely built environments where vegetative cover is spatially 

heterogeneous and temporal changes are rapid (Hu et al., 2024). Sentinel-1 data have also been applied in the retrieval of soil 

moisture through various approaches, including statistical models, physical scattering models, and machine learning 

frameworks. One robust example is the High Spatial Resolution Soil Moisture Estimation Framework (HSRSMEF), which 50 

integrated Sentinel-1 SAR and Sentinel-2 optical data in Google Earth Engine (GEE) to map soil moisture with high 

accuracy (Guo et al., 2023). Similarly, synergistic use of multi-source Sentinel data, as demonstrated by Madelon et al. 

(2023), provided 1-km resolution surface soil moisture estimates for operational hydrological modelling and climate risk 

mapping. Furthermore, recent advances in knowledge-guided deep learning have been employed to estimate field-scale soil 

moisture from Sentinel-1 SAR data, thereby overcoming some limitations of empirical backscatter–moisture relationships 55 

(Yu et al., 2025). Kim & van Zyl (2009) first included vegetation canopy water content retrieval using time-series dual-

polarized SAR data, paving the way for integrated vegetation-soil moisture modelling. 

Despite the significant progress made in utilizing SAR data for environmental monitoring, several gaps persist, particularly 

in the context of urban heat vulnerability assessments. Numerous studies have explored UHI and associated vulnerabilities in 

Dhaka; most have relied exclusively on optical imagery and conventional LST retrieval techniques using Landsat or MODIS 60 

platforms (Dewan et al., 2021). These methods often suffer from data gaps due to persistent cloud cover during the monsoon 

season. Although RVI provides a promising radar-based alternative, its application in Dhaka's urban core remains 
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underexplored. Moreover, while international studies like Guo et al. (2023) and Madelon et al. (2023) have developed 

sophisticated frameworks for soil moisture retrieval, these are rarely integrated into heat vulnerability models. There is a lack 

of standardized methodology to incorporate SAR-derived soil moisture and vegetation indices simultaneously within a 65 

spatially explicit urban heat vulnerability framework. Most existing models are either LULC-based or rely heavily on 

temperature proxies, often neglecting subsurface hydrological influences that radar can uniquely capture (Abrar et al., 2022). 

On the methodological front, spatial statistical techniques such as GWR, Moran’s I, and PCA are underutilized in studies 

using SAR-derived variables. These tools offer powerful means to explore spatial heterogeneity, autocorrelation, and multi-

dimensional vulnerability factors. 70 

In response to the limitations identified above, this study proposes an innovative framework for assessing urban heat 

vulnerability in Dhaka by incorporating radar-based vegetation and soil moisture indices and robust spatial statistical 

techniques. One of the key novelties lies in the operationalization of Sentinel-1 radar data for soil moisture retrieval using 

WCM and SMAP in the absence of in situ data. To account for spatial variation in the relationships between variables, the 

study applies Geographically Weighted Regression (GWR), allowing for localized model interpretation. Further, the study 75 

employs Local Moran’s I to detect spatial clusters of vulnerability, offering a statistically robust basis for identifying high-

risk zones. By embedding physically meaningful and cloud-robust radar-derived variables into a geostatistical modelling 

framework, this study not only enhances the methodological rigor of UHI vulnerability assessment in Dhaka but also 

contributes a replicable, cloud-resilient framework suitable for other data-constrained, rapidly urbanizing cities in the Global 

South. Its innovations respond directly to data availability challenges and analytical gaps in monsoon-prone cities and offer a 80 

novel and operationally feasible approach to inform climate-resilient urban planning. 

2 Methodology 

2.1 Study area 

Dhaka, the capital of Bangladesh, is situated in the Ganges Delta (23°42′N, 90°22′E) and spans approximately 306.38 km². 

The Greater Dhaka Area, home to an estimated population of nearly 18 million, is experiencing one of the highest urban 85 

growth rates in the world, largely driven by rapid industrial development and continuous rural-to-urban migration (Huq & 

Alam, 2003; World Bank, 2023). This study focuses on the Dhaka Metropolitan Area (DMA) due to its acute urban heat 

risks and status as a representative tropical megacity. The DMA’s high population density, industrial intensity, and 

impervious surfaces exacerbate its UHI effect, posing critical environmental challenges (Islam et al., 2024). 

Climatically, the DMA experiences a tropical monsoon climate with pronounced UHI effects. Between 1988 and 2018, 90 

summer LST rose by up to 3.76°C (March-May), linked to urbanization and vegetation loss (Begum et al., 2021). Rapid 

land-use changes transformed the DMA’s landscape, with built-up areas expanding from 30% (1991) to >90% (2019) and 

average LST increasing by 3-5°C over 28 years (Faisal et al., 2022). Between 1993 and 2023, DMA lost 139.17 km² of water 

bodies and vegetation to urban expansion, and retained the highest amount of LST hotspot zones due to highly concentrated 
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urban areas (Miah et al., 2024; M. N. Rahman et al., 2022). Long-term analysis (1981-2015) reveals increasing annual 95 

maximum temperatures (0.017°C/year) and declining rainfall (-16.11 mm/year) across Dhaka Division, with urban cores 

experiencing sharper thermal anomalies (Khatun et al., 2017). The selection of the DMA for this analysis was based on 

several interrelated criteria, including its high urban density, pronounced vulnerability to extreme heat, climatic diversity, 

and data availability. The compact urban form of the DMA exacerbates heat accumulation and slows nighttime cooling, 

resulting in persistent thermal stress, particularly in densely populated neighbourhoods (Oke, 1982; Tan et al., 2010). 100 

2.2 Data collection and preprocessing 

A suite of multi-source geospatial datasets was collected and processed to analyse vegetation dynamics, LST, and soil 

moisture patterns across the DMA for the 2016-2022 period. These datasets were selected based on spatial and temporal 

coverage, resolution, and suitability for urban climate analysis. All preprocessing, filtering, and harmonization tasks were 

performed using Google Earth Engine (GEE), and datasets were reprojected to WGS84 and resampled to ensure consistency 105 

in spatial alignment.  

Table 1: Description of the datasets used in the study. 

Data Type Source Date Range Resolution 

Sentinel-1 SAR ESA / GEE 2016-2022 10 m 

MODIS LST (gap-filled) GEE 2016-2020 1 km 

MODIS LST NASA 2021-2022 1 km 

SMAP Soil Moisture NASA / GEE 2016-2022 9 km 

Heatwave Data BMD & NOAA 2016-2024 N/A 

Daily maximum temperature data were collected from the Bangladesh Meteorological Department (BMD) and supplemented 

with NOAA reanalysis products to ensure continuity and regional consistency. A heatwave event was defined, following 

BMD criteria, as any day with a maximum temperature (Tmax) exceeding 36 °C (Rashid et al., 2024). Heatwave dates were 110 

identified using processed daily Tmax data, and events were categorized by duration and magnitude using Python in Jupyter 

Notebook. Annual frequency and seasonal distributions were evaluated to assess temporal patterns and shifts in extreme heat 

events. These identified heatwave periods were used to filter and align other datasets for targeted analysis.  

Sentinel-1 C-band Synthetic Aperture Radar (SAR) data, acquired in the Interferometric Wide (IW) swath mode, were used 

to derive vegetation and moisture-sensitive backscatter signals. Dual-polarization bands (VV and VH) were utilized, with 115 

VV polarization emphasized due to its sensitivity to soil moisture, while VH polarization provided complementary 

information on vegetation structure and volume scattering (Baghdadi et al., 2017; Torres et al., 2012). SAR data were 

calibrated and filtered to suppress speckle noise and perform further analysis (Filipponi, 2019). 

Land Surface Temperature (LST) data were obtained from the MODIS Terra and Aqua satellites via the MOD11A1 and 

MYD11A1 products. For the 2016-2020 period, significant cloud-induced data gaps were addressed using a spatiotemporal 120 
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interpolation technique based on splines and the inverse distance weighting method (Zhang et al., 2020). This gap-filling 

process enabled the generation of near-continuous daily LST records at 1 km spatial resolution. For the 2021–2022 period, 

unfilled MODIS LST data from NASA’s LP DAAC archive were used directly, and quality assurance flags were applied to 

filter out low-quality observations. 

Surface soil moisture data were retrieved from NASA’s Soil Moisture Active Passive (SMAP) mission using Level-3 passive 125 

microwave products available via Google Earth Engine (GEE). These daily data, with a nominal resolution of 9 km, were 

filtered to exclude retrievals affected by Radio Frequency Interference (RFI) or dense vegetation, based on the quality 

metrics outlined by (Chan et al., 2018). Although the spatial resolution was coarser than that of other datasets, SMAP was 

retained due to its proven reliability in detecting surface moisture variability in areas lacking in situ measurements.   

This study focused on the period from 2016 to 2022, constrained by the availability of key remote sensing datasets - 130 

specifically MODIS LST and SMAP soil moisture products, which were only accessible through the end of 2022. The 

selection of this timeframe ensured consistent temporal coverage across all variables of interest, enabling coherent multi-

sensor analysis. 

2.3 RVI and SSM estimation from Sentinel-1 SAR 

RVI and surface soil moisture (SSM) were retrieved from Sentinel-1 SAR data to characterize vegetation cover and soil 135 

moisture conditions across the Dhaka Metropolitan Area. RVI is a quantitative index derived from polarized SAR 

backscatter, offering a cloud- and light-independent approach to assess vegetation density and structural complexity (Hu et 

al., 2024). This makes it particularly useful in urban and tropical environments, where persistent cloud cover limits optical 

observations (Holtgrave et al., 2020; Kim & van Zyl, 2009). In this study, RVI was calculated using the dual-polarization 

backscatter coefficients of the Sentinel-1 C-band SAR, following the simplified formulation:  140 

𝑅𝑉𝐼 =
4 ∙ 𝜎𝑉𝐻

0

𝜎𝑉𝑉
0 + 𝜎𝑉𝐻

0  

Where 𝜎𝑉𝑉
0  and 𝜎𝑉𝐻

0  represent the backscattering coefficients for vertical-vertical and vertical-horizontal polarizations, 

respectively. High RVI values correspond to dense or complex vegetation structures, while lower values indicate bare 

surfaces or impervious urban areas. 

The Water Cloud Model (WCM), originally developed by Attema & Ulaby (1978), describes total radar backscatter as a 145 

combination of vegetation and soil contributions:  

𝜎0 = 𝜎𝑣𝑒𝑔
0 + 𝑇2 ∙ 𝜎𝑠𝑜𝑖𝑙

0  

Where 𝜎𝑣𝑒𝑔
0 , 𝜎𝑠𝑜𝑖𝑙

0  and 𝑇2 are vegetation and soil backscatter components and two-way attenuation through the vegetation 

canopy, respectively. Later refinements introduced vegetation descriptors (e.g., LAI, NDVI) and empirical coefficients to 

better capture the soil-vegetation interaction (Dubois et al., 1995; Khellouk et al., 2021; Kumar et al., 2015). More recently, 150 

Singh et al. (2023) proposed a modified WCM (mWCM) that incorporates first-order vegetation-soil interaction: 

https://doi.org/10.5194/egusphere-2025-3218
Preprint. Discussion started: 16 July 2025
c© Author(s) 2025. CC BY 4.0 License.



6 

 

𝜎𝑡𝑜𝑡𝑎𝑙
0 = 𝛼 ∙ 𝜎𝑣𝑒𝑔

0 + 𝛽 ∙ 𝜎𝑠𝑜𝑖𝑙
0 + 𝛾 ∙ 𝜎𝑖𝑛𝑡

0 + 𝜀 

Where 𝛼, 𝛽, 𝛾 are empirically derived scaling constants and 𝜎𝑖𝑛𝑡
0  accounts for interaction effects. This model has shown 

improved accuracy in estimating both soil moisture and vegetation parameters. Building upon the principles of the original 

and mWCM, a simplified form was adopted in this study to estimate SSM in GEE, integrating Sentinel-1 VV-polarized 155 

backscatter with RVI. Initial preprocessing involved calibrating the SAR data and applying the Lee speckle filter. A simple 

linear regression model was then constructed using temporally overlapping SMAP SSM data. To reduce scale differences 

and improve the interpretability of the regression, both Sentinel-1 VV backscatter (𝜎0) and SMAP SSM values were then 

normalized across all images using a min-max scaling function: 

𝜎𝑉𝑉(𝑛𝑜𝑟𝑚)
0 =

𝜎0 −min⁡(𝜎0)

max(𝜎0) − min⁡(𝜎0)
 160 

𝑆𝑆𝑀𝑆𝑀𝐴𝑃(𝑛𝑜𝑟𝑚) =
𝑆𝑆𝑀𝑆𝑀𝐴𝑃 − 𝑆𝑆𝑀𝑚𝑖𝑛

𝑆𝑆𝑀𝑚𝑎𝑥 − 𝑆𝑆𝑀𝑚𝑖𝑛

 

This step ensures that both variables lie between 0 and 1, helping stabilize the regression fit. Then, the linear regression was 

performed between 𝜎𝑉𝑉(𝑛𝑜𝑟𝑚)
0  and 𝑆𝑆𝑀𝑆𝑀𝐴𝑃(𝑛𝑜𝑟𝑚), the resulting calibration equation is: 

𝑆𝑆𝑀𝑆𝑀𝐴𝑃(𝑛𝑜𝑟𝑚) = 𝑎 + 𝑏 ∙ 𝜎𝑉𝑉(𝑛𝑜𝑟𝑚)
0  

Where a and b are the intercept and slope of the linear fit, respectively, both derived from the least-squares linear regression 165 

on the training dataset. To enhance the accuracy of the retrieval, vegetation effects were incorporated into the model using 

RVI, resulting in a modified version of the WCM: 

𝑆𝑆𝑀 = 𝑎 + 𝑏 ∙ (𝜎𝑉𝑉(𝑛𝑜𝑟𝑚)
0 + 𝑅𝑉𝐼) 

Here, 𝜎𝑉𝑉(𝑛𝑜𝑟𝑚)
0 ⁡serves as a proxy for soil moisture sensitivity, RVI approximates vegetation contribution, and the additive 

structure reflects combined first-order contributions of both vegetation and soil to the total backscatter. This simplified 170 

model was chosen for operational feasibility, particularly over large and heterogeneous urban regions with limited in situ 

calibration data. The linear form provides a practical trade-off between physical interpretation and statistical performance, 

while still reflecting the dual contributions outlined in more complex WCM formulations. 

2.4 Spatiotemporal analysis 

In this study, GWR has been applied to explore the spatially varying relationships among key environmental indicators - 175 

RVI, SSM, and LST - within the DMA. Firstly, the RVI, SSM, and LST datasets were resampled to a common spatial 

resolution of 1 km during export from GEE, ensuring spatial alignment across variables. For each variable, multi-year 

temporal means were computed per pixel over the study period, resulting in a single representative raster layer. This 

averaging approach helped reduce noise and inter-annual variability while retaining core spatial patterns. Then all the 

variables were min-max normalized to a [0,1] range to ensure scale comparability among input features. To assess 180 

multicollinearity among predictors, Pearson correlation coefficients were computed, and a Variance Inflation Factor (VIF) 
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analysis was conducted. VIF was calculated for the standardized variables to evaluate redundancy (O’brien, 2007). To 

reduce multicollinearity and condense information across the three variables, PCA - a widely accepted method for 

dimensionality reduction and feature importance extraction - was performed on the normalized rasters (Jollife & Cadima, 

2016). Subsequently, GWR was applied to explore the spatially varying relationships between LST and the two principal 185 

components derived from RVI and SSM (Brunsdon et al., 1996). The first principal component (PC1), which captured the 

majority of variance across predictors, was retained as a composite environmental stressor. This ensured interpretability and 

numerical stability in the GWR model (Lu et al., 2014). The simplified form of the GWR model used is: 

𝐿𝑆𝑇 = 𝛽0 + 𝛽1 ∙ 𝑃𝐶1 + 𝜀 

Where PC1 is the principal component score summarizing RVI and SSM at a specific location, 𝛽0 and 𝛽1⁡are location-190 

specific intercept and slope terms, and 𝜀 is the model residual. An adaptive kernel was used, which adjusts the bandwidth 

depending on local point density, ensuring a better fit in both dense and sparse areas. The optimal bandwidth was selected 

using corrected Akaike Information Criterion (AICc) to balance model complexity with fit. GWR allows for the estimation 

of local regression coefficients, enabling analysis of non-stationary spatial interactions between variables across the urban 

landscape. To evaluate the predictive performance of the GWR model, several statistical metrics were utilized, including 195 

residuals, Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the coefficient of determination (R²). 

Additionally, spatial residual maps were generated to highlight regions where the GWR performed poorly, helping to 

identify zones where explanatory variables were insufficient or other unmodeled factors might be at play. 

Although multi-temporal mean rasters were used for the main modeling components, trends were also examined using the 

available date-wise composite data layers to investigate both spatial and temporal dynamics. GWR models were also fitted 200 

separately for each composite dataset. This allowed for the analysis of how localized relationships between vegetation, soil 

moisture, and land surface temperature evolved across the DMA. Comparing these outputs enabled the identification of 

persistent versus shifting spatial patterns in urban climate interactions. Additionally, Moran’s I was calculated separately for 

each date-wise composite raster of LST, RVI, and SSM to evaluate spatial autocorrelation (He et al., 2019). This analysis 

quantified spatial clustering patterns for each observation date, revealing whether high or low values were spatially 205 

aggregated across the metropolitan area. 

2.5 Heat Vulnerability Index (HVI) calculation 

To derive objective and data-driven weights for the construction of the HVI, PCA was employed on the standardized dataset. 

These weights were then used to calculate the HVI using a linear combination: 

𝐻𝑉𝐼 = 𝑤1 ∙ 𝐿𝑆𝑇 + 𝑤2 ∙ 𝑆𝑆𝑀 + 𝑤3 ∙ 𝑅𝑉𝐼 210 

Where 𝑤1 , 𝑤2 , and 𝑤3  are the PCA-derived weights. This method avoided subjective assumptions and ensured that the 

relative importance of each variable in the HVI reflected empirical variance contributions. The resulting HVI raster was 

classified into three vulnerability categories - Low, Moderate, and High - based on quantile breaks to ensure balanced spatial 
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distribution among classes. This approach facilitated the identification of urban areas with disproportionately high 

environmental heat stress, supporting targeted intervention and adaptation strategies in urban planning.  215 

3 Results and discussion 

3.1 Extreme heat events identification 

The analysis conducted for the period 2016-2024 reveals a notable increase in both the duration and frequency of heatwave 

events in the Dhaka Metropolitan Area (DMA). Particularly, the later years of the study showed a marked rise in multi-day 

heat events. Seasonal conditions - such as peak solar radiation, reduced precipitation, and stagnant atmospheric circulation - 220 

contribute to conducive environments for extreme heat accumulation. As illustrated in Fig. 2(b), substantial year-to-year 

fluctuations were observed. The years 2020 and 2021 recorded the highest number of days exceeding the 36 °C threshold, 

indicating particularly severe and prolonged heat events. In contrast, 2018 and 2023 experienced fewer extreme temperature 

days, implying temporary moderation of heat stress. These patterns align with the findings of Prodhan et al. (2024). 

 225 

Figure 1: Monthly distribution of the number of heatwave days across the DMA from 2016 to 2024. 

Figures 1 and 2(a) show that extreme heat days cluster heavily in March-May, with April being the peak month for heatwave 

occurrence in DMA. This coincides with the pre-monsoon season, when conditions favour heat build-up before the arrival of 

summer rainfall (Rahman et al., 2024). Following this period, a consistent decline in heatwave events gives way to the 
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monsoon season (June-October), during which cloud cover and rainfall substantially reduce surface temperatures. 230 

Conversely, November to February exhibit no heatwave days, reaffirming the cooler winter pattern typical of Bangladesh 

(Rashid et al., 2024; Tabassum et al., 2024). The growing prevalence of long-duration heatwaves (≥3 days) from 2020 

onward reflects a heightened urban heat vulnerability, especially the occurrence of 15+ consecutive days of heatwave in 

2021 and 2022 (Fig. 3). These prolonged events pose increasing challenges for public health, urban infrastructure, and heat-

risk management, especially among socio-economically vulnerable communities (Rashid et al., 2024). But over these two 235 

years, the frequency of shorter-duration heatwaves was lowest despite the rising trend post-2019. 

 

Figure 2: (a) Cumulative monthly heatwave days in the DMA from 2016 to 2024, indicating seasonal heatwave patterns; (b) 

Annual total number of heatwave days recorded in the DMA. 

 240 

Figure 3: Yearly breakdown of monthly heatwave days from 2016 to 2024, categorized by event duration - 1 day, 2 consecutive 

days, 3 or more consecutive days, and extended periods of 15+ days. 
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3.2 Autocorrelation analyses 

Figure 4 shows GEE exports of LST, SSM, and RVI maps on representative dates. These maps were then stacked date-wise 

and analysed across multiple available dates to evaluate spatiotemporal environmental stressors.  245 

 

Figure 4: Maps showing LST, SSM, and RVI for three representative dates - 12 April 2017, 7 June 2020, and 17 March 2022. 
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Spatial autocorrelation was assessed using Moran’s I across multiple single-date composites for LST, SSM, and RVI during 

2016-2022. Moran’s I values close to +1 indicate strong clustering; 0 implies spatial randomness; values near –1 suggest 

dispersion. LST consistently shows high positive spatial autocorrelation, with values ranging from 0.5 to 0.6 in most years, 250 

peaking at 0.6304, reflecting persistent clustering of heat in urban zones and reinforcing the UHI effect. These findings 

corroborate prior studies (Rizwan et al., 2008). SSM shows the strongest autocorrelation, reaching a Moran’s I of 0.8797, 

indicating large, homogeneous patches of similar moisture conditions. Such clustering suggests stable hydrological patterns 

and supports vegetation growth, which can counter urban heating (Brocca et al., 2007). RVI consistently displayed the 

lowest Moran’s I values, typically ranging between 0.20 and 0.3 . These relatively low values indicate weak to moderate 255 

positive spatial autocorrelation, suggesting that RVI is more spatially heterogeneous than SSM or LST. LST’s clustering 

remained stable throughout the study period. RVI shows a declining trend in Moran’s I from 2016 to 2020, with further 

instability after 2021, reflecting increased spatial fragmentation of vegetation, potentially due to urban development. SSM 

remained strongly clustered, but some variability across different times of the year is seen, possibly due to seasonal rainfall. 

Together, these autocorrelation results suggest a dynamic interplay between urbanization, green cover loss, and heat 260 

vulnerability. The stable clustering of high LST values underscores the persistence of heat islands, while fluctuations in RVI 

and SSM clustering point to environmental changes affecting thermal comfort. These results reinforce the necessity of 

integrated urban planning focused on enhancing green infrastructure to regulate temperature extremes and improve resilience 

to heatwaves (Bowler et al., 2010; Gill et al., 2007). 

3.3 GWR and predictive modelling 265 

GWR accounts for local variation by calibrating a regression equation at each spatial location, weighted by proximity (Lu et 

al., 2014). In this study, GWR was employed to explore the spatially and temporally varying influence of SSM and RVI on 

LST across the DMA. Even though the GWR coefficients for RVI exhibited spatial and temporal variability, the coefficients 

are mostly positive, which aligns with conventional expectations where vegetation mitigates surface heating via 

evapotranspiration and shading. On the other hand, GWR coefficients for SSM were consistently negative across most 270 

periods, reinforcing the hypothesis that higher soil moisture has a cooling effect on surface temperatures. This pattern was 

especially prominent in early 2021, indicating strong temporal variability in the soil moisture-LST relationship. The 

persistence of negative coefficients highlights the significance of soil moisture in regulating urban thermal environments. 

The spatial distribution of GWR coefficients is presented through a heatmap in Fig. 5. Darker red regions indicate strong 

negative coefficients, suggesting a greater influence of environmental factors (SSM, RVI) in mitigating high LST values. 275 

These are often concentrated in areas with limited vegetation or dense built-up environments. The Dhaka city center, lying in 

the deepest red zone, is indicative of the UHI effect. Conversely, green-shaded regions exhibit positive coefficients, 

indicating lower thermal stress, likely due to better vegetative cover or more reflective surfaces (Yang et al., 2005). But the 

peri-urban zones mostly lie where PC1 shows near 0 values, which covers the majority of the DMA. The central and eastern 
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parts of the DMA show steep spatial gradients in coefficient values, revealing heterogeneous urban development patterns 280 

and uneven green infrastructure. 

 

Figure 5: Spatial distribution of GWR coefficients for the principal component of LST across the DMA, indicating the localized 

influence of SSM and RVI. 

3.4 Model accuracy assessment 285 

The residual analysis from the GWR model offers critical insights into its predictive reliability. Mapping the spatial 

distribution of residuals (Fig. 6) identifies zones where the model either overestimates or underestimates LST. The blue 

zones show positive residuals, indicating underestimation of actual LST. This discrepancy may be attributed to localized heat 

sources or microclimatic effects not captured by the predictor variables (Fotheringham et al., 2009). On the other hand, red 

zones indicate negative residuals, suggesting the model over-predicts LST. These areas may benefit from unaccounted 290 

cooling factors that were not modeled (Brunsdon et al., 1996). Areas with near-zero residuals suggest good agreement 

between observed and predicted LST values, attesting to the model’s spatial accuracy under certain conditions. Figure xx 

shows that most areas have near-zero residuals. 
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Figure 6: Residual distribution from the GWR model across the DMA, highlighting areas of overestimation and underestimation 295 
in predicted LST values. 

The accuracy of the GWR model was evaluated using several key statistical metrics. The Mean Absolute Error (MAE) of 

0.4753 indicates a low average prediction error, suggesting that the model performs well in capturing the general behavior of 

the data without being overly influenced by outliers (Willmott & Matsuura, 2005). The Root Mean Squared Error (RMSE) is 

0.6126, reflecting high model accuracy and the model's effectiveness in minimizing larger prediction errors (Chai & Draxler, 300 

2014). Most notably, the R² score of 0.8835 demonstrates that the model explains approximately 88.35% of the variance in 

LST, indicating strong predictive power and a robust fit to the spatial data (Fotheringham et al., 2009). The high R² and low 

error metrics indicate that the GWR model effectively captures spatial LST variations using SSM and RVI. Overall, the 

GWR model proves robust for spatial LST prediction in DMA.  

3.5 Heat vulnerability mapping of the DMA 305 

The Heat Vulnerability Index (HVI) map provides a spatially explicit classification of vulnerability across the DMA, 

categorizing regions into high, moderate, and low vulnerability zones (Fig. 7). This framework enables targeted planning for 

heat risk mitigation. Hotspots such as Uttar Khan, Khilgaon, Demra, and parts of Turag exhibit elevated HVI values. These 

regions are characterized by high population density, extensive built-up areas, and limited vegetative cover - conditions that 

intensify the UHI effect. These zones demand immediate interventions such as heat-resilient infrastructure, greening 310 
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initiatives, and heat warning systems. Areas like Uttara, Cantonment, Badda, and Kotwali fall under moderate vulnerability. 

These districts exhibit transitional land use with varying vegetation and built-up cover. Proactive efforts - such as improving 

urban greenery, promoting water-sensitive urban design, and regulating construction density - can help prevent further 

escalation of heat exposure (Harlan et al., 2006). Peripheral neighborhoods such as Daksahinkhan, Mohammadpur, Adabor, 

and Tejgaon demonstrate low HVI scores, attributable to greater vegetation density, lower urban density, or the presence of 315 

open green areas. These areas serve as cooling buffers and should be preserved to sustain ecosystem services and thermal 

regulation (Gill et al., 2007). The spatial gradient from high vulnerability in central areas to lower vulnerability on the 

periphery underscores the impact of urban morphology on heat risk. The HVI map thus serves as an essential decision-

support tool for urban policymakers. It guides spatial prioritization for heat mitigation and adaptation, enabling equitable 

allocation of resources to safeguard at-risk communities and promote climate-resilient urban growth. 320 

 

Figure 7: HVI zonation map of the DMA, classifying regions into low, moderate, and high vulnerability to urban heat stress based 

on LST, SSM, and RVI. 
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4 Conclusion 

This study employed GWR to explore the spatial heterogeneity in the relationship between LST, RVI, and SSM across the 325 

DMA. By integrating radar-derived indices and spatial regression techniques, the analysis reveals critical spatial patterns that 

underpin the UHI phenomenon in one of South Asia’s most rapidly urbanizing megacities. The GWR results underscore the 

localized cooling effects of soil moisture, with consistently negative coefficients across most periods, reaffirming its 

moderating role on urban surface temperatures. Conversely, RVI exhibited more spatially and temporally variable 

relationships with LST, reflecting the complex influence of vegetation structure, density, and seasonal dynamics. The spatial 330 

distribution of GWR coefficients highlights distinct thermal gradients within the city, with higher thermal vulnerability 

concentrated in densely built-up central zones and relatively lower stress in vegetated or peri-urban areas. This spatial 

differentiation was further supported by the accuracy metrics, indicating strong model performance. 

The generated HVI map offers a valuable spatial decision-making tool, delineating high-risk zones such as Khilgaon, Demra, 

and Uttar Khan, where mitigation efforts should be prioritized. These findings have significant implications for climate-335 

resilient urban planning, particularly in integrating green infrastructure, enhancing surface reflectivity, and preserving natural 

soil moisture regimes. As extreme heat events become more frequent under ongoing climate change, the approach and 

results presented here contribute to a data-driven framework for managing urban thermal risk in developing megacities. 

Future work should incorporate dynamic socioeconomic variables and high-resolution urban morphology data to better 

capture the multidimensional nature of urban heat exposure. Nonetheless, the spatially explicit insights from this study offer 340 

a critical foundation for adaptive planning and equitable heat mitigation strategies in Dhaka and similar urban environments. 

Code and data availability 

MODIS LST and Sentinel-1 data used in this study are publicly available from GEE platform. All data used and produced in 

this study, including heatwave records, LST, SSM and RVI, are available upon reasonable request from the corresponding 

author. Much of the spatial analysis, including time-series extraction and preprocessing, was conducted using GEE. The 345 

scripts used for autocorrelation analysis and model development have been developed in Python. Code scripts developed in 

GEE JavaScript API and Python can be shared for academic purposes by contacting the authors directly. 

Interactive computing environment 

Spatial data preprocessing and temporal compositing were primarily conducted using GEE due to its high-performance 

cloud-based processing capabilities and access to multi-source Earth observation data. Statistical modelling and validation 350 

metrics was performed in Python 3.10 using mgwr, pysal, and geopandas libraries. Visualization and layout design were 

done using ArcGIS. 
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