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Abstract. The Single Particle Soot Photometer (SP2) detects refractory aerosol particle mass on a single-particle basis via

laser-induced incandescence (L-II). While the SP2 has traditionally been used to quantify black carbon aerosol mass in the

atmosphere, the instrument is increasingly being used to detect and quantify other types of absorbing aerosols, such as min-

eral dust or anthropogenically-sourced iron oxide aerosols. Quantifying the mass loadings and emission sources of absorbing

aerosols in the atmosphere is important for understanding their role in the climate cycle. Supervised machine learning al-5

gorithms have shown potential to classify different types of aerosols from L-II signals, but these methods are sensitive to

instrument configuration and require training datasets generated from laboratory samples, which do not generalize well to

ambient atmospheric aerosols. Here we explore the effectiveness of an unsupervised deep learning method, a variational au-

toencoder (VAE), applied directly to L-II signals from the SP2 in order to classify different types of absorbing aerosols. The

VAE compresses L-II signals into a bottleneck latent representation and reconstructs an output as similar as possible to the input10

signal, thereby reducing dimensionality. We apply this approach to a dataset comprised of laboratory samples of materials that

show detectable incandescence in the SP2, including fullerene soot (as a proxy for black carbon), coated fullerene soot, coal fly

ash, mineral dust, volcanic ash, hematite, and magnetite. We explore optimal latent representations of L-II signals to maximize

separability of different aerosol classes by varying the size of the latent representation, and find that a latent representation of

3 allows us to capture the majority of the information in the L-II signals relevant for identifying different types of absorbing15

aerosols. We demonstrate that unsupervised machine learning is a promising method for identifying distinct populations of

aerosols detected by the SP2.

1 Introduction

Atmospheric aerosols originate from a multitude of sources: primarily from natural sources such as wind-blown dust from

deserts, sea salt from the oceans, and smoke emitted from forest fires, and from anthropogenic sources such as the combustion20

of fossil fuels. Detection of these aerosols is essential to understanding the impact they have on the climate. While some

aerosols such as sulfate aerosols from volcanoes can have a cooling effect by blocking out sunlight, other types of aerosols

absorb light from the sun, heating up the atmosphere locally and substantially contributing to the overall warming of climate

(Bond et al., 2013; Baumgardner et al., 2012). Absorbing aerosols such as black carbon, brown carbon, and mineral dust are
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important short-lived climate forcers, with significant direct climate radiative effects. Quantifying the atmospheric abundance25

of these aerosols requires in situ observations in order to determine their emissions, sources, and lifetime in the atmosphere.

The Single Particle Soot Photometer (SP2), shown in Figure 1, is the state-of-the-art instrument for detecting refractory

black carbon (rBC) in the atmosphere (Stephens et al., 2003). For the past two decades, the SP2 has been used in numerous

ground-based and airborne field studies to measure the atmospheric abundance of rBC (e.g. Schwarz et al., 2006; Moteki and

Kondo, 2010; Lamb et al., 2018), an aerosol sourced from incomplete combustion that has important implications for climate30

(Bond et al., 2013). Increasingly, the SP2 is being used to detect a more diverse spectrum of light-absorbing refractory aerosols

like mineral dust and anthropogenically sourced iron-oxide aerosols (Moteki et al., 2017; Liu et al., 2018; Lamb, 2019).

Figure 1. A schematic of the SP2 instrument. Figure adapted from Schwarz et al. (2006).

The SP2 uses laser-induced incandescence (L-II) to quantify refractory aerosol mass on a single particle basis (Stephens

et al., 2003). The SP2 samples aerosols in the sub-micron range by pulling particles into the cavity of an ND-YAG laser (1064

nm). As particles pass through the laser beam, if they have a sufficient absorption cross-section at 1064 nm, they will heat35

up and incandescence. Here we use observations from the NOAA SP2 instrument (Schwarz et al., 2006, 2010). In its typical

configuration, the NOAA SP2 acquires signals on 4 detectors with a 5 MHz acquisition rate as the aerosols pass through the

center of the laser beam. Two channels detect light scattered by particles as they pass through the center of the ND-YAG laser

using an avalanche photo-diode, and two channels detect light emitted by particles during incandescence using photomultiplier

tubes (PMT) that measure visible light in two spectral bands: a narrow band PMT with peak sensitivity at 420 nm (350-45040

nm) that we refer to as the “blue" incandescent channel, and a broadband PMT with peak sensitivity at 630 nm (450-650 nm)

that we refer to as the “red" incandescent channel. One of the scattering channels has a position-sensitive detector and is used to

determine the position of the particle relative to the center of the laser beam, as has been described in detail in Gao et al. (2007).

The position sensitive detector is used to determine the center point of the laser in order to derive information about the coating
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state of rBC particles by using the leading-edge-only fitting method and assuming Mie core-shell theory (Gao et al., 2007). The45

L-II signal associated with each aerosol detected by the SP2 therefore consists of time series from these 4 detection channels,

which provide information about how the particle scatters and emits light as it passes through and (potentially) evaporates in

the laser beam.

Supervised machine learning, involving the training of algorithms on a labeled dataset, has been used in the past to classify

different types of absorbing aerosols with detectable incandescence in the SP2 (Lamb, 2019). While supervised machine50

learning methods can classify aerosols based on features derived from L-II signals, the algorithms need to first be trained on

labeled data sets. Lamb (2019) previously used observations of laboratory proxies for typical atmospheric aerosols detectable

by the SP2 to create a labeled data set. While supervised machine learning performs well in classifying laboratory data sets

by type, it has limited ability to generalize to ambient atmospheric aerosols, especially in cases where laboratory proxies are

not readily available or when aerosol populations that have not been previously identified in past data sets are measured during55

airborne field campaigns.

On the other hand, unsupervised machine learning algorithms discern inherent patterns and correlations in data sets, without

requiring predefined categories. Unsupervised machine learning has not previously been applied to the problem of classifying

L-II signals. Here we explore how unsupervised machine learning can be applied to L-II signals from the SP2, with the goal

of identifying different populations of aerosols based on the information in their L-II signals alone. We explore how these60

unsupervised methods can provide insights into the variability of aerosols of different types based on their L-II response in the

SP2. Our analysis also provides insight into the amount of independent information that can be gained from L-II signals in

terms of identifying the composition of refractory aerosols that reach detectable incandescence in the SP2.

To demonstrate this method, we focus on the application of unsupervised machine learning to observations of laboratory

proxies for several types of anthropogenic and natural aerosols that reach detectable incadescence in the SP2 (Lamb, 2019).65

We briefly describe these data sets, data pre-processing, and the unsupervised machine learning algorithm in Section 2. We then

discuss the application of the VAE to the laboratory samples in Section 3. In Section 4 we discuss how this approach can be used

to identify outliers in ambient populations, and in Section 5 we explore how this method can be used to improve classification

of different aerosols that the SP2 is sensitive to. Finally, in Section 6, we discuss the potential for machine learning to improve

SP2 data analysis and interpretation.70

2 Methods

2.1 Dataset

To investigate how effectively unsupervised machine learning can be used to differentiate different types of aerosols detected by

the SP2, we use a labeled data set of L-II time series (Lamb, 2025) that was previously described in detail in Lamb (2019). This

dataset is comprised of L-II signals obtained from measuring laboratory proxies for aerosols typically found in the atmosphere75

that reach detectable incandescence in the SP2. The data set includes examples of observations for 7 classes of aerosols:

Fullerene Soot (FS), Fullerene Soot coated with glycerol (FS+glyc), Clifty Fly Ash (CFA), Arizona Test Dust (ATD), Volcanic
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Table 1. Overview of laboratory data sets.

Label Class Total % with Detectable Incandescence

0 FS 20004 98.28

1 FS+glyc 20018 81.04

2 CFA 20009 8.53

3 ATD 20001 23.93

4 VA 20005 27.00

5 Fe2O3 20008 91.85

6 Fe3O4 20037 98.21

Ash (VA), Iron (III) Oxide (Fe2O3), and Iron (IV) Oxide (Fe3O4). The total number of aerosols of each class measured is given

in Table 1.

This laboratory data set was developed to create a relatively balanced data set that includes examples of aerosols that the80

SP2 might observe in the atmosphere. In ambient conditions, the majority of aerosols that the SP2 observes are rBC particles.

Fullerene soot is a laboratory proxy with a similar response in the SP2 as rBC. BC observed in the atmosphere is typically

coated with non-absorbing materials, and we use the FS+glyc samples as examples of typical L-II signals of thinly coated rBC

particles. Several studies have demonstrated that SP2s that have been modified to provide greater spectral contrast between

their narrow and broadband detectors (such as the NOAA SP2 used in this study) can also detect iron oxide aerosols associated85

with anthropogenic combustion sources with high efficiency: magnetite (Fe3O4) can be detected with nearly 100% efficiency

under typical conditions, while the detection of hematite (Fe2O3) is lower and size-dependent (Yoshida et al., 2016). The two

iron oxide powders (Fe2O3 and Fe3O4), have a similar response in the SP2 as anthropogenically sourced iron oxide aerosols

from combustion sources (Moteki et al., 2017; Lamb, 2019; Lamb et al., 2021), which we refer to as FeOx following past

literature. In addition, the SP2 also detects measurable incandescence in a small fraction of aerosols with metallic inclusions,90

such as mineral dust, coal fly ash, and volcanic ash (Heimerl et al., 2012; Lamb, 2019). Here we use Arizona Test Dust as a

laboratory proxy for mineral dust, and the coal fly ash is Clifty-F. The volcanic ash was collected on the ground in Iceland from

the Eyjafjallajökull Volcano.

2.2 Pre-processing L-II Time Series from the SP2

In this study, we focus on applying unsupervised machine learning to L-II signals from the SP2 instrument. In a previous95

study using supervised machine learning to classify aerosols detected by the SP2, significant feature engineering was used to

derive specific, interpretable features from the L-II time series (Lamb, 2019). By contrast, as input to our unsupervised machine

learning algorithm, we use the unprocessed L-II signals, which are 80 µs time series consisting of 400 points (dt = 0.2 µs, see

Figure 2 for examples), under the assumption that the non-linear deep learning method will learn higher order features directly

from the unprocessed L-II time series, that will provide insights into the variability and distinguishability of the observed100

aerosol particles.
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For each of the 4 detection channels, we define a feature matrix Xi, where Xi ∈ RN×t is an N × t matrix. N is the total

number of L-II signals (the total number of observed aerosol particles), t = 400 corresponds to the number of time points

in each signal, and i ∈ [0,3] corresponds to the detection channel in the SP2 instrument. The 0th channel corresponds to the

scattering channel, the 1st channel corresponds to the “blue" incandescent channel, the 2nd channel corresponds to the “red"105

incandescent channel, and the 3rd channel corresponds to the position sensitive detector.

The typical approach to derive information from L-II signals from the SP2 is to find the maximum values for the scattering

and incandescent channels, as these are proportional to the optical size and refractory mass of an aerosol, respectively. We

define the maximum of channel 0 as Smax = max(X0), and the maximum of channel 1 as Imax = max(X1). In addition, the

“color temperature ratio", is defined as110

CR =
max(X1)
max(X2)

, (1)

the ratio between the peaks of the blue and red incandescent signals. CR is proportional to the blackbody temperature of the

aerosol as it incandesces in the laser beam. Here the gains on the blue and red detectors have been chosen such that the CR≈ 1

for rBC (corresponding to a characteristic blackbody temperature of 4320 K) and CR ≈ 0.7 for FeOx (corresponding to 3300

K). In practice, there is a significant amount of variability in CR across the population of aerosols of each class detected by the115

SP2. For further details of typical SP2 analysis, see discussion in Schwarz et al. (2006, 2010); Lamb (2019).

To first order, FeOx signals can be differentiated from rBC signals in the SP2 by differences between their blackbody

temperature (CR) and their incandencent mass (proportional to the peak of the incandesent channel, Imax). However, CR

and Imax do not provide complete separation between the two classes, particularly when Imax is small (i.e. for less massive

particles) (Lamb, 2019). FeOx also demonstrates a less skewed incandescent peak in the SP2 than rBC signals, likely due to120

the metallic aerosols melting in the SP2 laser beam as they are heated to incandescence (Adachi et al., 2016; Lamb, 2019). In

addition, other types of aerosols detected by the SP2 such as ATD, VA, and CFA exhibit a broad range of Imax and CR values,

due to the presence of metallic inclusions with a variety of chemical compositions. The maximum value of the scattering

channel, Smax, is proportional to the total optical size of the aerosol particle (except in cases when particles are large and the

scattering channel is saturated). ATD, VA, and CFA generally also demonstrate significant scattering in the laser beam after the125

main incandescent peak, due to incomplete evaporation of these aerosols in the SP2. Because these particles are generally larger

than typical rBC particles, the scattering channel is more likely to be saturated for these aerosol types. Coated rBC and FeOx

particles can be identified from the Ch. 0 time series due to an initial peak in the scattering signal as the coating evaporates

from the particle, followed by a second peak when the refractory portion of the particle evaporates in the laser beam.

In this study we focus on particles that have detectable incandescence in the SP2. Therefore, we first remove any L-II signals130

where Imax is close to the Ch. 0 signal baseline (Imax < 3). The majority of the rBC and FeOx aerosols have detectable

incandescence. However, only a fraction of the ATD, CFA, and VA aerosols demonstrate detectable incandesence in the SP2

(Table 1), likely because only a fraction of the particles in these aerosol populations have sufficient metallic inclusions (Lamb,

2019).
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Pre-processing data is a typical first step for applying deep-learning algorithms to data sets, as methods work best when the135

input features are normalized between 0 and 1 and normally distributed. In our analysis, we tested several potential methods

for pre-processing Ch. 0 and Ch. 1 time series, which we delineate here:

1. Division by the maximum of each channel across all samples in the training dataset.

2. Normalization of each channel by the minimum and maximum across all samples in the data set

3. Normalization of the channel by the minimum and maximum of each individual sample in the data set140

4. Relative scaling for each sample using logarithmic normalization.

We found that the third approach demonstrated the most promise in terms of separability of classes within the latent space

learned by the VAE analysis that we describe in the rest of this paper. To pre-process the raw L-II signals for unsupervised

machine learning, we therefore normalized Ch. 0 and Ch. 1 such that the time series for the scattering and blue incandescent

channels are normalized between 0 and 1. That is, the input feature vector for our algorithm is145

Xscaled
i =

Xi−min(Xi)
max(Xi)−min(Xi)

(2)

where i ∈ [0,1]. The pre-processing method that we choose impacts the meaning of latent variables that are learned by

the VAE. In this case, the normalization approach that we have chosen means that we focus on learning compressed latent

representations that describe the shape of the signals for Ch. 0 and Ch. 1, under the assumption that the shape of the L-II signal

alone (without information about magnitude) can provide information that can be used to differentiate between different types150

of aerosol particles that are detected by the SP2.

2.3 Dimensionality Reduction of L-II Signals with a Variational Autoencoder

After preprocessing the raw L-II signals for Ch. 0 and Ch. 1, the data sets are randomly split into training, validation, and test

data sets based on the aerosol sample number. We use 50% (140,082 samples) for training, and 25% (70041) for validation and

25% (70042) for testing our unsupervised machine learning approach.155

To apply unsupervised machine learning to the L-II signals, we use a variational auto-encoder (VAE). A VAE is a type

of generative machine learning model that is designed to generate new data that is similar to the data that it is trained on

(Kingma and Welling, 2022). It does this by learning a non-linear mapping from a higher-dimensional feature space to a lower

dimensional latent space representation, which can then be sampled to generate new data points. VAEs are widely used in

machine learning for tasks like image generation and anomaly detection (Wei et al., 2020).160

A VAE consists of two neural networks with trainable weights, which are the encoder and the decoder models (Figure

2, bottom panel). The training of a VAE involves optimizing the parameters of both the encoder and decoder in order to

maximize the reconstruction of the original higher-dimensional input from its lower-dimensional latent space representation,

while also ensuring that the learned latent space representation is smooth and continuous. The encoder takes an input signal
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Figure 2. An overview of the unsupervised machine learning approach applied to observations from the SP2. First, aerosols are

sampled by the SP2 and then after pre-processing, a variational autoencoder is trained to learn a lower dimensional latent representation of

the L-II signals from each detection channel. We then explore several downstream tasks, using the latent space representations learned from

the L-II signals.

and encodes it into a lower dimensional latent representation (Figure 2). The action of the encoder can be represented as a165

function, q(z|x,θenc), where x is the input signal, z is its latent representation, and θenc are the weights of the encoder neural

network. The encoder outputs parameters to a probability distribution, assumed to be Gaussian, which are the mean µ and
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variance log(σ2). Meanwhile, the decoder takes a point z in the latent space and reconstructs the input x̂. The decoder defines

a probability distribution over the possible outputs given a latent point. For this reason, the decoder can be represented as

p(x̂|z,θdec) where θdec are the weights of the decoder neural network, and x̂ is the reconstructed signal (Kingma and Welling,170

2022).

In order to learn the weights θenc and θdec of the encoder and decoder networks, we minimize the loss function for a VAE,

which is the sum of the reconstruction loss and the similarity loss (Kingma and Welling, 2022). The reconstruction loss ensures

that the decoded samples match the original inputs, while the similarity loss ensures that the learned latent representation is

smoothly varying.175

For reconstruction loss, we use binary cross-entropy loss.

Lreconstruction =−q(z|x) [logp(x|z)] (3)

We also explored using mean squared error loss for the reconstruction loss and found that this did not make a significant

difference in our analysis of the L-II signals.

The similarity loss ensures that the distribution of latent variables (z) stays close to a prior distribution, which is assumed to180

be a standard normal distribution (Kingma and Welling, 2022). This term acts as a regularizer and effectively ensures that the

learned latent space is smoothly varying:

Lsimilarity = DKL(q(z|x) ||p(z)), (4)

where DKL is the Kullback-Leibler divergence between the encoder’s distribution q(z|x) and the prior distribution p(z). The

KL-divergence measures the distance between two data distributions, and is defined as,185

DKL(p(x) ||q(x)) =
∫
−p(x) ln

(
p(x)
q(x)

)
dx (5)

The total loss Ltotal for the VAE can then be computed by summing the reconstruction loss and similarity loss:

Ltotal = Lreconstruction + LKL (6)

Here we use the VAE algorithm implemented in the pyroVED library (Ziatdinov; Biswas et al., 2023), which is built on top

of the Pytorch deep learning library and the Pyro probabilistic programming language (Bingham et al., 2018). The pyroVED190

library minimizes Eq. 6 using stochastic variational inference, using the Adam optimizer (Kingma and Ba, 2017).

For the L-II signals from the SP2, we independently train two VAE’s on the normalized Ch. 0 and Ch. 1 signals, respectively.

Here, we are interested in extracting information about the shape of the L-II signals from the scattering and incandescent

channels, under the assumption that the shape of the signals can provide information about the type and characteristics of the

aerosol that was measured in the SP2. The latent variables z effectively characterize the shape of the normalized L-II signals,195

and we train two VAEs in order to independently learn representations for the normalized scattering and incandescent channels.
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3 Analysis of Learned Latent Representations of the L-II signals

We first use the VAE to encode the L-II signals from the training data set for both Ch.0 and Ch.1 into lower dimensional latent

representations, which we refer to as zi. We refer to the latent variables for Ch. 0 as z1 and z2, and the latent variables for

Ch. 1 as z3 and z4. Because these latent variables are learned representations of the normalized Ch.0 and Ch.1 time series,200

these variables provide information about the shape of these signals. Thus, the distance between variables in the latent space

representations provide a means to visualize how similar L-II signals are to one another.

The smoothness constraint in the VAE ensures that signals with greater similarity are mapped to points that are closer to-

gether in the latent space, preserving meaningful structure in the learned representation. This constraint encourages continuity,

meaning that small changes in the input signal result in gradual variations in the latent representation. However, the specific205

structure of these learned representations is inherently shaped by the underlying data distribution, as the VAE optimizes its

encoding based on the patterns present in the underlying data. The distribution of latent variables for each aerosol class can

provide information about how similar signals within each class are to one another, and it can also provide information about

how much separability there is between different aerosol classes in terms of their latent space representations. These distribu-

tions provide insights into whether the shape of the normalized signals for Ch. 0 and Ch. 1 can be used to differentiate classes210

of absorbing aerosols that the SP2 is sensitive to.

The latent variables learned from the normalized Ch. 0 and Ch. 1 signals demonstrate smoothly varying characteristics when

we plot the distributions of the aerosol populations in terms of Imax vs. CR (Figure 3). Imax (proportional to the mass of the

refractory portion of the aerosol) and CR (proportional to the temperature at which an aerosol incandesces in the SP2’s laser

beam) are strongly correlated with both the size of the aerosol and its chemical composition. As discussed in Section 2.2, the215

left mode in Figure 3 is typical of FeOx aerosols, and the right mode is typical of rBC aerosols and their proxies, including

FS, due to differences in their characteristic incandencent temperatures. Since the latent representations are smoothly varying

in this space, this suggests that the shapes of both the scattering and incandescent signals are strongly correlated with their

overall distributions in terms of refractory aerosol mass and incandescent temperature. This suggests that the shape of the L-II

signals alone (without information about the signal magnitude) provides information about the physio-chemical properties of220

the aerosols detected in the SP2.

To better understand how the latent variables represent the shapes of the L-II signals, we use the trained decoders from each

VAE to map out the latent space representations in terms of representative Ch. 0 and Ch. 1 time series. Figure 4 shows the

latent manifold for Ch. 0, left, and for Ch. 1, right. By generating characteristic signals along the deciles of the distributions

of the latent variables for Ch. 0 and Ch. 1, we can examine how the latent variables capture specific properties of the time225

series signals such as symmetry and saturation. The saturation of signals in the Ch. 0 time series (Figure 4, left panel) shows

flatness at the peaks, which is most common for dust-like particles (ATD, VA, and CFA), as the scattering detector becomes

saturated for these large particles, and the peaks are artificially flattened. These signals are more evident in the bottom right

side of the latent manifold for Ch. 0. The iron oxide aerosols Fe2O3 and Fe3O4 commonly have symmetric scattering signals,
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Figure 3. Incandescent-peak-height to color-ratio relationship for different incandescent aerosols visualized by latent representation:

Each point represents a single aerosol particle, and we color the points by the latent space representations for Ch. 0 (z1 and z2, top panels)

and Ch. 1 (z3 and z4, bottom panels). Here, we normalize z1, z2, z3 and z4 between 0 and 1, since only the relative value of the learned

latent variables is meaningful.

which is evident in the upper right of the latent manifold for Ch. 0. The latent manifold for Ch. 1 captures the symmetry of the230

incandescent signal along one dimension, and the narrowness of the incandescent peak along the other dimension.

Since the size of the latent representations learned by the VAE is a hyper-parameter, we also explore how varying the size

of the latent space impacts our ability to differentiate aerosols by class using these lower dimensional latent representations.

To do this, we train VAE’s with a latent vector z that has either n=2 and n=3 variables. We then visualize the distributions of

the latent variables from our training data set for each of the 7 aerosol classes represented in our dataset. Figure 5 shows the235

distribution of the encodings of Ch.0 (top) and Ch. 1 (bottom) when training two VAE’s with n=2 variables in its latent space

representation, and Figure 6 shows the distributions of the encodings of Ch. 0 (top) and Ch. 1 (bottom) when training two

VAE’s with n=3 variables. Each point on these plots represents the L-II signal from an aerosol detected in the SP2, encoded by
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Figure 4. Latent Manifolds for the L-II Signals. Left: Latent Manifold for Channel 0. Right: Latent Manifold for Channel 1.

the VAE into its latent space representation. These latent space representations therefore gives us a useful way to visualize the

distributions of L-II signals found in each class.240

In examining the latent space distributions for n=2 (Figure 5), we can find some consistency in terms of the encodings for

different aerosol classes. For the scattering channel (Ch. 0) and incandescent channel (Ch. 1), the latent space representations

for the black carbon proxies (FS and FS+glyc) show significant overlap, as do the latent space encodings for the FeOx proxies

(Fe2O3 and Fe3O4). Regions of high density in these latent space representations indicate more examples of that L-II signal

are found when measuring that aerosol class. The latent space representations for the dust-like aerosols (CFA, ATD, and VA)245

show less clear regions of high density when compared to the black carbon proxies and FeOx proxies, which is explained by

the greater variability across classes in observed L-II signals for the dust-like aerosols. In Lamb (2019), it was noted that these

dust-like aerosols were more likely to lead to saturated signals (due to their large optical size) or other irregularities in their

L-II signals when compared with rBC or FeOx. This greater variability in L-II signals is reflected in the greater spread in their

latent space representations.250

Similarly, the latent space distributions for n=3 (Figure 6) show some consistency across aerosols of similar classes. How-

ever, the additional dimension in the latent space representations provides additional contrast between aerosols of similar

classes. For example, for FS+glyc, the latent space representation for Ch.1 in part significantly overlaps with that for uncoated

FS, but also shows a large density of points in space that is not represented at all by the FS signals. In addition, while VA,

ATD, and CFA show similarities in their latent space representations for Ch. 0, there are more clear differences in the density255

of points observed in their latent space representations for Ch. 1, suggesting that the incandescent signal provides greater con-
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Figure 5. Latent Space for n = 2. Above: Latent space distribution for Ch. 0 (scattering channel) shown by each aerosol class. Below: Latent

space distribution for Ch 1 (incandescent channel) shown by each aerosol class.
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Figure 6. Latent Space for n = 3. Above: Latent space distribution for Ch. 0 (scattering channel) shown by each aerosol class. Below: Latent

space distribution for Ch 1 (incandescent channel) shown by each aerosol class.
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trast in differentiating the signals of these dust-like aerosols by class. Physically, this makes sense, since the L-II incandescent

signal could provide greater contrast between metallic inclusions of different chemical composition or size than the scattering

signal, and these likely differ between the ATD, VA, and CFA populations. Finally, the iron oxide aerosols also show more

clear separability in terms of their latent space representations for Ch. 1.260

We found that a latent space with n=2 provided sufficient separability and interpretability of latent space variables of the

L-II time series, compared to higher dimensional latent space representations. Increasing the size of the latent space enables

the VAE to capture a higher level of detail and complexity in the original L-II signals, allowing for more accurate and nuanced

reconstructions. However, high dimensionality for the latent space representation is more difficult to interpret, and may not

provide additional meaningful information for downstream tasks. We explored a latent space with n=4 and n=5 (not shown),265

but found that including additional variables did not provide improved performance on downstream tasks like classification

(Section 5), suggesting that the majority of the variance in the L-II signals can be encoded into 2 latent dimensions.

4 Identifying Outliers in Aerosol Populations using the L-II Latent Space Representations

In addition to visualizing the variability of the populations of aerosols detected by the SP2, the latent space representation can

also be used as a method to identify outliers in populations of aerosols. To illustrate this, we define a metric to identify outliers270

based on their distance from the global centroid of the latent space distribution.

First, we calculate the global centroid of the latent space representations that have been encoded into the latent space. Using

the Euclidean distance, we then determine the mean straight-line distance between the latent space representations for each of

the L-II signals for individual aerosols and the center of the latent space manifold, µc, as well as the standard deviation of this

distance, σc. Outliers can be defined by setting a sensitivity threshold, ϵ, such that latent space representations that are further275

away from the global centroid than σc multiplied by this threshold are considered outliers:

doutlier = µc + ϵ×σc (7)

As the sensitivity threshold ϵ increases, the number of L-II signals identified as outliers increases. With this metric, we can

identify outliers in our latent space representation as shown in Figure 7 for the 2D latent space representation for Ch. 1. We

find that the latent space representations that lie further from the center of the latent space manifold are more likely to exhibit280

spurious behavior in the L-II signals. We show two examples of L-II signals that were identified as outliers and their latent

space locations; one of these L-II signals is from an Fe3O4 particle (top panel, right), and the other is CFA (bottom panel, right).

From looking at the original L-II signals, it is clear why these two aerosols were identified as outliers. Both shows scattering

peaks that are significantly off-center from the typical triggering location (Ch. 0), and they also demonstrate significantly later

incandescence (Ch. 1).285

One challenge with using the SP2 to identify FeOx aerosols is that some dust-like aerosols have similar Imax vs. CR values

as FeOx (Lamb, 2019; Lamb et al., 2021). This makes it challenging to quantify FeOx mass loadings in atmospheric conditions,

particularly in remote regions where particles need to be differentiated on an individual, rather than population, basis (Lamb
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Figure 7. Examples of outlier detection via latent space representation. Black points indicate points determined to be outliers based on

their Euclidean distance from the center of the 2D Latent Space for Channel 1. Examples of the L-II signals for an Fe3O4 aerosol (top, right)

and a CFA aerosol (bottom, right) that have been identified as outliers based on the distance of their latent space embedding from the center

of the latent space are shown.

et al., 2021). The outlier detection method using the latent space representations could be used as an alternative approach to

identify dust-like aerosols that may be mis-categorized as FeOx. Due to the random, scattered nature of the L-II signals for290
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dust-like particles, such a threshold can minimize the occurrence of false positives when identifying ambient aerosols as FeOx,

and thus improve the accuracy of FeOx mass loading measurements.

Furthermore, outlier detection could be used as an approach to identify interesting populations of aerosols in ground-based

or airborne field observational datasets in an unsupervised manner. A number of recent studies have used observations from

the SP2 to identify unique populations of aerosols from their L-II signals, including tar brown carbon (Corbin and Gysel-295

Beer, 2019), iron oxide aerosols (Lamb et al., 2021), or black carbon associated with pyrocumulonimbus (Katich et al., 2023).

By automatizing the detection of interesting or unique populations of aerosols that the SP2 detects, this method can help to

identify or characterize aerosols from different atmospheric sources that may not be evident with traditional SP2 L-II analysis

approaches. The latent space representations may also provide additional information about the shape of the L-II signals

(beyond coating state or refractory aerosol mass) that can be linked to the physio-chemical characteristics of the aerosol300

particles.

5 Classifying aerosols using their L-II latent space representations

As a final down-stream task, we investigate how useful the latent space representations of the L-II time series are in terms

of differentiating absorbing aerosols that the SP2 is sensitive to by class. To do this, we follow an approach similar to the

supervised classification approach, using a random forest algorithm to classify aerosols in a supervised manner, as described305

in Lamb (2019). However, rather than doing significant feature engineering on the L-II signals as input features to train the

random forest, we instead use the learned latent space representations from Ch. 0 and Ch. 1.

For each sampled aerosol, we concatenate the latent variables from Ch. 0 and Ch. 1, as well as the Smax, Imax, and CR

derived from the L-II signal for that aerosol (Figure 2). We test using both 2 latent variables each from Ch. 0 and Ch.1 and 3

latent variables. In the follow text, we refer to the case with the 2 latent variables each from Ch. 0 and Ch. 1 as the “2D latent310

space RF" and the 3 latent variables each from Ch. 0 and Ch. 1 as the “3D latent space RF".

The Random Forest algorithm constructs an ensemble of decision trees, using a subset of the training samples to construct

each decision tree. The class for each sample is then determined by the vote of all the randomly constructed decision trees.

Here, we use 67% of the data for training and 33% for testing the random forest, and use the Random Forest algorithm as

implemented in the scikit-learn package (Pedregosa et al., 2011).315

The confusion matrices for the results of the random forest classification for the 2D latent space RF (left) and the 3D latent

space RF (right) is shown in Figure 8. The 3D latent space RF and 2D latent space RF demonstrated similar performance. We

also investigated 4D and 5D latent space representations as input to the RF, and did not find significant further improvements

over the 2D or 3D cases, suggesting that 2 or 3 latent variables already provides the majority of meaningful information from

the L-II signals in terms of differentiating absorbing aerosols.320

Compared with the random forest that used significant feature engineering (Lamb, 2019), the 2D and 3D latent space RF’s

are able to more accurately classify aerosols of each of the 3 major sub-types that the SP2 detects (BC, dust-like, and FeOx).

In particular, we find that the 2D and 3D latent space RF’s are able to do a significantly better job of differentiating Fe2O3 and
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Fe3O4 from one another; in Lamb (2019) the RF with significant feature engineering mis-identified Fe2O3 as Fe3O4 50% of

the time. This is likely due to the differences that are evident in the latent space representations from Ch. 1 (Figure 5), indicating325

that there are differences in the incandescent signals for Fe2O3 and Fe3O4 that are not readily evident from a simple analysis

of the CR. This suggests that there are meaningful differences between iron oxide aerosols in terms of their L-II signals, which

could be further exploited to improve the detection accuracy of these aerosols using the SP2, and warrants further investigation.

This result further illustrates how the learned latent space representations can identify new information from the L-II signals

that is not obvious following traditional SP2 analysis approaches. The 2D and 3D latent space RFs also do a slightly better job330

at differentiating the 3 different classes of dust-like aerosols from one another, particularly for VA, compared with the RF with

significant feature engineering described in Lamb (2019).

Figure 8. Performance of RF on classifying different types of absorbing aerosols observed by the SP2 based on their latent represen-

tations. Left: Confusion matrix for 2D latent space RF. Right: Confusion matrix for the 3D latent space RF.

6 Conclusions

In this paper, we have built on our previous research in Lamb (2019) to further explore how data-driven methods such as

machine learning can be applied to L-II time series from the SP2 instrument. Here we have focused on unsupervised machine335

learning as a method to classify aerosols and discover more of their chemio-physical properties, thus demonstrating a path

towards better understanding the variability of aerosols observed in the atmosphere. By using a variational autoencoder to

encode the L-II signals from the SP2, we found that this approach could be used to quantify the variability within aerosol

classes. It can also be used to identify outliers in observational data sets, and is a promising method for identifying unique

or interesting aerosol populations automatically in large data-sets from research field campaigns. In addition, we were able to340
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achieve high separability between the aerosols classes when using the latent space representations of the L-II signals as input

to a supervised classification algorithm. In particular the distinct separation observed between the two classes of iron oxide

aerosols was promising, suggesting that differences between the response of these two iron oxide aerosols in the SP2 could be

further exploited to improve the detectability of these aerosols.

Black carbon and other aerosols that are detected by the SP2, are operationally defined– that is, we classify aerosol by345

composition based on their response in the instrument and their similarity to laboratory-based proxies for these aerosols.

However, populations of aerosols in the atmosphere, even those from the same emission sources, will have a distribution of

characteristics in terms of their composition, optical properties, and sizes. These differences contribute to variations in the

response of these aerosols in the SP2. The unsupervised machine learning approach that we discuss in this paper is a method

where these types of variations between L-II signals can be quantified and assessed in a lower dimensional representation350

space.

There are a number of promising future research directions in terms of applying unsupervised and semi-supervised machine

learning methods to the L-II signals from the SP2. In particular, contrastive learning is a promising approach for identifying

latent space representations that most meaningfully separate aerosols of different classes (Severson et al., 2019; Abid and Zou,

2019). This approach could improve classification when training on labeled laboratory data sets and applying to atmospheric355

data sets. Similarity metrics, such as Euclidean distance, can be used to determine how similar the SP2 response of aerosols are,

enabling more quantitative comparison across field campaign data sets and regions of the atmosphere (Levy et al., 2024). Future

research should also further explore how instrument configuration will impact learned representations from the SP2 signal, such

that observational data sets across field campaigns and from different instruments could be meaningfully combined towards

improved SP2 analysis.360
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