

1 Redefining dangerous glacial lakes in Bhutan by integrating hydrodynamic flood 2 mapping and downstream exposure data

3 Sonam Rinzin¹, Stuart Dunning¹, Rachel Joanne Carr¹, Simon Allen², Sonam Wangchuk³
4 and Ashim Sattar⁴

5 ¹School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne,
6 UK

7 ²Department of Geography, University of Zurich, Zurich, Switzerland

⁸ ³International Centre for Integrated Mountain Development, Kathmandu, Nepal

9 ⁴School of Earth, Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar,
10 Bhubaneswar, Odisha, India

11

12 Correspondence: Sonam Rinzin (s.rinzin2@newcastle.ac.uk)

13 Abstract

Dangerous glacial lakes in Bhutan have primarily been identified considering the likelihood of producing a GLOF, which in turn has been assessed only based on upstream lake area/volume and their surrounding topographic conditions. However, this approach is incomplete as it ignores the at-risk downstream exposure and vulnerability thus the actual impacts. Here we redefined dangerous glacial lakes by considering the impact of the simulated most likely scenario GLOF on downstream exposed elements at risk. Our study shows that a total of approximately 22399 people, 2613 buildings, 270 km of road, 402 bridges and 20 km² of farmland are exposed to potential GLOF inundation in Bhutan. We classified lake130 (Thorthormi Tsho) as a very high danger glacial lake in Bhutan, five lakes as high danger and 21 other lakes as moderate danger. Among these high danger glacial lakes, three of them: lake93 (Phudung Tsho), lake251, and lake278 (Wonney Tsho) were not recognized as dangerous in previous studies. Our assessment further revealed five downstream local government administrative units (LGUs) are associated with very high GLOF danger while nine others are associated with high GLOF danger. Six of these LGUs had not been previously documented as being at risk from GLOF including: Chhoekhor and Bumthang town in Bumthang, Paro town and Lamgong in Paro, Nubi in Trongsa and Khoma in Lhuentse districts. Our study underscores the significance of integrating potential inundation mapping and downstream exposure data to define dangerous glacial lakes. We recommend strengthening and expanding the existing GLOF disaster preparedness and risk mitigation efforts in Bhutan to reduce future damage and loss in high GLOF danger LGUs identified in this study.

34 **1. Introduction**

35 There are currently 110,000 glacial lakes globally, with a total area of ~15,000 km². These
36 glacial lakes have increased in area by ~22% between 1990 and 2020, primarily due to
37 addition of water from the melting of glaciers (Zhang et al., 2024). Glacial lakes across the
38 world have produced 3152 GLOF events between 850 and 2022 C.E (Lützow et al., 2023),
39 which caused more than 12,400 human deaths and damaged infrastructure worth hundreds
40 of millions of USD (Carrivick and Tweed, 2016; Lützow et al., 2023). In HMA, 682 GLOF events
41 occurred between 1833 and 2022, causing 6,907 fatalities (Shrestha et al., 2023) although
42 over 80% of all casualties recorded in HMA are attributed to a single compounding event
43 involving Chorabari Lake in 2013 (Allen et al., 2015; Das et al., 2015). Moraine-dammed GLOF
44 events have caused an order of magnitude greater damage than the combined damage from
45 all other types of glacial lakes, despite moraine-dammed GLOF events only accounting for
46 one-third of total GLOF events in HMA (Shrestha et al., 2023). One main reason is because
47 moraine-dammed lakes are usually located nearer to human settlement than other types of
48 glacial lakes, such as ice-dammed or supraglacial ponds/lakes making it important to quantify
49 the danger it poses to the downstream settlement (Carrivick and Tweed, 2016).

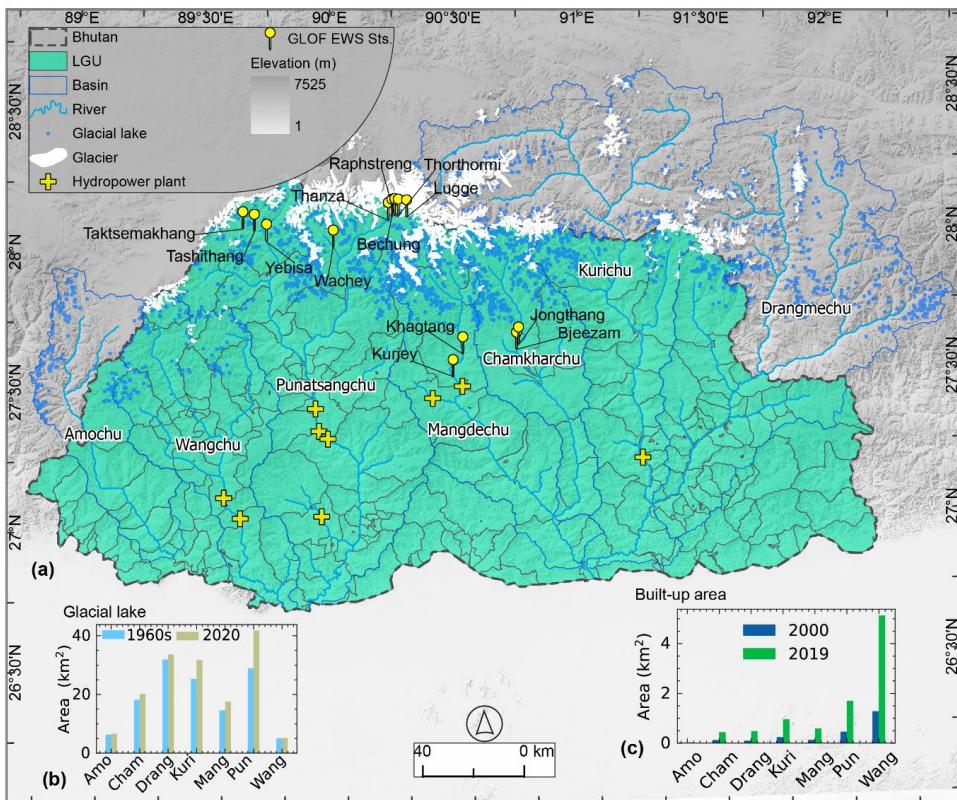
50 Existing dangerous glacial lakes (DGLs) in Bhutan are defined based on how likely and
51 magnitude of GLOF they will produce, which in turn are assessed based on the inherent
52 stability of the lake's dam and factors that influence the potential for an external triggering
53 event, such as a mass movement entering lake (Allen et al., 2017; Zheng et al., 2021b).
54 Commonly used parameters include topographic potential for mass input into the lake from
55 the surrounding hillslopes, lake volume (usually derived from a relationship to lake area), lake
56 growth, moraine dam geometry and composition, and catchment area (Zhang et al., 2023b;
57 Zheng et al., 2021b). Although the approaches and factors selected are influenced by study
58 objectives and expert judgment, they largely are based on historical events, often backed with
59 limited observed data (Shrestha et al., 2023). Constraining certain parameters, such as the
60 location and magnitude of possible/probable mass movements entering a lake, is challenging
61 even with field-based assessments and more so when using coarse, globally available, open-
62 access data, but the previous study shows that this may be fundamental in the resultant GLOF
63 magnitude (Rinjin et al., 2025). Moreover, the dynamic nature of cryosphere processes,
64 exacerbated under climate warming, means that these reconstructed GLOF characteristics
65 cannot necessarily be applied to contemporary or future conditions (Allen et al., 2017). This is
66 evident from some GLOF events which have occurred from glacial lakes which were deemed
67 less susceptible to GLOF, for example, Lagmale glacial lake in Nepalese Himalaya in 2017
68 (Byers et al., 2018) and Gongbatongsha Co lake in 2013 in Indian Himalaya (Cook et al.,
69 2018). Thus, the likelihood of producing a GLOF from any glacial lake is subject to inevitable

70 uncertainties. Most importantly, DGLs defined solely based on GLOF susceptibility of the lake
71 overlooks how the hydrodynamic properties of a possible GLOF interact with downstream
72 exposure and vulnerability. If a glacial lake generates an exceptionally large flood, but the
73 downstream community is unaffected, we can consider the danger from the glacial lake as
74 low, whereas even a 'small' flood that impacts large number of people should be classified as
75 high danger. Typically, this is neglected in favour of classifications of danger based only on
76 lake/trigger conditions, and not downstream impacts (Taylor et al., 2023a).

77 In recent decades, the amount of infrastructure, buildings and farmland exposed to potential
78 GLOFs in HMA has increased (Nie et al., 2023). For example, critical infrastructure, such as
79 hydroelectric power plants are being developed closer to glacial lakes due to growing energy
80 demand in HMA regions (Nie et al., 2021; Schwanghart et al., 2016). In HMA, the population
81 in GLOF-exposed areas increased by 0.31% (7.0 million to 9.2 million) between 2000 and
82 2020 and may therefore have contributed significantly more towards rising GLOF danger than
83 (debatably) increasing GLOF magnitude due to lake expansion (Taylor et al., 2023b). Thus,
84 changing downstream exposure and vulnerability can play a greater role in shaping
85 contemporary and near-future GLOF risk than the glacial lake and surrounding properties,
86 making the inclusion of the former in the identification of dangerous lakes a crucial, but often
87 overlooked, factor both in the HMA and other high GLOF risk regions globally, such as the
88 Andes (Cook et al., 2016; Colavitto et al., 2024).

89 To identify DGLs with greater confidence and to implement effective management, mitigation
90 and/or emergency response, we need to consider the interaction between GLOF flow
91 hydrodynamics, downstream exposure and vulnerability. Taylor et al. (2023a) used
92 downstream population within a 1 km buffer of the river through which a GLOF would flow, to
93 a maximum runout of 50 km from each glacial lake to calculate global scale GLOF danger.
94 However, the coarse resolution of data and crude assumption of GLOF flow path without
95 hydrodynamic modelling introduces substantial uncertainties due to factors such as detailed
96 local topography, especially where even populations very close in plain view distance to a
97 GLOF flow routeway are in reality disconnected from the river by, for example, high river
98 terraces, which are common in high-mountain region such as Bhutan. GLOF risk
99 assessments at the HMA scale have been done by combining hydrodynamic modelling and
100 open-source downstream data, such as OpenStreetMap (Zhang et al., 2023b). Yet, they
101 conducted flood mapping only for the glacial lakes that they deemed very high or high danger
102 through prior GLOF susceptibility assessment. This means that flood mapping for some of the
103 lakes that can directly impact the downstream communities in case of the future GLOF event
104 from these lakes have been not carried out despite huge deviation and inconsistencies

105 between previous susceptibility assessments (Zheng et al., 2021b; Zhang et al., 2023b; Rinzin
106 et al., 2021; National Centre for Hydrology and Meteorology [NCHM] , 2019). Previous
107 example of GLOF events from the low GLOF susceptible lake impacting downstream
108 community underscores uncertainty of these prior GLOF susceptibility assessment (Byers et
109 al., 2018). Moreover, since such studies are focused on a global to continental scale, they do
110 not provide adequate granularity at the national and basin scale for bespoke risk reduction
111 activities and planning.


112 This study presents a new GLOF danger assessment approach for Bhutan, which combines
113 robust flood mapping (through hydrodynamic modelling) and downstream exposure and
114 vulnerability data. For this, we selected all glacial lakes with an area of 0.05 km² (n=278) within
115 the Bhutan Himalaya and conducted hydrodynamic simulation for all these lakes using HEC-
116 RAS (U.S. Army Corps of Engineers, 2021). We then combined the flood map generated
117 through hydrodynamic modelling with downstream data on exposure and vulnerability derived
118 from OpenStreetMap, land use and land cover maps and population and housing 2017 census
119 data (National Statistics Bureau of Bhutan [NSB], 2018). As a result, 1) we produced a flood
120 map for each glacial lake in Bhutan above 0.05 km²; 2) mapped all downstream exposed
121 elements; and 3) provide a new, updated ranking of glacial lakes in Bhutan, based on the
122 danger they pose to downstream settlement(s). We have developed a publicly available web
123 portal that hosts the glacial lake dataset, GLOF flood maps and downstream GLOF risks
124 across local administrative units in Bhutan.

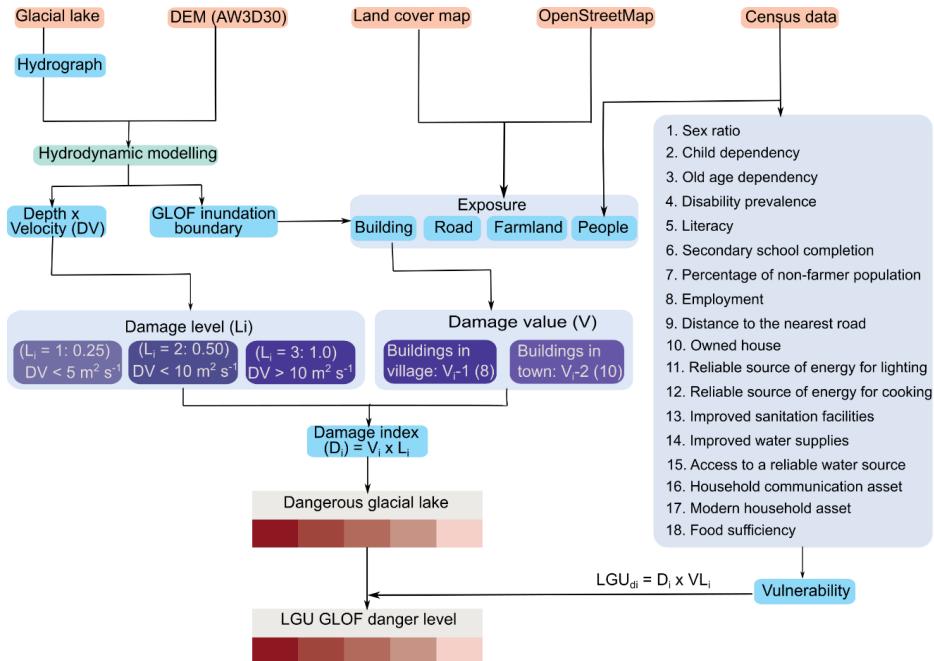
125 **2. Study area**

126 Bhutan's landscape is characterised by high mountains, rugged topography and steep terrain
127 with elevations ranging between 200 m a.s.l in the south to over 7000 m a.s.l in the north.
128 Bhutan's northern regions consist of the greater Himalaya mountains, which contain ~1,487
129 km² of glacier ice, of which 64% (951 km²) are debris-covered glaciers (Nagai et al., 2016)
130 (Fig. 1). Between 2000 and 2020, Bhutanese glaciers lost mass at a rate of 0.47 m w.e. yr⁻¹,
131 which exceeds the neighbouring eastern Himalayan (~0.33 m w.e. yr⁻¹) and Nyainqêntanglha
132 (~0.46 m w.e. yr⁻¹) regions (Hugonnet et al., 2021). It is projected that Bhutanese glaciers will
133 undergo continuous and accelerated melting in the future in response to the current climate
134 warming trend (Rupper et al., 2012). As of 2020, there were 2,574 (156.63 ± 7.95 km²) glacial
135 lakes in Bhutan, which was an increase of 17.7% in number and 20.3% in area from the 1960s
136 (Rinzin et al., 2021) (Fig. 1). While these glacial lakes are predominantly present in basins
137 such as Phochu (28.18% of the total lake area), and Kurichu (26.35 % of the total area), they
138 are widespread across the Bhutan Himalaya and drainage from these lakes flow across most
139 of the major towns and settlements in Bhutan (Fig. 1). Of these glacial lakes, 64 were identified

140 as highly or very highly susceptible to producing GLOF in the future based on
141 geomorphological conditions such as topographical potential for avalanching into the lake
142 (Rinzin et al., 2021).

143
144 **Figure 1.** The map (a) depicts Bhutan and the glaciated basin from which the river flows into
145 inland Bhutan. It also shows the distribution of glacial lakes, glaciers, GLOF early warning
146 monitoring stations (with name of the placed they are located at), and hydropower plants. The
147 inset bar charts illustrate (b) glacial lake area of the 1960s and 2020 (Rinzin et al., 2021) and
148 (c) built-up area changes between 200 and 2021 as per the land cover and landuse map of
149 ICIIMOD (Uddin et al., 2021). The basin names are presented in their abbreviated form x-tick
150 labels for both bar charts.

151 The glaciers in the northern mountains feed seven major river systems in Bhutan namely
152 (West-East): Amochu, Wangchu, Punatsangchu, Mangdechu, Chamkharchu, Kurichu and
153 Drangmechu (Fig. 1). The hydropower generated from these river systems accounts for about
154 40% of Bhutan's national revenue to a value of 0.27 billion USD (Ministry of Economic Affairs,
155 2021) as significant power is exported to India. All seven currently operational hydropower



156 plants and two nearly commissioned hydropower plants (Punatsangchu-I and Punatsangchu-
157 II) are located along these glacier-fed rivers (Fig.1). The agriculture sector, which is also
158 heavily dependent on these river systems employs about 60% of the total population (786,385)
159 (NSB, 2018). The built-up areas within the 1 km buffer of these glacier-fed rivers have
160 increased by 200% (2.3 to 9.3 km²) within ~19 years from 2000 to 2019 (Fig.1) (Uddin et al.,
161 2021). Thus, infrastructure and crucial economic activity have grown rapidly in areas
162 downstream of glacial lakes in recent decades in Bhutan, making it vital to quantify the risk
163 posed by GLOFs in these basins.

164 **3. Datasets and Methods**

165 **3.1. Lake dataset, drainage volume, peak discharge and flow hydrograph calculation**

166 We used the glacial lake inventory by Rinzin et al. (2021), which has been developed
167 specifically for Bhutan, and which offers greater robustness and accuracy for Bhutan
168 compared to the other datasets available at Pan-HMA scale (Zhang et al., 2023b; Zheng et
169 al., 2021b). Rinzin et al. (2021) mapped 2,574 glacial lakes in 2020, located within 10 km of
170 glacier termini and with a minimum lake area threshold of 0.003 km². This dataset includes 85
171 transboundary glacial lakes, located in the Indian and Chinese territories of Himalaya whose
172 drainage flows into inland regions of Bhutan. Previous records indicate that GLOF originating
173 from a relatively small lake (as small as 0.001 km²) can cause substantial damage in
174 downstream communities, although such cases are rare. For instance, across HMA region,
175 the median area of glacial lakes with known pre-outburst extents is approximately 0.189 km²
176 (Shrestha et al., 2023). In Bhutan specifically, the smallest glacial lake with a documented
177 outburst history has a present-day area of 0.0506 km² (Rinzin et al., 2021; Komori et al., 2012).
178 Including all glacial lakes for detailed hydraulic modelling would substantially increase the
179 computational demands, whereas resorting to simplified GIS-based approaches (Allen et al.,
180 2019; Zheng et al., 2021b) to cover all lakes would significantly compromise the robustness
181 and accuracy of the resulting of flood maps. Moreover, many smaller lakes are unlikely to
182 generate significant downstream impacts unless they trigger secondary processes (Petrakov
183 et al., 2020; Cook et al., 2018). Therefore, based on the above empirical evidence, and trade-
184 off between model complexity and result reliability we focused on glacial lakes that (i) are at
185 least 0.05 km² in area and (ii) are located within 1 km of glacier termini. This approach ensures
186 a balance between computational feasibility and the production of reliable flood maps, while
187 still capturing a substantial number of potentially hazardous lakes. Based on these criteria, we
188 identified 278 glacial lakes in Bhutan for flood inundation mapping using hydrodynamic
189 modelling (Fig. S1).

190

191 **Figure 2.** Flow chart showing an overview of the methodology we used for assessing GLOF
192 danger in this study. Here GLOF damage index (D_i) was calculated as the function of damage
193 value (V_i) and damage level (L_i). The damage index for the local administrative unit (LGU_{di}) is
194 calculated by further multiplying with the vulnerability index (VL_i). AW3D30 is abbreviated form
195 for ALOS World 3D - 30m.

$$V = 42.95 \times A^{1.408}$$

(i)

Where V is the volume in 10^6 m^3 and A is the area in km^2

196 Accurate glacial lake volume data is crucial as one of the key determinants of modelled GLOF
197 hydrodynamic characteristics such as flow depth and velocity. However, field based
198 bathymetric measurement for multiple lakes is costly and not currently possible for some
199 glacial lakes due to their remote location. In the absence of in-situ bathymetric data to
200 determine volume, we calculated the volume of each glacial lake using the area-volume
201 scaling relationship proposed by Zhang et al. (2023a) based on the area of each glacial lake
202 as mapped in 2020 (Rinjin et al., 2021) (See table S1). This area-volume scaling relationship
203 (equation (i)), based on recent bathymetric data from the Greater Himalayan region, including
204 13 representative lakes from Bhutan is well-suited to approximate Bhutanese glacial lake
205 volumes (Zhang et al., 2023a).

206 It is important to note that not all lakes drain entirely during a GLOF (Maurer et al., 2020; Nie
207 et al., 2018; Zhang et al., 2024). However, previous data indicate smaller lakes are more likely
208 to drain completely during a GLOF event than larger lakes. Here, we used data from Zhang et
209 al. (2023b) documenting the drainage volumes of 64 lakes in the HMA regions. Among these
210 64 lakes, the median percentage of drainage volume was 98% for lakes with an area < 0.1
211 km², 62% for lakes with an area of 0.1 to 1 km² and 33% for lakes with an area >1 km². We
212 used these observed drainage percentages as the basis to calculate the most likely flood
213 volume generated by each lake. For simplicity and recognising that these median drainage
214 values lie within the uncertainty bounds of established area-volume scaling relationships, we
215 adopted the following assumptions: 100% drainage for lakes < 0.1 km², 60% drainage for lakes
216 between 0.1 and 1 km², and 30% drainage for lakes > 1 km². Subsequently, we used Evans's
217 empirical equation (ii) for moraine-dammed lakes to calculate the possible peak discharge of
218 each lake (Evans, 1986). See supplementary figure 1 (Fig. S1) for the distribution of volume
219 and peak flow calculated for each glacial lake in Bhutan (see table S1).

$$Q_{max} = 0.72V^{0.53} \quad (ii)$$

Q_{max} is peak discharge, and V is the total volume of the lake calculated using equation (i)

220 **3.2. HEC-RAS model set-up**

221 Most GLOFs start from moraine dam breaching, which is frequently triggered by large mass
222 movement(s) entering the lake from the surrounding terrain hillslopes (Shrestha et al., 2023).
223 However, conducting a dam breach simulation for each lake is challenging due to complexities
224 and uncertainties in constraining the appropriate value for a large range of input parameters,
225 (U.S. Army Corps of Engineers, 2021). To simplify this, we conducted a flood simulation
226 resulting from each lake by using an input hydrograph as an upstream boundary condition.
227 For each lake, we generated an input hydrograph by fitting the peak flow of each lake to the
228 log-normal distribution curve with a standard deviation (sigma) value of 0.75 and a mean of 0,
229 adapting the approach used by the earlier studies (Carr et al., 2024; Kropáček et al., 2015).
230 For example, for lake1, the peak flow was 1,110 m³ s⁻¹, thus, we constructed a log-normally
231 distributed hydrograph with a peak flow of 1,110 m³ s⁻¹ and gradually decreased the flow after
232 reaching this peak flow. With this assumption, we generated the hydrograph so that the flow
233 rises to its peak rapidly and progressively decreases after attaining the peak, which is
234 consistent with the hydrograph of many previous GLOF events (Maurer et al., 2020; Nie et al.,
235 2020; Zheng et al., 2021a) (see supplementary figure S2 for representative hydrograph). The
236 flow duration of the hydrograph of each lake was subsequently adjusted to account for
237 the complete drainage of the estimated drainage volume calculated for each lake. For

238 example, for lake 1, the required drainage volume was calculated at $1.036 \times 10^6 \text{ m}^3$ and so,
239 the flow duration for this lake was adjusted so that the cumulative flow through the GLOF event
240 was equal to this volume (Table S1).

241 We used the ALOS Global Digital Surface Model (AW3D30) with $\sim 30 \text{ m}$ ground resolution as
242 a source of terrain information for the model setup (Japan Aerospace Exploration Agency,
243 2021). We chose AW3D30 because various previous studies (Rinzin et al., 2025) have
244 indicated that it has higher vertical and horizontal accuracy compared to other freely available
245 DEMs over our study area with similar spatial resolution such as SRTM GL1 (for example, Liu
246 et al. (2019)). We assigned Manning's n value of 0.06 which is the default value in the HEC-
247 RAS model set-up (U.S. Army Corps of Engineers, 2021) and has been used in GLOF
248 modelling in Bhutan previously (Maurer et al., 2020).

249 We created one HEC-RAS project for each major river basin so that a total of seven project
250 files correspond to the seven glaciated basins in Bhutan. For each project, the model domain
251 was established by creating a 1,000 m buffer on either side of the centre line of the river
252 originating from each lake. Within this model domain, a computational mesh with a grid
253 resolution equal to the native resolution of AW3D30 ($30 \times 30 \text{ m}$) was generated. An upstream
254 boundary condition for each lake was defined at the frontal terminus of each lake. However,
255 we used the same downstream boundary condition for all lakes in the basin, which were
256 defined at the furthest end at the international border between Bhutan and India (for example,
257 Fig. S2). Likewise, unique flow data was created for each lake, where we imposed flow
258 hydrographs as the upstream boundary condition for the respective lake and downstream
259 boundary conditions defined by normal depth with an energy slope of 0.01 (U.S. Army Corps
260 of Engineers, 2021). Finally, one unsteady flow analysis plan for each lake with corresponding
261 unsteady flow data and boundary conditions was developed. For example, in the Phochu
262 basin, which contains 67 glacial lakes considered for this study, one project file was
263 established. This project file included a single model domain, a downstream boundary
264 condition, 67 upstream boundary conditions and 67 flow data. Accordingly, we created 67
265 individual plans, each featuring the respective upstream boundary, uniform downstream
266 boundary condition and flow data that contains the specific hydrograph for each lake (Fig. S2).

267 We computed all the simulations using the full momentum shallow water equations since it
268 better represents GLOF rheology than the diffusion wave equation (Sattar et al., 2023; Sattar
269 et al., 2021). Following the earlier studies (Rinzin et al., 2023; Maurer et al., 2020), all other
270 computational parameters were maintained at the default setting. At a mesh size of 30 m, each
271 model was run stably with a computational time step of 3 seconds within a courant number
272 well below 2 (U.S. Army Corps of Engineers, 2021). The simulations were executed

273 simultaneously across 15 computers at the geospatial laboratory in Newcastle University. We
274 maintained 10 hours of simulation time for each model set-up, which took 2 to 4 hours
275 depending on the lake's size. Output for each project plan was carefully examined and any
276 models exhibiting instability (e.g., a courant number above 2 or failed before complete
277 execution) were re-executed by adjusting the position of upstream boundary condition,
278 changing the timesteps and adding additional features like refinement regions within the 2D
279 model domains to ensure stable model run and reliable results (U.S. Army Corps of Engineers,
280 2021).

281 **3.3. GLOF impact area and exposed elements mapping**

282 We collated the GLOF inundation boundary for each lake generated through HEC-RAS
283 modelling and calculated the area and length of each inundation. We calculated the population
284 density per km² for each downstream local government administrative unit (LGU) using
285 population data from the Bhutan 2017 population and census data (NSB, 2018), and from this
286 population density map, we calculated the number of people exposed located GLOF
287 inundation extent in each LGU. It is important to acknowledge that the population distribution
288 data is simplified, although it is the most reliable dataset currently available for Bhutan. We
289 mapped all buildings, roads, bridges, farmland, and hydropower plants within the GLOF
290 inundation area to identify downstream elements at risk. We used OpenStreetMap (updated
291 as of 30-04-2025) to map buildings, roads and bridges. We manually verified the
292 OpenStreetMap data using Google Earth high-resolution imagery and updated 41 km of
293 missing roads, 152 buildings and 20 bridges using Google Earth Imagery within the flood
294 inundation plain. The ICIMOD's Landsat-based land use and landcover map of 2023 was used
295 to map farmland (Uddin, 2021) since it is of better quality at the HKH scale than other open-
296 access land cover data, such as Esri Sentinel-2 land cover data (Karra et al., 2021). We
297 considered buildings the most important downstream exposed element because they are the
298 primary space where people live mostly. Thus, we used exposed buildings to calculate the
299 GLOF damage index (Fig. 2).

300 **3.4. GLOF damage and dangerous glacial lake calculation**

301 In this study, we defined a dangerous glacial lake based on the downstream damage
302 (calculated here as damage index (D_i)) resulting from each GLOF event (Fig. 2). We assume
303 that any of our study glacial lakes has the potential to generate GLOF in the future and the
304 resulting damage will determine how dangerous that glacial lake would be to those
305 downstream. The D_i for each element (pixel grid) resulting from any GLOF event was
306 calculated as the function of the value of the exposed element (V_i) and the level of damage
307 (L_i) following the approach proposed by Petrucci (2012) (equation (ii)) (Fig. 2). Qualitative data

308 such as construction type, occupancy, and value of the content of the building inside the house
309 are essential to obtain the appropriate value of each element. However, such qualitative
310 attributes are incomplete in the existing OpenStreetMap and introduce substantial
311 uncertainties when estimated employing other open-access data. In this study, our focus is on
312 providing a relative quantitative comparison of GLOF impacts across different communities
313 instead of determining exact damage values resulting from each GLOF event. Thus, for
314 simplicity, we assigned V_i of 8 to the buildings located in the rural areas and 10 to buildings
315 located in the town areas, following the approaches used by Petrucci (2012) and Carrivick and
316 Tweed (2016). The categorization of downstream communities into town and rural areas was
317 achieved by using the local government administrative unit (LGU) map (Fig. 2).

$$D_i = V_i \times L_i \quad (\text{iii})$$

Where D_i is damage for each downstream exposed element, V_i is the value of each downstream element and L_i is the damage level for each element.

318 GLOFs with higher water flow velocity can cause more damage to the downstream elements
319 than slow-flowing water (Federal Emergency Management Agency, 2004). Therefore, we
320 calculated the L_i associated with each GLOF event as a function of both velocity and depth,
321 which was accomplished by calculating the depth \times velocity (DV) from the HEC-RAS output
322 layer. The Federal Emergency Management Agency (FEMA) of the United States has
323 established specific depth and velocity thresholds for assessing the collapse potential of
324 buildings (Federal Emergency Management Agency, 2004). For instance, a one-story wood
325 building is considered at risk of collapse if subjected to a flood depth of 3 m and a velocity of
326 1.6 m s^{-1} . Applying these thresholds to this study is not appropriate for two key reasons: (1)
327 the buildings in our study were not classified based on qualitative data such as construction
328 material or type, and (2) these thresholds may not be directly applicable to the Bhutanese
329 context, due differences in building design and construction. However, recognizing that higher
330 DV values correspond to greater damage levels, we categorized the DV values into three
331 ranges corresponding to three levels of damage: Level 1: $0-5 \text{ m}^2 \text{ s}^{-1}$ ($L_i = 0.25$), Level 2: $5-10$
332 $\text{m}^2 \text{ s}^{-1}$ ($L_i = 0.5$), and Level 3: $>10 \text{ m}^2 \text{ s}^{-1}$ ($L_i = 1$) (Fig. 2).

333 Finally, D_i of all damaged grid cell values within the GLOF path were summed to derive an
334 overall damage value associated with GLOF from each lake (equation (iv)). This damage value
335 was then normalized and ranked to classify the relative potential GLOF danger for each lake.

$$G_i = \sum D_i \quad (\text{iv})$$

G_i is the geographical unit considered here: LGU and dzongkhag. When D_i for a lake was
considered, the inundation boundary was considered for G_i

336 **Table 1.** Socio-economic indicators used to calculate LGU's vulnerability to the future GLOF.
337 The indicators were extracted from Bhutan's 2017 population and housing census. Details on
338 how data for each indicator are collected are in National Statistics Bureau of Bhutan (2018).
339 The calculated values were inverted so that they contribute positively to vulnerability for the
340 indicators other than child dependency, old age dependency, and disability prevalence rate.

Indicator	Definition
Sex ratio	Number of males to every 100 females
Child dependency	The ratio of the number of children aged 0 to 14 years to population aged 15 to 64
Old age dependency	The ratio of persons 65 years and above to the population aged 15 to 64 years
Disability prevalence	The proportion of the population with a disability
Literacy	The ratio of the literate population (read and write in Dzongkha and English) aged 6 years and above to the total population of the same age group
Secondary school completion	The ratio of persons aged 6 years and above who have completed secondary education (grade XII) to the population of the same age group expressed in percentage
Percentage of non-farmer population	Percentage of people aged 15 years who are employed in sectors other than farming
Employment	Rate of persons aged 15 years and above who are employed
Distance to the nearest road	Households within the 30-minute walk to the nearest road point
Owned house	Household living in the owned house
Reliable source of energy for lighting	Households with a main source of energy for lighting as electricity
Reliable source of energy for cooking	Households with a main source of energy for cooking as electricity
Improved sanitation facilities	Households with improved sanitation facilities
Improved water supplies	Households with water supplies inside the dwelling
Access to a reliable water source	Households with availability of water supplies at least during the critical time (5 AM-8 AM, 11 AM - 2 PM and 5 PM-9 PM) adequate for washing and cooking
Household communication asset	Number of communication and media facilities owned by the individual households
Modern household asset	Number of modern household assets owned by individual households
Food sufficiency	Household having sufficient food to feed all the household members during the last 12 months

341 **3.5. Downstream community GLOF damage and danger mapping**

342 We conducted GLOF damage assessment for downstream settlements at various
343 geographical scales: 20 districts and 274 local government administrative units (LGUs)
344 (including 205 gewogs and 69 towns). We aggregated the D_i of each damage grid located
345 within the respective LGU boundary to calculate the GLOF damage for each LGU using

346 equation (iv). In cases where downstream elements were affected by GLOFs originating from
347 multiple lakes, the combined D_i from each contributing lake was considered in the analysis to
348 account for their exposure to multiple possible GLOF hazards (Fig. 2).

349 As well as the magnitude of GLOF and the presence of downstream elements along the flow
350 path, downstream GLOF damage is also determined by the community's capacity to prepare,
351 respond and recover from a GLOF event (Cutter et al., 2008; Zhou et al., 2009). Lack of this
352 capacity, often referred to as vulnerability, is influenced by wide-ranging socio-economic
353 factors including but not limited to the standard of living and gender composition of the
354 community (Cutter and Finch, 2008). Across the world, developed countries were found to be
355 more disaster resilient than developing countries while disaster related death and damage
356 have largely spiked in low-income countries (Rahmani et al., 2022). However, identifying
357 specific socio-economic variables that are most relevant to GLOF damage remains a
358 significant challenge, particularly because social data from past events are either unknown or
359 at times overlooked. Past studies have used variables such as gross domestic product,
360 population density (Carrivick and Tweed, 2016), human development index, corruption index
361 and social vulnerability index at the national scale (Taylor et al., 2023a). While such data
362 represent a broad overview of the country's socio-economic condition and thus vulnerability
363 to disaster, they do not represent the regional and community level disparity within the country
364 that influences their ability to respond and recover from the disaster. To address this, drawing
365 upon our local understanding and following earlier studies (Allen et al., 2016; Rinzin et al.,
366 2023), we calculated the relative vulnerability index (VL_i) using a total of 18 socio-economic
367 indicators from the 2017 Bhutan population and housing census NSB, 2018) (Table 1). This
368 census data which is updated every after 10 years represents the most comprehensive and
369 detailed dataset currently available, offering spatial granularity at the individual LGU level.
370 These indicators are essential for evaluating a community's preparedness and response
371 capacity to disaster from hazards like GLOF (Cutter and Finch, 2008). For example, Bhutan's
372 traditionally gendered societal structure, men often assume more prominent roles in disaster
373 response efforts. The VL_i for each LGU was calculated as the normalised value across these
374 18 socio-economic indicators (Fig. 2). The definition and approach used for calculating each
375 indicator is summarized in Table 1.

376 Assuming that the LGUs with higher VL_i are the least capable to respond to and recover from
377 a future GLOF, the damage index (D_i) of GLOF for each LGU unit was multiplied with to the
378 VL_i using equation (v).

$$LGU_{di} = D_i \times VL_i \quad (v)$$

Where LGU_{di} is the GLOF damage index for the individual LGUs normalized to their vulnerability index (VL_i)

379 **3.6. GLOF arrival time and GLOF monitoring assessment**

380 Building damage from GLOF is a function of hydrodynamic factors such as depth and velocity.
381 On the other hand, human casualties and injuries also depend on the warning / response time,
382 making it essential to consider flood arrival time in GLOF danger assessment. Thus, GLOF
383 arrival time needs to be considered separately from the D_i we computed earlier. Accordingly,
384 we determined the flow arrival time of the earliest arriving GLOF for each LGU to quantify the
385 worst-case scenario for LGU exposed to multiple GLOF sourcing lakes.

386 The National Centre for Hydrology and Meteorology (NCHM), Bhutan monitor several lakes in
387 Bhutan identified as dangerous (NCHM, 2019). Currently they have GLOF early warning
388 system covering, Punatsangchu, Mangdechu and Chamkharchu basins which consists of 23
389 monitoring stations (Fig. 1). We utilized monitoring station location data from NCHM to
390 evaluate the relationship between Bhutan's existing early warning system, modelled GLOF
391 scenarios originating from these glacial lakes and affected downstream communities. To
392 achieve this, we first located all monitoring stations in Bhutan and counted how many of our
393 catalogues of possible GLOFs in the region are covered by the existing early warning system
394 based on their hydrological relationship (National Centre for Hydrology and Meteorology,
395 2021). We assumed that if a GLOF flow intersects any of the existing EWS monitoring station,
396 then the event considered to be monitored by the existing EWS in Bhutan. Similarly, if a LGU
397 is affected by a GLOF that passes through one or more of these stations, the associated GLOF
398 danger that LGU is regarded as being monitored by the existing EWS.

399 **Table 2.** GLOF exposed elements: people, buildings, roads, bridges and farmland distributed
400 across top 20 GLOF LGUs. The total value at end last row represents the total exposed
401 elements across all LGUs in Bhutan.

Gewog/town	District name	Building (count)	People count	Road (km)	Farmland (km ²)	Bridge (count)	Danger (rank)
Chhoekhor	Bumthang	191	297	41.7	0.28	36	1
Bumthang Town	Bumthang	283	5740	13.3	2.32	2	2
Punakha Town	Punakha	272	4911	10.8	1.14	4	3
Lunana	Gasa	121	86	40.0	0.00	30	4
Toedwang	Punakha	60	86	5.0	1.08	8	5
Nubi	Trongsa	29	229	2.0	0.30	8	6
Thedtsho	Wangdue Phodrang	165	535	3.6	0.90	6	7

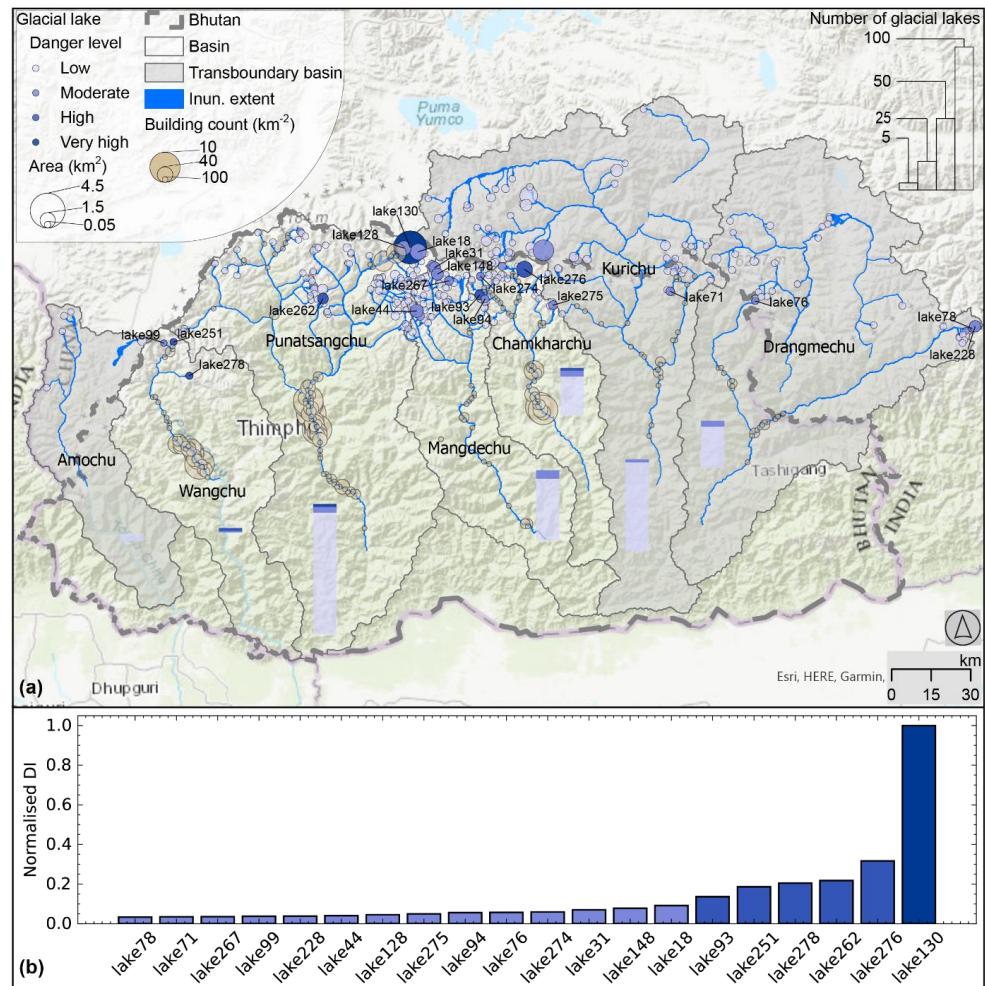
Dzomi	Punakha	53	560	6.2	1.22	6	8
Paro Town	Paro	262	5535	13.2	1.14	12	9
Wangdue Phodrang Town	Wangdue Phodrang	109	1365	1.2	0.25	0	10
Lamgong	Paro	195	303	7.9	0.85	6	11
Lingmukha	Punakha	65	41	5.7	0.19	2	12
Khoma	Lhuentse	42	49	6.7	0.04	8	13
Khatoed	Gasa	17	3	0.4	0.00	4	14
Athang	Wangdue Phodrang	38	3	2.0	0.42	10	15
Darkar	Wangdue Phodrang	85	21	3.2	0.31	16	16
Yalang	Yangtse	9	80	0.9	0.46	6	17
Langthil	Trongsa	11	44	1.3	0.82	8	18
Saephu	Wangdue Phodrang	6	162	14.2	0.00	4	19
Sharpa	Paro	120	168	3.8	0.94	8	20
Total		2613	22399	265	19	364	

402 **4. Results**

403 **4.1. GLOF impact and exposure**

404 Our study revealed that GLOFs from individual glacial lakes can travel as far as 167 km
405 downstream and can inundate a maximum area of 30 km². The modelled GLOFs exhibit a
406 median travel distance of 40 km and an inundation area of 2.9 km² (Fig. S3). Collectively about
407 2% (781 km²) of Bhutan's total land area is exposed to GLOF. The mean flow depth and
408 velocity were 3.3 m and 3.4 m s⁻¹, respectively (Fig. S3). The shortest arrival time to the
409 nearest building was 8 minutes and the longest was 10 hours (Fig. S3). As a result, a total of
410 22399 people, 2613 buildings, 270 km of road, 402 bridges, 19 km² of farmland and 4
411 hydropower dams are exposed to GLOFs in Bhutan (Table 2). Of the total modelled GLOF
412 events, 71% (n = 197) affect roads, 42% (n=116) affect buildings and 28% (n=77) affect
413 farmland. The rest of the GLOFs do not affect any downstream entities. Focusing on Bhutan's
414 most dangerous lake, Thorthormi Tsho, can impact 1119 buildings, 72 km of roads, and 4.2
415 km² of farmland making it the most consequential event for reaching elements at risk. It is
416 followed by lake278, located in the Wangchu basin and Chubdha Tsho in the Chamkharchu
417 basin, both which are classified as high danger glacial lakes by this study (Table S1).

418 Out of 278 glacial lakes selected for flood mapping for this study, 85 (30.6%) are within
419 catchments that cross the boundaries of India and China and drains into Bhutan inland. GLOF
420 from these transboundary lakes also affect substantial number of downstream elements

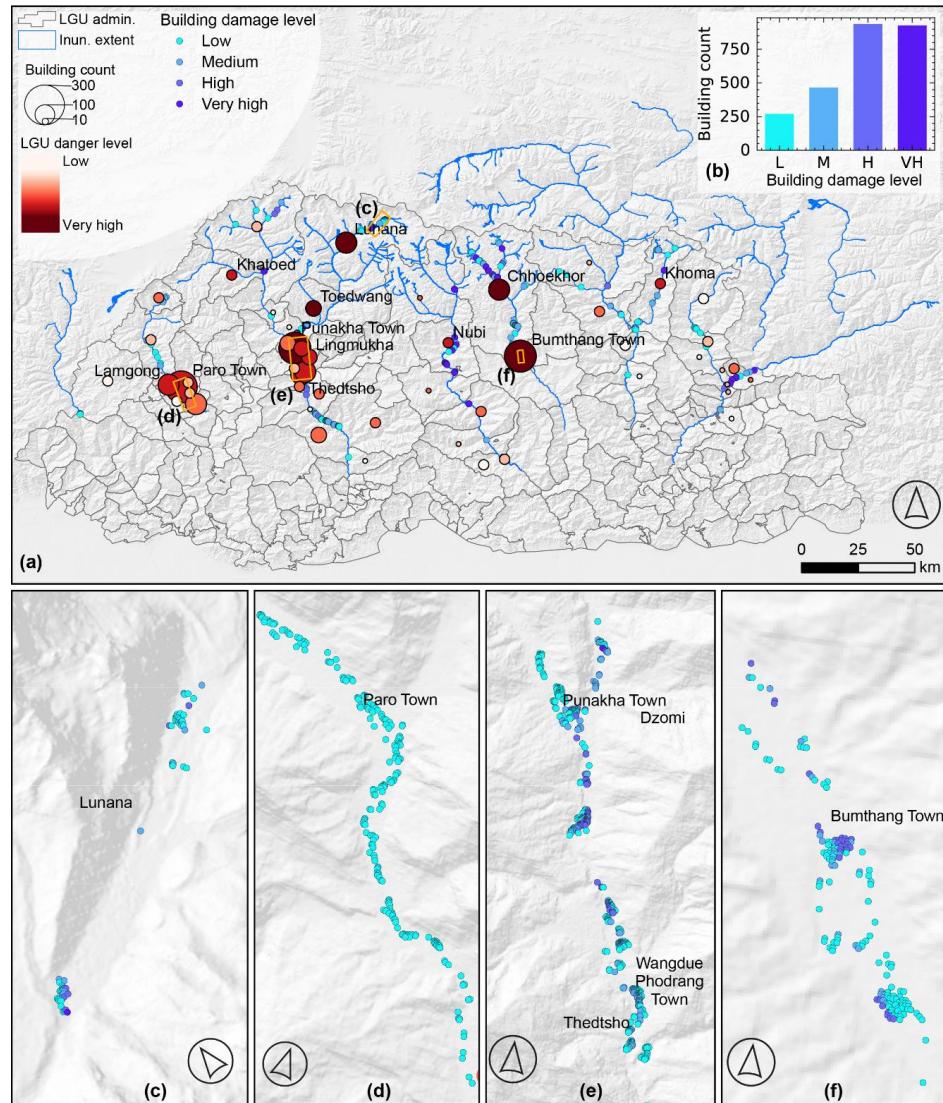


421 located in Bhutan, including 20 buildings, 0.6 km² of farmland, and 2 km of roads in Bhutan.
422 All these exposed elements are situated within the Kurichu and Drangmechu basins.

423 The exposed elements are distributed across 17 districts and 88 local government
424 administrative units (LGUs). Bumthang, Paro, Punakha, Wangdue Phodrang and Gasa
425 districts are most affected by the GLOFs. For example, Paro itself has 673 GLOF exposed
426 buildings, 32 km of road and 64 bridges (Table 2). Among the LGUs, the maximum exposed
427 building is in Bumthang town (n= 283) followed by Punakha town (n= 272) and Paro town
428 (n=262). The greatest road (roads, footpaths, tracks) inundation occurs in Chhoekhor followed
429 by Lunana and Saephu, while most farmland is impacted in LGUs such as Bumthang town
430 (2.3 km²), Dzomi Gewog (1.2 km²) and Paro town (1.1 km²) (Table S2).

431 **4.2. Dangerous glacial lakes**

432 We defined dangerous glacial lakes in Bhutan based on the damage index (D_i) calculated by
433 combining flow depth, velocity and downstream exposure data. Of the total lakes studied here
434 (278), 164 had zero damage index as the GLOF from these lakes does not impact any
435 buildings. The computed DI for rest of the glacial lakes range between 2 and 3435. Here we
436 normalized DI value between 0 and 1. With the highest D_i , Thorthormi Tsho in the
437 Punatsangchu basin emerged as the most dangerous high danger lake in Bhutan (Fig. 3).
438 Additionally, based on DI, we categorized glacial lakes into four danger levels: very high
439 danger, high danger, moderate danger, and low danger using the Natural Jenks classification
440 system in ArcGIS. Using this approach, five other lakes are identified as high danger which
441 are distributed across the Wangchu (2), Chamkharchu (2), and Punatsangchu (1) basins.
442 Twenty-one of the glacial lakes were in the moderate danger category: four each in
443 Punatsangchu, Chamkharchu and Drangmechu basins, and six in Mangdechu, two in Kurichu
444 and one in Drangmechu basins (Fig. 3). The remaining (251) were classified as low danger.
445 None of the high or very high danger glacial lakes were located within the Chinese and Indian
446 sides of the basins, which drain into Bhutan (Fig. 3).


447

448 **Figure 3. Distribution of dangerous glacial lake.** The (a) map shows the distribution of
449 glacial lake with associated GLOF danger level across the eight glaciated basins in Bhutan:
450 very high (VH), high (H), moderate (M) and low dangers. The bar charts within the map show
451 the number of glacial lakes (where height of the bar corresponds to number of lakes in each
452 basin referenced to inset bar chart) with various danger levels in each basin. The bubble along
453 the flood path shows number of buildings per km^2 . The (b) bar chart shows the damage index
454 (normalized between 0 to 1) associated with top 20 lakes arranged in the ascending order (left
455 to right). The lake ID on the x-tick labels correspond to the ID on the map. Base map image is
456 the intellectual property of Esri and is used herein under license. Copyright © 2025 Esri and
457 its licensors. All rights reserved.

458 4.3. Downstream GLOF danger

459 In this section, we present the GLOF damage ranking and level associated with downstream
460 communities, encompassing 20 districts and 274 LGUs. Based on the damage index for
461 respective LGUs (LGU_{di}), which accounts for both damage from GLOF and people's
462 vulnerability (Fig. S4), Punakha is identified as the district that would suffer from the highest
463 GLOF damage in the future followed by Bumthang and Wangdue Phodrang districts.

464

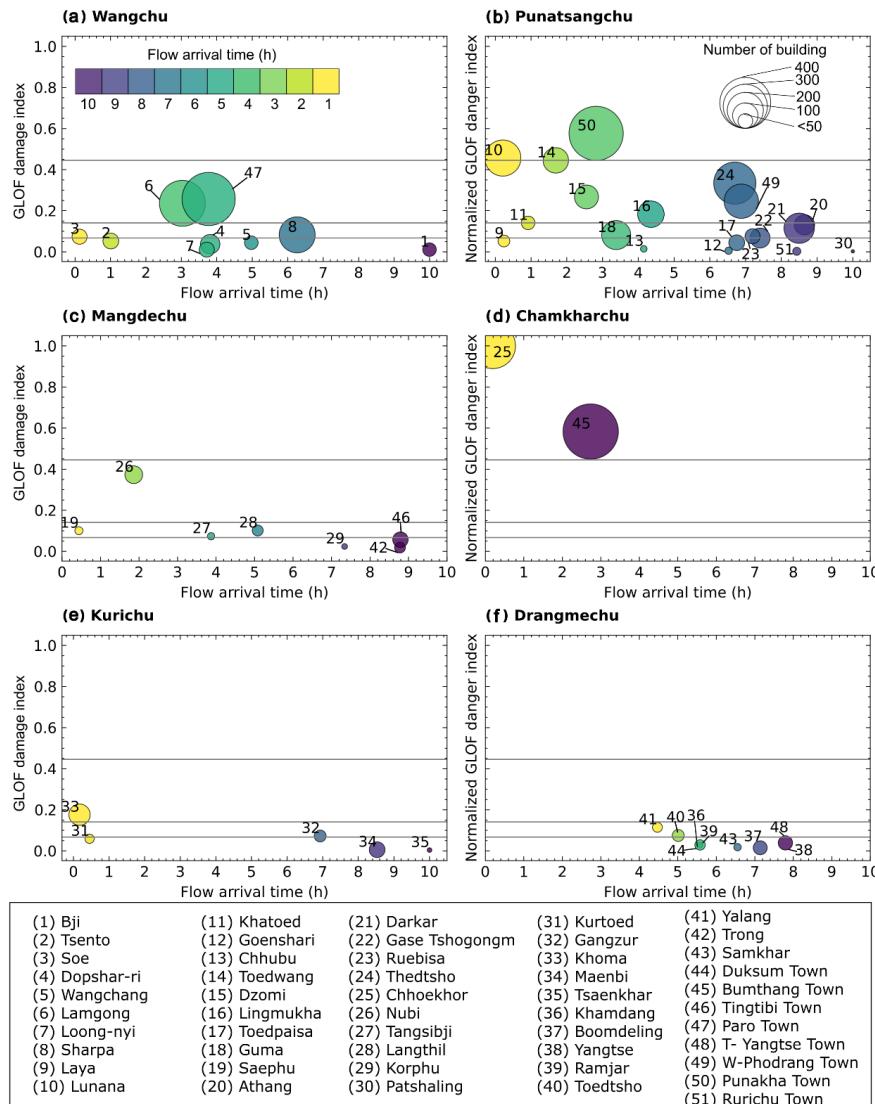
465 **Figure 4.** Downstream GLOF danger. GLOF danger level across (a) local administration units
466 and GLOF inundation extent (inun. extent). Inset (b) bar graph shows the number of all

467 buildings in Bhutan impacted by the modelled GLOF and associated damage level: very high
468 (VH), high (H), moderate (M) and low (L). The lower panels (c–f) are the zoomed-in map from
469 panel A which shows the damage level associated with individual buildings.

470 Among the LGUs, Chhoekhor gewog is associated with the highest GLOF damage followed
471 by Bumthang town, Punakha town and Lunana gewog (Fig. 4). The classification of LGU_{di}
472 yielded five LGUs associated with very high GLOF damage while nine others were associated
473 with high GLOF damage. Likewise, 13 LGUs were associated with moderate GLOF damage
474 while the rest were identified as low GLOF damage LGUs (Fig. 4).

475 **4.4. Flow arrival time**

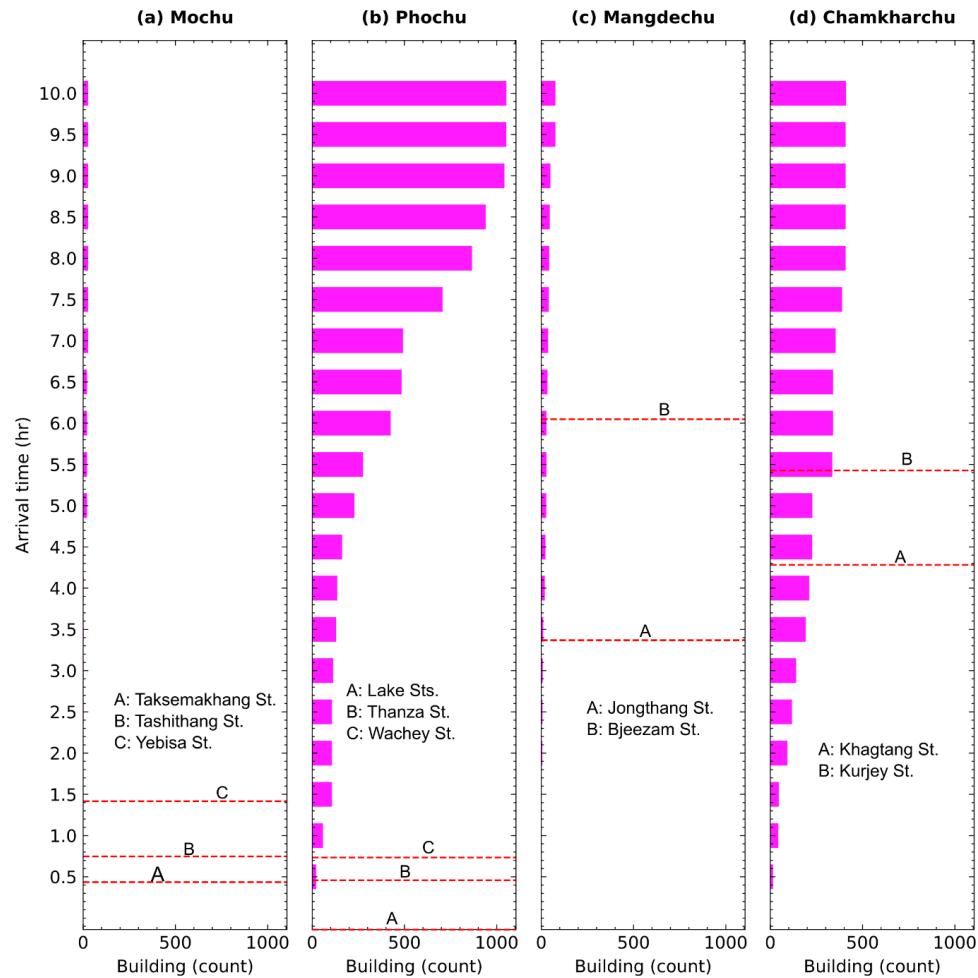
476 We also ranked the LGUs based on the flow arrival time of the GLOF scenario that would
477 impact the first buildings in the LGU. Results showed that, for the seven gewogs including
478 Soe, Khoma, Chhoekhor, Lunana, Laya, Saephu, and Kurtoed, the fastest GLOF can impact
479 some of their buildings within 30 minutes. Some buildings in Khatoed, Tsento, Toedwang and
480 Nubi could be affected within one hour. Nine gewogs can be affected within 2 to 4 hours,
481 another nine within 4–6 hours while the fastest GLOF could take more than 6 hours to affect
482 buildings in other LGUs (Fig. 5).


483 In the LGUs such as Soe and Laya, the first buildings affected by the GLOF are typically
484 isolated and located very close to glacial lakes. Despite their proximity, the GLOF danger
485 ranking for these LGUs remains relatively low due to the limited number of exposed buildings
486 in these LGUs (Fig. 5). Therefore, we compared the Di and the arrival time of the fastest-
487 arriving GLOF within each LGU. This analysis identified Lunana and Chhoekhor as LGUs with
488 very high GLOF danger levels, and the fastest GLOF can arrive in as little as 15 minutes. On
489 other hand, the fastest GLOF impacting buildings take up to three hours for other LGUs with
490 very high GLOF danger such as Punakha town and Bumthang town (Fig. 5).

491 **4.5 Early Warning System and GLOF**

492 We analyzed the distribution of the existing GLOF early warning system in Bhutan with respect
493 to dangerous glacial lakes, and downstream communities associated with GLOF danger.
494 Currently Bhutan has GLOF early warning system in three basins: Punatsangchu,
495 Mangdechu, and Chamkharchu. Across these basins, the system is equipped with 13
496 monitoring stations placed at various locations (Fig. 1). Assuming that GLOFs from a lake may
497 be monitored if an EWS monitoring stations is located downstream of the glacial lake, our
498 study shows existing EWS currently tracks 51 out of the 278 glacial lakes we investigated
499 here. Among these monitored lakes, the network includes the most dangerous glacial lake,
500 Thorthormi Tsho, as well as two of the five high danger glacial lakes and five of the six

501 moderate danger glacial lakes. The remaining monitored lakes are classified as low or very
 502 low danger. Notably the high danger glacial lakes identified here including lake251, lake262
 503 and lake278 are not monitored by the existing early warning systems.



504

505 **Figure 5.** The damage index and flow arrival time (of the fastest arriving) GLOF for each local
 506 administrative unit (LGUs) in impacted basins: (a) Wangchu, (b) Punatsangchu, (c)
 507 Mangdechu, (d) Chamkarchhu, (e) Kurichu and (f) Drangmechu. Numbers associated with
 508 each bubble in plot correspond to the numbering corresponding to the name of each LGU in
 509 the lower panel. The flow arrival time colour code legend in panel (a) and number of building

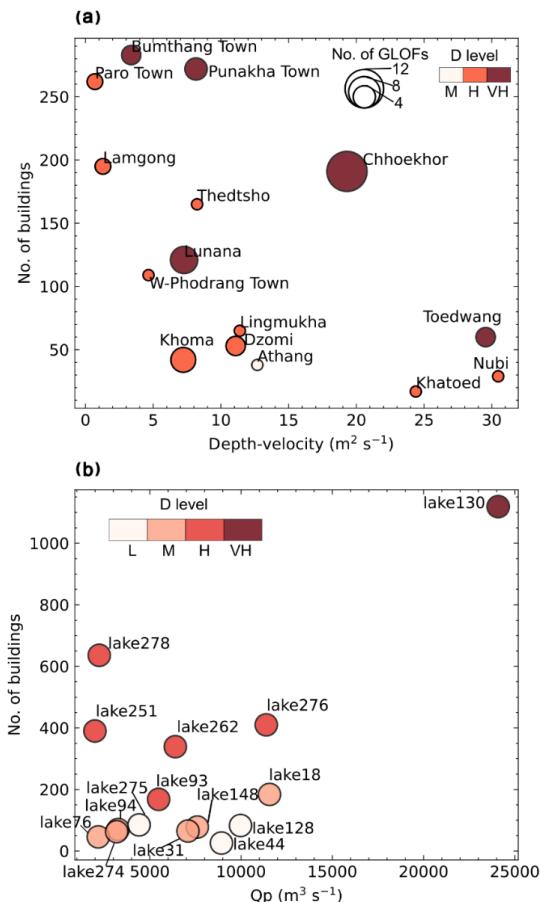
510 legend in panel (b) applies to all the panels. The horizontal grey lines categorize the local
511 administrative unit (LGUs) into various GLOF danger level based on damage index (low
512 danger level to very high danger level).

513
514 **Figure 6.** Bar plots showing the number of buildings located downstream of GLOF early
515 warning monitoring stations in Punatsangchu basin [(a) Mochu, (b) Phochu], (c) Mangdechu,
516 and (d) Chamkharchu basins. Red dashed lines represent the location of EWS monitoring
517 stations relative to average flow arrival time of all GLOFs detected by each EWS monitoring
518 station. The bars represent cumulative numbers of GLOF exposed buildings located at the
519 respective basin where early warning stations are operational. The name location of each
520 EWS monitoring station is indicated with alphabet (A to C) within the respective panel. The

521 monitoring station located at the lakes including Bechung, Raphstreg, Thorthormi and Lugge
522 Tsho in Phochu basin are marked as Lake Sts. in panel (b).

523 We further examined residents of how many GLOF exposed buildings can receive early
524 warnings based on their hydrological relationship to the existing EWS monitoring stations.
525 Assuming that the buildings located downstream of the EWS monitoring stations can receive
526 early warning, our study revealed that the existing GLOF monitoring stations can provide early
527 warning to the people living in 1549 buildings of which about 75% are in the Punatsangchu
528 basin. Of these, residents in 268 buildings are estimated to have less than 30 minutes to
529 evacuate after receiving warning from the EWS monitoring stations located in their respective
530 communities (Fig. 6).

531 Conversely, people living in 1050 exposed buildings, that is at least 41% of them do not have
532 access to early warning coverage. Approximately half of these unserved buildings clustered
533 in downstream LGUs with high GLOF danger including Lamgong and Paro Town in Paro
534 districts. Although EWS in place in the Chamkharchu basin, a cluster of about 82 buildings in
535 Chhoekhor in Bumthang are not covered by EWS. These is because the flood waves from the
536 potential GLOF can arrive these buildings before activating the monitoring stations at
537 Khagtang and Kurjey (Fig. 6).

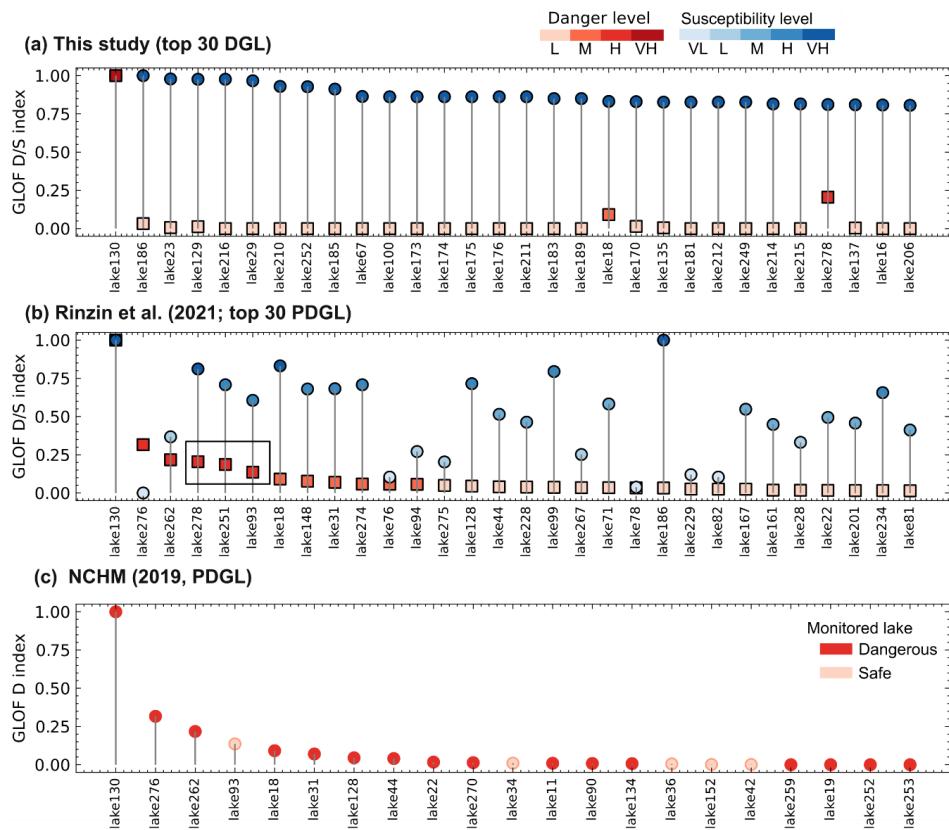

538 **5. Discussion**

539 **5.1. Redefined dangerous glacial lake**

540 Some of the most devastating historical GLOF events in the world have occurred from
541 seemingly inconspicuous glacial lakes (Allen et al., 2015; Petrakov et al., 2020), whilst some
542 large-magnitude GLOF events have caused minimal or no downstream damage (Shrestha et
543 al., 2023; Lützow et al., 2023). This is because the GLOF magnitude alone does not determine
544 downstream damage caused by the GLOF event, instead, it is the interaction between GLOF
545 magnitude and the downstream exposed elements that determine the extent of damage
546 (Taylor et al., 2023a). For example, the greatest structural damage associated with 2023 South
547 Lhoknak Lake GLOF event in the Indian state of Sikkim occurred between 200 and 385 km
548 downstream of the glacial lake, with 59% of these impacted structures constructed within the
549 past decade (Sattar et al., 2025). This highlights the escalating risks posed by infrastructure
550 expansion and settlement growth in GLOF-exposed areas and underscores the importance of
551 considering exposure data in GLOF danger assessment. To address this in Bhutan, we
552 redefined dangerous glacial lakes by coupling flood characteristic modelling and downstream
553 exposure data. Accordingly, we have produced flood mapping and GLOF danger ranking for
554 278 glacial lakes along with comprehensive GLOF danger assessments for 274 local

555 government administrative units (LGUs). As a result, we classified lake130 (Thorthormi Tsho)
556 as a very high danger glacial lake in Bhutan, five lakes (lake93, lake251, lake262, lake276
557 and lake278) as high danger and 21 other lakes as moderate danger. Likewise, five
558 downstream LGUs were associated with very high GLOF danger while nine others were
559 associated with high GLOF danger.

560
561 **Figure 7.** Dot plot illustrating the influence of GLOF magnitude and downstream exposure on
562 danger level computed in this study for (a) downstream LGUs and (b) individual lakes. In panel
563 (a), the GLOF magnitude is based on median depth-velocity across all the GLOFs that strike
564 at least one building in the LGU. In panel (b), we considered peak discharge (Qp) as a proxy
565 for GLOF magnitude. In both the panels, colour associated with each dot indicates the GLOF
566 danger (d) level associated with each LGU or lake. The size of the dots in panel (a)
567 corresponds to number of GLOFs from various glacial lakes that impact the respective


568 community. For the better visualization, only top 15 dangerous glacial lake and top 15 LGUs
569 with GLOF danger are displayed here.

570 Our approach departs from many existing practices of identifying dangerous glacial lakes,
571 which are primarily based on the susceptibility of lakes to produce GLOF without regarding
572 the characteristics of settlements located downstream of the lakes (Rinzin et al., 2021; NCHM,
573 2019), in two ways: **1) Incorporation of GLOF Hydrodynamic characteristics:** we
574 considered flow velocity and flow depth, which are both primary components of the GLOF flow
575 that determine damage to the downstream elements (Federal Emergency Management
576 Agency, 2004). **2) Interaction of flow depth and velocity with downstream exposed**
577 **buildings:** we mapped potential downstream building damage associated with each GLOF
578 event based on the interaction between the depth-velocity and downstream at-risk elements.
579 By focusing on the interaction between flood magnitude and downstream exposed building,
580 our method classifies glacial lakes as dangerous only when their potential flood poses a threat
581 to downstream elements, making it a more practical and effective strategy for bespoke GLOF
582 risk reduction activities. For example, lake278 and lake251 are small and they produce
583 relatively small GLOFs with their estimate peak discharge approximately $2000 \text{ m}^3 \text{ s}^{-1}$.
584 However, both were classified as high danger as the GLOF from these lakes impact hundreds
585 of downstream buildings (Fig. 7). Likewise, our approach assigns a higher GLOF danger
586 ranking to communities that are either affected by GLOFs from multiple lakes, impacted by
587 high-magnitude GLOFs, or have multiple buildings located within the GLOF inundation area,
588 whilst also considering the community's vulnerability. For example, Chhoekhor was identified
589 as having the highest GLOF danger in Bhutan because at least 191 buildings were potentially
590 impacted by GLOF from as many as 14 lakes in the basin. On other hand, other gewogs such
591 as Toedwang in Punakha also are classified as having very high GLOF danger, despite having
592 a comparatively low number (60) of potentially impacted buildings because these building
593 could be impacted by very high magnitude GLOFs in terms of depth and velocity (Fig. 7).

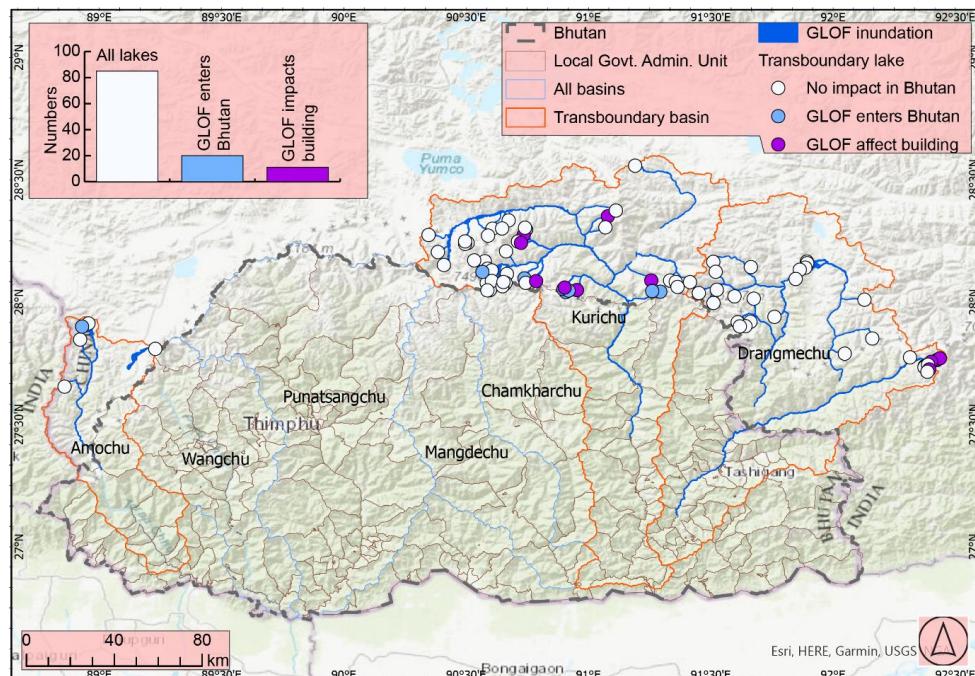
594 Our approach challenges traditional dangerous glacial lake assessments by redefining which
595 glacial lakes pose the greatest danger to the downstream settlements. As a result, we
596 identified three new high danger glacial lakes including, lake93 (Phudung Tsho), lake251, and
597 lake278 (Wonney Tsho), which are not recognized as dangerous glacial lakes by any of the
598 previous studies. Also, 53 of the previously identified 64 very highly susceptible to GLOFs
599 lakes (Rinzin et al., 2021) are categorized as low GLOF danger lakes. Conversely, 12 lakes
600 classified as low or very low GLOF susceptibility emerge as moderate to high danger in our
601 study (Rinzin et al., 2021). Likewise, nine of the dangerous lakes monitored by NCHM (six in
602 Punatsangchu basin, one each in Mangdechu, Chamkharchu and Kurichu basins) (National

603 Centre for Hydrology and Meteorology, 2019) are categorized as low danger in our study (Fig.
604 8). These discrepancies arise because we classified lakes as dangerous only if a potential
605 GLOF would affect a significant number of downstream buildings, whereas earlier studies
606 relied solely on geomorphological characteristics of the lakes and their surroundings (Rinzin
607 et al., 2021; NCHM, 2019) (Fig. 8). For example, lake278 in the Wangchu headwaters is
608 classified as high danger in our study because a potential GLOF could impact 636 buildings
609 across seven LGUs in Paro while the earlier studies considered this lake as safe as it does
610 not have geomorphological characteristics and lake condition to qualify as dangerous (Rinzin
611 et al., 2021).

612
613 **Figure 8.** Comparison (a, b) GLOF damage index (DI) for top 30 dangerous glacial lakes
614 (DGL) calculated in current study and GLOF susceptibility score from Rinzin et al. (2021), and
615 (c) damage index (DI) for potentially dangerous glacial lakes (PDGLs) in Bhutan identified by
616 National Centre for Hydrology and Meteorology (2019). The black bounding box in panel (b)
617 shows the new dangerous glacial lakes identified in this study for the first time.

618 By ranking GLOF danger for all 274 LGUs, we discovered new GLOF risk hotspots such as
619 Paro town and Lamgong gewog (Paro, Khoma gewog [Lhuentse] and Chhoekhor gewog
620 [Bumthang]). GLOF danger in these places was previously not quantified and existing GLOF
621 early warning systems in Bhutan currently do not cover these high GLOF danger LGUs
622 (NCHM, 2021). We therefore recommend prioritizing monitoring of glacial lakes in Bhutan
623 based on high downstream exposure, rather than focusing on lakes selected solely based on
624 geomorphic susceptibility assessments. Specifically, Bhutan's glacial lake monitoring and
625 downstream risk mitigation efforts should expand beyond Lunana to include other high GLOF
626 danger lakes and vulnerable downstream settlement such as Paro Town, and Chhoekhor
627 gewog and gradually expanding to currently understudied areas in far eastern districts such
628 as Lhuentse, while emphasizing that higher granularity studies might be needed to guide
629 bespoke risk reduction efforts in these respective areas.

630 **5.2. Transboundary GLOF**


631 None of the transboundary lakes were classified as very high or high danger based on
632 potential GLOF impacts in Bhutan. This is because damage was minimal, mainly inundating
633 uninhabited parts of Bhutan, located in deep, inaccessible gorges. However, we identified
634 GLOF from four lakes in the Drangmechu basin (located in Arunachal Pradesh, India) and 11
635 in the Kurichu basin (located in the Tibetan Autonomous Region, China), which could
636 potentially impact several buildings in Bhutan. Furthermore, GLOF from 20 lakes located in
637 the Indian and Chinese territories of the Himalaya enter Bhutan, although they do not impact
638 any building (Fig. 9). Identifying potential transboundary GLOFs is vital, given their potential
639 destructive power and long run out distances and challenges stemming from absence of
640 transboundary GLOF risk mitigation mechanism. For example, a recent GLOF from South
641 Lhoknak Lake in the Indian Himalaya has travelled over 300 km downstream, causing
642 significant damage in Bangladesh (Sattar et al., 2025). The absence of transboundary
643 cooperation for GLOF risk mitigation between Bhutan, China, and India complicates efforts to
644 monitor and manage such risks. Establishing regional cooperation is essential to enhance
645 early warning systems, facilitate data sharing, and implement coordinated risk reduction
646 strategies, thereby minimizing the potential damage from future transboundary GLOFs.

647 **5.3. Significance, limitations and the way forward**

648 Our approach of GLOF danger assessment using both flood magnitude and downstream
649 exposure data provides local authorities and relevant stakeholders with valuable information
650 to plan and prioritize wide ranging risk mitigation activities. These activities may target either
651 specific glacial lakes or downstream communities based on the danger index and level we
652 have provided, whilst also incorporating practical factors, such as resource availability and

653 logistical constraints. This study is particularly timely, as the Royal Government of Bhutan is
654 planning to modernize and expand its network of flood monitoring and GLOF early warning
655 systems (World Bank, 2024). This initiative, outlined in the roadmap for 2024–2034, aims to
656 develop multi-hazard warning services, aligning closely with the practical applications and
657 insights provided by our research. For example, our flood mapping and flow arrival time data
658 can be used to appropriately locate GLOF monitoring stations for early warning systems
659 (Wang et al., 2022). Likewise, some of the scattered buildings in LGUs such as Soe gewog in
660 Paro could be impacted by GLOFs within as little as 10 minutes. This short lead time means
661 it is practically not effective to install early warning systems for residents in these rapidly
662 affected areas. In such context, our flood extent mapping can effectively guide land-use zoning
663 and support informed decision-making for future development in these vulnerable locations.

664
665 **Figure 9.** The map shows the impact of GLOF in Bhutan, which originates from lakes located
666 on the Chinese and Indian sides of Transboundary basins. The inset bar graph shows the total
667 lakes, lakes from which GLOF enters Bhutan and lakes from which GLOF impacts buildings
668 and other structures in Bhutan. The lake ID on the x-tick labels correspond to the ID on the
669 map. Base map image is the intellectual property of Esri and is used herein under license.
670 Copyright © 2025 Esri and its licensors. All rights reserved.

671 Our work establishes a baseline GLOF mapping and risk assessment in Bhutan. However, we
672 acknowledge that the magnitude of flood from glacial lakes will continue to evolve as glacier
673 retreat drives the expansion of existing lakes within a topographically constrained extent and
674 the formation of new lakes within the depressions left by the retreating glaciers (Zheng et al.,
675 2021b; Furian et al., 2022). Concomitantly, the downstream settlements within the GLOF-
676 prone areas are evolving, with population growth and infrastructure development leading to
677 increased GLOF exposure. The interplay of these factors means GLOF danger will likely
678 increase in the future and highlights the need for dynamic and regularly updated GLOF flood
679 mapping and risk assessments in the future.

680 We determined the minimum glacial lake area threshold (0.05 km^2) for GLOF modelling based
681 on the empirical evidence from the previous inventory (Shrestha et al., 2023; Komori et al.,
682 2012). However, it is important to acknowledge that glacial lake smaller than 0.05 km^2 have
683 also been known to produce GLOF event with a magnitude substantial to cause significant
684 downstream damage, particularly when it combines with other flood like meteorological flood
685 (Allen et al., 2015) or when the outburst flow entrains large amount of debris (Petrakov et al.,
686 2020; Cook et al., 2018). Thus, the future modelling effort should also consider smaller lakes
687 than the size threshold we considered here.

688 While we mapped all types of exposed elements located within the GLOF flow inundation
689 extent, our GLOF danger index is calculated solely based on the impact on number of exposed
690 buildings. This approach is grounded in the rationale that buildings represent the primary
691 places where people reside and are therefore the most direct proxy for population exposure.
692 However, critical infrastructure such as hydropower plants (e.g., in the Punatsangchu basin)
693 and the international airport in Paro (Wangchu basin), which are vital to the national economy,
694 were not included in our danger calculation. This omission stems from the considerable
695 challenges involved in accurately estimating the economic cost of potential damage to such
696 high-value infrastructure. When the GLOF intercepts hydropower dams, it can cause
697 overtopping, excessive sedimentation, outages, equipment damage leading to significant
698 revenue losses from the hydropower plants (Dunning et al., 2006) as well as cascading
699 impacts on the low-lying settlements (Sattar et al., 2025). Likewise, damage to the crucial
700 infrastructure such as Paro international airport will hinder relief effort after the GLOF disaster
701 delaying the recovery and escalating overall loss and damage. Therefore, future study should
702 also consider absolute economic impact of GLOF to aid relevant stakeholders and
703 policymakers in developing appropriate strategies to mitigate risks to vital infrastructure.

704 Looking forward, the glacial lake dataset can be updated using wide-ranging open-access
705 remote sensing imagery. Similarly, platforms such as OpenStreetMap, which leverage crow-

706 sourced data and are frequently updated, present a valuable resource for mapping evolving
707 downstream buildings and other structure data. Likewise, hydrodynamic modelling for multiple
708 glacial lakes with freely available and user-friendly models such as HEC-RAS is increasingly
709 becoming feasible with the recent development in artificial intelligence and cloud-based
710 computing platforms like Flood Platform (<https://www.floodplatform.com/>) which enable
711 integrating products from varied flood simulations/models into a common framework. We will
712 develop web portal, which hosts glacial lake data and flood maps, serves as a valuable
713 resource for periodic updates to flood damage assessments. By integrating up-to-date glacial
714 lake flood magnitude information with evolving downstream exposure data, this platform can
715 provide valuable information for informed decision-making and proactive risk management,
716 such as tailored early warning systems and land use management and development.

717 **6. Conclusion**

718 Glacial lakes, which are growing in number and areas in the mountains globally, pose a serious
719 GLOF threat to the communities living downstream of them. However, the destruction and
720 damage caused during the GLOF events are not only a function of lake drainage magnitude
721 but also depend on their interaction with downstream exposed elements. Despite this,
722 traditional approaches to assessing danger posed by glacial lakes have been mainly based
723 on the likelihood and magnitude of a lake to produce GLOFGLOF and often disregard the
724 potential downstream impact. To address this gap, this study redefines the classification of
725 dangerous glacial lakes in Bhutan (one of the high GLOF risk countries globally) by combining
726 GLOF hydrodynamic characteristics mapping and downstream exposed buildings.

727 This study produced GLOF hydrodynamic characteristics for all glacial lakes in Bhutan which
728 are greater than 0.05 km² and located within the 1 km of glacier terminus. The analysis
729 revealed that approximately 22399 people, 2613 buildings, 270 km of road, 402 bridges and
730 20 km² of farmland are exposed to GLOF in Bhutan. A GLOF damage index was developed
731 by combining flood mapping data with downstream exposure metrics, enabling the ranking of
732 glacial lakes based on their potential danger. Thorthormi Tsho was identified as the most
733 dangerous glacial lakes in Bhutan. Furthermore, we identified five additional glacial lakes as
734 having high GLOF danger, two of which are in head water of Wangchu, neither included in
735 previous study and nor monitored by existing early warning system in Bhutan. Among these
736 dangerous glacial lakes, three of them are newly identified dangerous glacial lakes (lake251,
737 278 and lake93) in the current study.

738 For the first time, this study provides GLOF danger ranking for 20 districts and 274 local
739 government administrative blocks (gewogs and towns) [LGUs] in Bhutan. In addition to the

740 previously identified high GLOF danger gewogs and towns, we have identified six additional
741 LGUs with similarly high GLOF dangers. These include Chhoekhor and Bumthang town in
742 Bumthang, Paro town and Lamgong in Paro, Nubi in Trongsa and Khoma in Lhuentse districts.

743 Most strikingly, some downstream LGUs such as Paro town and Lamgong gewog in Paro are
744 not covered by the existing Bhutan early warning system, highlighting significant gaps in
745 existing risk mitigation efforts.

746 This study underscores the criticality of incorporating flood mapping and downstream
747 exposure and vulnerability data when defining GLOF dangerous lake and assessing
748 downstream risk. For Bhutan, the findings emphasize the urgent need to expand and
749 strengthen GLOF risk mitigation strategies, including the enhancement of early warning
750 systems and the implementation of targeted interventions in newly identified high-risk areas.
751 These measures are essential to safeguarding vulnerable communities and infrastructure from
752 the escalating threat of GLOFs in the context of ongoing climate change and glacial retreat.

753 **Acknowledgement**

754 This work was supported by the Natural Environment Research Council (NERC)- funded
755 IAPETUS Doctoral Training Partnership [IAP2-21-267].

756 **Code and data availability**

757 The HEC-RAS 2D model we used here for simulating glacial lake outburst modelling can be
758 accessed at: <https://www.hec.usace.army.mil/>. The AW3D30 DEMS used here can be
759 downloaded from the OpenTopography at: [OpenTopography - Find Topography Data](#). Bhutan
760 2017 housing and census data can be downloaded from National Statistical Bureau of Bhutan
761 at <https://www.nsb.gov.bt/>. Landover and landuse data used in this study can be accessed at:
762 <https://rds.icimod.org/>. The OpenStreetMap data can be assessed at:
763 <https://www.openstreetmap.org/relation/184629>. GLOF hydraulic data for each glacial lake will
764 be made available through web portal with publishing of this article.

765 **Supplement**

766 The supplement related to this article is available online at:

767 **Author contributions**

768 SR, SD and RC conceptualized the study. SR undertook data analysis, visualization and wrote
769 original draft. SD and RC secured the funding, supervised and contributed equally to the work.

770 SA, AS and SW reviewed and edited the manuscript. All authors contributed to the final
771 manuscript.

772 **Competing interests**

773 The contact author has declared that none of the authors has any competing interests.

774

775 References

776 Allen, S., Frey, H., and Huggel, C.: Assessment of Glacier and Permafrost Hazards in Mountain Regions.
777 Technical Guidance Document, 10.13140/RG.2.2.26332.90245, 2017.

778 Allen, S. K., Rastner, P., Arora, M., Huggel, C., and Stoffel, M.: Lake outburst and debris flow disaster at
779 Kedarnath, June 2013: hydrometeorological triggering and topographic predisposition, *Landslides*, 13,
780 1479-1491, 10.1007/s10346-015-0584-3, 2015.

781 Allen, S. K., Zhang, G., Wang, W., Yao, T., and Bolch, T.: Potentially dangerous glacial lakes across the
782 Tibetan Plateau revealed using a large-scale automated assessment approach, *Science Bulletin*, 64,
783 435-445, 10.1016/j.scib.2019.03.011, 2019.

784 Allen, S. K., Linsbauer, A., Randhawa, S. S., Huggel, C., Rana, P., and Kumari, A.: Glacial lake outburst
785 flood risk in Himachal Pradesh, India: an integrative and anticipatory approach considering current and
786 future threats, *Natural Hazards*, 84, 1741-1763, 10.1007/s11069-016-2511-x, 2016.

787 Byers, A. C., Rounce, D. R., Shugar, D. H., Lala, J. M., Byers, E. A., and Regmi, D.: A rockfall-induced
788 glacial lake outburst flood, Upper Barun Valley, Nepal, *Landslides*, 16, 533-549, 10.1007/s10346-018-
789 1079-9, 2018.

790 Carr, J. R., Barrett, A., Rinzin, S., and Taylor, C.: Step-change in supraglacial pond area on Tshojo Glacier,
791 Bhutan, and potential downstream inundation patterns due to pond drainage events, *Journal of
792 Glaciology*, 1-40, 10.1017/jog.2024.62, 2024.

793 Carrivick, J. L. and Tweed, F. S.: A global assessment of the societal impacts of glacier outburst floods,
794 *Global and Planetary Change*, 144, 1-16, 10.1016/j.gloplacha.2016.07.001, 2016.

795 Colavitto, B., Allen, S., Winocur, D., Dussaillant, A., Guillet, S., Munoz-Torero Manchado, A., Gorsic, S.,
796 and Stoffel, M.: A glacial lake outburst floods hazard assessment in the Patagonian Andes combining
797 inventory data and case-studies, *Sci Total Environ*, 916, 169703, 10.1016/j.scitotenv.2023.169703,
798 2024.

799 Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R., and Hovius, N.: Glacial lake outburst floods as
800 drivers of fluvial erosion in the Himalaya, *Science*, 362, 53-57, doi:10.1126/science.aat4981, 2018.

801 Cook, S. J., Kougkoulos, I., Edwards, L. A., Dorch, J., and Hoffmann, D.: Glacier change and glacial lake
802 outburst flood risk in the Bolivian Andes, *The Cryosphere*, 10, 2399-2413, 10.5194/tc-10-2399-2016,
803 2016.

804 Cutter, S. L. and Finch, C.: Temporal and spatial changes in social vulnerability to natural hazards, 105,
805 2301-2306, 10.1073/pnas.0710375105 %J Proceedings of the National Academy of Sciences, 2008.

806 Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., and Webb, J.: A place-based model for
807 understanding community resilience to natural disasters, *Global Environmental Change*, 18, 598-606,
808 10.1016/j.gloenvcha.2008.07.013, 2008.

809 Das, S., Kar, N. S., and Bandyopadhyay, S.: Glacial lake outburst flood at Kedarnath, Indian Himalaya: a
810 study using digital elevation models and satellite images, *Natural Hazards*, 77, 769-786,
811 10.1007/s11069-015-1629-6, 2015.

812 Dunning, S. A., Rosser, N. J., Petley, D. N., and Massey, C. R.: Formation and failure of the Tsatichhu
813 landslide dam, Bhutan, *Landslides*, 3, 107-113, 10.1007/s10346-005-0032-x, 2006.

814 Evans, S. G.: The maximum discharge of outburst floods caused by the breaching of man-made and
815 natural dams, *Canadian Geotechnical Journal*, 23, 385-387, 10.1139/t86-053, 1986.

816 Federal Emergency Management Agency, F.: Direct physical damage—general building stock, HAZUS-
817 MH Technical manual, chapter5, Federal Emergency Management Agency Washington, DC2004.

818 Furian, W., Maussion, F., and Schneider, C.: Projected 21st-Century Glacial Lake Evolution in High
819 Mountain Asia, *Frontiers in Earth Science*, 10, 10.3389/feart.2022.821798, 2022.

820 Hugonet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M.,
821 Dussaillant, I., Brun, F., and Kaab, A.: Accelerated global glacier mass loss in the early twenty-first
822 century, *Nature*, 592, 726-731, 10.1038/s41586-021-03436-z, 2021.

823 Japan Aerospace Exploration Agency, J.: ALOS World 3D 30 meter DEM (V3.2), OpenTopography
824 [dataset], <https://doi.org/10.5069/G94M92HB>, 2021.

825 Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., and Brumby, S. P.: Global land
826 use/land cover with Sentinel 2 and deep learning, 2021 IEEE international geoscience and remote
827 sensing symposium IGARSS, 4704-4707,
828 Komori, J., Koike , T., Yamanokuchi, T., and Tshering, P.: Glacial Lake Outburst Events in the Bhutan
829 Himalayas, Global Environmental Research ©2012 AIRIES, 16, 12, 2012.
830 Kropáček, J., Neckel, N., Tyrna, B., Holzer, N., Hovden, A., Gourmelen, N., Schneider, C., Buchroithner,
831 M., and Hochschild, V.: Repeated glacial lake outburst flood threatening the oldest Buddhist monastery
832 in north-western Nepal, Natural Hazards and Earth System Sciences, 15, 2425-2437, 10.5194/nhess-
833 15-2425-2015, 2015.
834 Liu, K., Song, C., Ke, L., Jiang, L., Pan, Y., and Ma, R.: Global open-access DEM performances in Earth's
835 most rugged region High Mountain Asia: A multi-level assessment, Geomorphology, 338, 16-26,
836 10.1016/j.geomorph.2019.04.012, 2019.
837 Lützow, N., Veh, G., and Korup, O.: A global database of historic glacier lake outburst floods, Earth Syst.
838 Sci. Data Discuss., 2023, 1-27, 10.5194/essd-2022-449, 2023.
839 Maurer, J. M., Schaefer, J. M., Russell, J. B., Rupper, S., Wangdi, N., Putnam, A. E., and Young, N.: Seismic
840 observations, numerical modeling, and geomorphic analysis of a glacier lake outburst flood in the
841 Himalayas, Science Advances, 6, eaba3645, doi:10.1126/sciadv.aba3645, 2020.
842 Ministry of Economic Affairs, M.: Bhutan Sustainable Hydropower Development Policy 2021, 2021.
843 Nagai, H., Fujita, K., Sakai, A., Nuimura, T., and Tadono, T.: Comparison of multiple glacier inventories
844 with a new inventory derived from high-resolution ALOS imagery in the Bhutan Himalaya, The
845 Cryosphere, 10, 65-85, 10.5194/tc-10-65-2016, 2016.
846 National Centre for Hydrology and Meteorology [NCHM].: Reassessment of Potentially Dangerous
847 Glacial Lakes in Bhutan, National Centre for Hydrology and Meteorology, Royal Government of Bhutan,
848 Royal Government of Bhutan, PO Box: 2017, Thimphu, Bhutan, 54, 2019.
849 National Centre for Hydrology and Meteorology [NCHM].: Standard operating procedure (sop) for
850 GLOF early warning system Punakha-Wangdue valley, National Centre for Hydrology and Meteorology,
851 Royal Government of Bhutan, Royal Government of Bhutan, PO Box: 2017, Thimphu, Bhutan, 2021.
852 National Statistics Bureau of Bhutan [NSB].: 2017 Population and housing census of Bhutan, National
853 Statistics Bureau of Bhutan, Thimphu, Bhutan, 2018.
854 Nie, Y., Liu, W., Liu, Q., Hu, X., and Westoby, M. J.: Reconstructing the Chongbaxia Tsho glacial lake
855 outburst flood in the Eastern Himalaya: Evolution, process and impacts, Geomorphology, 370,
856 10.1016/j.geomorph.2020.107393, 2020.
857 Nie, Y., Liu, Q., Wang, J., Zhang, Y., Sheng, Y., and Liu, S.: An inventory of historical glacial lake outburst
858 floods in the Himalayas based on remote sensing observations and geomorphological analysis,
859 Geomorphology, 308, 91-106, 10.1016/j.geomorph.2018.02.002, 2018.
860 Nie, Y., Pritchard, H. D., Liu, Q., Hennig, T., Wang, W., Wang, X., Liu, S., Nepal, S., Samyn, D., Hewitt, K.,
861 and Chen, X.: Glacial change and hydrological implications in the Himalaya and Karakoram, Nature
862 Reviews Earth & Environment, 2, 91-106, 10.1038/s43017-020-00124-w, 2021.
863 Nie, Y., Deng, Q., Pritchard, H. D., Carrivick, J. L., Ahmed, F., Huggel, C., Liu, L., Wang, W., Lesi, M., Wang,
864 J., Zhang, H., Zhang, B., Lü, Q., and Zhang, Y.: Glacial lake outburst floods threaten Asia's infrastructure,
865 Science Bulletin, 10.1016/j.scib.2023.05.035, 2023.
866 Petrakov, D. A., Chernomorets, S. S., Viskhadzheva, K. S., Dokukin, M. D., Savernyuk, E. A., Petrov, M.
867 A., Erokhin, S. A., Tutubalina, O. V., Glazyrin, G. E., Shpuntova, A. M., and Stoffel, M.: Putting the poorly
868 documented 1998 GLOF disaster in Shakhimardan River valley (Alay Range, Kyrgyzstan/Uzbekistan)
869 into perspective, Science of The Total Environment, 724, 10.1016/j.scitotenv.2020.138287, 2020.
870 Petrucci, O.: The Impact of Natural Disasters: Simplified Procedures and Open Problems, in:
871 Approaches to Managing Disaster, edited by: John, T., IntechOpen, Rijeka, Ch. 6, 10.5772/29147, 2012.
872 Rahmani, M., Muzwagi, A., and Pumariega, A. J.: Cultural Factors in Disaster Response Among Diverse
873 Children and Youth Around the World, Current Psychiatry Reports, 24, 481-491, 10.1007/s11920-022-
874 01356-x, 2022.

875 Rinzin, S., Zhang, G., and Wangchuk, S.: Glacial Lake Area Change and Potential Outburst Flood Hazard
876 Assessment in the Bhutan Himalaya, *Frontiers in Earth Science*, 9, 10.3389/feart.2021.775195, 2021.

877 Rinzin, S., Dunning, S., Carr, R. J., Sattar, A., and Mergili, M.: Exploring implications of input parameter
878 uncertainties in glacial lake outburst flood (GLOF) modelling results using the modelling code r.avaflow,
879 *Natural Hazards and Earth System Sciences*, 25, 1841-1864, 10.5194/nhess-25-1841-2025, 2025.

880 Rinzin, S., Zhang, G., Sattar, A., Wangchuk, S., Allen, S. K., Dunning, S., and Peng, M.: GLOF hazard,
881 exposure, vulnerability, and risk assessment of potentially dangerous glacial lakes in the Bhutan
882 Himalaya, *Journal of Hydrology*, 619, 10.1016/j.jhydrol.2023.129311, 2023.

883 Rupper, S., Schaefer, J. M., Burgener, L. K., Koenig, L. S., Tsering, K., and Cook, E. R.: Sensitivity and
884 response of Bhutanese glaciers to atmospheric warming, *Geophysical Research Letters*, 39, n/a-n/a,
885 10.1029/2012gl053010, 2012.

886 Sattar, A., Goswami, A., Kulkarni, A. V., Emmer, A., Haritashya, U. K., Allen, S., Frey, H., and Huggel, C.:
887 Future Glacial Lake Outburst Flood (GLOF) hazard of the South Lhonak Lake, Sikkim Himalaya,
888 *Geomorphology*, 388, 10.1016/j.geomorph.2021.107783, 2021.

889 Sattar, A., Allen, S., Mergili, M., Haeberli, W., Frey, H., Kulkarni, A. V., Haritashya, U. K., Huggel, C.,
890 Goswami, A., and Ramsankaran, R.: Modeling Potential Glacial Lake Outburst Flood Process Chains and
891 Effects From Artificial Lake-Level Lowering at Gepang Gath Lake, Indian Himalaya, *Journal of
892 Geophysical Research: Earth Surface*, 128, 10.1029/2022jf006826, 2023.

893 Sattar, A., Cook, K. L., Rai, S. K., Berthier, E., Allen, S., Rinzin, S., Van Wyk de Vries, M., Haeberli, W.,
894 Kushwaha, P., Shugar, D. H., and et al.: The Sikkim flood of October 2023: Drivers, causes and impacts
895 of a multihazard cascade, *Science*, 0, eads2659, 10.1126/science.ads2659, 2025.

896 Schwanghart, W., Worni, R., Huggel, C., Stoffel, M., and Korup, O.: Uncertainty in the Himalayan
897 energy–water nexus: estimating regional exposure to glacial lake outburst floods, *Environmental
898 Research Letters*, 11, 10.1088/1748-9326/11/7/074005, 2016.

899 Shrestha, F., Steiner, J. F., Shrestha, R., Dhungel, Y., Joshi, S. P., Inglis, S., Ashraf, A., Wali, S., Walizada,
900 K. M., and Zhang, T.: HMAGLOFDB v1.0 – a comprehensive and version controlled database of glacier
901 lake outburst floods in high mountain Asia, *Earth Syst. Sci. Data Discuss.*, 2023, 1-28, 10.5194/essd-
902 2022-395, 2023.

903 Taylor, C., Robinson, T. R., Dunning, S., Rachel Carr, J., and Westoby, M.: Glacial lake outburst floods
904 threaten millions globally, *Nat Commun*, 14, 487, 10.1038/s41467-023-36033-x, 2023a.

905 Taylor, C. J., Robinson, T. R., Dunning, S., and Carr, J. R.: The rise of GLOF danger: trends, drivers and
906 hotspots between 2000 and 2020, *Authorea Preprints*, 2023b.

907 U.S. Army Corps of Engineers, I. f. W. R., Hydrologic Engineering Center, CEIWR-HEC: HEC-RAS river
908 analysis system. 2D modeling user's manual, Institute for Water Resources, Hydrologic Engineering
909 Center, Davis, USA, 289 pp.2021.

910 Uddin, K.: Land cover of HKH region, ICIMOD [dataset], 2021.

911 Uddin, K., Matin, M. A., Khanal, N., Maharjan, S., Bajracharya, B., Tenneson, K., Poortinga, A., Quyen,
912 N. H., Aryal, R. R., Saah, D., Lee Ellenburg, W., Potapov, P., Flores-Anderson, A., Chishtie, F., Aung, K. S.,
913 Mayer, T., Pradhan, S., and Markert, A.: Regional Land Cover Monitoring System for Hindu Kush
914 Himalaya, in: *Earth Observation Science and Applications for Risk Reduction and Enhanced Resilience
915 in Hindu Kush Himalaya Region: A Decade of Experience from SERVIR*, edited by: Bajracharya, B.,
916 Thapa, R. B., and Matin, M. A., Springer International Publishing, Cham, 103-125, 10.1007/978-3-030-
917 73569-2_6, 2021.

918 Wang, W., Zhang, T., Yao, T., and An, B.: Monitoring and early warning system of Cirenmaco glacial lake
919 in the central Himalayas, *International Journal of Disaster Risk Reduction*, 73,
920 10.1016/j.ijdrr.2022.102914, 2022.

921 World Bank, W.: Bhutan - Institutional Strengthening and Modernization of Hydromet and Multi-
922 hazard Early Warning Services in Bhutan : A Road Map for 2024-2034 (English)Institutional
923 Strengthening and modernization of hydromet and multi-hazard early warning services in Bhutan: A
924 road map for 2024 to 2034, 2024.

925 Zhang, G., Bolch, T., Yao, T., Rounce, D. R., Chen, W., Veh, G., King, O., Allen, S. K., Wang, M., and Wang,
926 W.: Underestimated mass loss from lake-terminating glaciers in the greater Himalaya, *Nature*
927 *Geoscience*, 10.1038/s41561-023-01150-1, 2023a.
928 Zhang, G., Carrivick, J. L., Emmer, A., Shugar, D. H., Veh, G., Wang, X., Labedz, C., Mergili, M., Mölg, N.,
929 Huss, M., Allen, S., Sugiyama, S., and Lützow, N.: Characteristics and changes of glacial lakes and
930 outburst floods, *Nature Reviews Earth & Environment*, 10.1038/s43017-024-00554-w, 2024.
931 Zhang, T., Wang, W., An, B., and Wei, L.: Enhanced glacial lake activity threatens numerous
932 communities and infrastructure in the Third Pole, *Nature Communications*, 14, 10.1038/s41467-023-
933 44123-z, 2023b.
934 Zheng, G., Mergili, M., Emmer, A., Allen, S., Bao, A., Guo, H., and Stoffel, M.: The 2020 glacial lake
935 outburst flood at Jinwuco, Tibet: causes, impacts, and implications for hazard and risk assessment, *The*
936 *Cryosphere Discuss.*, 2021, 1-28, 10.5194/tc-2020-379, 2021a.
937 Zheng, G., Allen, S. K., Bao, A., Ballesteros-Cánovas, J. A., Huss, M., Zhang, G., Li, J., Yuan, Y., Jiang, L.,
938 Yu, T., Chen, W., and Stoffel, M.: Increasing risk of glacial lake outburst floods from future Third Pole
939 deglaciation, *Nature Climate Change*, 11, 411-417, 10.1038/s41558-021-01028-3, 2021b.
940 Zhou, H., Wang, J. a., Wan, J., and Jia, H.: Resilience to natural hazards: a geographic perspective,
941 *Natural Hazards*, 53, 21-41, 10.1007/s11069-009-9407-y, 2009.

942