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Abstract. The quantification of 3D structural shapes is a central goal across multiple scientific disciplines, serving purposes
such as image analysis and the precise geometric characterization of objects. This study proposes a methodology for the
shape quantification based on a set of geometrical parameters in 2D sections of 3D geological shapes and establishes a set of
synthetic regular geometries as benchmark models in 3D geomodeling approaches. The proposed methodology is demon-
strated on a number of simple geometric bodies and the benchmark models to assess their geometrical dis-/similarity. The
dimensions of the structures are measured perpendicular and vertically to their horizontal main axes on a fixed amount of
cross sections. Furthermore, gradient and curvature measurements on these cross sections are conducted. A subsequent mul-
ti-step data analysis provides insight into the main geometrical characteristics of the structures and visualizes differences
between various datasets: Analysis of extension measurements reveals the anisotropy of structures, the existence of over-
hangs and the character of the top surface of an investigated structure. Analyzing the gradients and curvatures offers infor-
mation on the slopes of the lateral walls of the structure and its sphericity as well as top surface. Kullback-Leibler divergence
is utilized to quantitatively compare individual parameter distributions. Dimensionally reduced cluster analysis groups and
systematizes input structures based on the combined statistical parameters and serves for the identification of benchmark
models showing large geometrical similarity. It is expected that the methodology and set of benchmark models will aid in
advances to model, analyse and compare subsurface structures based on sparse data, as our framework can be used for an
initial structural approximation prior to modeling, for the setup of the interpolation method and for the falsification of proba-

bilistic model realizations after interpolation.



35

40

45

50

55

60

1 Introduction
1.1 Shape quantification and comparison — previous studies and gaps in current research

The quantitative comparison of three-dimensional (3D) objects plays a crucial role in various scientific fields, including
geology, computer science and engineering (see e.g. Cardone et al., 2003; Celenk, 1995; Wellmann and Caumon, 2018).
Shape quantification aims at the numerical characterization of the geometry of objects, with their dis-/similarity not solely
being a mathematical metric but also being dependent on the specific context (Laga et al., 2019). Accurate shape quantifica-
tion independent of the objects’ orientation is essential for applications such as geological modeling, resource management
and structural analysis, where understanding the geometric properties of objects can inform decision making and enhance
predictive capabilities.

Shape quantification can be complex when dealing with static 2D images of 3D bodies (see Laga et al., 2019), but when
rotatable objects in 2D or 3D are available, basic geometrical parameters can be applied. This is commonly proposed in
material science, where studies focus on sand grain analysis. In these studies, the range of shape parameters in 2D and 3D
include (but are not restricted to) principal dimensions, volumes, aspect ratios, radii, sphericities, convexity, circularity,
roundness and compactness (Altuhafi et al., 2013; Cox and Budhu, 2008; Zhao and Wang, 2016), that partially describe
similar structural characteristics. Furthermore, the shapes of aggregate particles in building materials have been analyzed
using parameters like sphericity, angularity, aspect ratios, gradients and radius indices (Al-Rousan et al., 2007), and volcanic
cinders have been assessed looking at elongation, roundness, and roughness (Nie et al., 2023). Similar analytical approaches
can be valuable to study the geometry of subsurface structures, although at much larger scales and a higher structural com-
plexity: The shape of individual geo-bodies can be of interest for resource exploration and storage of materials like for in-
stance nuclear waste. However, geoscientific studies applying similar parameters as used in the mentioned material-scientific
studies are rare: Gardoll et al. (2000), for instance, determine the aspect ratio, blockiness, elongation, compactness, complex-
ity, roundness, spreadness and squareness of geological bodies from map data to assess the exploration potential for orogenic
ore deposits. This is a highly specialized application though, usable for shallow horizontal data, but being inapplicable to
(sub-)vertical input data. Instead of relying on geometrical parameters for the shape quantification of a single geo-object, in
geosciences advances for the shape comparison of structural models are more common. These are mainly related to uncer-
tainty assessment and quantification within geological models and often approached with distance metrics. For instance,
Schweizer et al. (2017) apply the Jaccard distance and the normalized city-block distance as measures for model dissimilari-
ty, while Suzuki et al. (2008) propose the usage of the Hausdorff distance for the same purpose. In contrast, Lindsay et al.
(2013) developed an approach for model comparison not relying on such distance metrics: To determine the similarities
between 101 realizations of a 3D composite geomodel based on the same perturbed input dataset, a set of geometrical “geo-
diversity” parameters (e.g. formation depth, volume, contact surface curvature) are calculated on all stratigraphic units. The
resulting datasets are analyzed in their ranges to determine endmember model realizations. Furthermore, principal compo-

nent analysis is employed to determine which geometrical characteristics contribute most to spatial uncertainty and to detect
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realization outliers for the combined geodiversity metrics. Despite the lack of geoscientific studies approaching shape quanti-
fication with simple geometrical parameters, the necessity of basic shape assessment in geomodeling is recognized as most
commonly used geomodeling software are capable of obtaining simple geometrical properties like surface areas, aspect rati-
os and volumes from modeled 3D elements. However, these functionalities are error-prone determining basic geometrical
properties in varying directions, like the extent along the horizontal main axes of a given irregular structure — a property of
interest for the exploration of geo-bodies for storage purposes. An example of such an application can be found in the stor-
age of high-level nuclear waste: In Germany, currently, intrusive salt bodies with varying internal structures as well as crys-
talline intrusives potentially exhibiting lateral zonation are considered as potential storage sites (BGE, 2020).

In addition to these limitations in the analysis of 3D geo-bodies, geometrical characteristics of structures are hard to quantify
prior to geomodelling as well, when input data is most commonly available in 1D (i.e. boreholes) and/or 2D (e.g. seismic
sections). At this early stage within a modeling workflow, conceptual models are established based on sparse data, local
geological knowledge like the regional geological history and universal geological knowledge such as common laws and
principles (Parquer et al., 2025) but also defined spatial factors known to be related to certain variables of interest like re-
sources (Gardoll et al., 2000). The identification of important geometrical features and the establishment or selection of an
appropriate conceptual model can have a considerable impact on how realistic/reasonable model realizations are, thus influ-
encing decision-making and the accuracy of predictions (Bond et al., 2007). Therefore, approaches to geometrically quantify
available input data and to compare datasets to established conceptual models are valuable.

Given this identified current lack of analytical capabilities for the geometrical assessment of both unmodelled input data as
well as modeled structures whose evaluation shall be direction-dependent, this study proposes a novel methodology for the
quantitative description, comparison and systematization of datasets using a set of geometrical parameters. While the method
development will be visualized based on explicitly modelled 3D geometries, it can be applied to lower dimensional data as
well. In the present study, the algorithm is applied to a set of 36 3D geometries approximating subsurface structures of vary-
ing rock types, intended to act as benchmark models in geomodeling approaches. By demonstrating the quantification algo-
rithm on these 3D bodies called “standard geometries”, their geometrical dis-/similarity is analyzed. Furthermore, the meth-
odology has been applied to a small set of basic 3D geometries (a cube, an ellipsoid, a prism, a pyramid and a sphere) with
distinctive and expected divergence of geometrical properties. In what follows, the concept of “standard geometries™ initially
described by Carl et al. (2023) as a geometrical systematization to collect and catalogue subsurface geometries of the poten-
tial host rocks in the German site selection for a nuclear waste repository (halite rock, claystone and crystalline rocks) is
reviewed, adapted and extended. Please note that the classification is purely geometric, even though the terminology of sub-
dividing categories can also be found in topological considerations (see for instance Thiele et al., 2016a, b). For more details
on the classification, please refer to Carl et al. (2023). For real word examples of the standardized geometries, we refer to the
publications mentioned in the respective parts of the following paragraph.

Claystones and shales are clastic sedimentary rocks which are commonly deposited conformably onto the underlying strata

(Selley, 2000; see also Fig. 1, upper section). The appearance of these conformable layers can vary considerably: tilting and
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folding of a flat-lying structure can result in a range of geometries varying from a flat layered appearance that remain gener-
ally conformable (see Fig. 2, 4" and 9" row for potential visual representation). By contrast, faulting, erosion and folding can
produce unconformable geometries (see Fig. 2, 3™ and 4™ row). Lateral stratigraphic pinchout is conformable proximally but
results in an unconformity at its tip (see Fig. 2, 4™ row). Salt rock (i.e., halite) is initially deposited conformably as an evapo-
ritic sediment. Beyond the undeformed, concordant, flat-layer geometry, halite structures are mainly categorized according
to two principles: The most common classification is based on the question whether a structure remained concordant in re-
spect to its overlying rocks or intruded into its overburden (Hudec & Jackson, 2007; see Fig. 1, middle section). Following
this systematization, salt anticlines, pillows and rollers are categorized as concordant (see Fig. 2, 1%, 5" and 6™ row), while
salt stocks, sheets and walls are intrusive bodies (see Fig. 2, 7% to 11" row). In addition, a supplementary subdivision based
on the length-to-width ratio of salt bodies is discussed by some authors (e.g., Hudec et al., 2011): Structures showing a
length-to-width ratio higher than 2 in map view (thus being considerably anisotropic) are being defined as anticlines or
walls, respectively. In contrast, rather isotropic geometries with a length-to-width ratio smaller than 2 are the pillows, stocks
and, at least in their early evolutionary stages, sheets. An additional aspect to consider when classifying salt structures is
whether the halite is allochthonous or autochthonous. Sheets are the only structural type categorizable as the former: If the
bulb of a stock or wall is subhorizontally oriented or moderately dipping above the autochthonous salt source layer, this rock
body can be defined as a salt sheet (Hudec and Jackson, 2006). Crystalline rocks considered in the context of the German
site selection are plutonic rocks as well as high-grade metamorphic rocks (migmatites and gneisses). As the high-grade met-
amorphic rocks originate from a wide array of protoliths, resulting in diverse geometries, the establishment of a single, co-
herent classification for both groups is difficult. For instance, orthogneisses and some migmatites originate from plutonic
protoliths such as granitoids and exhibit structural characteristics similar to their igneous predecessors. By contrast, parag-
neisses and the remaining migmatites derive from various sedimentary sources. Their current shape depends not only on the
geometry of the original rock body but also on the specific deformation history experienced during metamorphism. Overall,
most high-grade metamorphic rock bodies in the German subsurface are laterally bounded by either plutonic intrusions or
fault zones and their top is either bound by unconformities or represents the present-day topography in most cases. Conse-
quently, for the purposes of our geometric approximation, we treat them as discordant rock volumes of varying shape and
size (see Fig. 1, lower section and Fig. 2, 2", 6™ and 8% to 9" row). For plutonic rocks, our classification combines the shape
of the bodies with their relationship to the overlying strata (concordance or discordance) (Philpotts & Ague, 2009; see Fig. 1,
lower section). Among discordant bodies with varying shape, two size-based categories are distinguished (Fig. 2, 2", 6'" and
8™ to 9™ row): batholiths (exceeding 100 km? in areal extent) and stocks (smaller than 100 km?). Additionally, cylindrical
discordant bodies, mainly representing feeder pipes for ascending magma, are recognized (Fig 2, 10" row). Moreover, two
kinds of tabular geometries can be distinguished: discordant dikes and predominantly concordant sills (Fig. 2, 3" and 8"
row). Beyond these, three concordant geometries are noted: laccoliths (characterized by a roughly flat base and a convex
roof), lopoliths (defined by a roughly flat top and a shallow convex base), and phacoliths (lens-shaped bodies lacking any

flat boundaries; Fig. 2, 5" row).
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Building on these classifications, a collection of geometrical end members (standard geometries) that approximate the shape
variations of the rock types was set up by Carl et al. (2023). The geometries are intended to act as open source benchmark
models for structural geomodeling, as realistic geological models depend on a clear definition of the rock type and the 3D
geometries of evaluated rocks. In its initial form, each of the geometrical end members per potential host rock type was rep-
resented by a single version of a 3D body. However, as a large share of these initial end members can be represented by a
multitude of possible regular geometrical representations, we designed alternative realizations after reviewing literature:
Subsurface salt structures have been created after Hudec & Jackson (2007), Hudec et al. (2011) and Jackson & Talbot
(1991), claystone geometries have been inspired by Selley (2000) and Nichols (2009), and crystalline rock geometries are
based on Markl (2015) and Winter (2013). Additional inspiration was drawn from studying open source 3D models of real
subsurface structures (Dutch subsurface models from TNO, available at https://www.dinoloket.nl/en/subsurface-
models/map, and Australian subsurface models from Geoscience Australia, available at https://portal.ga.gov.au/3d). The
standard geometries were created in blender (https://www.blender.org/) and are visible in Fig. 2. Some standard geometries
are non-unique for rock types but can be used in different environments, e.g. stocks/batholiths for salt and crystalline intru-
sions. This is indicated in the model titles, as in these cases, the names of different structures are separated by an underscore.
Blanks in model names are replaced with a period, and in brackets, additional geometrical information are given in some

cases, such as the lateral character of the top of a structure (e.g. hourglass-shape) or the roundness of the top surface (round-

ed or flattened).
[conformable geometries | [unconformable geometries |
I
[ [ \ | | [ \ |
[flat layer | [ tilted | [pinchout] [folded]  [folded] [eroded | [pinchout [ faulted |
I
[concordant geometries |
[
[ [ [ | [
[flat layer] [ roller | [ anticline | [pillow ]|  [stock |

crystalline rocks
[
| high-grade metamorphic rocks | plutonic rocks

[ |
[discordant geometries | [concordant geometries]|

varying shape [lensoid bodies | [flat/convex bodies |
[ stock | [ batholith | [1accolith | [lopolith |

Fig. 1: Geometrical systematization of the rock types considered for the establishment of the catalogue of benchmark models

("standard geometries'). Adapted after Carl et al. (2023)
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The size of the models was chosen arbitrarily

sent geometrical end members of different rock types (“standard geometries”).
For information on the naming convention, please refer to the end of Sect. 1.1.
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1.2 Geological description of the example model “Altenbruch-Beverstedt”

The methodology presented herein is illustrated exemplarily on the mesh of the intrusive salt structure Altenbruch-
Beverstedt (Lower Saxony, Germany; see Fig. 3). Tectonically, it is located within the roughly N-S striking Gliickstadt Gra-
ben, developing since the Triassic (Scheck-Wenderoth et al., 2008). The considerably anisotropic salt wall is the result of a
complex evolutionary history especially throughout the Mesozoic, as variations in the tectonic regime repeatedly led to shifts
from subsidence to uplift in the sub-basins and grabens of the North German Basin (Maystrenko et al., 2008; Scheck-
Wenderoth et al., 2008; Stollhofen et al., 2008). Within the Gliickstadt Graben, the largest salt walls of the German subsur-
face can be found (Scheck-Wenderoth et al., 2008). The structure Altenbruch-Beverstedt represents a fitting example model
for the methodology presented herein, due to its anisotropic, yet complex shape. The anisotropy visualizes well the cross
sections created in the first part of the segmentation approach, while the sinusoidal shape illustrates well the segmented na-

ture of the second set of sections (see Sect. 2.1).
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Fig. 3: 3D model of Altenbruch-Beverstedt, taken from BGR et al. (2022). Coordinate system: EPSG:4647
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1.3 Content, motivation and distinction of this study

The proposed methodology allows for the quantitative description, comparison and systematization of explicitly modelled
structures and lower dimensional input data using a set of geometrical parameters. The horizontal and vertical dimensions as
well as gradients and curvatures of 3D geometries are measured on vertical cross sections oriented perpendicular to the two
horizontal main axes of the structures. For 2D inputs (such as 2D geophysical cross sections), alignment of sections is omit-
ted. The resulting datasets are analyzed statistically, providing insight into the main geometrical characteristics of the input
structures: the data analysis yields information about the anisotropy of structures, the potential existence of overhangs, the
sphericity and the character of the lateral walls as well as top surface of evaluated structures. Furthermore, K-means cluster-
ing is used to systematize the datasets based on the measured parameters. Given 3D input, the setup of cross sections per-
pendicular to the main axes ensures, that the input structures are covered thoroughly with regular-spaced measurements that
follow the 3D contours of the respective geometry. The method is applied to the standard geometries serving as benchmark
geometries for structural modeling of geo-bodies. Applying the method to these models serves two purposes: While the func-
tionality of the approach is validated, we also assess quantitatively, whether the developed benchmark models are geometri-
cally dissimilar or whether some of them can be consolidated for their purpose. Our quantification method represents a rather
simplistic approximation approach for the quantitative comparison of 3D structures and lower dimensional datasets that can
reproduce the main geometrical characteristics of input datasets fast but also enhances the interpretability of results, making
them accessible to a broader audience. Our method cannot be used to quantitatively compare implicit representations of
structures directly from a scalar field, though.

As recognized in Sect. 1.1, similar approaches are rare in general and particularly in geosciences as quantitative approaches
commonly aim at uncertainty assessment. In computer sciences, however, Celenk (1995) describes a method involving the
alignment of equally-spaced cross sections in two objects via the computation of their respective horizontal main axes and
subsequent section comparison. However, this method is more approximating compared to the proposed approach, as sec-
tions are not segmented to align with the contours of the structures.

The proposed method is intended to be utilized in a geomodeling workflow at different stages. 1) Given a sparse dataset
including for instance borehole data and 2D seismics of limited quantity, the method can be initially used for a first structural
approximation of a targeted geo-body. In the specific example of the German site selection, where most structurally complex
bodies have already been excluded from the considerations (BGE, 2020), this approximation can be achieved using the set of
standard geometries that is established in this study. 2) Structural conceptualization and model approximation can also facili-
tate hyper parameter selection for subsequent interpolation (Wellmann and Caumon, 2018). 3) After the creation of a set of
stochastic model realizations, our quantification method and the benchmark models can be applied again in combination
with the input data to limit the realizations to the geometrically reasonable ones. However, it has to be noted that this step
would be rather time-consuming for large amounts of realizations. Here, the framework for automatic consistency checking

of 3D geological models recently introduced by Parquer et al. (2025) represents a more sophisticated approach. Still, the
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proposed framework could reveal model realizations not respecting the conceptual model, which could prompt questions
about the assumed geological situation and/or subjective bias, as studied for instance by Bond et al. (2007, 2015). 4) Lastly,
the proposed framework can be used for the direction-dependent quantification of modeled structures to assess their potential
capacity for material storage (BGE, 2023).

The paper is structured as follows: Sect. 2 outlines the methodology employed in this study, detailing the developed segmen-
tation and measurement algorithm. Sect. 3 presents the results of applying the methodology to the benchmark models and a
single subsurface dataset, while Sect. 4 discusses the implications of these findings in the context of existing research. Final-

ly, Sect. 5 concludes with future research directions.

2 Methods
2.1 Segmentation and measurement algorithm

For our approach, we aimed at a high grade of automation and easy integration in a model analysis process. The method
requires the dataset to either be a mesh with extractable vertices or a data frame of vertex coordinates themselves (the system
currently only supports .vtk file formats). In what follows, the functionality of the method is explained given a 3D input
mesh, but skipping the cross-section generation, the algorithm is also usable for existing cross-sectional data (e.g. geophysi-
cal data).

To retrieve characteristic statistics, a geometrical segmentation algorithm (see e.g. Shamir, 2008) has been established,
which first discretizes the 3D model into 22 equidistant cross sections with the normal direction parallel to the longer hori-
zontal axis of the mesh’s bounding box. As measurements are conducted perpendicular to the two horizontal main axes of
the structures, two sets of cross sections need to be determined separately. Orientation of sections normal to the longitudinal
axis of the structure (first direction) have been determined by a minimization of the cross-sectional area, as sections are se-
quentially rotated (Stephenson, 2018; Fig. 4, Part 1). The cross sections normal to the first set are set up by discretizing the
established sections vertically, then first connecting raster lines of consecutive sections and lastly the resulting segments
(Fig. 4, Part 3). After their respective setup, the cross sections of both directions are corrected automatically and/or manually
for artifacts (Fig. 4, Part 2). Extensional measurements are conducted on each cross section at 5 equidistant transects (Fig. 4,
Part 4). Since the very first and last cross section of both directions are excluded from the measurements as they would (un-
desirably) slice irregular polygons several times, 20 intervals are considered for every input structure. This results in 100
measurements being conducted respectively for each of the two horizontal parameters as well as 200 values for the vertical
extent. Please note, that the assumption that a cross section of the first set is perpendicular to the longitudinal horizontal main
axis only applies to the center point of the given section. The same limitation applies to a given cross sectional segment
(trapezoidal segment) of an orthogonal section and the secondary horizontal main axis.

In addition to the extensional measurements, gradient and curvature calculations are carried out (see Fig. 4, Part 4). Both

parameters are determined on all cross sections between consecutive vertices of a cross section. The curvature in 2D is de-
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fined as the reciprocal of the circumradius of a triangle. Therefore, it is calculated between three consecutive vertices in
either the xz- or yz-plane, by first determining the side lengths (a, b and c) of the triangle between the points, then the semi-
perimeter of the triangle and the area through Heron’s formula, before calculating the curvature as the reciprocal of the cir-

cumradius of the triangle through:

4 Xarea

curvature = ——— (D

The selected method measuring the lateral extents of input meshes normal to their horizontal main axes (see Fig. Ala in
appendix) is advantageous over approaches analyzing an input body using parallel sections as applied in various medical
imaging techniques like for instance MRI (see e.g. Meyer-Baese & Schmid, 2014). Such an approach would have resulted in
a dissimilar amount of output measurements for the two horizontal extents for many input structures as well as for different
structures overall, both in case of a uniform regular grid for all datasets (Fig. Alb&e) as well as an individual regular grid
per dataset (Fig. Alc&f). Only the usage of an anisotropic grid, depending on the bounds of the input mesh, would have
resulted in an equal amount of measurements per horizontal direction (Fig. Ald&g). However, using a supplementary grid
would have generally resulted in the problem, that irregular structures would have often been cut several times along a hori-
zontal measuring line. This would have created subordinate polygons that are completely disconnected from each other (see
red lines in Fig A1b).

In contrast, covering every input structure with a constant number of measurements as also applied similarly by Celenk
(1995) comes with an advantage and a disadvantage: while it ensures that the quantification of input datasets with our meth-
od is scale-independent as datasets of different structures have the same amount of data, the geometrical spatial variability of
larger bodies might not be captured equally well as the shape of smaller ones. The potential impact of this matter is currently
being analyzed in a follow-up study that applies the methodology to a database of over 300 structural models of subsurface
structures from various geological settings. The question whether structures shall be represented by equal or dissimilar data
quantities also concerns the gradient and curvature data: Orthogonal sections are created from a set of 19 trapezoidal seg-
ments (i.e. 40 vertices), while cross sections in the first direction are based on a varying, most often higher number of verti-
ces. As gradients and curvatures are being calculated between neighboring vertices, the potentially larger edges between
vertices in the orthogonal sections lead to a less-rounded appearance of the cross sections, directly affecting the values of

both parameters.
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1: Part 1:

2: Input: initial cross sections

3: Output: cross sections rotated perpendicular to longer horizantal main axis by minimization of cross section area
4: for each initial section do

5: for each of 38 rotation steps (0° to 180° in 5° increments) do

6: Compute rotation angle (theta)

7: Apply rotation matrix to original normal ([1,0,0] or [0,1,0]) to get rotated normal
8: end for

EH for each rotated normal do

10: Slice mesh using rotated normal and center point of section

11 Retrieve vertices from rotated slice

12: Project cross section into YZ plane to calculate area

13: Compute centroid of this projected section

14: Sort points by angle relative to centroid

15: Compute area of polygon using sorted points and shoelace formula
16: end for

17: end for

18:

19: Part 2:

20: Input: rotated cross sections
21: Output: rotated cross sections after artifact correction

22: Step 1:

23: for each rotated cross section do

24: set vertex with lowest z-value as vertex index=0

25: perform narmalized nearest neighbour algorithm

26: end for

27:

28: Step 2:

29: for each section after normalized nearest neighbour algorithm do
30: apply correction criterion

31: if correction criterion = True then

32: initialize manual vertex order correction in plotly.dash

33: for each section with artifacts do

34: correct vertex order by clicking on previous (correct) vertex then incorrect vertex
35: end for

36: end if

37: end for

38:

39: Part 3:

40: Input: corrected cross sections of 1st direction

41: Qutput: corrected cross sections of orthogonal direction
42: for each section of 1st direction do

43:  raster section vertically into 22 vertical lines

44:  for each vertical line do

45: retrieve X, Y and Zmin+Zmax - coordinates
46: end for

47: end for

48:

49: for 2 consecutive sections of 1st direction do
50:  for all vertical lines in both sections do

51: extract X, Y and Zmin+Zmax (=2 points per section)
52: combine 4 points into trapezoidal segment

53:  end for

54: end for

55:

56: for every index of vertical lines do
57: combine trapezoidal segments to assemble uncorrected orthogonal section
58: end for

60: for uncorrected cross sections of orthogonal direction
61: repeat Part 2

©63: Part 4:

: Input: all cross sections

65: Output: horizontal and vertical dimensional measurements

66: for each cross section of 1st direction except index 0 & 21 do

67: rotate & project section onto YZ plane

68: create 5 horizontal and vertical measurement transects

69: measure horizontal and vertical dimensions between intersections of transect and polygon
70: end for

-3
=

72: for each cross section of orthogonal direction except index 0 & 21 do

73: rescale sections (corresponds to rotation & projection onto YZ plane)

74: create 5 horizontal and vertical measurement transects

75: measure horizontal and vertical dimensions between intersections of transect and polygon
76: end for

78: for all cross sections do
79: compute gradients
B80: compute curvatures

260 81: end for

Fig. 4: Pseudocode of the algorithm that creates the cross sections of both directions and measures the dimensional extents, gradi-
ents and curvatures on these sections. For further information, see chapter 2
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2.2 Data analysis

The geometrical measurements were combined into a database, analyzed by the first three statistical moments, standard de-
viation and median and visualized as histograms and cumulative distribution functions (CDF’s). Comparative analyses of
data distributions and a cluster analysis were carried out on the measured data, to demonstrate that the tested 3D bodies can
be quantitatively compared based on the statistical distributions of geometrical properties and to assess their dis-/similarity.

Semi-quantitative comparison of histograms was done for the statistical data, analyzing the vertical extension measures,
combined horizontal extension measurements, the gradients and curvatures. For gradient data, the frequency of infinite val-
ues was counted separately, since they represent vertical segments between two consecutive vertices. As those values cannot
be plotted together with the remaining data as a separate bin, their frequency was visualized as a horizontal line. For gradi-
ents and curvatures, overflow bins were established: for the gradient data at the 5™ and 95" percentile and for the curvatures
only at the 95" percentile. This aimed at facilitating the interpretability of the histograms, since for most datasets, a small
percentage of values (<5%) was considerably larger than the rest, thereby spreading the measurements to a large number of
additional histogram bins. The Kullback—Leibler divergence (Kullback and Leibler, 1951) was calculated on normalized data
between the individual distributions of the geometrical parameters of the input models, for quantification of the similarity
between the structures. Cluster analysis followed data normalization to a range of -1 to 1 and principal component analysis
(PCA; see Jolliffe, 2002). As variables (“features”) for PCA, 20 percentiles of the probability density functions (PDF’s) of
the combined horizontal data, vertical data, gradients and curvatures were chosen. As the first two principle components only
explained 40% of the variance, a matrix plot for the principal components 1 to 12 was assessed initially, to cover 90% of the
variance. A feature angle matrix was then used to reduce the number of principal components in the cluster matrix plot. The

number of clusters used in the K-means clustering algorithm was determined using an elbow plot and the silhouette score.

3 Results

Results of the segmentation and measurement algorithm as well as the data analysis are demonstrated using a sphere and the
intrusive structure “Altenbruch-Beverstedt” (model taken from BGR et al.,2022). Subsequently, the results of the cluster

analysis are presented.

3.1 Segmentation and measurement algorithm

The initial subdivision of the input mesh (Fig. 5a & b) is followed by the stepwise rotation of the initial cross sections. The
respective rotation step showing the minimal cross-sectional area is optimally oriented normal to the longitudinal main axis
of the structure (first direction). Optimal orientation of all sections of the first direction of the sphere corresponds to 0° rota-
tion, unlike when running the algorithm on an irregular mesh like Altenbruch-Beverstedt. This is the case due to the regulari-
ty and symmetry of all test models of this study. After subsequent artifact correction (Fig. 5¢ & d), the second set of cross

sections is assembled from trapezoidal segments (for illustration, a subset of sections is shown in Fig. 5e & f).
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Fig. 5: Visual representation of the segmen-
tation and measurement algorithm for a
sphere model (left column) and the German
intrusive salt structure “Altenbruch -
Beverstedt” (right).
a & b) initial segmentation of the input
meshes.

¢ & d) Plotly.dash app for vertex-order
correction.

e & f) Subset of orthogonal cross sections.
g & h) Coverage of input structure with
Cross sections (top view)
i & j) Example of extensional measurement
results
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Following potential artifact corrections of the orthogonal sections, both sets of cross sections are finalized (Fig. 5g & h) and
extensional measurements as well as gradient and curvature calculations are carried out (Fig. 5i & j). The computational
power required by the algorithm is low (runtime without varying artifact corrections: ca 60 s, using as the CPU an AMD

Ryzen 7 PRO 5850U at max. 50% capacity at 3.5 GHz speed and the integrated GPU at 0.6 GB usage).

3.2 Data analysis

The results of the first analysis step, the first three statistical moments, standard deviation and median per parameter and the
data visualized as histograms and CDF’s, are seen in Table 1 and Fig. 6, respectively. The size of the sphere was chosen
arbitrarily, as the subsequent Kullback-Leibler divergence and cluster analysis are based on normalized data. Both the statis-
tical moments for the sphere and the distributions in Fig. 6 (left column) reveal differences for the three parameters, although
individual extents should be the same in all three dimensions, if a sphere would be measured equally in all directions. This is
due to compromises of the algorithm ensuring its universal applicability. For Altenbruch-Beverstedt, the large variance and
standard deviation of the combined horizontal data and the difference between the mean values of both individual horizontal
parameters reflect the strong anisotropy of the structure, while the statistics for the vertical data indicate a moderate variation
in vertical measurements.

Table 1: a) First three statistical moments, standard deviation and median per parameter for the sphere model (note: the dimen-
sions of the sphere are chosen arbitrarily). b) First three statistical moments, standard deviation and median per parameter for the
model of the real subsurface structure (Altenbruch-Beverstedt). Statistics for Altenbruch-Beverstedt reflect the strong anisotropy
of the structure

(a) sphere mean [m] variance [m] std_dev [m] skew  median [m]
Horizontal length 14 13 4 -0.4 14
Horizontal length 18 4 2 0 18
orthogonal

Vertical length 14 13 4 -0.5 15
Horizontal data combined 16 13 4 -0.8 17

(b) Altenbruch-Beverstedt mean [m] variance [m] std_dev [m] skew  median [m]
Horizontal length 3825 635352 797 -0.2 3795
Horizontal length 48644 8956682 2993 2.2 49845
orthogonal

Vertical length 4766 486158 697 -2.9 4856
Horizontal data combined 26235 5.07E+08 22516 0.02 21696

Gradient and curvature histograms of the example cases are visible in Fig. 7. For the sphere, the distribution of the gradient
histogram is symmetric (Fig. 7a). The curvature histogram (Fig. 7c) shows a prevalence of very small values and subordinate

maxima around 0.1, 0.2 and in the overflow bin that contains 394 values (5% of all data) above 0.37. For Altenbruch-
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Beverstedt, the gradient distribution is asymmetric and the number of infinite gradients is higher (Fig. 7b). In comparison to
the curvature distribution of the sphere, the curvature data (Fig. 7d) is monomodal apart from the overflow bin.

In general, analyzing the data distributions of a structure visually already reproduces distinct geometrical characteristics of
an input dataset. The distribution of the combined horizontal data indicates whether a pronounced anisotropy is present for
an analyzed structure: if the data is separated into two clearly distinguishable subordinate distributions (see Fig. 8a), the
geometry is considerably anisotropic (the farther apart the two maxima, the more anisotropic a body is). Caution is advised
for a distribution with two close maxima (Fig. 8b): this could be the consequence of the inflated extent in the orthogonal
direction (see Sect. 4.2). Analyzing the combined horizontal data and the vertical data together reveals whether a structure
shows substantial variations in its horizontal extent over its vertical range. Such a shape, in the subsurface more often present
as overhangs rather than as upward tapering, is indicated by the simultaneous presence of multimodal distributions for both
parameters (Fig. 8¢ & d). The vertical data distribution also characterizes the top surface of a geometry: if the distribution is
monomodal, with a) the maximum being the bin representing the highest measurements, and b) the frequency in lower bins
being substantially smaller, then the presence of a flat top surface is indicated. The existence of a flat top surface can be
verified by analyzing the gradient and curvature data: a high frequency of very small measurements for both parameters
supports such an analysis (Fig. 8e-g). Gradient data also indicates the steepness of lateral surfaces of a body: as high and
infinite gradient data stem from steep to vertical faces of a structure, the presence of steep-dipping lateral surfaces can be
recognized (Fig. 8h). Combining the inferences from analyzing top and lateral surfaces therefore provides insight into the
overall sphericity of an input dataset: a more spherical structure is represented by larger quantities of intermediate gradient

measurements and of moderate to high curvature data (Fig. 8i & j).
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Fig. 6: Data distributions
and cumulative distribu-
tion functions (CDF’s) for
the extensional parame-
ters. Left column: sphere,
right column: Al-
tenbruch-Beverstedt.

a & b) Horizontal data
from the first direction.
¢ & d) Horizontal data
from the orthogonal
direction.

e & f) Combined horizon-
tal data.
¢ & h) Vertical data
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Fig. 7: Gradient and curvature data for the sphere (a & c) and Altenbruch-Beverstedt (b & d). Amount of data in overflow bins:
340 Gradient diagram (sphere) 384 values (4.8% of all data), Curvature diagram (sphere) 394 values (5%); Gradient diagram (Al-
tenbruch-Beverstedt) 112 values (4.6%); Curvature diagram 101 values (4.1%)
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Fig. 8: Analysis of data distributions to re-
produce geometric characteristics of input
models. Please compare with model appear-
ances in Fig. 2.
a) Combined horizontal data of
“wall(highly.anisotropic_hourglass-
shape_rounded)”, reflecting strong anisotro-
py.

b) Combined horizontal data of “batho-
lithV3” incorrectly indicating slight anisot-

ropy.
¢) & d) Combined horizontal data and verti-
cal data of “sheet(hourglass-
shape_rounded)” indicating presence of
overhangs.

e)-g) Vertical data, gradients and curvatures
of “batholithV5”, revealing the presence of a
flat top surface
h) Gradient data of “volcanic.pipe”, reflect-
ing the prominence of vertical lateral walls
i) & j) Gradient and curvature data of “pil-
low(rounded) batholithV4” showing the
spherical character of the input model
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The Kullback-Leibler (KL-)divergence (Kullback and Leibler, 1951) was calculated to quantitatively determine the similari-
ty between the tested geometries. The distributions of the six parameters (the individual horizontal extents along both hori-
zontal main axes, the combined horizontal data, the vertical data, gradients and curvatures) were compared between the
models. The similarity of two distributions is larger, the smaller the KL divergence is, with a value of 0 indicating equality of
the distributions (obtained for instance when comparing a structure with itself). The result of the calculation of the individual
KL divergences for the example cases is visualized in Fig. 9. For the sphere, the most similar models regarding the respec-
tive distributions of the six parameters are the “sheet(cylindric_rounded)” for the horizontal data of the first direction, the
“prism” for the orthogonal horizontal data, the “batholithV3” for the combined horizontal data, the “anti-
cline wall(rounded) batholithV1” for the vertical data, the “phacolith” model for the gradients and the “ellipsoid” for the
curvatures (compare Fig. 2 for the model appearances). For Altenbruch-Beverstedt, “batholithV6” is most similar regarding
the horizontal data of the first direction, “roller” for the orthogonal horizontal data, “wall(highly.anisotropic_hourglass-
shape_flattened)” for the combined horizontal data, “wall(highly.anisotropic_hourglass-shape rounded)” for the vertical
data, “pillow_flattened” for the gradients and “roller” for the curvatures. In addition to KL divergences of individual parame-
ters, an averaged KL divergence was calculated: by taking the mean of the values between two models, the overall dis-
/similarity between models was assessed. According to the averaged KL divergence, the sphere is closest to the standard
geometry  “pillow(rounded) batholithV4”,  while  Altenbruch-Beverstedt is  best approximated by the
“wall(highly.anisotropic_hourglass-shape rounded)”. However, informational content of this parameter is limited, as there is
no indication regarding which parameters two compared structures are most similar or differ more. Therefore, principal
component analysis and K-means clustering have been employed as well, providing this information based on all combined
parameters.

In general, values of KL divergence show an error for the gradient distributions: infinite values had to be converted to the
highest finite gradient value of a given dataset to enable the computation, inflating the highest bin. Furthermore, the large
variance of curvature data for most input models (see for example Fig. 9f & 1 and Sect. 4.2) decreases the applicability of the
KL divergence for that parameter, as most models show very similar normalized distributions. To assess the impact of the
large variance on individual KL divergences of curvature data and smallest averaged KL divergences, they were also calcu-
lated using a 95 percentile overflow bin (see Table 2). Smallest KL divergences for the curvatures of the two example mod-
els are notably higher, especially for the sphere, reflecting the dissimilarity of data distributions when applying the filter

(column 1 & 2). The impact on the smallest averaged KL divergence (column 3 & 4) is smaller, yet still considerable.

19



Table 2: Comparison of KL divergences with and without the usage of a 95™ percentile overflow bin for the curvature distribu-

tions.

structure smallest KL. smallest KL. divergence smallest averaged KL. smallest averaged
divergence for curvature with over- divergence for all KL divergence for
for  curva- flow bin properties without all properties with
ture without overflow in curvature overflow in curva-
overflow bin ture

sphere 0.0054 0.16 0.45 (“pil-  0.56 (“batho-
(“ellipsoid”) (“wall(highly.anisotropic ~ low(rounded) batholith 1ithV3”)

_cylindric_rounded)”) v4”)
Altenbruch- 0.036 (’roll- 0.05 (“batholithV5”) 1.2 1.3
Beverstedt er” (“wall(highly.anisotrop  (“wall(highly.anisot

ic_hourglass-
shape rounded)”)

ropic_hourglass-
shape rounded)”)
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380 Fig. 9: Visualized Kullback-Leibler divergences. a)-f): sphere, g)-1): Altenbruch-Beverstedt. Visualized is the most similar data
distribution (orange) compared to the respective distribution of the two example models (blue). The calculated Kullback-Leibler
divergences are noted in the headlines of individual figures

3.3 Cluster analysis

385 Cluster analysis on all measured data of the regular geometries resulted in 7 clusters considering the combined analysis of
the elbow plot and silhouette score (Fig. 10b). With the first two principle components (PC’s) only explaining 40% of the
variance (see Fig. 10a), the number of PC’s necessary to cover more than 90% of the variance was determined to be 12. A
feature angle matrix (Fig. A2) was computed to check the dependencies between the percentiles of the PDF’s. As a strong
dependency was identified within several groups of features, the principal component matrix plot (Fig. 11) was limited to the

390 first six PC’s. The feature contribution matrix (Fig. 10c) reveals the contribution (“loadings”) of the binned PDF’s to the

principal components, with bright yellowish colors indicating a strong positive contribution and dark blue colors a substan-
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tial negative contribution. In the contribution matrix, percentiles 0 to 19 represent the PDF of the combined horizontal data,
followed by the vertical data (20 to 39), gradients (40 to 59) and curvatures (60 to 79).

The PC1 vs. PC2 cluster plot is visible in Fig. 11a. Positive contributions to PC1 are dominated by the 50 to 55% bins of the
vertical data and gradient data, while there is no percentile with a strong negative contribution to PC1. This effectively sepa-
rates the bluish-green cluster at high positive PC1 scores from the rest of the data. All four models (“flat.layer”, “sill”, “cu-
be” and “prism”), share a distinct geometrical similarity: When segmenting them with our algorithm, cross sections are al-
ways flat at the top and of exactly the same vertical extent throughout the entire structure. This results in a step-wise appear-
ance of the respective PDF s, with the step being in the middle of the functions. For PC2, the 45 to 50% gradient bin has the
highest positive loading, while there are stronger negative loadings for the 0 to 5% as well as 95 to 100% gradient bins. This
separates the models of the black cluster at highest positive PC2 scores and mainly the blue cluster at high negative PC2
scores. Therefore, models of the black cluster are characterized by the presence of many low to moderately inclined surfaces
in a geometry (depending on the variance in a data distribution) and an overall more rounded appearance (see e.g. the high-
lighted black example model “pillow(rounded) batholithV4” in Fig. 11a). Meanwhile, the blue models and other models at
high negative PC2 scores are characterized by the abundance of steep-dipping to vertical surfaces. Thus, PC2 is an indicator
for the overall steepness of the lateral parts of a structure or, on the other hand, its sphericity.

The PC3 vs. PC4 cluster plot is shown in Fig. 11b. For PC3, large positive contributions are spread among the 0 to 5% and
95 to 100% horizontal bins as well as the 95 to 100% vertical bin and the 0 to 5% and 45 to 50% gradient bins, while the
only considerable negative loading is exhibited by the 10 to 15% gradient bin. Datasets at very positive PC3 scores belong to
the vermilion and blue clusters. The largest negative PC3 scores are seen for the reddish-purple cluster. Very positive PC3
scores indicate anisotropy, rather flat top surfaces and steep-dipping to vertical lateral walls (see e.g. the highlighted vermil-
ion “dyke”). In contrast, however, datasets at largest negative PC3 scores, cannot be linked to very high data percentages in
that 10 to 15% gradient bin; its loading (-0.27) not being the main cause of the observed negative PC3 scores. PC4 shows
considerable positive loadings for the 50 to 55% bin of the vertical data and the 0 to 5% and 95 to 100% gradient bins.
Meanwhile, large negative loadings are seen for the 0 to 5% and 95 to 100% horizontal bins, the 95 to 100% vertical bin and
the 80 to 85% gradient bin. These contributions mainly drive the differentiation of the reddish-purple and vermilion clusters
(negative PC4 scores) from the other clusters apart from some sky-blue models. Since the horizontal and vertical bins con-
tributing very negatively are the same horizontal and vertical bins contributing particularly positively to PC3, it can be de-
duced that the overall position of the vermilion models in the PC3 vs. PC4 diagram is more driven by these horizontal and
vertical bins. Meanwhile, the datasets from the reddish-purple and sky-blue models are comparatively influenced more by
the 80 to 85% gradient bin also showing a considerable negative loading. Still, most datasets from these clusters at negative
PC4 scores can be considered as rather anisotropic geometries with mainly steeper (but not vertical) lateral walls, while
models at higher positive PC4 scores exhibit uniform vertical extents and steep-dipping to vertical lateral walls. This ex-
plains the position of the isolated blue model at highest positive PC4 scores (“volcanic.pipe”; highlighted in Fig. 11b; see

also Fig. 8h for the gradient distribution), completing the separation of the blue cluster from the rest of the data.
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The cluster plot of PC5 vs. PC6 can be seen in Fig. 11c. PC5 shows strong positive contributions for the 0 to 5% vertical bin
and the 50 to 55% and 95 to 100% gradient bins, while stronger negative loadings are given by the 50 to 55% vertical bin
and the 0 to 5% gradient bin. This separates the majority of the sky-blue cluster (highest positive PC5 scores) from the rest
of the datasets. As this corresponds to the first appearance of the 0 to 5% vertical bin among considerable contributing bins,
most of the associated models are characterized by widespread low vertical extents and few much larger ones, as seen in
overhang configurations (for example, see the model “laccolith” in Fig. 2). PC6 is mainly influenced by the gradient data,
where the 10 to 15% bin contributes the most negatively and the 80 to 85% bin contributes positively. Once again (as for
PC3), the 10 to 15% gradient bin, however, does not seem to be the main reason for the separation of the reddish-purple
cluster at very negative PC6 scores. Similarly, the sky-blue models at higher positive PC6 scores do not exhibit particularly

large high percentages in the respective bin.
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Fig. 10: Calculated supplementary information for the setup and interpretation of the cluster analysis after principal component
analysis. a) Cumulative scree plot, showing the explained variance with increasing number of principal components. b) Elbow plot
and silhouette score to determine number of clusters. ¢) Contribution matrix showing the contribution of the input data (percen-
tiles of the probability density functions of measured parameters) to the principal components
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Fig. 11: Matrix plot of principal components (PC’s) explaining 70% of the variance in the data (see also Fig. 10a). Larger stars
mark example models for clusters (see legend)

The overall cluster results validate that the flat and/or cuboidal geometries (vertical extent < horizontal extent and/or exclu-
sively straight lateral surfaces) mostly differ considerably from the other structures designed to represent intrusive subsur-
face bodies: the flat/cuboidal geometries are mainly distributed among the bluish-green, blue and vermilion clusters (see Fig.
11). As recognized above, these three clusters can be differentiated from the other models within the first four PC’s. Only the
“laterally.eroded.layer pinchout)” is located outside, in the sky-blue cluster, although representing a flat geometry. The K-
means cluster analysis furthermore indicates that some standard geometries are similar across all parameters. Therefore, it
was assessed whether certain standard geometries are redundant to simplify the benchmark selection process. The pairs of
flattened and rounded versions show high similarities, leading to the exclusion of the flattened models while retaining the
"uneroded" structures. The models "batholithV3" and "pillow(rounded) batholithV4" cluster closely, differing only in verti-
cal elongation; thus, "batholithV3" is excluded. Although similarities exist between models with varying lateral characteris-
tics, both "cylindric" and "hourglass" shape variations are retained. This also applies to various "sheets" and the "anti-
cline_wall(hourglass-shape rounded)”, which exhibit similar PC scores in some, but not all cluster plots. Lastly, some of the
flat and cuboidal bodies in the bluish-green cluster ("flat.layer", "sill" and "cube") are nearly identical in position. The "cube"
is excluded from the benchmark collection, while the other two geometries are merged, keeping the shape of the "sill”.

Given these exclusions based on structural similarity, the collection is condensed from 36 to 25 standard geometries (see Fig.
12). Decreasing the database by validating the bodies’ geometrical dissimilarity facilitates the decision making on the best
suitable benchmark for a case study. Despite our reduction efforts, this list is not expected to be exhaustive: we would like to
encourage users to suggest additional geometries based on their expertise and/or literature, to ensure that suitable benchmark

models are available for as many geomodeling applications as possible.
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Fig. 12: Condensed collection of standard geometries after application of the quantification method.

4 Discussion

By applying a set of defined geometrical descriptors to systematically generated 3D benchmark models, this study establish-
470 es a framework for the quantitative comparison of shape properties. The analysis highlights how key attributes such as ani-
sotropy, surface morphology, and sphericity vary across models, offering a structured perspective on their geometric dis-
/similarities. These outcomes prompt a deeper discussion of how well the proposed descriptors capture meaningful shape

differences and how this quantitative framework advances the analysis of unmodeled data and 3D geological structures.
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4.1 Comparison of existing methods for 3D shape characterization with the proposed workflow

The workflow of this study differs considerably - both in the scale of the test subjects as well as the purpose of the methods -
from the quantitative comparative approaches used in material sciences (Sect. 1.1). The material-scientific studies mainly
operate on millimeter- to centimeter-scales and have a higher emphasis on parameters exploring the sphericity/angularity (or
similar metrics) of objects, as these characteristics are fundamental in this field, where properties and applicability of com-
posite building materials heavily depend on mechanical interactions between individual particles (Kakani and Kakani, 2004).
Meanwhile, the proposed approach aims at characterizing 3D structures and 2D sections at the meter- to kilometer-scale
(although the applicability is scale-independent in theory), through direction-dependent measurements of geometrical pa-
rameters, thereby providing datasets suited for quantitative comparison.

Studies presenting approaches that show similarities to ours are Celenk (1995), Schweizer et al. (2017) and Lindsay et al.
(2013). Celenk (1995) determines the horizontal main axes of equally-spaced cross sections as well, but does so to align
sections of two different objects. Comparison is then achieved by computing the averaged shape difference of sections be-
tween the objects in four directions along the main axes. Key differences of our approach therefore involve the segmented
assemblage of cross sections in the orthogonal direction (following the respective segmented horizontal main axis) and the
exact measurement of the dimensional extents on the sections. Hence, our method opts for the determination of larger da-
tasets of absolute measurements on a single object, that are compared to other bodies in subsequent steps. Meanwhile,
Celenk (1995) computes the relative measure that is the averaged shape difference, representing a faster, but more approxi-
mate approach of object comparison, as the author does not segment the horizontal main axis along the larger extent.
Schweizer et al. (2017) do not try to compare the dimensions of individual 3D structures, but use the Jaccard distance and
the normalized city-block distance as measures for model dissimilarity instead. The two parameters are being applied as
measures for the similarity in position of certain geological units between two model realizations of the same study site. In a
similar fashion, the Hausdorff distance has been used before (see e.g. Suzuki et al., 2008). These dissimilarity distances were
not applied in our study, as they could only act as size indicators rather than shape descriptors and would not give any indi-
cation on where two structures differ spatially. Meanwhile, our approach provides insight into both shape and size differ-
ences of objects, which is crucial for geological modeling. Lindsay et al. (2013) explore geometric uncertainty across multi-
ple realizations of a study site, evaluating parameters like depth, volume, and curvature, which parallel those in our study.
However, their parameters are often tied to stratigraphic units and may not apply directly to individual 3D structures. Both
studies utilize PCA to analyze geometric variability and model differences, although executed differently.

Despite these existing methodologies, we opted for a straightforward approach, allowing us to efficiently replicate the main
geometric characteristics of input datasets. Our algorithm is computationally efficient, easily interpretable with basic geolog-

ical knowledge, and accessible to a non-specialist audience.
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4.2 Assumptions and compromises of the algorithm ensuring its universal applicability

Despite the strengths of our methodology, certain limitations must be acknowledged. The reliance on discrete differential
geometries (Bobenko et al., 2008) means that the input dataset must represent a single, compact, and topologically connected
structure (Thiele et al., 2016a). For objects separating from one to the next cross section into multiple strands, split algo-
rithms are available. However, this comes at the cost of interpretability of the statistics of geometric properties. Moreover,
the method functions optimally for convex hulls (Rockafellar, 1970), although a follow-up study will show, that the full
geometric diversity of intrusive salt structures and crystalline bodies from the German subsurface can be quantitatively com-
pared without major limitations. These assumptions should be considered when interpreting results in other domains.

The focus of this study was to establish a generalized algorithm to quantitatively describe the shape of objects and to infer
dis-/similarity between geometries. Given the wide range of potential and available models, the algorithm requires some
trade-offs to be universally applicable. Discussion of the data distributions for the geometrical parameters (see Fig. 6) focus-
es on the results from measuring the sphere, representing a comprehensible case with distinct expected data distributions:
The nature of a sphere is a similar shape of any section through the center, eventually resulting in a normal distribution of the
levelled distance measurements in both horizontal and vertical directions. This expected distribution is not produced in our
case due to the generation approach of the orthogonal cross sections: The assembled sections follow the contour of the struc-
ture (see Fig. 5g & h), which results in larger measurements for the orthogonal horizontal data and a slightly tailed distribu-
tion of the combined horizontal data, similar to an ellipsoid with a low contrast in the main axes. As this situation is rarely
seen in geological modeling, the impact is small since anisotropic geometries are measured accurately with our segmentation
algorithm. The gradient and curvature data reflect the effects of our approach as well: While the gradient diagram of the
sphere shows a symmetric distribution as expected, the relative elongation of the orthogonal sections increases the frequency
of lower gradient measurements. Due to this accumulating effect, the presence of low-dipping surfaces of a structure is over-
estimated by the data. Furthermore, the exclusion of marginal cross sections leads to vertical clipping that introduces infinite
gradient measurements (representing two consecutive vertices being exactly vertical) that would not exist when measuring
the sections in a rounded, unclipped state. The curvature data is influenced by this clipping as well, that results in few large
values where the three consecutive vertices form a large angle. These measurements increase the variance of curvature data
considerably, with the majority of data for most datasets being located within the 0 to 5% and 5 to 10% bins.

However, the discriminability of the standard geometries and basic 3D objects in the cluster analysis is ensured despite these
compromises made in the methodology: structures of varying anisotropy plot in different parts of cluster diagrams showing
contribution of the combined horizontal data, as the highest contribution of horizontal data comes from the first and last
distribution bins (see Fig. 10c). Similarly, as vertical and gradient data distributions of flattened geometries show the dis-
cussed characteristic properties, they differ in their PC scores from their rounded counterparts. Furthermore, the discussed
increased frequency of gradient measurements around 0 does not change cluster patterns as it applies to all datasets. The

same is true for the artifact-influenced curvature data and its impact on the general clustering of similar structures. Still, its
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squeezed nature shows an effect on the overall clustering results, as the curvature data does not show any considerable con-

tribution in PC dimensions.

4.3 Intended direct application and potential further usage of the quantification method and the standard geometries

The methodology will be a part of a larger framework to model and compare geological structures based on sparse data in
the context of the German site selection. For most regions of interest for nuclear waste disposal, seismic 2D data are availa-
ble frequently with a few boreholes. This is similar to the cross sections established through the benchmark models here,
allowing for a fast model selection based on the geometrical properties and potentially further constraining hyper parameter
selection for interpolation. However, for the integration of unmodeled sparse input data in the initial conceptualization of
geological models, some adoptions of the workflow are needed. Obviously, the creation of segmented sections is omitted as
the starting point are cross sections, which can be analyzed as described. The number of geometrical data is restricted by the
number of available cross sections, thus a comparison will be conducted on a less complete statistical basis. Consequently, a
user likely has to solely rely on the Kullback-Leibler divergence and cluster analysis to assess the reasonableness of various
shapes. In case these analyses do not limit the range of standard geometries sufficiently, additional experience-based bench-
marks could be created and clustered among the available models to test whether a closer fit applies. Here, more complex
structural configurations could easily be approached by superposition of basic benchmarks. Thus, the choice of the concep-
tual model is based on the quantification and does not rely on the expert knowledge only. After interpolation resulted in a
series of stochastic prior realizations, the method will be used for falsification by data (e.g. boreholes). Furthermore, the
application of the framework to purely quantify the shape of a modeled 3D body can be very useful in the context of the site
selection. Here, the comparative parts of our proposed analysis (i.e. Kullback-Leibler divergence and cluster analysis) might
be of little value and thus be omitted. Additionally, applying our methodology also supports testing for the minimum amount
of data necessary for geological modeling, as different data densities and configurations can be inserted into the algorithm.
The open-access collection of benchmarks for geomodeling is also a convenient tool to visualize the range of three-
dimensional geometries of the different rock types to a broader audience, which aids in the communication of uncertainties

and decisions for geoscientists and stakeholders in various settings (see Zehner, 2021).

5 Conclusion

In our publication, we presented a methodology to quantitatively describe, compare and systematize 2D and 3D datasets, and
proposed a set of regular standard geometries as benchmark models in geomodeling approaches. Demonstrating the quantifi-
cation method on the 3D standard geometries, their geometrical dis-/similarity is assessed. The combined evaluation of data
distributions and a cluster analysis reproduces the main geometrical characteristics of input meshes and visualizes differ-

ences between various datasets. While distributions of combined horizontal extensional measurements provide insight into
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the anisotropy of datasets and the potential existence of overhangs, distributions of the vertical extent indicate the character
of the top surface of structures and support or falsify the presence of overhangs. Distributions of gradient and curvature data
(1) indicate the prevailing character of the slope of the lateral surfaces of structures, (2) further emphasize potentially present
flat top surfaces and (3) give a general indicator on the sphericity of a structure. Cluster analysis of normalized, dimensional-
ly reduced data groups and systematizes input structures based on the combined measured statistical parameters. In our ap-
plication to synthetic datasets, clustering also serves to identify and exclude or merge benchmark models showing large
geometrical similarity. Apart from cluster analysis and assessment of data distributions, comparison of parameter distribu-
tions is furthermore achieved using the Kullback-Leibler divergence. The proposed method and standard geometries are
intended to be used at several stages within a workflow for structural geomodeling, both for initial conceptualization, poten-
tial adjustment of the interpolation method and examination of structural reasonableness of resulting models. Furthermore,
general shape quantification for exploration/storage estimates can be realized.

As indicated earlier, the first follow-up study aims at applying the method to a large database of structural geological mod-
els. Afterwards, the method will be applied to datasets of sparse, unmodeled input data and coupled with a spatial interpola-

tion algorithm in a study focusing on geomodeling based on progressively reduced datasets.

Code and data availability

Method development was carried out in Python. The method mostly relies on the capabilities of the libraries Shapely
(https://shapely.readthedocs.io/en/stable/), PyVista (https://pyvista.org/) and Plotly (https://plotly.com/). The python code,
the condensed database of standard geometries (as .vtk-files) and the datasets of raw extensional, gradient and curvature data

are stored at https://doi.org/10.5281/zenodo.15795851, (Carl, 2025).
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Fig A1: Visualization of the advantages of measuring the extents of input meshes on sections normal to their horizontal main axes.
Lower row: model “Seefeld” from BGR et al. (2022) for comparative purposes. a): Sections using the proposed method on “Al-
tenbruch-Beverstedt” (top view). b) & e): hypothetical measurement of the horizontal extent along a regular grid (grey lines) of
constant size for all datasets (example: S000 m grid size for both). ¢) & f): measurement along a mesh-specific regular grid based
695  on the extent of the longer axis of the mesh’s bounding box. d) & g): Measurement along an anisotropic grid to have an equal
amount of sections per direction. Multiple cuts along a horizontal measuring line for an irregular structure are visualized in a)
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Fig A2: Matrix plot for the angles between feature axes in PC space. The plot is used to assess the dependencies among the features
(percentiles of the parameter PDF’s) in the cluster analysis. Small angles (dark blue) and large angles (bright yellowish) indicate
strong dependency between individual features. This can be seen for instance between F3-F6; F32-F39 and F61-F69, with the ex-
ception of F67 (F61 is inversely dependant from F62-F64). The strong inter-feature dependencies result in a weak cluster separa-
tion beyond PC6. Thus, PC7 to 12 are not shown in Fig. 11
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