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Abstract. The quantification of 3D structural shapes is a central goal across multiple scientific disciplines, serving purposes 

such as image analysis and the precise geometric characterization of objects. This study proposes a methodology for the 15 

shape quantification based on a set of geometrical parameters in 2D sections of 3D geological shapes and establishes a set of 

synthetic regular geometries as benchmark models in 3D geomodeling approaches. The proposed methodology is 

demonstrated on a number of simple geometric bodies and the benchmark models to assess their geometrical dis-/similarity. 

The dimensions of the structures are measured perpendicular and vertically to their horizontal main axes on a fixed amount 

of cross sections. Furthermore, gradient and curvature measurements on these cross sections are conducted. A subsequent 20 

multi-step data analysis provides insight into the main geometrical characteristics of the structures and visualizes differences 

between various datasets: Analysis of extension measurements reveals the anisotropy of structures, the existence of 

overhangs and the character of the top surface of an investigated structure. Analyzing the gradients and curvatures offers 

information on the slopes of the lateral walls of the structure and its sphericity as well as top surface. Kullback-Leibler 

divergence is utilized to quantitatively compare individual parameter distributions. Dimensionally reduced cluster analysis 25 

groups and systematizes input structures based on the combined statistical parameters and serves for the identification of 

benchmark models showing large geometrical similarity. It is expected that the methodology and set of benchmark models 

will aid in advances to model and compare subsurface structures based on sparse data. 
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1 Introduction 

1.1 Previous studies 30 

The quantitative comparison of three-dimensional (3D) objects plays a crucial role in various scientific fields, including 

geology, computer science and engineering (Laga et al., 2019). Accurate shape quantification independent of the objects’ 

orientation is essential for applications such as geological modeling, resource management and structural analysis, where 

understanding the geometric properties of objects can inform decision making and enhance predictive capabilities. In 

computer science, numerous methodologies using 2D cross sections have emerged. For instance, Celenk (1995) describes a 35 

method involving the alignment of equally-spaced cross sections in two objects via the computation of their respective 

horizontal main axes. Subsequently, sections are compared through the computation of an averaged shape difference in four 

directions along the main axes. Recent studies on 3D object recognition using 2D sections apply neural networks: Dumitru et 

al. (2022) feed 2D input into Convolutional Neural Networks, while Dumitru & Gorgan (2023) enhance this concept by 

relying on Vision Transformer-based Neural Networks.  40 

The geometrical parameters determined in our study have been applied in variable extent before to describe the shape of 

objects. Gradient data has been utilized various times: Goh & Chan (2003), for example, propose a shape descriptor derived 

from the gradient vector field of shapes in binary images. Meanwhile, Ettl et al. (2007) present a method to reconstruct 

object shape by spatial integration of gradient data, and Çapar et al. (2009) define two gradient-based shape descriptors being 

applicable to binary and grayscale images. Curvature data have been employed for example by Canul-Ku et al. (2019), 45 

proposing two 3D shape descriptors based on a Multi-View approach of curvature features to classify archaeological 

artifacts. Meanwhile, Mousa (2011) defines a geometric descriptor based on the principle curvature distribution around the 

surface of objects and Muzahid et al. (2021) approach 3D object recognition by using the principal curvature directions of 

3D objects as geometric inputs for a 3D Convolutional Neural Network. In contrast to gradients and curvatures, the direct 

use of measurements of extent/distance has been less common (e.g. Novotni & Klein, 2001). 50 

In general, many comparative approaches for 3D bodies are predominantly used in medical fields, where (automatic) 

polygon comparison and pattern recognition play crucial roles in diagnostics: Meyer-Baese & Schmid (2014) provide an 

extensive overview on methodologies used, for example specialized neural networks or fuzzy clustering algorithms. These 

methods are also being applied in various ways within geological and geophysical studies (e.g. Demicco & Klir, 2003; 

Hillier et al., 2021; Liu et al., 2023; Sun & Li, 2015). An alternative way to describe and compare 3D bodies is to use 3D 55 

Fourier analysis, as shown by many studies from various scientific fields: Kindratenko et al. (1996) apply it to describe the 

shape of particles from microscope images. Meanwhile, Li et al. (2000) have studied the irregularity of graphite nodules in 

cast iron and Drevin (2006) has used Fourier transform results to determine the sphericity of particles. Another approach to 

the problem of shape comparison is the 3D shape based object class recognition directly from point cloud data, as applied for 

example by Wohlkinger & Vincze (2011).  60 
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Aside from the approaches mentioned above, advances for the comparison of geological models are mainly related to 

uncertainty assessment and quantification within geological models. Schweizer et al. (2017) apply the Jaccard distance and 

the normalized city-block distance as measures for model dissimilarity, while Suzuki et al. (2008) propose the usage of the 

Hausdorff distance for the same purpose. Lindsay et al. (2013) developed an approach for model comparison having some 

similarities to our contribution: To determine the similarities between 101 realizations of a 3D composite geomodel based on 65 

the same (perturbed) input dataset, a set of geometrical “geodiversity” parameters (e.g. formation depth, volume, contact 

surface curvature) was calculated on all stratigraphic units of the case study. The resulting datasets were then analyzed in 

their ranges to determine endmember model realizations. Furthermore, principal component analysis was employed to 

determine which geometrical characteristics contribute most to spatial uncertainty and to detect realization outliers for the 

combined geodiversity metrics. 70 

Despite these advancements in various directions, distinct gaps remain in current research. Many existing methodologies 

focus on shape characterization for image recognition, while few concentrate on the exact geometrical characterization for 

robust comparison of 3D structures. This study aims to address this challenge by proposing a novel methodology for the 

quantitative description, comparison and systematization of explicitly modelled 3D geometries using a set of geometrical 

parameters. The algorithm is applied to a set of 36 3D geometries approximating subsurface structures of varying rock types, 75 

intended to act as benchmark models in geomodeling approaches. By demonstrating the quantification algorithm on these 3D 

bodies called “standard geometries”, their geometrical dis-/similarity is analyzed. Furthermore, the methodology has been 

applied to a small set of basic 3D geometries (a cube, an ellipsoid, a prism, a pyramid and a sphere) with distinctive and 

expected divergence of geometrical properties. In what follows, an extension of the concept of “standard geometries” 

initially described by Carl et al. (2023) is developed as a geometrical systematization to collect and catalogue subsurface 80 

geometries of the potential host rocks in the German site selection for a nuclear waste repository (halite rock, claystone and 

crystalline rocks).  

Claystones and shales are clastic sedimentary rocks composed of at least 50 % particles smaller than 4 µm (e.g. Picard, 

1971). Since all clastic sediments are initially deposited conformably onto the underlying strata (Selley, 2000), the most 

typical geometry of claystone/shale sediments is conformable layering (see Fig. 1, upper section). Nonetheless, the 85 

appearance of these conformable layers can vary considerably: tilting and folding can result in a range of geometries varying 

from a flat layered appearance that remain generally conformable. By contrast, faulting, erosion and folding can produce 

unconformable geometries. Salt rock (i.e., halite) is initially deposited conformably as an evaporitic sediment. Beyond the 

undeformed, concordant, flat-layer geometry, halite structures are mainly categorized according to two principles: The most 

common classification is based on the question whether a structure remained concordant in respect to its overlying rocks or 90 

intruded into its overburden (Hudec & Jackson, 2007; see Fig. 1, middle section). Following this systematization, salt 

anticlines, pillows and rollers are categorized as concordant, while salt stocks, sheets and walls are intrusive bodies. In 

addition, a supplementary subdivision based on the length-to-width ratio of salt bodies is discussed by some authors (e.g., 

Hudec et al., 2011): Structures showing a length-to-width ratio higher than 2 in map view (thus being considerably 
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anisotropic) are being defined as anticlines or walls, respectively. In contrast, rather isotropic geometries with a length-to-95 

width ratio smaller than 2 are the pillows, stocks and, at least in their early evolutionary stages, sheets. An additional aspect 

to consider when classifying salt structures is whether the halite is allochthonous or autochthonous. Sheets are the only 

structural type categorizable as the former: If the bulb of a stock or wall is subhorizontally oriented or moderately dipping 

above the autochthonous salt source layer, this rock body can be defined as a salt sheet (Hudec and Jackson, 2006). 

Crystalline rocks considered are both plutonic and high‑grade metamorphic rocks (migmatites and gneisses). As the 100 

high‑grade metamorphic rocks originate from a wide array of protoliths, resulting in diverse geometries, the establishment of 

a single, coherent classification for both groups is difficult. For instance, orthogneisses and some migmatites originate from 

plutonic protoliths such as granitoids and exhibit structural characteristics similar to their igneous predecessors. By contrast, 

paragneisses and the remaining migmatites derive from various sedimentary sources. Their current shape depends not only 

on the geometry of the original rock body but also on the specific mineral assemblage of the protolith and the 105 

pressure‑temperature conditions experienced during metamorphism. Overall, most high‑grade metamorphic rock bodies in 

the German subsurface are bounded by either plutonic intrusions or fault zones. Consequently, for the purposes of our 

geometric approximation, we treat them as discordant rock volumes of varying shape and size (see Fig. 1, lower section). For 

plutonic rocks, our classification combines the shape of the bodies with their relationship to the overlying strata 

(concordance or discordance) (Philpotts & Ague, 2009; see Fig. 1, lower section). Among discordant bodies with varying 110 

shape, two size‑based categories are distinguished: batholiths (exceeding 100 km² in areal extent) and stocks (smaller than 

100 km²). Additionally, cylindrical discordant bodies, mainly representing feeder pipes for ascending magma, are 

recognized. Moreover, two kinds of tabular geometries can be distinguished: discordant dikes and predominantly concordant 

sills. Beyond these, three concordant geometries are noted: laccoliths (characterized by a roughly flat base and a convex 

roof), lopoliths (defined by a roughly flat top and a shallow convex base), and phacoliths (lens‑shaped bodies lacking any 115 

flat boundaries). 

Building on these classifications, a collection of geometrical end members (standard geometries) that approximate the shape 

variations of the rock types was set up by Carl et al. (2023). The geometries are intended to act as open source benchmark 

models for structural geomodeling, as realistic geological models depend on a clear definition of the rock type and the 3D 

geometries of evaluated rocks. In its initial form, each of the geometrical end members per potential host rock type was 120 

represented by a single version of a 3D body. However, as a large share of these initial end members can be represented by a 

multitude of possible regular geometrical representations, we designed alternative realizations after reviewing literature: 

Subsurface salt structures have been created after Hudec & Jackson (2007), Hudec et al. (2011) and Jackson & Talbot 

(1991), claystone geometries have been inspired by Selley (2000) and Nichols (2009), and crystalline rock geometries are 

based on Markl (2015) and Winter (2013). Additional inspiration was drawn from studying open source 3D models of real 125 

subsurface structures (Dutch subsurface models from TNO, available at https://www.dinoloket.nl/en/subsurface-

models/map, and Australian subsurface models from Geoscience Australia, available at https://portal.ga.gov.au/3d). The 

standard geometries were created in blender (https://www.blender.org/) and are visible in Fig. 2. Some standard geometries 
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are non-unique for rock types but can be used in different environments, e.g. stocks/batholiths for salt and crystalline 

intrusions. This is indicated in the model titles, as in these cases, the names of different structures are separated by an 130 

underscore. Blanks in model names are replaced with a period, and in brackets, additional geometrical information are given 

in some cases, such as the lateral character of the top of a structure (e.g. hourglass-shape) or the roundness of the top surface 

(rounded or flattened). 

 

 135 

Fig. 1: Geometrical systematization of the rock types considered for the establishment of the catalogue of benchmark models 

("standard geometries"). 

 

1.2 Content and motivation of this study 

Our proposed methodology allows for the quantitative description, comparison and systematization of explicitly modelled 140 

structures using a set of geometrical parameters. The horizontal and vertical dimensions as well as gradients and curvatures 

of 3D geometries are measured on vertical cross sections oriented perpendicular to the two horizontal main axes of the 

structures. The resulting datasets of these parameters are analyzed statistically, providing insight into the main geometrical 

characteristics of the input structures: the data analysis yield information about the anisotropy of structures, the potential 

existence of overhangs, the sphericity and the character of the lateral walls as well as top surface of evaluated structures. 145 

Furthermore, clustering is used to systematize the datasets based on the measured parameters. The setup of cross sections 

perpendicular to the main axes ensures, that the input structures are covered thoroughly with regular-spaced measurements  
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Fig. 2: Overview of regular synthetic models used in this study. The structures 

(apart from the cube, ellipsoid, prism, pyramid and sphere) are meant to 

represent geometrical end members of different rock types (“standard 

geometries”). For information on the naming convention, please refer to the end 

of the chapter “Previous studies”. The size of the models was chosen arbitrarily 
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that follow the 3D contours of the respective geometry. Our method cannot be used to quantitatively compare implicit 

representations of structures.  150 

The method is applied to the standard geometries established as well in this study, that will be publicly available as 

benchmarks for structural geomodeling. Applying the method to these models serves two purposes: While the functionality 

of the approach is validated, we also assess quantitatively, whether the developed benchmark models are geometrically 

dissimilar or whether some of them can be consolidated for their purpose. We created our quantification method in its 

simplistic, approximating form in spite of the availability of numerous other methodological approaches for the quantified 155 

comparison of 3D structures. The algorithm can reproduce the main geometrical characteristics of input datasets fast but also 

enhances the interpretability of results, making them accessible to a broader audience. The significance of the benchmark 

models lies in their ability to facilitate the validation and comparison of different methodologies within geomodeling 

approaches. 

The paper is structured as follows: Sect. 2 outlines the methodology employed in this study, detailing the developed 160 

segmentation and measurement algorithm. Sect. 3 presents the results of applying the methodology to the benchmark models 

and a single subsurface dataset, while Sect. 4 discusses the implications of these findings in the context of existing research. 

Finally, Sect. 5 concludes with future research directions. 

2 Methods 

2.1 Segmentation and measurement algorithm 165 

For our approach, we aimed at a high grade of automation and easy integration in a model analysis process. The method 

requires the dataset to either be a mesh with extractable vertices or a data frame of vertex coordinates themselves (the input 

file format has to be changed if it is not .vtk).  

To retrieve characteristic statistics, a geometrical segmentation algorithm (see e.g. Shamir, 2008) has been established, 

which first rasters the 3D model into 22 equidistant cross sections with the normal direction parallel to the longer horizontal 170 

axis of the mesh´s bounding box. As measurements are conducted perpendicular to the two horizontal main axes of the 

structures, two sets of cross sections need to be determined separately. Orientation of sections normal to the longitudinal axis 

of the structure (first direction) have been determined by a minimization of the cross-sectional area (Stephenson, 2018; Fig. 

3, Part 1). The cross sections normal to the first set are set up by rastering the established sections vertically, then first 

connecting raster lines of consecutive sections and lastly the resulting segments (Fig. 3, Part 3). After their respective setup, 175 

the cross sections of both directions are corrected automatically and/or manually for artifacts (Fig. 3, Part 2). Extensional 

measurements are conducted on each cross section at 5 equidistant transects (Fig. 3, Part 4). Since the very first and last 

cross section of both directions are excluded from the measurements as they would (undesirably) slice irregular polygons 

several times, 20 intervals are considered for every input structure. This results in 100 measurements being conducted 

respectively for each of the two horizontal parameters as well as 200 values for the vertical extent. Please note, that the 180 
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assumption that a cross section of the first set is perpendicular to the longitudinal horizontal main axis only applies to the 

center point of the given section. The same limitation applies to a given cross sectional segment (trapezoidal segment) of an 

orthogonal section and the secondary horizontal main axis. 

In addition to the extensional measurements, gradient and curvature calculations are carried out (see Fig. 3, Part 4). Both 

parameters are determined on all cross sections between consecutive vertices of a cross section. The curvature in 2D is 185 

defined as the reciprocal of the circumradius of a triangle. Therefore, it is calculated between three consecutive vertices in 

either the xz- or yz-plane, by first determining the side lengths (a, b and c) of the triangle between the points, then the 

semiperimeter of the triangle and the area through Heron´s formula, before calculating the curvature as the reciprocal of the 

circumradius of the triangle through: 

𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =
4 ×area

a ×b ×c
           (1) 190 

 

The selected method measuring the lateral extents of input meshes normal to their horizontal main axes is advantageous over 

approaches analyzing an input body using parallel sections as applied in various medical imaging techniques like e.g. MRI 

(see e.g. Meyer-Baese & Schmid, 2014). Such an approach would have resulted in a dissimilar amount of output 

measurements for the two horizontal extents for many input structures as well as for different structures overall, both in case 195 

of a uniform grid for all datasets as well as an individual regular grid per dataset. Only the usage of an anisotropic grid, 

depending on the bounds of the input mesh, would have resulted in an equal amount of measurements per horizontal 

direction. However, using a supplementary grid would have generally resulted in the problem, that irregular structures would 

have often been cut several times along a horizontal measuring line. This would have created subordinate polygons that are 

completely disconnected from each other.  200 

In contrast, covering every input structure with a constant number of measurements as also applied similarly by Celenk 

(1995) comes with an advantage and a disadvantage: while it ensures that the quantification of input datasets with our 

method is scale-independent as datasets of different structures have the same amount of data, the geometrical spatial 

variability of larger bodies might not be captured equally well as the shape of smaller ones. The potential impact of this 

matter is currently being analyzed in a follow-up study that applies the methodology to a database of over 300 structural 205 

models of subsurface structures from various geological settings. The question whether structures shall be represented by 

equal or dissimilar data quantities also concerns the gradient and curvature data: Orthogonal sections are created from a set 

of 19 trapezoidal segments (i.e. 40 vertices), while cross sections in the first direction are based on a varying, most often 

higher number of vertices. As gradients and curvatures are being calculated between neighboring vertices, the potentially 

larger edges between vertices in the orthogonal sections lead to a less-rounded appearance of the cross sections, directly 210 

affecting the values of both parameters. 
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Fig. 3: Pseudocode of the algorithm that creates the cross sections of both directions and measures the dimensional extents, 

gradients and curvatures on these sections. For further information, see chapter 2 
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2.2 Data analysis  215 

The individual geometrical measurements were combined into a database and analyzed by the first five statistical moments 

and visualized as histograms and cumulative distribution functions (CDF´s). Comparative analyses of data distributions and 

a cluster analysis were carried out on the measured data, to demonstrate that 3D bodies can be quantitatively compared based 

on the statistical distributions of geometrical properties and to assess their dis-/similarity.  

Semi-quantitative comparison of histograms was done for the statistical data, analyzing the vertical extension measures, 220 

combined horizontal extension measurements, the gradients and the curvatures. For gradient data, the frequency of infinite 

values was counted separately, since they represent vertical segments between two consecutive vertices. As those values 

cannot be plotted together with the remaining data as a separate bin, their frequency was visualized as a horizontal line. For 

gradients and curvatures, overflow bins were established: for the gradient data at the 5th and 95th percentile and for the 

curvatures only at the 95th percentile. This aimed at facilitating the interpretability of the histograms, since for most datasets, 225 

a small percentage of values (<5%) was considerably larger than the rest, thereby spreading the measurements to a large 

number of additional histogram bins. The Kullback–Leibler divergence (Kullback and Leibler, 1951) was calculated on 

normalized data between the individual distributions of the geometrical parameters of the different input models, for 

quantification of the similarity between the structures. Cluster analysis followed data normalization to a range of -1 to 1 and 

principal component analysis (PCA; see Jolliffe, 2002). As variables (“features”) for PCA, 20 percentiles of the probability 230 

density functions (PDF´s) of the combined horizontal data, vertical data, gradients and curvatures were chosen. As the first 

two principle components only explained 40% of the variance, a matrix plot for the principal components 1 to 12 was 

created, to cover 90% of the variance. The number of clusters used in the K-means clustering algorithm was determined 

using an elbow plot and the silhouette score.  

3 Results 235 

Results of the segmentation and measurement algorithm as well as the data analysis are demonstrated using a sphere and a 

real, explicitly modeled subsurface salt body: the intrusive structure “Altenbruch-Beverstedt” from Lower Saxony, Germany, 

taken from BGR et al. (2022). Subsequently, the results of the cluster analysis are presented. 

3.1 Segmentation and measurement algorithm  

The initial subdivision of the input mesh (Fig. 4a & b) is followed by the stepwise rotation of the initial cross sections. The 240 

respective rotation step showing the minimal cross-sectional area is optimally oriented normal to the longitudinal main axis 

of the structure (first direction). Optimal orientation of all sections of the first direction of the sphere corresponds to 0° 

rotation, unlike when running the algorithm on an irregular mesh like Altenbruch-Beverstedt. This is the case due to the 

regularity and symmetry of all test models of this study. After subsequent artifact correction (Fig. 4c & d), the second set of 

cross sections is assembled from trapezoidal segments (for illustration, a subset of sections is shown in Fig. 4e & f).  245 
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Fig. 4: Visual representation of the 

segmentation and measurement algorithm 

for a sphere model (left column) and the 

German intrusive salt structure 

“Altenbruch -Beverstedt” (right).  

a & b) initial segmentation of the input 

meshes.  

c & d) Plotly.dash app for vertex-order 

correction.  

e & f) Orthogonal cross sections.  

g & h) Coverage of input structure with 

cross sections (top view) 

i & j) Example of extensional measurement 

results  
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Following potential artifact corrections of the orthogonal sections, both sets of cross sections are finalized (Fig. 4g & h) and 

extensional measurements as well as gradient and curvature calculations are carried out (Fig. 4i & j). The computational 

power required by the algorithm is low (runtime without varying artifact corrections: ca 60 s, using as the CPU an AMD 

Ryzen 7 PRO 5850U at max. 50% capacity at 3.5 GHz speed and the integrated GPU at 0.6 GB usage).  250 

3.2 Data analysis 

The results of the first analysis step, the first five statistical moments per parameter and the data visualized as histograms and 

CDF´s, are seen in Table 1 and Fig. 5, respectively. The size of the sphere was chosen arbitrarily, as the subsequent 

Kullback-Leibler divergence and cluster analysis are based on normalized data. Both the statistical moments for the sphere 

and the distributions in Fig. 5 (left column) reveal differences for the three parameters, although individual extents should be 255 

the same in all three dimensions, if a sphere would be measured equally in all directions. This is due to compromises of the 

algorithm ensuring its universal applicability. For Altenbruch-Beverstedt, the large variance and standard deviation of the 

combined horizontal data and the difference between the mean values of both individual horizontal parameters reflect the 

strong anisotropy of the structure, while the statistics for the vertical data indicate a moderate variation in vertical 

measurements.  260 

Gradient and curvature histograms of the example cases are visible in Fig. 6. For the sphere, the distribution of the gradient 

histogram is symmetric (Fig. 6a). The curvature histogram (Fig. 6c) shows a prevalence of very small values and subordinate 

maxima around 0.1, 0.2 and in the overflow bin that contains 394 values (5% of all data) above 0.37. For Altenbruch-

Beverstedt, the gradient distribution is asymmetric and the number of infinite gradients is higher (Fig. 6b). In comparison to 

the curvature distribution of the sphere, the curvature data (Fig. 6d) is monomodal apart from the overflow bin.  265 

The Kullback-Leibler (KL-)divergence (Kullback and Leibler, 1951) was calculated to quantitatively determine the 

similarity between the tested geometries. The distributions of the six parameters (the individual horizontal extents along both 

horizontal main axes, the combined horizontal data, the vertical data, gradients and curvatures) were compared between the 

models. The similarity of two distributions is larger, the smaller the KL divergence is, with a value of 0 indicating equality of 

the distributions. In addition to KL divergences of individual parameters, an averaged KL divergence was calculated: by 270 

taking the mean of the values between two models, the overall dis-/similarity between models was assessed. According to 

the averaged KL divergence, the sphere is most similar to “pillow(rounded)_batholithV4”, while the closest model to 

Altenbruch-Beverstedt is “wall(highly.anisotropic_hourglass-shape_rounded)”. The result of the calculation of the individual 

KL divergences for the example cases is visualized in Fig. 7. For the sphere, the most similar models regarding the 

respective distributions of the six parameters are the “sheet(cylindric_rounded)” for the horizontal data of the first direction, 275 

the “prism” for the orthogonal horizontal data, the “batholithV3” for the combined horizontal data, the  

“anticline_wall(rounded)_batholithV1” for the vertical data, the “phacolith” model for the gradients and the “ellipsoid” for 

the curvatures (compare Fig. 2 for the model appearances). For Altenbruch-Beverstedt, “batholithV6” is most similar 

regarding the horizontal data of the first direction, “roller” for the orthogonal horizontal data, 
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“wall(highly.anisotropic_hourglass-shape_flattened)” for the combined horizontal data, “wall(highly.anisotropic_hourglass-280 

shape_rounded)” for the vertical data, “pillow_flattened” for the gradients and “roller” for the curvatures. 

 

Table 1: a) First five statistical moments per parameter for the sphere model (note: the dimensions of the sphere are chosen 

arbitrarily). b) First five statistical moments per parameter for the model of the real subsurface structure (Altenbruch-

Beverstedt). Statistics for Altenbruch-Beverstedt reflect the strong anisotropy of the structure 285 

(a) sphere mean [m] variance [m] std_dev [m] skew median [m] 

Horizontal length 14 13 4 -0.4 14 

Horizontal length  

orthogonal 

18 4 2 0 18 

Vertical length 14 13 4 -0.5 15 

Horizontal data combined 16 13 4 -0.8 17 

 

(b) Altenbruch-Beverstedt mean [m] variance [m] std_dev [m] skew median [m] 

Horizontal length 3825 635352 797 -0.2 3795 

Horizontal length  

orthogonal 

48644 8956682 2993 -2.2 49845 

Vertical length 4766 486158 697 -2.9 4856 

Horizontal data combined 26235 5.07E+08 22516 0.02 21696 
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Fig. 5: Data distributions 

and cumulative 

distribution functions 

(CDF´s) for the 

extensional parameters. 

Left column: sphere, 

right column: 

Altenbruch-Beverstedt.  

a & b) Horizontal data 

from the first direction.  

c & d) Horizontal data 

from the orthogonal 

direction.  

e & f) Combined 

horizontal data.  

g & h) Vertical data  
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 290 

Fig. 6: Gradient and curvature data for the sphere (a & c) and Altenbruch-Beverstedt (b & d). Amount of data in overflow bins: 

Gradient diagram (sphere) 384 values (4.8% of all data), Curvature diagram (sphere) 394 values (5%); Gradient diagram 

(Altenbruch-Beverstedt) 112 values (4.6%); Curvature diagram 101 values (4.1%) 
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Fig. 7: Visualized Kullback-Leibler divergences. a-f: sphere, g-l: Altenbruch-Beverstedt. Visualized is the most similar data 295 
distribution (orange) compared to the respective distribution of the two example models (blue). The calculated Kullback-Leibler 

divergences are noted in the headlines of individual figures 

 

3.3 Cluster analysis 

Cluster analysis on all measured data of the regular geometries resulted in 7 clusters considering the combined analysis of 300 

the elbow plot and silhouette score (Fig. 8b). With the first two principle components (PC´s) only explaining 40% of the 

variance (see Fig. 8a), the number of PC´s necessary to cover more than 90% of the variance was determined to be 12. The 

feature contribution matrix (Fig. 8c) reveals the contribution (“loadings”) of the binned PDF´s to the principal components, 

with bright yellowish colors indicating a strong positive contribution and dark blue colors a substantial negative contribution. 

In the contribution matrix, percentiles 0 to 19 represent the PDF of the combined horizontal data, followed by the vertical 305 

data (20 to 39), gradients (40 to 59) and curvatures (60 to 79). The principal component matrix plot is visible in Fig. 9.  
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Positive contributions to PC1 (Fig. 9a) are dominated by the 50 to 55% bins of the vertical data and gradient data, while 

there is no percentile with a strong negative contribution to PC1. This effectively separates the bluish-green cluster at high 

positive PC1 scores from the rest of the data. All four models (“flat.layer”, “sill”, “cube” and “prism”), share a distinct 

geometrical similarity: When segmenting them with our algorithm, cross sections are always flat at the top and of exactly the 310 

same vertical extent throughout the entire structure. This results in a step-wise appearance of the respective PDF´s, with the 

step being in the middle of the functions. For PC2, the 45 to 50% gradient bin has the highest positive loading, while there 

are stronger negative loadings for the 0 to 5% as well as 95 to 100% gradient bins. Therefore, models of the black cluster 

(highest positive PC2 scores) are characterized by many comparatively small gradient measurements. This reflects the 

presence of many low to moderately inclined surfaces in a geometry (depending on the variance in a data distribution) and an 315 

overall more rounded appearance (see e.g. the highlighted black example model “pillow(rounded)_batholithV4” in Fig. 9a). 

Meanwhile, models at high negative PC2 scores, like the blue cluster, show many large gradient data (positive and negative). 

This represents the abundance of steep-dipping to vertical surfaces for a dataset. Thus, PC2 is an indicator for the overall 

steepness of the lateral parts of a structure or, on the other hand, its sphericity. For PC3 (Fig. 9b), large positive contributions 

are spread among the 0 to 5% and 95 to 100% horizontal bins as well as the 95 to 100% vertical bin and the 0 to 5% and 45 320 

to 50% gradient bins, while the only considerable negative loading is exhibited by the 10 to 15% gradient bin. Therefore, 

datasets with very positive PC3 scores (vermilion cluster and all but one blue model) represent anisotropic bodies with rather 

flat top surfaces and steep-dipping to vertical lateral walls (see e.g. the highlighted vermilion “dyke”). In contrast, however, 

datasets of largest negative PC3 scores (like the reddish-purple cluster), cannot be linked to very high data percentages in 

that 10 to 15% gradient bin; its loading (-0.27) not being the main cause of the observed negative PC3 scores. PC4 shows 325 

considerable positive loadings for the 50 to 55% bin of the vertical data and the 0 to 5% and 95 to 100% gradient bins. 

Meanwhile, large negative loadings are seen for the 0 to 5% and 95 to 100% horizontal bins, the 95 to 100% vertical bin and 

the 80 to 85% gradient bin. These contributions mainly drive the differentiation of the reddish-purple and vermilion clusters 

(negative PC4 scores) from the other clusters apart from some sky-blue models. Since the horizontal and vertical bins 

contributing very negatively are the same horizontal and vertical bins contributing particularly positively to PC3, it can be 330 

deduced that the overall position of the vermilion models in the PC3 vs. PC4 diagram is more driven by these horizontal and 

vertical bins. Meanwhile, the datasets from the reddish-purple and sky-blue models are comparatively influenced more by 

the 80 to 85% gradient bin also showing a considerable negative loading. Still, most datasets from these clusters at negative 

PC4 scores can be considered as rather anisotropic geometries with mainly steeper (but not vertical) lateral walls, while 

models at higher positive PC4 scores exhibit uniform vertical extents and steep-dipping to vertical lateral walls. This 335 

explains the position of the isolated blue model at highest positive PC4 scores (“volcanic.pipe”; highlighted in Fig. 9b; see 

also Fig. 10h for the gradient distribution), completing the separation of the blue cluster from the rest of the data. PC5 (Fig. 

9c) shows strong positive contributions for the 0 to 5% vertical bin and the 50 to 55% and 95 to 100% gradient bins, while 

stronger negative loadings are given by the 50 to 55% vertical bin and the 0 to 5% gradient bin. This separates the majority 

of the sky-blue cluster (highest positive PC5 scores) from the rest of the datasets. As this corresponds to the first appearance 340 
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of the 0 to 5% vertical bin among considerable contributing bins, most of the associated models are characterized by 

widespread low vertical extents and few much larger ones, as seen in overhang configurations (for example, see the model 

“laccolith” in Fig. 2). PC6 is mainly influenced by the gradient data, where the 10 to 15% bin contributes the most negatively 

and the 80 to 85% bin contributes positively. Once again (as for PC3), the 10 to 15% gradient bin, however, does not seem to 

be the main reason for the separation of the reddish-purple cluster at very negative PC6 scores. Similarly, the sky-blue 345 

models at higher positive PC6 scores do not exhibit particularly large high percentages in the respective bin. In the remaining 

visualized PC-cluster plots, the variance explained by the PC´s does not allow any major discrimination anymore and 

partially repeats patterns seen in the more informative plots.  

 

 350 

Fig. 8: Calculated supplementary information for the setup and interpretation of the cluster analysis after principal component 

analysis. a) Cumulative scree plot, showing the explained variance with increasing number of principal components. b) Elbow plot 

and silhouette score to determine number of clusters. c) Contribution matrix showing the contribution of the input data 

(percentiles of the probability density functions of measured parameters) to the principal components 
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 355 

Fig. 9: Matrix plot of principal components (PC´s) explaining 90% of the variance in the data (see also Fig. 8a). As the first PC´s 

explain the most amount of variance (decrease of explained variance with increasing number of PC´s), most information can be 

gained from the first 3 cluster plots (see text). Larger stars mark example models for clusters (see legend)  

 

4 Discussion 360 

By applying a set of defined geometrical descriptors to systematically generated 3D benchmark models, this study 

establishes a framework for the quantitative comparison of shape properties. The analysis highlights how key attributes such 

as anisotropy, surface morphology, and sphericity vary across models, offering a structured perspective on their geometric 

dis-/similarities. These outcomes prompt a deeper discussion of how well the proposed descriptors capture meaningful shape 

differences and how this quantitative framework advances the analysis of 3D geological structures. 365 

4.1 Comparison of existing methods for 3D shape characterization with the proposed workflow 

The workflow of this study differs from many approaches developed for the description of 3D objects, as the application for 

most of these methods lies in the shape characterization for image recognition rather than for exact geometrical 

characterization of a body. Therefore, the majority of studies (e.g. Canul-Ku et al., 2019; Çapar et al., 2009; Dumitru et al., 

2022; Ettl et al., 2007; Goh & Chan, 2003; Mousa, 2011; Muzahid et al., 2021; Wohlkinger & Vincze, 2011) define shape 370 

descriptors based on varied input data to automatically detect specific shapes in binary, grayscale and/or colored images or 
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point cloud data from large databases. Meanwhile, our approach aims at characterizing 3D structures through precise 

measurements of geometrical parameters, thereby providing datasets suited for quantitative comparison.  

Studies presenting approaches that show similarities to ours are Celenk (1995), Schweizer et al. (2017) and Lindsay et al. 

(2013). Celenk (1995) determines the horizontal main axes of equally-spaced cross sections as well, but does so to align 375 

sections of two different objects. Comparison is then achieved by computing the averaged shape difference of sections 

between the objects in four directions along the main axes. Key differences of our approach therefore involve the segmented 

assemblage of cross sections in the orthogonal direction (following the respective segmented horizontal main axis) and the 

exact measurement of the dimensional extents on the sections. Hence, our method opts for the determination of larger 

datasets of absolute measurements on a single object, that are compared to other bodies in subsequent steps. Meanwhile, 380 

Celenk (1995) computes the relative measure that is the averaged shape difference, representing a faster, but more 

approximate approach of object comparison between two objects, as the author does not segment the horizontal main axis 

along the larger extent. Schweizer et al. (2017) do not try to compare the dimensions of individual 3D structures, but use the 

Jaccard distance and the normalized city-block distance as measures for model dissimilarity instead. The two parameters are 

being applied as measures for the similarity in position of certain geological units between two model realizations of the 385 

same study site. In a similar fashion, the Hausdorff distance has been used before (see e.g. Suzuki et al., 2008). These 

dissimilarity distances were not applied in our study, as they could only act as size indicators rather than shape descriptors 

and would not give any indication on where two structures differ spatially. Meanwhile, our approach provides insight into 

both shape and size differences of objects, which is crucial for geological modeling. Lindsay et al. (2013) explore geometric 

uncertainty across multiple realizations of a study site, evaluating parameters like depth, volume, and curvature, which 390 

parallel those in our study. However, their parameters are often tied to stratigraphic units and may not apply directly to 

individual 3D structures. Both studies utilize PCA to analyze geometric variability and model differences, although executed 

differently. Despite these existing methodologies, we opted for a straightforward approach, allowing us to efficiently 

replicate the main geometric characteristics of input datasets. Our algorithm is computationally efficient, easily interpretable 

with basic geological knowledge, and accessible to a non-specialist audience. 395 

4.2 Assumptions and compromises of the algorithm ensuring its universal applicability 

Despite the strengths of our methodology, certain limitations must be acknowledged. The reliance on discrete differential 

geometries (Bobenko et al., 2008) means that the input dataset must represent a single, compact, and topologically connected 

structure (Thiele et al., 2016). For objects separating from one to the next cross section into multiple strands, split algorithms 

are available. However, this comes at the cost of interpretability of the statistics of geometric properties. Moreover, the 400 

method functions optimally for convex hulls (Rockafellar, 1970), focusing on the restricted set of geometries which are 

relevant for the site selection of nuclear waste deposits. Still, this may restrict its applicability to more complex geological 

formations. These assumptions should be considered when interpreting results in other domains. 

https://doi.org/10.5194/egusphere-2025-3203
Preprint. Discussion started: 25 August 2025
c© Author(s) 2025. CC BY 4.0 License.



21 

 

The focus of this study was to establish a generalized algorithm to infer dis-/similarity between geometries. Given the wide 

range of potential and available models, the algorithm requires some trade-offs to be universally applicable. Discussion of 405 

the data distributions for the geometrical parameters (see Fig. 5) focuses on the results from measuring the sphere, 

representing a comprehensible case with distinct expected data distributions: The nature of a sphere is a similar shape of any 

section through the center, eventually resulting in a normal distribution of the levelled distance measurements in both 

horizontal and vertical directions. This expected distribution is not produced in our case due to the generation approach of 

the orthogonal cross sections: The assembled sections follow the contour of the structure (see Fig. 4g & h), which results in 410 

larger measurements for the orthogonal horizontal data and a slightly tailed distribution of the combined horizontal data, 

similar to an ellipsoid with a low contrast in the main axes. As this situation is rarely seen in geological modeling, the impact 

is small since anisotropic geometries are measured accurately with our segmentation algorithm. The gradient and curvature 

data reflect the effects of our approach as well: While the gradient diagram of the sphere shows a symmetric distribution as 

expected, the relative elongation of the orthogonal sections increases the frequency of lower gradient measurements. Due to 415 

this accumulating effect, the presence of low-dipping surfaces of a structure is overestimated by the data. Furthermore, the 

exclusion of marginal cross sections leads to vertical clipping that introduces infinite gradient measurements (representing 

two consecutive vertices being exactly vertical) that would not exist when measuring the sections in a rounded, unclipped 

state. The curvature data is influenced by this clipping as well, that results in few large values where the three consecutive 

vertices form a large angle. These measurements increase the variance of curvature data considerably, with the majority of 420 

data for most datasets being located within the 0 to 5% and 5 to 10% bins. 

4.3 Analysis of parameter distributions and model dis-/similarity 

Analyzing the data distributions of a structure visually already reproduces distinct geometrical characteristics of an input 

dataset. The distribution of the combined horizontal data indicates whether a pronounced anisotropy is present for an 

analyzed structure: if the data is separated into two clearly distinguishable subordinate distributions (see Fig. 10a), the 425 

geometry is considerably anisotropic (the farther apart the two maxima, the more anisotropic a body is). Caution is advised 

for a distribution with two close maxima (Fig. 10b): this could be the consequence of the inflated extent in the orthogonal 

direction (see above). Analyzing the combined horizontal data and the vertical data together reveals whether a structure 

shows substantial variations in its horizontal extent over its vertical range. Such a shape, in the subsurface more often present 

as overhangs rather than as upward tapering, is indicated by the simultaneous presence of multimodal distributions for both 430 

parameters (Fig. 10c & d). The vertical data distribution also characterizes the top surface of a geometry: if the distribution is 

monomodal, with a) the maximum being the bin representing the highest measurements, and b) the frequency in lower bins 

being substantially smaller, then the presence of a flat top surface is indicated. The existence of a flat top surface can be 

verified by analyzing the gradient and curvature data: a high frequency of very small measurements for both parameters 

supports such an analysis (Fig. 10e-g). Gradient data also indicates the steepness of lateral surfaces of a body: as high and 435 

infinite gradient data stem from steep to vertical faces of a structure, the presence of steep-dipping lateral surfaces can be 
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recognized (Fig. 10h). Combining the inferences from analyzing top and lateral surfaces therefore provides insight into the 

overall sphericity of an input dataset: a more spherical structure is represented by larger quantities of intermediate gradient 

measurements and of moderate to high curvature data (Fig. 10i & j).  

The Kullback-Leibler (KL-)divergence is used to quantitatively compare the individual parameter distributions of two 440 

structures: by providing a single value for a given statistical parameter and pair of input models, an intuitive and quick way 

for assessing the similarity of two distributions is given, as the similarity is higher, the smaller the KL divergence. The 

average of the respective values of KL divergence was employed as a measure for the dis-/similarity of full models as well. 

However, informational content of this parameter is limited, as there is no indication regarding which parameters two 

compared structures are most similar or differ more. Therefore, principal component analysis and K-means clustering have 445 

been employed as well, providing this information based on all combined parameters. In general, values of KL divergence 

show an error for the gradient distributions: infinite values had to be converted to the highest finite gradient value of a given 

dataset to enable the computation, inflating the highest bin. Furthermore, the large variance of curvature data for most input 

models (see for example Fig. 7f &l) decreases the applicability of the KL divergence for that parameter, as most models 

show very similar normalized distributions. To assess the impact of the large variance on individual KL divergences of 450 

curvature data and smallest averaged KL divergences, they were also calculated using a 95th percentile overflow bin (see 

Table 2). Smallest KL divergences for the curvatures of the two example models are notably higher, especially for the 

sphere, reflecting the dissimilarity of data distributions when applying the filter (column 1 & 2). The impact on the smallest 

averaged KL divergence (column 3 & 4) is smaller, yet still considerable.  

 455 

Table 2: Comparison of KL divergences with and without the usage of a 95th percentile overflow bin for the curvature 

distributions. 

structure smallest KL 

divergence 

for 

curvature 

without 

overflow bin 

smallest KL divergence 

for curvature with 

overflow bin 

 

smallest averaged KL 

divergence for all 

properties without 

overflow in curvature 

smallest averaged 

KL divergence for 

all properties with 

overflow in 

curvature 

 

sphere 0.0054  

(“ellipsoid”) 

0.16  

(“wall(highly.anisotropic

_cylindric_rounded)”) 

0.45 

(“pillow(rounded)_bath

olithV4”) 

0.56 

(“batholithV3”) 

Altenbruch-

Beverstedt 

0.036 

(”roller”) 

0.05 (“batholithV5”) 1.2 

(“wall(highly.anisotrop

ic_hourglass-

shape_rounded)”) 

1.3 

(“wall(highly.anisot

ropic_hourglass-

shape_rounded)”) 
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Fig. 10: Analysis of data distributions to 

reproduce geometric characteristics of input 

models. Please compare with model 

appearances in Fig. 2. 

a) Combined horizontal data of 

“wall(highly.anisotropic_hourglass-

shape_rounded)”, reflecting strong 

anisotropy. 

b) Combined horizontal data of 

“batholithV3” incorrectly indicating slight 

anisotropy. 

c) & d) Combined horizontal data and 

vertical data of “sheet(hourglass-

shape_rounded)” indicating presence of 

overhangs.  

e)-g) Vertical data, gradients and curvatures 

of “batholithV5”, revealing the presence of a 

flat top surface 

h) Gradient data of “volcanic.pipe”, 

reflecting the prominence of vertical lateral 

walls)  

i) & j) Gradient and curvature data of 

“pillow(rounded)_batholithV4” showing the 

spherical character of the input model 
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The discriminability of standard geometries in the cluster analysis is ensured despite the compromises made in the 460 

methodology: structures of varying anisotropy plot in different parts of cluster diagrams showing contribution of the 

combined horizontal data, as the highest contribution of horizontal data comes from the first and last distribution bins (see 

Fig. 8c). Similarly, as horizontal and vertical data distributions of flattened geometries show the discussed characteristic 

properties, they differ in their PC scores from their rounded counterparts. Furthermore, the discussed increased frequency of 

gradient measurements around 0 does not change cluster patterns as it applies to all datasets. The same is true for the artifact-465 

influenced curvature data and its impact on the general clustering of similar structures. Still, its squeezed nature shows an 

effect on the overall clustering results, as the curvature data does not show any considerable contribution in the PCA.  

The overall cluster results validate that the flat and/or cuboidal geometries (vertical extent ≤ horizontal extent and/or 

exclusively straight lateral surfaces) mostly differ considerably from the other structures designed to represent intrusive 

subsurface bodies: the flat/cuboidal geometries are mainly distributed among the bluish-green, blue and vermilion clusters 470 

(see Fig. 9). As recognized in the results, these three clusters can be differentiated from the other models within the first four 

PC´s. Only the “eroded.layer(pinchout)” is located outside, in the sky-blue cluster, although representing a flat geometry. 

The K-means cluster analysis furthermore indicates that some standard geometries are similar across all parameters. 

Therefore, it was assessed whether certain standard geometries are redundant to simplify the benchmark selection process. 

The pairs of flattened and rounded versions show high similarities, leading to the exclusion of the flattened models while 475 

retaining the "uneroded" structures. The models "batholithV3" and "pillow(rounded)_batholithV4" cluster closely, differing 

only in vertical elongation; thus, "batholithV3" is excluded. Although similarities exist between models with varying lateral 

characteristics, both "cylindric" and "hourglass" shape variations are retained. This also applies to various "sheets" and the 

"anticline_wall(hourglass-shape_rounded)”, which exhibit similar PC scores in some, but not all cluster plots. Lastly, some 

of the flat and cuboidal bodies in the bluish-green cluster ("flat.layer", "sill" and "cube") are nearly identical in position. The 480 

"cube" is excluded from the benchmark collection, while the other two geometries are merged, keeping the shape of the 

"sill”. 

4.4 Online collection of benchmark geometries 

Following the application of the established methodology to the standard geometries, the collection can be effectively 

condensed from 36 to 25 benchmark models (see Fig. 11). Decreasing the database by validating the bodies’ geometrical 485 

dissimilarity facilitates the decision making on the best suitable benchmark for a case study. Despite our reduction efforts, 

this list is not expected to be exhaustive: we would like to encourage users to suggest additional geometries based on their 

expertise and/or literature, to ensure that suitable benchmark models are available for as many geomodeling applications as 

possible. 
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 490 

Fig. 11: Condensed collection of standard geometries after application of the quantification method. 

 

4.5 Potential usage of the quantification method and the standard geometries 

The methodology will be a part of a larger framework to model and compare geological structures based on sparse data. For 

most regions of interest for nuclear waste disposal, seismic 2D data are available frequently with a few boreholes. This is 495 

similar to the cross sections established through the benchmark models here, allowing for a fast model selection based on the 

geometrical properties and potentially further constraining hyper parameter selection for interpolation. Since the 
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interpolation will result in a series of stochastic prior realizations, the method will be used for falsification by data (e.g. 

boreholes). Furthermore, applying our methodology also supports testing for the minimum amount of data necessary for 

geological modeling, as different data densities and configurations can be inserted into the algorithm. The open-access 500 

collection of benchmarks for geomodeling is also a convenient tool to visualize the range of three-dimensional geometries of 

the different rock types to a broader audience, which aids in the communication of uncertainties and decisions for 

geoscientists and stakeholders in various settings (see Zehner, 2021). 

5 Conclusion 

In our publication, we presented a methodology to quantitatively describe, compare and systematize 3D geometries, and 505 

proposed a set of regular standard geometries as benchmark models in geomodeling approaches. Demonstrating the 

quantification method on the standard geometries, their geometrical dis-/similarity is assessed. The combined evaluation of 

data distributions and a cluster analysis reproduces the main geometrical characteristics of input meshes and visualizes 

differences between various datasets. While distributions of combined horizontal extensional measurements provide insight 

into the anisotropy of datasets and the potential existence of overhangs, distributions of the vertical extent indicate the 510 

character of the top surface of structures and support or falsify the presence of overhangs. Distributions of gradient and 

curvature data (1) indicate the prevailing character of the slope of the lateral surfaces of structures, (2) further emphasize 

potentially present flat top surfaces and (3) give a general indicator on the sphericity of a structure. Cluster analysis of 

normalized, dimensionally reduced data groups and systematizes input structures based on the combined measured statistical 

parameters. In our application to synthetic datasets, clustering also serves to identify and exclude or merge benchmark 515 

models showing large geometrical similarity. Apart from cluster analysis and assessment of data distributions, comparison of 

parameter distributions is furthermore achieved using the Kullback-Leibler divergence.  

As already indicated earlier, the first follow-up study aims at applying the method to a large database of structural geological 

models. Afterwards, the method will be applied to datasets of sparse, unmodeled input data instead of already precomputed 

meshes of structural models. At this point, the method might be coupled with spatial interpolation algorithms. Thereby, it 520 

would fit well into a study focusing on geomodeling based on progressively reduced datasets that is planned to be conducted 

later. 

Code and data availability 

Method development was carried out in Python. The method mostly relies on the capabilities of the libraries Shapely 

(https://shapely.readthedocs.io/en/stable/), PyVista (https://pyvista.org/) and Plotly (https://plotly.com/). The python code, 525 

the condensed database of standard geometries (as .vtk-files) and the datasets of raw extensional, gradient and curvature data 

are stored at https://doi.org/10.5281/zenodo.15795851, (Carl, 2025).  
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