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Abstract. The quantification of 3D structural shapes is a central goal across multiple scientific disciplines, serving purposes 

such as image analysis and the precise geometric characterization of objects. This study proposes a methodology for the 15 

shape quantification based on a set of geometrical parameters in 2D sections of 3D geological shapes and establishes a set of 

synthetic regular geometries as benchmark models in 3D geomodeling approaches. The proposed methodology is demon-

strated on a number of simple geometric bodies and the benchmark models to assess their geometrical dis-/similarity. The 

dimensions of the structures are measured perpendicular and vertically to their horizontal main axes on a fixed amount of 

cross sections. Furthermore, gradient and curvature measurements on these cross sections are conducted. A subsequent mul-20 

ti-step data analysis provides insight into the main geometrical characteristics of the structures and visualizes differences 

between various datasets: Analysis of extension measurements reveals the anisotropy of structures, the existence of over-

hangs and the character of the top surface of an investigated structure. Analyzing the gradients and curvatures offers infor-

mation on the slopes of the lateral walls of the structure and its sphericity as well as top surface. Kullback-Leibler divergence 

is utilized to quantitatively compare individual parameter distributions. Dimensionally reduced cluster analysis groups and 25 

systematizes input structures based on the combined statistical parameters and serves for the identification of benchmark 

models showing large geometrical similarity. It is expected that the methodology and set of benchmark models will aid in 

advances to model, analyse and compare subsurface structures based on sparse data, as our framework can be used for an 

initial structural approximation prior to modeling, for the setup of the interpolation method and for the falsification of proba-

bilistic model realizations after interpolation. 30 
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1 Introduction 

1.1 Shape quantification and comparison – previous studies and gaps in current research 

The quantitative comparison of three-dimensional (3D) objects plays a crucial role in various scientific fields, including 

geology, computer science and engineering (see e.g. Cardone et al., 2003; Celenk, 1995; Wellmann and Caumon, 2018). 

Shape quantification aims at the numerical characterization of the geometry of objects, with their dis-/similarity not solely 35 

being a mathematical metric but also being dependent on the specific context (Laga et al., 2019). Accurate shape quantifica-

tion independent of the objects’ orientation is essential for applications such as geological modeling, resource management 

and structural analysis, where understanding the geometric properties of objects can inform decision making and enhance 

predictive capabilities.  

Shape quantification can be complex when dealing with static 2D images of 3D bodies (see Laga et al., 2019), but when 40 

rotatable objects in 2D or 3D are available, basic geometrical parameters can be applied. This is commonly proposed in 

material science, where studies focus on sand grain analysis. In these studies, the range of shape parameters in 2D and 3D 

include (but are not restricted to) principal dimensions, volumes, aspect ratios, radii, sphericities, convexity, circularity, 

roundness and compactness (Altuhafi et al., 2013; Cox and Budhu, 2008; Zhao and Wang, 2016), that partially describe 

similar structural characteristics. Furthermore, the shapes of aggregate particles in building materials have been analyzed 45 

using parameters like sphericity, angularity, aspect ratios, gradients and radius indices (Al-Rousan et al., 2007), and volcanic 

cinders have been assessed looking at elongation, roundness, and roughness (Nie et al., 2023). Similar analytical approaches 

can be valuable to study the geometry of subsurface structures, although at much larger scales and a higher structural com-

plexity: The shape of individual geo-bodies can be of interest for resource exploration and storage of materials like for in-

stance nuclear waste. However, geoscientific studies applying similar parameters as used in the mentioned material-scientific 50 

studies are rare: Gardoll et al. (2000), for instance, determine the aspect ratio, blockiness, elongation, compactness, complex-

ity, roundness, spreadness and squareness of geological bodies from map data to assess the exploration potential for orogenic 

ore deposits. This is a highly specialized application though, usable for shallow horizontal data, but being inapplicable to 

(sub-)vertical input data. Instead of relying on geometrical parameters for the shape quantification of a single geo-object, in 

geosciences advances for the shape comparison of structural models are more common. These are mainly related to uncer-55 

tainty assessment and quantification within geological models and often approached with distance metrics. For instance, 

Schweizer et al. (2017) apply the Jaccard distance and the normalized city-block distance as measures for model dissimilari-

ty, while Suzuki et al. (2008) propose the usage of the Hausdorff distance for the same purpose. In contrast, Lindsay et al. 

(2013) developed an approach for model comparison not relying on such distance metrics: To determine the similarities 

between 101 realizations of a 3D composite geomodel based on the same perturbed input dataset, a set of geometrical “geo-60 

diversity” parameters (e.g. formation depth, volume, contact surface curvature) are calculated on all stratigraphic units. The 

resulting datasets are analyzed in their ranges to determine endmember model realizations. Furthermore, principal compo-

nent analysis is employed to determine which geometrical characteristics contribute most to spatial uncertainty and to detect 
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realization outliers for the combined geodiversity metrics. Despite the lack of geoscientific studies approaching shape quanti-

fication with simple geometrical parameters, the necessity of basic shape assessment in geomodeling is recognized as most 65 

commonly used geomodeling software are capable of obtaining simple geometrical properties like surface areas, aspect rati-

os and volumes from modeled 3D elements. However, these functionalities are error-prone determining basic geometrical 

properties in varying directions, like the extent along the horizontal main axes of a given irregular structure – a property of 

interest for the exploration of geo-bodies for storage purposes. An example of such an application can be found in the stor-

age of high-level nuclear waste: In Germany, currently, intrusive salt bodies with varying internal structures as well as crys-70 

talline intrusives potentially exhibiting lateral zonation are considered as potential storage sites (BGE, 2020). 

In addition to these limitations in the analysis of 3D geo-bodies, geometrical characteristics of structures are hard to quantify 

prior to geomodelling as well, when input data is most commonly available in 1D (i.e. boreholes) and/or 2D (e.g. seismic 

sections). At this early stage within a modeling workflow, conceptual models are established based on sparse data, local 

geological knowledge like the regional geological history and universal geological knowledge such as common laws and 75 

principles (Parquer et al., 2025) but also defined spatial factors known to be related to certain variables of interest like re-

sources (Gardoll et al., 2000). The identification of important geometrical features and the establishment or selection of an 

appropriate conceptual model can have a considerable impact on how realistic/reasonable model realizations are, thus influ-

encing decision-making and the accuracy of predictions (Bond et al., 2007). Therefore, approaches to geometrically quantify 

available input data and to compare datasets to established conceptual models are valuable.  80 

Given this identified current lack of analytical capabilities for the geometrical assessment of both unmodelled input data as 

well as modeled structures whose evaluation shall be direction-dependent, this study proposes a novel methodology for the 

quantitative description, comparison and systematization of datasets using a set of geometrical parameters. While the method 

development will be visualized based on explicitly modelled 3D geometries, it can be applied to lower dimensional data as 

well. In the present study, the algorithm is applied to a set of 36 3D geometries approximating subsurface structures of vary-85 

ing rock types, intended to act as benchmark models in geomodeling approaches. By demonstrating the quantification algo-

rithm on these 3D bodies called “standard geometries”, their geometrical dis-/similarity is analyzed. Furthermore, the meth-

odology has been applied to a small set of basic 3D geometries (a cube, an ellipsoid, a prism, a pyramid and a sphere) with 

distinctive and expected divergence of geometrical properties. In what follows, the concept of “standard geometries” initially 

described by Carl et al. (2023) as a geometrical systematization to collect and catalogue subsurface geometries of the poten-90 

tial host rocks in the German site selection for a nuclear waste repository (halite rock, claystone and crystalline rocks) is 

reviewed, adapted and extended. Please note that the classification is purely geometric, even though the terminology of sub-

dividing categories can also be found in topological considerations (see for instance Thiele et al., 2016a, b). For more details 

on the classification, please refer to Carl et al. (2023). For real word examples of the standardized geometries, we refer to the 

publications mentioned in the respective parts of the following paragraph.  95 

Claystones and shales are clastic sedimentary rocks which are commonly deposited conformably onto the underlying strata 

(Selley, 2000; see also Fig. 1, upper section). The appearance of these conformable layers can vary considerably: tilting and 
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folding of a flat-lying structure can result in a range of geometries varying from a flat layered appearance that remain gener-

ally conformable (see Fig. 2, 4th and 9th row for potential visual representation). By contrast, faulting, erosion and folding can 

produce unconformable geometries (see Fig. 2, 3rd and 4th row). Lateral stratigraphic pinchout is conformable proximally but 100 

results in an unconformity at its tip (see Fig. 2, 4th row). Salt rock (i.e., halite) is initially deposited conformably as an evapo-

ritic sediment. Beyond the undeformed, concordant, flat-layer geometry, halite structures are mainly categorized according 

to two principles: The most common classification is based on the question whether a structure remained concordant in re-

spect to its overlying rocks or intruded into its overburden (Hudec & Jackson, 2007; see Fig. 1, middle section). Following 

this systematization, salt anticlines, pillows and rollers are categorized as concordant (see Fig. 2, 1st, 5th and 6th row), while 105 

salt stocks, sheets and walls are intrusive bodies (see Fig. 2, 7th to 11th row). In addition, a supplementary subdivision based 

on the length-to-width ratio of salt bodies is discussed by some authors (e.g., Hudec et al., 2011): Structures showing a 

length-to-width ratio higher than 2 in map view (thus being considerably anisotropic) are being defined as anticlines or 

walls, respectively. In contrast, rather isotropic geometries with a length-to-width ratio smaller than 2 are the pillows, stocks 

and, at least in their early evolutionary stages, sheets. An additional aspect to consider when classifying salt structures is 110 

whether the halite is allochthonous or autochthonous. Sheets are the only structural type categorizable as the former: If the 

bulb of a stock or wall is subhorizontally oriented or moderately dipping above the autochthonous salt source layer, this rock 

body can be defined as a salt sheet (Hudec and Jackson, 2006). Crystalline rocks considered in the context of the German 

site selection are plutonic rocks as well as high‑grade metamorphic rocks (migmatites and gneisses). As the high‑grade met-

amorphic rocks originate from a wide array of protoliths, resulting in diverse geometries, the establishment of a single, co-115 

herent classification for both groups is difficult. For instance, orthogneisses and some migmatites originate from plutonic 

protoliths such as granitoids and exhibit structural characteristics similar to their igneous predecessors. By contrast, parag-

neisses and the remaining migmatites derive from various sedimentary sources. Their current shape depends not only on the 

geometry of the original rock body but also on the specific deformation history experienced during metamorphism. Overall, 

most high‑grade metamorphic rock bodies in the German subsurface are laterally bounded by either plutonic intrusions or 120 

fault zones and their top is either bound by unconformities or represents the present-day topography in most cases. Conse-

quently, for the purposes of our geometric approximation, we treat them as discordant rock volumes of varying shape and 

size (see Fig. 1, lower section and Fig. 2, 2nd, 6th and 8th to 9th row). For plutonic rocks, our classification combines the shape 

of the bodies with their relationship to the overlying strata (concordance or discordance) (Philpotts & Ague, 2009; see Fig. 1, 

lower section). Among discordant bodies with varying shape, two size‑based categories are distinguished (Fig. 2, 2nd, 6th and 125 

8th to 9th row): batholiths (exceeding 100 km² in areal extent) and stocks (smaller than 100 km²). Additionally, cylindrical 

discordant bodies, mainly representing feeder pipes for ascending magma, are recognized (Fig 2, 10th row). Moreover, two 

kinds of tabular geometries can be distinguished: discordant dikes and predominantly concordant sills (Fig. 2, 3rd and 8th 

row). Beyond these, three concordant geometries are noted: laccoliths (characterized by a roughly flat base and a convex 

roof), lopoliths (defined by a roughly flat top and a shallow convex base), and phacoliths (lens‑shaped bodies lacking any 130 

flat boundaries; Fig. 2, 5th row). 
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Building on these classifications, a collection of geometrical end members (standard geometries) that approximate the shape 

variations of the rock types was set up by Carl et al. (2023). The geometries are intended to act as open source benchmark 

models for structural geomodeling, as realistic geological models depend on a clear definition of the rock type and the 3D 

geometries of evaluated rocks. In its initial form, each of the geometrical end members per potential host rock type was rep-135 

resented by a single version of a 3D body. However, as a large share of these initial end members can be represented by a 

multitude of possible regular geometrical representations, we designed alternative realizations after reviewing literature: 

Subsurface salt structures have been created after Hudec & Jackson (2007), Hudec et al. (2011) and Jackson & Talbot 

(1991), claystone geometries have been inspired by Selley (2000) and Nichols (2009), and crystalline rock geometries are 

based on Markl (2015) and Winter (2013). Additional inspiration was drawn from studying open source 3D models of real 140 

subsurface structures (Dutch subsurface models from TNO, available at https://www.dinoloket.nl/en/subsurface-

models/map, and Australian subsurface models from Geoscience Australia, available at https://portal.ga.gov.au/3d). The 

standard geometries were created in blender (https://www.blender.org/) and are visible in Fig. 2. Some standard geometries 

are non-unique for rock types but can be used in different environments, e.g. stocks/batholiths for salt and crystalline intru-

sions. This is indicated in the model titles, as in these cases, the names of different structures are separated by an underscore. 145 

Blanks in model names are replaced with a period, and in brackets, additional geometrical information are given in some 

cases, such as the lateral character of the top of a structure (e.g. hourglass-shape) or the roundness of the top surface (round-

ed or flattened). 

 

 150 

Fig. 1: Geometrical systematization of the rock types considered for the establishment of the catalogue of benchmark models 

("standard geometries"). Adapted after Carl et al. (2023) 
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Fig. 2: Overview of regular synthetic models used in this study. The structures 

(apart from the cube, ellipsoid, prism, pyramid and sphere) are meant to repre-

sent geometrical end members of different rock types (“standard geometries”). 

For information on the naming convention, please refer to the end of Sect. 1.1. 

The size of the models was chosen arbitrarily 
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1.2 Geological description of the example model “Altenbruch-Beverstedt” 

The methodology presented herein is illustrated exemplarily on the mesh of the intrusive salt structure Altenbruch-155 

Beverstedt (Lower Saxony, Germany; see Fig. 3). Tectonically, it is located within the roughly N-S striking Glückstadt Gra-

ben, developing since the Triassic (Scheck-Wenderoth et al., 2008). The considerably anisotropic salt wall is the result of a 

complex evolutionary history especially throughout the Mesozoic, as variations in the tectonic regime repeatedly led to shifts 

from subsidence to uplift in the sub-basins and grabens of the North German Basin (Maystrenko et al., 2008; Scheck-

Wenderoth et al., 2008; Stollhofen et al., 2008). Within the Glückstadt Graben, the largest salt walls of the German subsur-160 

face can be found (Scheck-Wenderoth et al., 2008). The structure Altenbruch-Beverstedt represents a fitting example model 

for the methodology presented herein, due to its anisotropic, yet complex shape. The anisotropy visualizes well the cross 

sections created in the first part of the segmentation approach, while the sinusoidal shape illustrates well the segmented na-

ture of the second set of sections (see Sect. 2.1). 

165 
Fig. 3: 3D model of Altenbruch-Beverstedt, taken from BGR et al. (2022). Coordinate system: EPSG:4647  
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1.3 Content, motivation and distinction of this study 

The proposed methodology allows for the quantitative description, comparison and systematization of explicitly modelled 170 

structures and lower dimensional input data using a set of geometrical parameters. The horizontal and vertical dimensions as 

well as gradients and curvatures of 3D geometries are measured on vertical cross sections oriented perpendicular to the two 

horizontal main axes of the structures. For 2D inputs (such as 2D geophysical cross sections), alignment of sections is omit-

ted. The resulting datasets are analyzed statistically, providing insight into the main geometrical characteristics of the input 

structures: the data analysis yields information about the anisotropy of structures, the potential existence of overhangs, the 175 

sphericity and the character of the lateral walls as well as top surface of evaluated structures. Furthermore, K-means cluster-

ing is used to systematize the datasets based on the measured parameters. Given 3D input, the setup of cross sections per-

pendicular to the main axes ensures, that the input structures are covered thoroughly with regular-spaced measurements that 

follow the 3D contours of the respective geometry. The method is applied to the standard geometries serving as benchmark 

geometries for structural modeling of geo-bodies. Applying the method to these models serves two purposes: While the func-180 

tionality of the approach is validated, we also assess quantitatively, whether the developed benchmark models are geometri-

cally dissimilar or whether some of them can be consolidated for their purpose. Our quantification method represents a rather 

simplistic approximation approach for the quantitative comparison of 3D structures and lower dimensional datasets that can 

reproduce the main geometrical characteristics of input datasets fast but also enhances the interpretability of results, making 

them accessible to a broader audience. Our method cannot be used to quantitatively compare implicit representations of 185 

structures directly from a scalar field, though.  

As recognized in Sect. 1.1, similar approaches are rare in general and particularly in geosciences as quantitative approaches 

commonly aim at uncertainty assessment. In computer sciences, however, Celenk (1995) describes a method involving the 

alignment of equally-spaced cross sections in two objects via the computation of their respective horizontal main axes and 

subsequent section comparison. However, this method is more approximating compared to the proposed approach, as sec-190 

tions are not segmented to align with the contours of the structures.  

The proposed method is intended to be utilized in a geomodeling workflow at different stages. 1) Given a sparse dataset 

including for instance borehole data and 2D seismics of limited quantity, the method can be initially used for a first structural 

approximation of a targeted geo-body. In the specific example of the German site selection, where most structurally complex 

bodies have already been excluded from the considerations (BGE, 2020), this approximation can be achieved using the set of 195 

standard geometries that is established in this study. 2) Structural conceptualization and model approximation can also facili-

tate hyper parameter selection for subsequent interpolation (Wellmann and Caumon, 2018). 3) After the creation of a set of 

stochastic model realizations, our quantification method and the benchmark models can be applied again in combination 

with the input data to limit the realizations to the geometrically reasonable ones. However, it has to be noted that this step 

would be rather time-consuming for large amounts of realizations. Here, the framework for automatic consistency checking 200 

of 3D geological models recently introduced by Parquer et al. (2025) represents a more sophisticated approach. Still, the 
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proposed framework could reveal model realizations not respecting the conceptual model, which could prompt questions 

about the assumed geological situation and/or subjective bias, as studied for instance by Bond et al. (2007, 2015). 4) Lastly, 

the proposed framework can be used for the direction-dependent quantification of modeled structures to assess their potential 

capacity for material storage (BGE, 2023).  205 

The paper is structured as follows: Sect. 2 outlines the methodology employed in this study, detailing the developed segmen-

tation and measurement algorithm. Sect. 3 presents the results of applying the methodology to the benchmark models and a 

single subsurface dataset, while Sect. 4 discusses the implications of these findings in the context of existing research. Final-

ly, Sect. 5 concludes with future research directions. 

2 Methods 210 

2.1 Segmentation and measurement algorithm 

For our approach, we aimed at a high grade of automation and easy integration in a model analysis process. The method 

requires the dataset to either be a mesh with extractable vertices or a data frame of vertex coordinates themselves (the system 

currently only supports .vtk file formats). In what follows, the functionality of the method is explained given a 3D input 

mesh, but skipping the cross-section generation, the algorithm is also usable for existing cross-sectional data (e.g. geophysi-215 

cal data). 

To retrieve characteristic statistics, a geometrical segmentation algorithm (see e.g. Shamir, 2008) has been established, 

which first discretizes the 3D model into 22 equidistant cross sections with the normal direction parallel to the longer hori-

zontal axis of the mesh´s bounding box. As measurements are conducted perpendicular to the two horizontal main axes of 

the structures, two sets of cross sections need to be determined separately. Orientation of sections normal to the longitudinal 220 

axis of the structure (first direction) have been determined by a minimization of the cross-sectional area, as sections are se-

quentially rotated (Stephenson, 2018; Fig. 4, Part 1). The cross sections normal to the first set are set up by discretizing the 

established sections vertically, then first connecting raster lines of consecutive sections and lastly the resulting segments 

(Fig. 4, Part 3). After their respective setup, the cross sections of both directions are corrected automatically and/or manually 

for artifacts (Fig. 4, Part 2). Extensional measurements are conducted on each cross section at 5 equidistant transects (Fig. 4, 225 

Part 4). Since the very first and last cross section of both directions are excluded from the measurements as they would (un-

desirably) slice irregular polygons several times, 20 intervals are considered for every input structure. This results in 100 

measurements being conducted respectively for each of the two horizontal parameters as well as 200 values for the vertical 

extent. Please note, that the assumption that a cross section of the first set is perpendicular to the longitudinal horizontal main 

axis only applies to the center point of the given section. The same limitation applies to a given cross sectional segment 230 

(trapezoidal segment) of an orthogonal section and the secondary horizontal main axis. 

In addition to the extensional measurements, gradient and curvature calculations are carried out (see Fig. 4, Part 4). Both 

parameters are determined on all cross sections between consecutive vertices of a cross section. The curvature in 2D is de-
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fined as the reciprocal of the circumradius of a triangle. Therefore, it is calculated between three consecutive vertices in 

either the xz- or yz-plane, by first determining the side lengths (a, b and c) of the triangle between the points, then the semi-235 

perimeter of the triangle and the area through Heron´s formula, before calculating the curvature as the reciprocal of the cir-

cumradius of the triangle through: 

𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =
4 ×area

a ×b ×c
           (1) 

The selected method measuring the lateral extents of input meshes normal to their horizontal main axes (see Fig. A1a in 

appendix) is advantageous over approaches analyzing an input body using parallel sections as applied in various medical 240 

imaging techniques like for instance MRI (see e.g. Meyer-Baese & Schmid, 2014). Such an approach would have resulted in 

a dissimilar amount of output measurements for the two horizontal extents for many input structures as well as for different 

structures overall, both in case of a uniform regular grid for all datasets (Fig. A1b&e) as well as an individual regular grid 

per dataset (Fig. A1c&f). Only the usage of an anisotropic grid, depending on the bounds of the input mesh, would have 

resulted in an equal amount of measurements per horizontal direction (Fig. A1d&g). However, using a supplementary grid 245 

would have generally resulted in the problem, that irregular structures would have often been cut several times along a hori-

zontal measuring line. This would have created subordinate polygons that are completely disconnected from each other (see 

red lines in Fig A1b).  

In contrast, covering every input structure with a constant number of measurements as also applied similarly by Celenk 

(1995) comes with an advantage and a disadvantage: while it ensures that the quantification of input datasets with our meth-250 

od is scale-independent as datasets of different structures have the same amount of data, the geometrical spatial variability of 

larger bodies might not be captured equally well as the shape of smaller ones. The potential impact of this matter is currently 

being analyzed in a follow-up study that applies the methodology to a database of over 300 structural models of subsurface 

structures from various geological settings. The question whether structures shall be represented by equal or dissimilar data 

quantities also concerns the gradient and curvature data: Orthogonal sections are created from a set of 19 trapezoidal seg-255 

ments (i.e. 40 vertices), while cross sections in the first direction are based on a varying, most often higher number of verti-

ces. As gradients and curvatures are being calculated between neighboring vertices, the potentially larger edges between 

vertices in the orthogonal sections lead to a less-rounded appearance of the cross sections, directly affecting the values of 

both parameters. 
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 260 

Fig. 4: Pseudocode of the algorithm that creates the cross sections of both directions and measures the dimensional extents, gradi-

ents and curvatures on these sections. For further information, see chapter 2 
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2.2 Data analysis 

The geometrical measurements were combined into a database, analyzed by the first three statistical moments, standard de-

viation and median and visualized as histograms and cumulative distribution functions (CDF´s). Comparative analyses of 265 

data distributions and a cluster analysis were carried out on the measured data, to demonstrate that the tested 3D bodies can 

be quantitatively compared based on the statistical distributions of geometrical properties and to assess their dis-/similarity.  

Semi-quantitative comparison of histograms was done for the statistical data, analyzing the vertical extension measures, 

combined horizontal extension measurements, the gradients and curvatures. For gradient data, the frequency of infinite val-

ues was counted separately, since they represent vertical segments between two consecutive vertices. As those values cannot 270 

be plotted together with the remaining data as a separate bin, their frequency was visualized as a horizontal line. For gradi-

ents and curvatures, overflow bins were established: for the gradient data at the 5th and 95th percentile and for the curvatures 

only at the 95th percentile. This aimed at facilitating the interpretability of the histograms, since for most datasets, a small 

percentage of values (<5%) was considerably larger than the rest, thereby spreading the measurements to a large number of 

additional histogram bins. The Kullback–Leibler divergence (Kullback and Leibler, 1951) was calculated on normalized data 275 

between the individual distributions of the geometrical parameters of the input models, for quantification of the similarity 

between the structures. Cluster analysis followed data normalization to a range of -1 to 1 and principal component analysis 

(PCA; see Jolliffe, 2002). As variables (“features”) for PCA, 20 percentiles of the probability density functions (PDF´s) of 

the combined horizontal data, vertical data, gradients and curvatures were chosen. As the first two principle components only 

explained 40% of the variance, a matrix plot for the principal components 1 to 12 was assessed initially, to cover 90% of the 280 

variance. A feature angle matrix was then used to reduce the number of principal components in the cluster matrix plot. The 

number of clusters used in the K-means clustering algorithm was determined using an elbow plot and the silhouette score.  

3 Results 

Results of the segmentation and measurement algorithm as well as the data analysis are demonstrated using a sphere and the 

intrusive structure “Altenbruch-Beverstedt” (model taken from BGR et al.,2022). Subsequently, the results of the cluster 285 

analysis are presented. 

3.1 Segmentation and measurement algorithm  

The initial subdivision of the input mesh (Fig. 5a & b) is followed by the stepwise rotation of the initial cross sections. The 

respective rotation step showing the minimal cross-sectional area is optimally oriented normal to the longitudinal main axis 

of the structure (first direction). Optimal orientation of all sections of the first direction of the sphere corresponds to 0° rota-290 

tion, unlike when running the algorithm on an irregular mesh like Altenbruch-Beverstedt. This is the case due to the regulari-

ty and symmetry of all test models of this study. After subsequent artifact correction (Fig. 5c & d), the second set of cross 

sections is assembled from trapezoidal segments (for illustration, a subset of sections is shown in Fig. 5e & f).  
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Fig. 5: Visual representation of the segmen-

tation and measurement algorithm for a 

sphere model (left column) and the German 

intrusive salt structure “Altenbruch -

Beverstedt” (right).  

a & b) initial segmentation of the input 

meshes.  

c & d) Plotly.dash app for vertex-order 

correction.  

e & f) Subset of orthogonal cross sections.  

g & h) Coverage of input structure with 

cross sections (top view) 

i & j) Example of extensional measurement 

results  
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Following potential artifact corrections of the orthogonal sections, both sets of cross sections are finalized (Fig. 5g & h) and 295 

extensional measurements as well as gradient and curvature calculations are carried out (Fig. 5i & j). The computational 

power required by the algorithm is low (runtime without varying artifact corrections: ca 60 s, using as the CPU an AMD 

Ryzen 7 PRO 5850U at max. 50% capacity at 3.5 GHz speed and the integrated GPU at 0.6 GB usage).  

3.2 Data analysis 

The results of the first analysis step, the first three statistical moments, standard deviation and median per parameter and the 300 

data visualized as histograms and CDF´s, are seen in Table 1 and Fig. 6, respectively. The size of the sphere was chosen 

arbitrarily, as the subsequent Kullback-Leibler divergence and cluster analysis are based on normalized data. Both the statis-

tical moments for the sphere and the distributions in Fig. 6 (left column) reveal differences for the three parameters, although 

individual extents should be the same in all three dimensions, if a sphere would be measured equally in all directions. This is 

due to compromises of the algorithm ensuring its universal applicability. For Altenbruch-Beverstedt, the large variance and 305 

standard deviation of the combined horizontal data and the difference between the mean values of both individual horizontal 

parameters reflect the strong anisotropy of the structure, while the statistics for the vertical data indicate a moderate variation 

in vertical measurements.  

Table 1: a) First three statistical moments, standard deviation and median per parameter for the sphere model (note: the dimen-

sions of the sphere are chosen arbitrarily). b) First three statistical moments, standard deviation and median per parameter for the 310 
model of the real subsurface structure (Altenbruch-Beverstedt). Statistics for Altenbruch-Beverstedt reflect the strong anisotropy 

of the structure 

(a) sphere mean [m] variance [m] std_dev [m] skew median [m] 

Horizontal length 14 13 4 -0.4 14 

Horizontal length  

orthogonal 

18 4 2 0 18 

Vertical length 14 13 4 -0.5 15 

Horizontal data combined 16 13 4 -0.8 17 

 

(b) Altenbruch-Beverstedt mean [m] variance [m] std_dev [m] skew median [m] 

Horizontal length 3825 635352 797 -0.2 3795 

Horizontal length  

orthogonal 

48644 8956682 2993 -2.2 49845 

Vertical length 4766 486158 697 -2.9 4856 

Horizontal data combined 26235 5.07E+08 22516 0.02 21696 

 

Gradient and curvature histograms of the example cases are visible in Fig. 7. For the sphere, the distribution of the gradient 315 

histogram is symmetric (Fig. 7a). The curvature histogram (Fig. 7c) shows a prevalence of very small values and subordinate 

maxima around 0.1, 0.2 and in the overflow bin that contains 394 values (5% of all data) above 0.37. For Altenbruch-
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Beverstedt, the gradient distribution is asymmetric and the number of infinite gradients is higher (Fig. 7b). In comparison to 

the curvature distribution of the sphere, the curvature data (Fig. 7d) is monomodal apart from the overflow bin.  

In general, analyzing the data distributions of a structure visually already reproduces distinct geometrical characteristics of 320 

an input dataset. The distribution of the combined horizontal data indicates whether a pronounced anisotropy is present for 

an analyzed structure: if the data is separated into two clearly distinguishable subordinate distributions (see Fig. 8a), the 

geometry is considerably anisotropic (the farther apart the two maxima, the more anisotropic a body is). Caution is advised 

for a distribution with two close maxima (Fig. 8b): this could be the consequence of the inflated extent in the orthogonal 

direction (see Sect. 4.2). Analyzing the combined horizontal data and the vertical data together reveals whether a structure 325 

shows substantial variations in its horizontal extent over its vertical range. Such a shape, in the subsurface more often present 

as overhangs rather than as upward tapering, is indicated by the simultaneous presence of multimodal distributions for both 

parameters (Fig. 8c & d). The vertical data distribution also characterizes the top surface of a geometry: if the distribution is 

monomodal, with a) the maximum being the bin representing the highest measurements, and b) the frequency in lower bins 

being substantially smaller, then the presence of a flat top surface is indicated. The existence of a flat top surface can be 330 

verified by analyzing the gradient and curvature data: a high frequency of very small measurements for both parameters 

supports such an analysis (Fig. 8e-g). Gradient data also indicates the steepness of lateral surfaces of a body: as high and 

infinite gradient data stem from steep to vertical faces of a structure, the presence of steep-dipping lateral surfaces can be 

recognized (Fig. 8h). Combining the inferences from analyzing top and lateral surfaces therefore provides insight into the 

overall sphericity of an input dataset: a more spherical structure is represented by larger quantities of intermediate gradient 335 

measurements and of moderate to high curvature data (Fig. 8i & j).  
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Fig. 6: Data distributions 

and cumulative distribu-

tion functions (CDF´s) for 

the extensional parame-

ters. Left column: sphere, 

right column: Al-

tenbruch-Beverstedt.  

a & b) Horizontal data 

from the first direction.  

c & d) Horizontal data 

from the orthogonal 

direction.  

e & f) Combined horizon-

tal data.  

g & h) Vertical data  
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Fig. 7: Gradient and curvature data for the sphere (a & c) and Altenbruch-Beverstedt (b & d). Amount of data in overflow bins: 

Gradient diagram (sphere) 384 values (4.8% of all data), Curvature diagram (sphere) 394 values (5%); Gradient diagram (Al-340 
tenbruch-Beverstedt) 112 values (4.6%); Curvature diagram 101 values (4.1%) 
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Fig. 8: Analysis of data distributions to re-

produce geometric characteristics of input 

models. Please compare with model appear-

ances in Fig. 2. 

a) Combined horizontal data of 

“wall(highly.anisotropic_hourglass-

shape_rounded)”, reflecting strong anisotro-

py. 

b) Combined horizontal data of “batho-

lithV3” incorrectly indicating slight anisot-

ropy. 

c) & d) Combined horizontal data and verti-

cal data of “sheet(hourglass-

shape_rounded)” indicating presence of 

overhangs.  

e)-g) Vertical data, gradients and curvatures 

of “batholithV5”, revealing the presence of a 

flat top surface 

h) Gradient data of “volcanic.pipe”, reflect-

ing the prominence of vertical lateral walls  

i) & j) Gradient and curvature data of “pil-

low(rounded)_batholithV4” showing the 

spherical character of the input model 
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The Kullback-Leibler (KL-)divergence (Kullback and Leibler, 1951) was calculated to quantitatively determine the similari-

ty between the tested geometries. The distributions of the six parameters (the individual horizontal extents along both hori-

zontal main axes, the combined horizontal data, the vertical data, gradients and curvatures) were compared between the 345 

models. The similarity of two distributions is larger, the smaller the KL divergence is, with a value of 0 indicating equality of 

the distributions (obtained for instance when comparing a structure with itself). The result of the calculation of the individual 

KL divergences for the example cases is visualized in Fig. 9. For the sphere, the most similar models regarding the respec-

tive distributions of the six parameters are the “sheet(cylindric_rounded)” for the horizontal data of the first direction, the 

“prism” for the orthogonal horizontal data, the “batholithV3” for the combined horizontal data, the “anti-350 

cline_wall(rounded)_batholithV1” for the vertical data, the “phacolith” model for the gradients and the “ellipsoid” for the 

curvatures (compare Fig. 2 for the model appearances). For Altenbruch-Beverstedt, “batholithV6” is most similar regarding 

the horizontal data of the first direction, “roller” for the orthogonal horizontal data, “wall(highly.anisotropic_hourglass-

shape_flattened)” for the combined horizontal data, “wall(highly.anisotropic_hourglass-shape_rounded)” for the vertical 

data, “pillow_flattened” for the gradients and “roller” for the curvatures. In addition to KL divergences of individual parame-355 

ters, an averaged KL divergence was calculated: by taking the mean of the values between two models, the overall dis-

/similarity between models was assessed. According to the averaged KL divergence, the sphere is closest to the standard 

geometry “pillow(rounded)_batholithV4”, while Altenbruch-Beverstedt is best approximated by the 

“wall(highly.anisotropic_hourglass-shape_rounded)”. However, informational content of this parameter is limited, as there is 

no indication regarding which parameters two compared structures are most similar or differ more. Therefore, principal 360 

component analysis and K-means clustering have been employed as well, providing this information based on all combined 

parameters. 

In general, values of KL divergence show an error for the gradient distributions: infinite values had to be converted to the 

highest finite gradient value of a given dataset to enable the computation, inflating the highest bin. Furthermore, the large 

variance of curvature data for most input models (see for example Fig. 9f & l and Sect. 4.2) decreases the applicability of the 365 

KL divergence for that parameter, as most models show very similar normalized distributions. To assess the impact of the 

large variance on individual KL divergences of curvature data and smallest averaged KL divergences, they were also calcu-

lated using a 95th percentile overflow bin (see Table 2). Smallest KL divergences for the curvatures of the two example mod-

els are notably higher, especially for the sphere, reflecting the dissimilarity of data distributions when applying the filter 

(column 1 & 2). The impact on the smallest averaged KL divergence (column 3 & 4) is smaller, yet still considerable.  370 

 

 

 

 

 375 
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Table 2: Comparison of KL divergences with and without the usage of a 95th percentile overflow bin for the curvature distribu-

tions. 

structure smallest KL 

divergence 

for curva-

ture without 

overflow bin 

smallest KL divergence 

for curvature with over-

flow bin 

 

smallest averaged KL 

divergence for all 

properties without 

overflow in curvature 

smallest averaged 

KL divergence for 

all properties with 

overflow in curva-

ture 

 

sphere 0.0054  

(“ellipsoid”) 

0.16  

(“wall(highly.anisotropic

_cylindric_rounded)”) 

0.45 (“pil-

low(rounded)_batholith

V4”) 

0.56 (“batho-

lithV3”) 

Altenbruch-

Beverstedt 

0.036 (”roll-

er”) 

0.05 (“batholithV5”) 1.2 

(“wall(highly.anisotrop

ic_hourglass-

shape_rounded)”) 

1.3 

(“wall(highly.anisot

ropic_hourglass-

shape_rounded)”) 
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Fig. 9: Visualized Kullback-Leibler divergences. a)-f): sphere, g)-l): Altenbruch-Beverstedt. Visualized is the most similar data 380 
distribution (orange) compared to the respective distribution of the two example models (blue). The calculated Kullback-Leibler 

divergences are noted in the headlines of individual figures 

 

3.3 Cluster analysis 

Cluster analysis on all measured data of the regular geometries resulted in 7 clusters considering the combined analysis of 385 

the elbow plot and silhouette score (Fig. 10b). With the first two principle components (PC´s) only explaining 40% of the 

variance (see Fig. 10a), the number of PC´s necessary to cover more than 90% of the variance was determined to be 12. A 

feature angle matrix (Fig. A2) was computed to check the dependencies between the percentiles of the PDF´s. As a strong 

dependency was identified within several groups of features, the principal component matrix plot (Fig. 11) was limited to the 

first six PC´s. The feature contribution matrix (Fig. 10c) reveals the contribution (“loadings”) of the binned PDF´s to the 390 

principal components, with bright yellowish colors indicating a strong positive contribution and dark blue colors a substan-
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tial negative contribution. In the contribution matrix, percentiles 0 to 19 represent the PDF of the combined horizontal data, 

followed by the vertical data (20 to 39), gradients (40 to 59) and curvatures (60 to 79).  

The PC1 vs. PC2 cluster plot is visible in Fig. 11a. Positive contributions to PC1 are dominated by the 50 to 55% bins of the 

vertical data and gradient data, while there is no percentile with a strong negative contribution to PC1. This effectively sepa-395 

rates the bluish-green cluster at high positive PC1 scores from the rest of the data. All four models (“flat.layer”, “sill”, “cu-

be” and “prism”), share a distinct geometrical similarity: When segmenting them with our algorithm, cross sections are al-

ways flat at the top and of exactly the same vertical extent throughout the entire structure. This results in a step-wise appear-

ance of the respective PDF´s, with the step being in the middle of the functions. For PC2, the 45 to 50% gradient bin has the 

highest positive loading, while there are stronger negative loadings for the 0 to 5% as well as 95 to 100% gradient bins. This 400 

separates the models of the black cluster at highest positive PC2 scores and mainly the blue cluster at high negative PC2 

scores. Therefore, models of the black cluster are characterized by the presence of many low to moderately inclined surfaces 

in a geometry (depending on the variance in a data distribution) and an overall more rounded appearance (see e.g. the high-

lighted black example model “pillow(rounded)_batholithV4” in Fig. 11a). Meanwhile, the blue models and other models at 

high negative PC2 scores are characterized by the abundance of steep-dipping to vertical surfaces. Thus, PC2 is an indicator 405 

for the overall steepness of the lateral parts of a structure or, on the other hand, its sphericity.  

The PC3 vs. PC4 cluster plot is shown in Fig. 11b. For PC3, large positive contributions are spread among the 0 to 5% and 

95 to 100% horizontal bins as well as the 95 to 100% vertical bin and the 0 to 5% and 45 to 50% gradient bins, while the 

only considerable negative loading is exhibited by the 10 to 15% gradient bin. Datasets at very positive PC3 scores belong to 

the vermilion and blue clusters. The largest negative PC3 scores are seen for the reddish-purple cluster. Very positive PC3 410 

scores indicate anisotropy, rather flat top surfaces and steep-dipping to vertical lateral walls (see e.g. the highlighted vermil-

ion “dyke”). In contrast, however, datasets at largest negative PC3 scores, cannot be linked to very high data percentages in 

that 10 to 15% gradient bin; its loading (-0.27) not being the main cause of the observed negative PC3 scores. PC4 shows 

considerable positive loadings for the 50 to 55% bin of the vertical data and the 0 to 5% and 95 to 100% gradient bins. 

Meanwhile, large negative loadings are seen for the 0 to 5% and 95 to 100% horizontal bins, the 95 to 100% vertical bin and 415 

the 80 to 85% gradient bin. These contributions mainly drive the differentiation of the reddish-purple and vermilion clusters 

(negative PC4 scores) from the other clusters apart from some sky-blue models. Since the horizontal and vertical bins con-

tributing very negatively are the same horizontal and vertical bins contributing particularly positively to PC3, it can be de-

duced that the overall position of the vermilion models in the PC3 vs. PC4 diagram is more driven by these horizontal and 

vertical bins. Meanwhile, the datasets from the reddish-purple and sky-blue models are comparatively influenced more by 420 

the 80 to 85% gradient bin also showing a considerable negative loading. Still, most datasets from these clusters at negative 

PC4 scores can be considered as rather anisotropic geometries with mainly steeper (but not vertical) lateral walls, while 

models at higher positive PC4 scores exhibit uniform vertical extents and steep-dipping to vertical lateral walls. This ex-

plains the position of the isolated blue model at highest positive PC4 scores (“volcanic.pipe”; highlighted in Fig. 11b; see 

also Fig. 8h for the gradient distribution), completing the separation of the blue cluster from the rest of the data.  425 
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The cluster plot of PC5 vs. PC6 can be seen in Fig. 11c. PC5 shows strong positive contributions for the 0 to 5% vertical bin 

and the 50 to 55% and 95 to 100% gradient bins, while stronger negative loadings are given by the 50 to 55% vertical bin 

and the 0 to 5% gradient bin. This separates the majority of the sky-blue cluster (highest positive PC5 scores) from the rest 

of the datasets. As this corresponds to the first appearance of the 0 to 5% vertical bin among considerable contributing bins, 

most of the associated models are characterized by widespread low vertical extents and few much larger ones, as seen in 430 

overhang configurations (for example, see the model “laccolith” in Fig. 2). PC6 is mainly influenced by the gradient data, 

where the 10 to 15% bin contributes the most negatively and the 80 to 85% bin contributes positively. Once again (as for 

PC3), the 10 to 15% gradient bin, however, does not seem to be the main reason for the separation of the reddish-purple 

cluster at very negative PC6 scores. Similarly, the sky-blue models at higher positive PC6 scores do not exhibit particularly 

large high percentages in the respective bin.  435 

 

 

Fig. 10: Calculated supplementary information for the setup and interpretation of the cluster analysis after principal component 

analysis. a) Cumulative scree plot, showing the explained variance with increasing number of principal components. b) Elbow plot 

and silhouette score to determine number of clusters. c) Contribution matrix showing the contribution of the input data (percen-440 
tiles of the probability density functions of measured parameters) to the principal components 
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Fig. 11: Matrix plot of principal components (PC´s) explaining 70% of the variance in the data (see also Fig. 10a). Larger stars 

mark example models for clusters (see legend)  

 445 

The overall cluster results validate that the flat and/or cuboidal geometries (vertical extent ≤ horizontal extent and/or exclu-

sively straight lateral surfaces) mostly differ considerably from the other structures designed to represent intrusive subsur-

face bodies: the flat/cuboidal geometries are mainly distributed among the bluish-green, blue and vermilion clusters (see Fig. 

11). As recognized above, these three clusters can be differentiated from the other models within the first four PC´s. Only the 

“laterally.eroded.layer_pinchout)” is located outside, in the sky-blue cluster, although representing a flat geometry. The K-450 

means cluster analysis furthermore indicates that some standard geometries are similar across all parameters. Therefore, it 

was assessed whether certain standard geometries are redundant to simplify the benchmark selection process. The pairs of 

flattened and rounded versions show high similarities, leading to the exclusion of the flattened models while retaining the 

"uneroded" structures. The models "batholithV3" and "pillow(rounded)_batholithV4" cluster closely, differing only in verti-

cal elongation; thus, "batholithV3" is excluded. Although similarities exist between models with varying lateral characteris-455 

tics, both "cylindric" and "hourglass" shape variations are retained. This also applies to various "sheets" and the "anti-

cline_wall(hourglass-shape_rounded)”, which exhibit similar PC scores in some, but not all cluster plots. Lastly, some of the 

flat and cuboidal bodies in the bluish-green cluster ("flat.layer", "sill" and "cube") are nearly identical in position. The "cube" 

is excluded from the benchmark collection, while the other two geometries are merged, keeping the shape of the "sill”. 

Given these exclusions based on structural similarity, the collection is condensed from 36 to 25 standard geometries (see Fig. 460 

12). Decreasing the database by validating the bodies’ geometrical dissimilarity facilitates the decision making on the best 

suitable benchmark for a case study. Despite our reduction efforts, this list is not expected to be exhaustive: we would like to 

encourage users to suggest additional geometries based on their expertise and/or literature, to ensure that suitable benchmark 

models are available for as many geomodeling applications as possible. 

 465 
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Fig. 12: Condensed collection of standard geometries after application of the quantification method. 

4 Discussion 

By applying a set of defined geometrical descriptors to systematically generated 3D benchmark models, this study establish-

es a framework for the quantitative comparison of shape properties. The analysis highlights how key attributes such as ani-470 

sotropy, surface morphology, and sphericity vary across models, offering a structured perspective on their geometric dis-

/similarities. These outcomes prompt a deeper discussion of how well the proposed descriptors capture meaningful shape 

differences and how this quantitative framework advances the analysis of unmodeled data and 3D geological structures. 
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4.1 Comparison of existing methods for 3D shape characterization with the proposed workflow 

The workflow of this study differs considerably - both in the scale of the test subjects as well as the purpose of the methods -475 

from the quantitative comparative approaches used in material sciences (Sect. 1.1). The material-scientific studies mainly 

operate on millimeter- to centimeter-scales and have a higher emphasis on parameters exploring the sphericity/angularity (or 

similar metrics) of objects, as these characteristics are fundamental in this field, where properties and applicability of com-

posite building materials heavily depend on mechanical interactions between individual particles (Kakani and Kakani, 2004).  

 Meanwhile, the proposed approach aims at characterizing 3D structures and 2D sections at the meter- to kilometer-scale 480 

(although the applicability is scale-independent in theory), through direction-dependent measurements of geometrical pa-

rameters, thereby providing datasets suited for quantitative comparison.  

Studies presenting approaches that show similarities to ours are Celenk (1995), Schweizer et al. (2017) and Lindsay et al. 

(2013). Celenk (1995) determines the horizontal main axes of equally-spaced cross sections as well, but does so to align 

sections of two different objects. Comparison is then achieved by computing the averaged shape difference of sections be-485 

tween the objects in four directions along the main axes. Key differences of our approach therefore involve the segmented 

assemblage of cross sections in the orthogonal direction (following the respective segmented horizontal main axis) and the 

exact measurement of the dimensional extents on the sections. Hence, our method opts for the determination of larger da-

tasets of absolute measurements on a single object, that are compared to other bodies in subsequent steps. Meanwhile, 

Celenk (1995) computes the relative measure that is the averaged shape difference, representing a faster, but more approxi-490 

mate approach of object comparison, as the author does not segment the horizontal main axis along the larger extent. 

Schweizer et al. (2017) do not try to compare the dimensions of individual 3D structures, but use the Jaccard distance and 

the normalized city-block distance as measures for model dissimilarity instead. The two parameters are being applied as 

measures for the similarity in position of certain geological units between two model realizations of the same study site. In a 

similar fashion, the Hausdorff distance has been used before (see e.g. Suzuki et al., 2008). These dissimilarity distances were 495 

not applied in our study, as they could only act as size indicators rather than shape descriptors and would not give any indi-

cation on where two structures differ spatially. Meanwhile, our approach provides insight into both shape and size differ-

ences of objects, which is crucial for geological modeling. Lindsay et al. (2013) explore geometric uncertainty across multi-

ple realizations of a study site, evaluating parameters like depth, volume, and curvature, which parallel those in our study. 

However, their parameters are often tied to stratigraphic units and may not apply directly to individual 3D structures. Both 500 

studies utilize PCA to analyze geometric variability and model differences, although executed differently.  

Despite these existing methodologies, we opted for a straightforward approach, allowing us to efficiently replicate the main 

geometric characteristics of input datasets. Our algorithm is computationally efficient, easily interpretable with basic geolog-

ical knowledge, and accessible to a non-specialist audience. 
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4.2 Assumptions and compromises of the algorithm ensuring its universal applicability 505 

Despite the strengths of our methodology, certain limitations must be acknowledged. The reliance on discrete differential 

geometries (Bobenko et al., 2008) means that the input dataset must represent a single, compact, and topologically connected 

structure (Thiele et al., 2016a). For objects separating from one to the next cross section into multiple strands, split algo-

rithms are available. However, this comes at the cost of interpretability of the statistics of geometric properties. Moreover, 

the method functions optimally for convex hulls (Rockafellar, 1970), although a follow-up study will show, that the full 510 

geometric diversity of intrusive salt structures and crystalline bodies from the German subsurface can be quantitatively com-

pared without major limitations. These assumptions should be considered when interpreting results in other domains. 

The focus of this study was to establish a generalized algorithm to quantitatively describe the shape of objects and to infer 

dis-/similarity between geometries. Given the wide range of potential and available models, the algorithm requires some 

trade-offs to be universally applicable. Discussion of the data distributions for the geometrical parameters (see Fig. 6) focus-515 

es on the results from measuring the sphere, representing a comprehensible case with distinct expected data distributions: 

The nature of a sphere is a similar shape of any section through the center, eventually resulting in a normal distribution of the 

levelled distance measurements in both horizontal and vertical directions. This expected distribution is not produced in our 

case due to the generation approach of the orthogonal cross sections: The assembled sections follow the contour of the struc-

ture (see Fig. 5g & h), which results in larger measurements for the orthogonal horizontal data and a slightly tailed distribu-520 

tion of the combined horizontal data, similar to an ellipsoid with a low contrast in the main axes. As this situation is rarely 

seen in geological modeling, the impact is small since anisotropic geometries are measured accurately with our segmentation 

algorithm. The gradient and curvature data reflect the effects of our approach as well: While the gradient diagram of the 

sphere shows a symmetric distribution as expected, the relative elongation of the orthogonal sections increases the frequency 

of lower gradient measurements. Due to this accumulating effect, the presence of low-dipping surfaces of a structure is over-525 

estimated by the data. Furthermore, the exclusion of marginal cross sections leads to vertical clipping that introduces infinite 

gradient measurements (representing two consecutive vertices being exactly vertical) that would not exist when measuring 

the sections in a rounded, unclipped state. The curvature data is influenced by this clipping as well, that results in few large 

values where the three consecutive vertices form a large angle. These measurements increase the variance of curvature data 

considerably, with the majority of data for most datasets being located within the 0 to 5% and 5 to 10% bins. 530 

However, the discriminability of the standard geometries and basic 3D objects in the cluster analysis is ensured despite these 

compromises made in the methodology: structures of varying anisotropy plot in different parts of cluster diagrams showing 

contribution of the combined horizontal data, as the highest contribution of horizontal data comes from the first and last 

distribution bins (see Fig. 10c). Similarly, as vertical and gradient data distributions of flattened geometries show the dis-

cussed characteristic properties, they differ in their PC scores from their rounded counterparts. Furthermore, the discussed 535 

increased frequency of gradient measurements around 0 does not change cluster patterns as it applies to all datasets. The 

same is true for the artifact-influenced curvature data and its impact on the general clustering of similar structures. Still, its 
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squeezed nature shows an effect on the overall clustering results, as the curvature data does not show any considerable con-

tribution in PC dimensions.  

 540 

4.3 Intended direct application and potential further usage of the quantification method and the standard geometries 

The methodology will be a part of a larger framework to model and compare geological structures based on sparse data in 

the context of the German site selection. For most regions of interest for nuclear waste disposal, seismic 2D data are availa-

ble frequently with a few boreholes. This is similar to the cross sections established through the benchmark models here, 

allowing for a fast model selection based on the geometrical properties and potentially further constraining hyper parameter 545 

selection for interpolation. However, for the integration of unmodeled sparse input data in the initial conceptualization of 

geological models, some adoptions of the workflow are needed. Obviously, the creation of segmented sections is omitted as 

the starting point are cross sections, which can be analyzed as described. The number of geometrical data is restricted by the 

number of available cross sections, thus a comparison will be conducted on a less complete statistical basis. Consequently, a 

user likely has to solely rely on the Kullback-Leibler divergence and cluster analysis to assess the reasonableness of various 550 

shapes. In case these analyses do not limit the range of standard geometries sufficiently, additional experience-based bench-

marks could be created and clustered among the available models to test whether a closer fit applies. Here, more complex 

structural configurations could easily be approached by superposition of basic benchmarks. Thus, the choice of the concep-

tual model is based on the quantification and does not rely on the expert knowledge only. After interpolation resulted in a 

series of stochastic prior realizations, the method will be used for falsification by data (e.g. boreholes). Furthermore, the 555 

application of the framework to purely quantify the shape of a modeled 3D body can be very useful in the context of the site 

selection. Here, the comparative parts of our proposed analysis (i.e. Kullback-Leibler divergence and cluster analysis) might 

be of little value and thus be omitted. Additionally, applying our methodology also supports testing for the minimum amount 

of data necessary for geological modeling, as different data densities and configurations can be inserted into the algorithm. 

The open-access collection of benchmarks for geomodeling is also a convenient tool to visualize the range of three-560 

dimensional geometries of the different rock types to a broader audience, which aids in the communication of uncertainties 

and decisions for geoscientists and stakeholders in various settings (see Zehner, 2021). 

5 Conclusion 

In our publication, we presented a methodology to quantitatively describe, compare and systematize 2D and 3D datasets, and 

proposed a set of regular standard geometries as benchmark models in geomodeling approaches. Demonstrating the quantifi-565 

cation method on the 3D standard geometries, their geometrical dis-/similarity is assessed. The combined evaluation of data 

distributions and a cluster analysis reproduces the main geometrical characteristics of input meshes and visualizes differ-

ences between various datasets. While distributions of combined horizontal extensional measurements provide insight into 
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the anisotropy of datasets and the potential existence of overhangs, distributions of the vertical extent indicate the character 

of the top surface of structures and support or falsify the presence of overhangs. Distributions of gradient and curvature data 570 

(1) indicate the prevailing character of the slope of the lateral surfaces of structures, (2) further emphasize potentially present 

flat top surfaces and (3) give a general indicator on the sphericity of a structure. Cluster analysis of normalized, dimensional-

ly reduced data groups and systematizes input structures based on the combined measured statistical parameters. In our ap-

plication to synthetic datasets, clustering also serves to identify and exclude or merge benchmark models showing large 

geometrical similarity. Apart from cluster analysis and assessment of data distributions, comparison of parameter distribu-575 

tions is furthermore achieved using the Kullback-Leibler divergence. The proposed method and standard geometries are 

intended to be used at several stages within a workflow for structural geomodeling, both for initial conceptualization, poten-

tial adjustment of the interpolation method and examination of structural reasonableness of resulting models. Furthermore, 

general shape quantification for exploration/storage estimates can be realized. 

As indicated earlier, the first follow-up study aims at applying the method to a large database of structural geological mod-580 

els. Afterwards, the method will be applied to datasets of sparse, unmodeled input data and coupled with a spatial interpola-

tion algorithm in a study focusing on geomodeling based on progressively reduced datasets. 

Code and data availability 

Method development was carried out in Python. The method mostly relies on the capabilities of the libraries Shapely 

(https://shapely.readthedocs.io/en/stable/), PyVista (https://pyvista.org/) and Plotly (https://plotly.com/). The python code, 585 

the condensed database of standard geometries (as .vtk-files) and the datasets of raw extensional, gradient and curvature data 

are stored at https://doi.org/10.5281/zenodo.15795851, (Carl, 2025).  
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Appendix 

 690 

Fig A1: Visualization of the advantages of measuring the extents of input meshes on sections normal to their horizontal main axes. 

Lower row: model “Seefeld” from BGR et al. (2022) for comparative purposes. a): Sections using the proposed method on “Al-

tenbruch-Beverstedt” (top view). b) & e): hypothetical measurement of the horizontal extent along a regular grid (grey lines) of 

constant size for all datasets (example: 5000 m grid size for both). c) & f): measurement along a mesh-specific regular grid based 

on the extent of the longer axis of the mesh´s bounding box. d) & g): Measurement along an anisotropic grid to have an equal 695 
amount of sections per direction. Multiple cuts along a horizontal measuring line for an irregular structure are visualized in a) 
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Fig A2: Matrix plot for the angles between feature axes in PC space. The plot is used to assess the dependencies among the features 

(percentiles of the parameter PDF´s) in the cluster analysis. Small angles (dark blue) and large angles (bright yellowish) indicate 

strong dependency between individual features. This can be seen for instance between F3-F6; F32-F39 and F61-F69, with the ex-700 
ception of F67 (F61 is inversely dependant from F62-F64). The strong inter-feature dependencies result in a weak cluster separa-

tion beyond PC6. Thus, PC7 to 12 are not shown in Fig. 11 

 


