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Abstract. The quantification of 3D structural shapes is a central goal across multiple scientific disciplines, serving purposes
such as image analysis and the precise geometric characterization of objects. This study proposes a methodology for the
shape quantification based on a set of geometrical parameters in 2D sections of 3D geological shapes and establishes a set of
synthetic regular geometries as benchmark models in 3D geomodeling approaches. The proposed methodology is demon-
strated on a number of simple geometric bodies and the benchmark models to assess their geometrical dis-/similarity. The
dimensions of the structures are measured perpendicular and vertically to their horizontal main axes on a fixed amount of
cross sections. Furthermore, gradient and curvature measurements on these cross sections are conducted. A subsequent mul-
ti-step data analysis provides insight into the main geometrical characteristics of the structures and visualizes differences
between various datasets: Analysis of extension measurements reveals the anisotropy of structures, the existence of over-
hangs and the character of the top surface of an investigated structure. Analyzing the gradients and curvatures offers infor-
mation on the slopes of the lateral walls of the structure and its sphericity as well as top surface. Kullback-Leibler divergence
is utilized to quantitatively compare individual parameter distributions. Dimensionally reduced cluster analysis groups and
systematizes input structures based on the combined statistical parameters and serves for the identification of benchmark
models showing large geometrical similarity. It is expected that the methodology and set of benchmark models will aid in

advances to model, analyse and compare subsurface structures based on sparse data, as our framework can be used for an

initial structural approximation prior to modeling, for the setup of the interpolation method and for the falsification of proba-

bilistic model realizations after interpolation.
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1 Introduction

1.1 Shape quantification and comparison — previous studies and gaps in current researchPreviousstudies
The quantitative comparison of three-dimensional (3D) objects plays a crucial role in various scientific fields, including
geology, computer science and engineering (see e.g. Cardone et al., 2003; Celenk, 1995; Wellmann and Caumon, 2018).

Shape quantification aims at the numerical characterization of the geometry of objects, with their dis-/similarity not solely
being a mathematical metric but also being dependent on the specific context (Laga et al., 2019). Accurate shape quantifica-

tion independent of the objects’ orientation is essential for applications such as geological modeling, resource management

and structural analysis, where understanding the geometric properties of objects can inform decision making and enhance
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Shape quantification can be complex when dealing with static 2D images of 3D bodies (see Laga et al., 2019). but when

rotatable objects in 2D or 3D are available, basic geometrical parameters can be applied. This is commonly proposed in

material science, where studies focus on sand grain analysis. In these studies, the range of shape parameters in 2D and 3D

include (but are not restricted to) principal dimensions, volumes, aspect ratios, radii, sphericities, convexity, circularity,

roundness and compactness (Altuhafi et al., 2013; Cox and Budhu, 2008; Zhao and Wang, 2016), that partially describe

similar structural characteristics. Furthermore, the shapes of aggregate particles in building materials have been analyzed

using parameters like sphericity, angularity, aspect ratios, gradients and radius indices (Al-Rousan et al., 2007), and volcanic

cinders have been assessed looking at elongation, roundness, and roughness (Nie et al., 2023). Similar analytical approaches

can be valuable to study the geometry of subsurface structures, although at much larger scales and a higher structural com-

plexity: The shape of individual geo-bodies can be of interest for resource exploration and storage of materials like for in-
stance nuclear waste. However, geoscientific studies applying similar parameters as used in the mentioned material-scientific
studies are rare: Gardoll et al. (2000), for instance, determine the aspect ratio, blockiness, elongation, compactness, complex-

ity, roundness, spreadness and squareness of geological bodies from map data to assess the exploration potential for orogenic
ore deposits. This is a highly specialized application though, usable for shallow horizontal data, but being inapplicable to

(sub-)vertical input data. Instead of relying on geometrical parameters for the shape quantification of a single geo-object, in

geosciences advances for the shape comparison of structural models are more common. These are mainly related to uncer-

tainty assessment and quantification within geological models and often approached with distance metrics. For instance

Schweizer et al. (2017) apply the Jaccard distance and the normalized city-block distance as measures for model dissimilari-

ty, while Suzuki et al. (2008) propose the usage of the Hausdorff distance for the same purpose. In contrast, Lindsay et al.

(2013) developed an approach for model comparison not relying on such distance metrics: To determine the similarities

between 101 realizations of a 3D composite geomodel based on the same perturbed input dataset, a set of geometrical “geo-

diversity” parameters (e.g. formation depth, volume, contact surface curvature) are calculated on all stratigraphic units. The
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resulting datasets are analyzed in their ranges to determine endmember model realizations. Furthermore, principal compo-

nent analysis is employed to determine which geometrical characteristics contribute most to spatial uncertainty and to detect

realization outliers for the combined geodiversity metrics. Despite the lack of geoscientific studies approaching shape quanti-

fication with simple geometrical parameters, the necessity of basic shape assessment in geomodeling is recognized as most

commonly used geomodeling software are capable of obtaining simple geometrical properties like surface areas, aspect rati-

os and volumes from modeled 3D elements. However, these functionalities are error-prone determining basic geometrical

properties in varying directions, like the extent along the horizontal main axes of a given irregular structure — a property of

interest for the exploration of geo-bodies for storage purposes. An example of such an application can be found in the stor-

age of high-level nuclear waste: In Germany, currently, intrusive salt bodies with varying internal structures as well as crys-

talline intrusives potentially exhibiting lateral zonation are considered as potential storage sites (BGE, 2020),

In addition to these limitations in the analysis of 3D geo-bodies, geometrical characteristics of structures are hard to quantify

prior to geomodelling as well, when input data is most commonly available in 1D (i.e. boreholes) and/or 2D (e.g. seismic

sections). At this early stage within a modeling workflow, conceptual models are established based on sparse data, local

geological knowledge like the regional geological history and universal geological knowledge such as common laws and

principles (Parquer et al., 2025) but also defined spatial factors known to be related to certain variables of interest like re-

sources (Gardoll et al., 2000). The identification of important geometrical features and the establishment or selection of an

appropriate conceptual model can have a considerable impact on how realistic/reasonable model realizations are, thus influ-

encing decision-making and the accuracy of predictions (Bond et al., 2007). Therefore, approaches to geometrically quantify

available input data and to compare datasets to established conceptual models are valuable.

parameters—Fhe-algorithm-is-Given this identified current lack of analytical capabilities for the geometrical assessment of

both unmodelled input data as well as modeled structures whose evaluation shall be direction-dependent, this study proposes
a novel methodology for the quantitative description, comparison and systematization of datasets using a set of geometrical

parameters. While the method development will be visualized based on explicitly modelled 3D geometries, it can be applied

to lower dimensional data as well. In the present study, the algorithm is applied to a set of 36 3D geometries approximating

subsurface structures of varying rock types, intended to act as benchmark models in geomodeling approaches. By demon-
strating the quantification algorithm on these 3D bodies called “standard geometries”, their geometrical dis-/similarity is
analyzed. Furthermore, the methodology has been applied to a small set of basic 3D geometries (a cube, an ellipsoid, a
prism, a pyramid and a sphere) with distinctive and expected divergence of geometrical properties. In what follows, an-ex-
tenston-of-the concept of “standard geometries” initially described by Carl et al. (2023) is-developed-as a geometrical sys-

tematization to collect and catalogue subsurface geometries of the potential host rocks in the German site selection for a
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nuclear waste repository (halite rock, claystone and crystalline rocks) is reviewed, adapted and extended. Please note that the

classification is purely geometric, even though the terminology of subdividing categories can also be found in topological

considerations (see for instance Thiele et al., 2016a, b). For more details on the classification, please refer to Carl et al.

(2023). For real word examples of the standardized geometries, we refer to the publications mentioned in the respective parts

of the following paragraph.

ree-all-elastie sediments-Claystones and shales are clastic sedimentary rocks which are commonly-initialty deposit-

ed conformably onto the underlying strata (Selley, 2000
formable-tayering(; see also Fig. 1, upper section). Nenetheless:+The appearance of these conformable layers can vary con-

siderably: tilting and folding of a flat-lying structure can result in a range of geometries varying from a flat layered appear-

ance that remain generally conformable (see Fig. 2, 4™ and 9" row for potential visual representation). By contrast, faulting,

erosion and folding can produce unconformable geometries_(see Fig. 2, 3™ and 4" row). Lateral stratigraphic pinchout is

conformable proximally but results in an unconformity at its tip (see Fig. 2, 4™ row). Salt rock (i.e., halite) is initially depos-

ited conformably as an evaporitic sediment. Beyond the undeformed, concordant, flat-layer geometry, halite structures are
mainly categorized according to two principles: The most common classification is based on the question whether a structure
remained concordant in respect to its overlying rocks or intruded into its overburden (Hudec & Jackson, 2007; see Fig. 1,
middle section). Following this systematization, salt anticlines, pillows and rollers are categorized as concordant (see Fig. 2,

llh

15, 5™ and 6™ row), while salt stocks, sheets and walls are intrusive bodies_(see Fig. 2. 7" to 11" row). In addition, a supple-

mentary subdivision based on the length-to-width ratio of salt bodies is discussed by some authors (e.g., Hudec et al., 2011):
Structures showing a length-to-width ratio higher than 2 in map view (thus being considerably anisotropic) are being defined
as anticlines or walls, respectively. In contrast, rather isotropic geometries with a length-to-width ratio smaller than 2 are the
pillows, stocks and, at least in their early evolutionary stages, sheets. An additional aspect to consider when classifying salt
structures is whether the halite is allochthonous or autochthonous. Sheets are the only structural type categorizable as the
former: If the bulb of a stock or wall is subhorizontally oriented or moderately dipping above the autochthonous salt source
layer, this rock body can be defined as a salt sheet (Hudec and Jackson, 2006). Crystalline rocks considered in the context of

the German site selection are beth-plutonic rocks and-as well as high-grade metamorphic rocks (migmatites and gneisses).

As the high-grade metamorphic rocks originate from a wide array of protoliths, resulting in diverse geometries, the estab-
lishment of a single, coherent classification for both groups is difficult. For instance, orthogneisses and some migmatites
originate from plutonic protoliths such as granitoids and exhibit structural characteristics similar to their igneous predeces-
sors. By contrast, paragneisses and the remaining migmatites derive from various sedimentary sources. Their current shape
depends not only on the geometry of the original rock body but also on the specific mineral-assemblage-of the-protolith-and
the-pressure-temperature-conditions-deformation history experienced during metamorphism. Overall, most high-grade met-
amorphic rock bodies in the German subsurface are laterally bounded by either plutonic intrusions or fault zones_and their

top is either bound by unconformities or represents the present-day topography in most cases. Consequently, for the purposes

5
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of our geometric approximation, we treat them as discordant rock volumes of varying shape and size (see Fig. 1, lower sec-

tion_and Fig. 2, 2™, 6™ and 8" to 9" row). For plutonic rocks, our classification combines the shape of the bodies with their

relationship to the overlying strata (concordance or discordance) (Philpotts & Ague, 2009; see Fig. 1, lower section). Among

discordant bodies with varying shape, two size-based categories are distinguished (Fig. 2. 2™, 6™ and 8" to 9™ row): batho-

liths (exceeding 100 km? in areal extent) and stocks (smaller than 100 km?). Additionally, cylindrical discordant bodies,

mainly representing feeder pipes for ascending magma, are recognized_(Fig 2. 10" row). Moreover, two kinds of tabular

geometries can be distinguished: discordant dikes and predominantly concordant sills_(Fig. 2, 3/ and 8" row). Beyond these,

three concordant geometries are noted: laccoliths (characterized by a roughly flat base and a convex roof), lopoliths (defined

by a roughly flat top and a shallow convex base), and phacoliths (lens-shaped bodies lacking any flat boundaries; Fig. 2. 5"

row).
Building on these classifications, a collection of geometrical end members (standard geometries) that approximate the shape
variations of the rock types was set up by Carl et al. (2023). The geometries are intended to act as open source benchmark
models for structural geomodeling, as realistic geological models depend on a clear definition of the rock type and the 3D
geometries of evaluated rocks. In its initial form, each of the geometrical end members per potential host rock type was rep-
resented by a single version of a 3D body. However, as a large share of these initial end members can be represented by a
multitude of possible regular geometrical representations, we designed alternative realizations after reviewing literature:
Subsurface salt structures have been created after Hudec & Jackson (2007), Hudec et al. (2011) and Jackson & Talbot
(1991), claystone geometries have been inspired by Selley (2000) and Nichols (2009), and crystalline rock geometries are
based on Markl (2015) and Winter (2013). Additional inspiration was drawn from studying open source 3D models of real
subsurface structures (Dutch subsurface models from TNO, available at https://www.dinoloket.nl/en/subsurface-
models/map, and Australian subsurface models from Geoscience Australia, available at https://portal.ga.gov.au/3d). The
standard geometries were created in blender (https://www.blender.org/) and are visible in Fig. 2. Some standard geometries
are non-unique for rock types but can be used in different environments, e.g. stocks/batholiths for salt and crystalline intru-
sions. This is indicated in the model titles, as in these cases, the names of different structures are separated by an underscore.
Blanks in model names are replaced with a period, and in brackets, additional geometrical information are given in some
cases, such as the lateral character of the top of a structure (e.g. hourglass-shape) or the roundness of the top surface (round-

ed or flattened).
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Fig. 1: Geometrical systematization of the rock types idered for the establish t of the catalogue of benchmark models

("standard geometries"). Adapted after Carl et al. (2023)
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anticline_wall{hourglass- anticline_wall(hourglass-
anticline_crest anticline_wall(flattened) shape_flattened) shape_rounded)

anticline_wall{rounded)

_bathalithv1 batholithv3 batholithvs batholithvé
cube dyke ellipsoid eroded.layér(channel)
laterally.eroded.layer_pinchout faulted.layer flat.layer fold
laccolith phacolith pillow(flattened)

pillow(rounded)_batholithv4 prism pyramid roller
sheet sheet sheet(hourglass- sheet(hourglass-
(cylindric_flattened) (cylindric_rounded) shape_flattened) shape_rounded)
sill sphere stock(cylindric_flattened) stock(cylindric_rounded)
stock({hourglass- stock(hclwurglass-
shape_flattened)_batholithv7  shape_rounded)_batholithv2 syncline_basin tilted.layer
wall(highly.anisotropic_ wall(highly.anisotropic_ wall(hignly.anisotropic_
volcanic.pipe cylindric_flattened) cylindric_rounded) hourglass-shape_flattened)

wall(highly.anisotropic_
hourglass-shape_rounded) Fig. 2: Overview of regular synthetic models used in this study. The structures
<3 (apart from the cube, ellipsoid, prism, pyramid and sphere) are meant to repre-
- sent g trical end bers of different rock types (“standard geometries”).
For information on the naming convention, please refer to the end of the-chapter
“Previous-studies”Sect. 1.1. The size of the models was chosen arbitrarily
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1.2 Geological description of the example model “Altenbruch-Beverstedt”

The methodology presented herein is illustrated exemplarily on the mesh of the intrusive salt structure Altenbruch-

Beverstedt (Lower Saxony, Germany: see Fig. 3). Tectonically, it is located within the roughly N-S striking Gliickstadt Gra-

ben. developing since the Triassic (Scheck-Wenderoth et al., 2008). The considerably anisotropic salt wall is the result of a

complex evolutionary history especially throughout the Mesozoic, as variations in the tectonic regime repeatedly led to shifts

from subsidence to uplift in the sub-basins and grabens of the North German Basin (Maystrenko et al., 2008; Scheck-

Wenderoth et al., 2008; Stollhofen et al., 2008), Within the Gliickstadt Graben, the largest salt walls of the, German subsur-

face can be found (Scheck-Wenderoth et al., 2008). The structure Altenbruch-Beverstedt represents a fitting example model

for the methodology presented herein, due to its anisotropic, yet complex shape. The anisotropy visualizes well the cross
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sections created in the first part of the segmentation approach, while the sinusoidal shape illustrates well the segmented na-

ture of the second set of sections (see Sect. 2.1),

5.965e+6
5.96e+6

Z(m)
-5000

5.955e+6
Y (m) 5.95e+6
5.945e+6

594e+6 X (m)
5.93be+6
5.93e+6 490000
5.925e+6
5.965e+6
5.96e+6
Z(m) 5.955e+6
5.95e+6
460000 5.945e+6
Y (m)
X (m) 5.935e+6 z
¥
490000 593e+6 Y

5.925e+6

Fig. 3: 3D model of Altenbruch-Beverstedt, taken from BGR et al. (2022). Coordinate system: EPSG:4647
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12,3 Content and- motivation and distinction of this study hiy

Our-The, proposed methodology allows for the quantitative description, comparison and systematization of explicitly mod-

elled structures and lower dimensional input data using a set of geometrical parameters. The horizontal and vertical dimen-

sions as well as gradients and curvatures of 3D geometries are measured on vertical cross sections oriented perpendicular to

the two horizontal main axes of the structures. For 2D inputs (such as 2D geophysical cross sections), alignment of sections

is omitted. The resulting datasets ef-these-parameters-are analyzed statistically, providing insight into the main geometrical
characteristics of the input structures: the data analysis yields information about the anisotropy of structures, the potential
existence of overhangs, the sphericity and the character of the lateral walls as well as top surface of evaluated structures.
Furthermore, K-means clustering is used to systematize the datasets based on the measured parameters. Fhe-Given 3D input,
the setup of cross sections perpendicular to the main axes ensures, that the input structures are covered thoroughly with regu-
lar-spaced measurements that follow the 3D contours of the respective geometry. Ourmethed-cannot-be-used-to-quantitative-
by-compare-implicit representations-of struetures—The method is applied to the standard geometries established-as-weH-in-this
study—that-will-be-publiely-availableserving as benchmark geometriess for structural geemodeling of geo-bodies. Applying
the method to these models serves two purposes: While the functionality of the approach is validated, we also assess quanti-
tatively, whether the developed benchmark models are geometrically dissimilar or whether some of them can be consolidat-

ed for their purpose. OQur quantification method represents a rather simplistic approximation approach for the quantitative

comparison of 3D structures and lower dimensional datasets that can reproduce the main geometrical characteristics of input

datasets fast but also enhances the interpretability of results, making them accessible to a broader audience. Our method

cannot be used to quantitatively compare implicit representations of structures directly from a scalar field, though. We-ereat-

bilit £+
Ottt ¥

1e-interpretabif

As recognized in Sect. 1.1, similar approaches are rare in general and particularly in geosciences as quantitative approaches

commonly aim at uncertainty assessment. In computer sciences, however, Celenk (1995) describes a method involving the

alignment of equally-spaced cross sections in two objects via the computation of their respective horizontal main axes and

subsequent section comparison. However, this method is more approximating compared to the proposed approach, as sec-

tions are not segmented to align with the contours of the structures.
The proposed method is intended to be utilized in a geomodeling workflow at different stages. 1) Given a sparse dataset

including for instance borehole data and 2D seismics of limited quantity, the method can be initially used for a first structural

approximation of a targeted geo-body. In the specific example of the German site selection, where most structurally complex

bodies have already been excluded from the considerations (BGE, 2020), this approximation can be achieved using the set of
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standard geometries that is established in this study. 2) Structural conceptualization and model approximation can also facili-

tate hyper parameter selection for subsequent interpolation (Wellmann and Caumon, 2018). 3) After the creation of a set of

stochastic model realizations, our quantification method and the benchmark models can be applied again in combination

with the input data to limit the realizations to the geometrically reasonable ones. However, it has to be noted that this step

would be rather time-consuming for large amounts of realizations. Here, the framework for automatic consistency checking

of 3D geological models recently introduced by Parquer et al. (2025) represents a more sophisticated approach. Still, the

proposed framework could reveal model realizations not respecting the conceptual model, which could prompt questions

about the assumed geological situation and/or subjective bias, as studied for instance by Bond et al. (2007, 2015). 4) Lastly

the proposed framework can be used for the direction-dependent quantification of modeled structures to assess their potential

capacity for material storage (BGE, 2023).

The paper is structured as follows: Sect. 2 outlines the methodology employed in this study, detailing the developed segmen-
tation and measurement algorithm. Sect. 3 presents the results of applying the methodology to the benchmark models and a
single subsurface dataset, while Sect. 4 discusses the implications of these findings in the context of existing research. Final-

ly, Sect. 5 concludes with future research directions.
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2 Methods

2.1 Segmentation and measurement algorithm “ [ Formatted: Heading 2

280 For our approach, we aimed at a high grade of automation and easy integration in a model analysis process. The method

requires the dataset to either be a mesh with extractable vertices or a data frame of vertex coordinates themselves (the system

currently only supports .vtk file formatsthe-inputfile-format-hasto-be-changed-ifitisnet-vtk). In what follows, the function-

ality of the method is explained given a 3D input mesh, but skipping the cross-section generation, the algorithm is also usa-

ble for existing cross-sectional data (e.g. geophysical data).

285 To retrieve characteristic statistics, a geometrical segmentation algorithm (see e.g. Shamir, 2008) has been established,
which first rasters-discretizes the 3D model into 22 equidistant cross sections with the normal direction parallel to the longer
horizontal axis of the mesh’s bounding box. As measurements are conducted perpendicular to the two horizontal main axes
of the structures, two sets of cross sections need to be determined separately. Orientation of sections normal to the longitudi-
nal axis of the structure (first direction) have been determined by a minimization of the cross-sectional area, as sections are

290 sequentially rotated (Stephenson, 2018; Fig. 4, Part 1). The cross sections normal to the first set are set up by rastering-dis-
cretizing the established sections vertically, then first connecting raster lines of consecutive sections and lastly the resulting
segments (Fig. 34, Part 3). After their respective setup, the cross sections of both directions are corrected automatically
and/or manually for artifacts (Fig. 34, Part 2). Extensional measurements are conducted on each cross section at 5 equidistant

transects (Fig. 34, Part 4). Since the very first and last cross section of both directions are excluded from the measurements

295  as they would (undesirably) slice irregular polygons several times, 20 intervals are considered for every input structure. This
results in 100 measurements being conducted respectively for each of the two horizontal parameters as well as 200 values for
the vertical extent. Please note, that the assumption that a cross section of the first set is perpendicular to the longitudinal
horizontal main axis only applies to the center point of the given section. The same limitation applies to a given cross sec-
tional segment (trapezoidal segment) of an orthogonal section and the secondary horizontal main axis.

300 In addition to the extensional measurements, gradient and curvature calculations are carried out (see Fig. 34, Part 4). Both
parameters are determined on all cross sections between consecutive vertices of a cross section. The curvature in 2D is de-
fined as the reciprocal of the circumradius of a triangle. Therefore, it is calculated between three consecutive vertices in
either the xz- or yz-plane, by first determining the side lengths (a, b and ¢) of the triangle between the points, then the semi-
perimeter of the triangle and the area through Heron’s formula, before calculating the curvature as the reciprocal of the cir-

305 cumradius of the triangle through:

4 xarea
curvature =

@

axb xc

The selected method measuring the lateral extents of input meshes normal to their horizontal main axes (see Fig. Ala in
appendix) is advantageous over approaches analyzing an input body using parallel sections as applied in various medical

imaging techniques like e-g-for instance MRI (see e¢.g. Meyer-Baese & Schmid, 2014). Such an approach would have result-

12
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ed in a dissimilar amount of output measurements for the two horizontal extents for many input structures as well as for
different structures overall, both in case of a uniform regular grid for all datasets (Fig. Alb&e) as well as an individual regu-
lar grid per dataset (Fig. Alc&f). Only the usage of an anisotropic grid, depending on the bounds of the input mesh, would
have resulted in an equal amount of measurements per horizontal direction_(Fig. Al1d&g). However, using a supplementary
grid would have generally resulted in the problem, that irregular structures would have often been cut several times along a
horizontal measuring line. This would have created subordinate polygons that are completely disconnected from each other

(see red lines in Fig Alb).

In contrast, covering every input structure with a constant number of measurements as also applied similarly by Celenk
(1995) comes with an advantage and a disadvantage: while it ensures that the quantification of input datasets with our meth-
od is scale-independent as datasets of different structures have the same amount of data, the geometrical spatial variability of
larger bodies might not be captured equally well as the shape of smaller ones. The potential impact of this matter is currently
being analyzed in a follow-up study that applies the methodology to a database of over 300 structural models of subsurface
structures from various geological settings. The question whether structures shall be represented by equal or dissimilar data
quantities also concerns the gradient and curvature data: Orthogonal sections are created from a set of 19 trapezoidal seg-
ments (i.e. 40 vertices), while cross sections in the first direction are based on a varying, most often higher number of verti-
ces. As gradients and curvatures are being calculated between neighboring vertices, the potentially larger edges between
vertices in the orthogonal sections lead to a less-rounded appearance of the cross sections, directly affecting the values of

both parameters.



1 Part 1;
2: Input: initial cross sections
3: Output: cross sections rotated perpendicular to longer horizontal main axis by minimization of cross section area
4; for each inltial section do

5 far each of 38 ratation steps (0° to 160° in 5° increments) do
3 Compute rotation angle (theta)

7 Apply rotation matrix ta original narmal {[1,0,0] or [0,1,0) to get ratated normal
8 end for

9 for each rotated normal do

10: Slice mesh using rotated normal and center point of section

1L Retrieve vertices from rotated slice

12 Project cross section into YZ plane to calculate area

13 Compute centroid of this projected section

14, Sort paints by angle relative to centraid

15 Compute area of polygon using sorted points and shoelace formula

16: end for

17: end for

18:

19: Part 2:

20: Input: fotated cross sections,
21; Output: rotated cross sections after artifact correction

22;5tep 1

23: for each rotated cross section do

24 setvertex with lowsst z-value as vertex index=0

25 perform narmalized nearest neighbiour algarithm

26: end for

27

28: Step 2:

29: for each section after normalized nearest neighbour algorithm do
30:  apply correction criterion

31 if correction criterion = True then

3z initialize manual vertex order correction in plotly.dash

33 for each section with artifacts de

3a; correct vertex order by clicking on previous [correct) vertex then incorrect vertex
35 end for

36 end if

37: end for

38

39: Part 3:

40; Input: corrected cross sections of 1st direction

41; Output: corrected cross sections of orthogonal direction
42: for each section of 1st direction do

43;  raster section vertically into 22 wertical lines

44 for each vertical line do

45 retrieve X, ¥ and Zmin+Zmax - coordinates
46:  end for

47: end for

48;

49; for 2 consecutive sections of 1st direction do
50:  for all vertical lines in both sections do

51 extractX, Y and Zmin+Zmax (=2 points per section)
52 combine 4 points into trapezoidal segment

53 end for

54: end for

55

56: for every index of vertical lines do
57:  combine trapezoidal segments to assemble uncorrected orthogonal section
58: end for

59;

60: for uncorrected cross sections of orthogonal direction

61 repeatPart 2

62

63: Part 4;

64: Input: all cross sections.

65: Output: horizontal and vertical dimensional measurements

66: for each cross section of 1st direction except index 0 & 21 do

67:  rotate & project section onto YZ plane

63:  create 5 horizontal and vertical measurement transects

63;  measure horizontal and vertical dimensions between Intersections of transect and polygon
70: end for

7

72: for each cross section of orthogonal direction except index 0 & 21 do

73 rescale sections {correspands to ratation & projection onto ¥Z plane)

74 create 5 horizontal and vertical measurement transects

75:  measure horizontal and vertical dimensions between intersections of transect and polygon
76: end for

77

78: for all cross sections do

79;  compute gradients

80;  compute curvatures

8l end for

Fig. 34: Pseudocode of the algorithm that creates the cross sections of both directions and measures the dimensional extents, gradi-
330 ents and curvatures on these sections. For further information, see chapter 2

14



2.2 Data analysis “ [ Formatted: Heading 2

The individual-geometrical measurements were combined into a database-and, analyzed by the first five-three statistical mo-

ments, standard deviation and median and visualized as histograms and cumulative distribution functions (CDF’s). Compara-

tive analyses of data distributions and a cluster analysis were carried out on the measured data, to demonstrate that the tested
335 3D bodies can be quantitatively compared based on the statistical distributions of geometrical properties and to assess their
dis-/similarity.
Semi-quantitative comparison of histograms was done for the statistical data, analyzing the vertical extension measures,
combined horizontal extension measurements, the gradients and curvatures. For gradient data, the frequency of infinite val-
ues was counted separately, since they represent vertical segments between two consecutive vertices. As those values cannot
340 be plotted together with the remaining data as a separate bin, their frequency was visualized as a horizontal line. For gradi-
ents and curvatures, overflow bins were established: for the gradient data at the 5™ and 95™ percentile and for the curvatures
only at the 95" percentile. This aimed at facilitating the interpretability of the histograms, since for most datasets, a small
percentage of values (<5%) was considerably larger than the rest, thereby spreading the measurements to a large number of
additional histogram bins. The Kullback—Leibler divergence (Kullback and Leibler, 1951) was calculated on normalized data
345 between the individual distributions of the geometrical parameters of the input models, for quantification of the similarity
between the structures. Cluster analysis followed data normalization to a range of -1 to 1 and principal component analysis
(PCA; see Jolliffe, 2002). As variables (“features”) for PCA, 20 percentiles of the probability density functions (PDF’s) of
the combined horizontal data, vertical data, gradients and curvatures were chosen. As the first two principle components only
explained 40% of the variance, a matrix plot for the principal components 1 to 12 was ereatedassessed initially, to cover 90%

350 of the variance. A feature angle matrix was then used to reduce the number of principal components in the cluster matrix

plot. The number of clusters used in the K-means clustering algorithm was determined using an elbow plot and the silhouette

score.

3 Results

Results of the segmentation and measurement algorithm as well as the data analysis are demonstrated using a sphere and a

355  real-explicitly modeledsubsurfacesalt-body:-the intrusive structure “Altenbruch-Beverstedt’fromLower Saxony,-Germany;
(model taken from BGR et al..42022). Subsequently, the results of the cluster analysis are presented.

3.1 Segmentation and measurement algorithm by [ Formatted: Heading 2

The initial subdivision of the input mesh (Fig. 4a-5a & b) is followed by the stepwise rotation of the initial cross sections.

The respective rotation step showing the minimal cross-sectional area is optimally oriented normal to the longitudinal main
360 axis of the structure (first direction). Optimal orientation of all sections of the first direction of the sphere corresponds to 0°

rotation, unlike when running the algorithm on an irregular mesh like Altenbruch-Beverstedt. This is the case due to the

15



regularity and symmetry of all test models of this study. After subsequent artifact correction (Fig. 4e-5¢ & d), the second set

of cross sections is assembled from trapezoidal segments (for illustration, a subset of sections is shown in Fig. 4e-5¢ & f).
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Fig. 45: Visual representation of the segmen-
tation and measurement algorithm for a
sphere model (left column) and the German
intrusive salt structure “Altenbruch -
Beverstedt” (right).
a & b) initial segmentation of the input
meshes.

¢ & d) Plotly.dash app for vertex-order
correction.

e & f) Subset of 0Orthogonal cross sections.
g & h) Coverage of input structure with
cross sections (top view)
i & j) Example of extensional measurement
results
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Following potential artifact corrections of the orthogonal sections, both sets of cross sections are finalized (Fig. 4g-5g & h)
and extensional measurements as well as gradient and curvature calculations are carried out (Fig. 4i-5i & j). The computa-
tional power required by the algorithm is low (runtime without varying artifact corrections: ca 60 s, using as the CPU an
AMD Ryzen 7 PRO 5850U at max. 50% capacity at 3.5 GHz speed and the integrated GPU at 0.6 GB usage).

3.2 Data analysis «

The results of the first analysis step, the first five-three statistical moments, standard deviation and median per parameter and

the data visualized as histograms and CDF s, are seen in Table 1 and Fig. 56, respectively. The size of the sphere was chosen
arbitrarily, as the subsequent Kullback-Leibler divergence and cluster analysis are based on normalized data. Both the statis-
tical moments for the sphere and the distributions in Fig. 5-6 (left column) reveal differences for the three parameters, alt-
hough individual extents should be the same in all three dimensions, if a sphere would be measured equally in all directions.
This is due to compromises of the algorithm ensuring its universal applicability. For Altenbruch-Beverstedt, the large vari-
ance and standard deviation of the combined horizontal data and the difference between the mean values of both individual
horizontal parameters reflect the strong anisotropy of the structure, while the statistics for the vertical data indicate a moder-
ate variation in vertical measurements.

Table 1: a) First fivethree statistical moments, standard deviation and median_per parameter for the sphere model (note: the di-

three. istic: standard deviation and median
eve istics for Altenb h-Be ed

nisotr f the str r
a) spher mean [m variance [m std dev [m skew  median [m]
Horizontal length 14 13 4 0.4 14
Horizontal length 18 4 2 0 18
orthogonal
Vertical length 14 13 4 05 15
Horizontal data combined 16 13 4 -0.8 17

Altenbruch-Beverstedt mean [m variance [m 1 v [m skew median [m
Horizontal length 3825 635352 791 0.2 3795
Horizontal length 48644 8956682 2993 2.2 49845
orthogonal
Vertical length 4766 486158 697 2.9 4856
Horizontal data combined 26235 5.07E+08 22516 0.02 21696

Gradient and curvature histograms of the example cases are visible in Fig. 67. For the sphere, the distribution of the gradient
histogram is symmetric (Fig. 6a7a). The curvature histogram (Fig. 6e¢7c) shows a prevalence of very small values and subor-

dinate maxima around 0.1, 0.2 and in the overflow bin that contains 394 values (5% of all data) above 0.37. For Altenbruch-
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Beverstedt, the gradient distribution is asymmetric and the number of infinite gradients is higher (Fig. 6b7b). In comparison
to the curvature distribution of the sphere, the curvature data (Fig. 6¢7d) is monomodal apart from the overflow bin.
In general, aAnalyzing the data distributions of a structure visually already reproduces distinct geometrical characteristics of

an input dataset. The distribution of the combined horizontal data indicates whether a pronounced anisotropy is present for
an analyzed structure: if the data is separated into two clearly distinguishable subordinate distributions (see Fig. +08a), the

eometry is considerably anisotropic (the farther apart the two maxima, the more anisotropic a body is). Caution is advised
for a distribution with two close maxima (Fig. +88b): this could be the consequence of the inflated extent in the orthogonal

direction (see abeveSect. 4.2). Analyzing the combined horizontal data and the vertical data together reveals whether a struc-
ture shows substantial variations in its horizontal extent over its vertical range. Such a shape, in the subsurface more often

present as overhangs rather than as upward tapering, is indicated by the simultaneous presence of multimodal distributions
for both parameters (Fig. 08¢ & d). The vertical data distribution also characterizes the top surface of a geometry: if the

distribution is monomodal, with a) the maximum being the bin representing the highest measurements, and b) the frequency
in lower bins being substantially smaller, then the presence of a flat top surface is indicated. The existence of a flat top sur-

face can be verified by analyzing the gradient and curvature data: a high frequency of very small measurements for both
parameters supports such an analysis (Fig. $08e-g). Gradient data also indicates the steepness of lateral surfaces of a body: as
high and infinite gradient data stem from steep to vertical faces of a structure, the presence of steep-dipping lateral surfaces

can be recognized (Fig. +68h). Combining the inferences from analyzing top and lateral surfaces therefore provides insight

into the overall sphericity of an input dataset: a more spherical structure is represented by larger quantities of intermediate
gradient measurements and of moderate to high curvature data (Fig. 108i & j).
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(a) Gradient histogram with overflow bins and inf count (b) Gradient histogram with overflow bins and inf count
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| Fig. 67: Gradient and curvature data for the sphere (a & c) and Altenbruch-Beverstedt (b & d). Amount of data in overflow bins:
410 Gradient diagram (sphere) 384 values (4.8% of all data), Curvature diagram (sphere) 394 values (5%); Gradient diagram (Al-
tenbruch-Beverstedt) 112 values (4.6%); Curvature diagram 101 values (4.1%)
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The Kullback-Leibler (KL-)divergence (Kullback and Leibler, 1951) was calculated to quantitatively determine the similari-
ty between the tested geometries. The distributions of the six parameters (the individual horizontal extents along both hori-
zontal main axes, the combined horizontal data, the vertical data, gradients and curvatures) were compared between the
models. The similarity of two distributions is larger, the smaller the KL divergence is, with a value of 0 indicating equality of
the distributions_(obtained for instance when comparing a structure with itself). The result of the calculation of the individual
KL divergences for the example cases is visualized in Fig. 79. For the sphere, the most similar models regarding the respec-
tive distributions of the six parameters are the “sheet(cylindric_rounded)” for the horizontal data of the first direction, the
“prism” for the orthogonal horizontal data, the “batholithV3” for the combined horizontal data, the “anti-
cline_wall(rounded)_batholithV1” for the vertical data, the “phacolith” model for the gradients and the “ellipsoid” for the
curvatures (compare Fig. 2 for the model appearances). For Altenbruch-Beverstedt, “batholithV6” is most similar regarding
the horizontal data of the first direction, “roller” for the orthogonal horizontal data, “wall(highly.anisotropic_hourglass-
shape flattened)” for the combined horizontal data, “wall(highly.anisotropic_hourglass-shape rounded)” for the vertical
data, “pillow_flattened” for the gradients and “roller” for the curvatures. In addition to KL divergences of individual parame-

ters, an averaged KL divergence was calculated: by taking the mean of the values between two models, the overall dis-

/similarity between models was assessed. According to the averaged KL divergence, the sphere is closest to the standard

geometry _ “pillow(rounded)_batholithV4”,  while _ Altenbruch-Beverstedt is  best  approximated by  the

“wall(highly.anisotropic_hourglass-shape_rounded)”. However, informational content of this parameter is limited, as there is

no indication regarding which parameters two compared structures are most similar or differ more. Therefore, principal

component analysis and K-means clustering have been employed as well, providing this information based on all combined

parameters.

In general, values of KL divergence show an error for the gradient distributions: infinite values had to be converted to the

the KL divergence for that parameter, as most models show very similar normalized distributions. To assess the impact of

the large variance on individual KL divergences of curvature data and smallest averaged KL divergences, they were also

calculated using a 95 percentile overflow bin (see Table 2). Smallest KL divergences for the curvatures of the two example

models are notably higher, especially for the sphere, reflecting the dissimilarity of data distributions when applying the filter
column 1 & 2). The impact on the smallest averaged KL divergence (column 3 & 4) is smaller, yet still considerable.
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Fig. 79: Visualized Kullback-Leibler diverg 2)-f): sphere, g)-1): Altenbruch-Beverstedt. Visualized is the most similar data ,/[ Formatted: English (United States)

distribution (orange) compared to the respective distribution of the two example models (blue). The calculated Kullback-Leibler
divergences are noted in the headlines of individual figures

460 3.3 Cluster analysis ‘—[ Formatted: Heading 2

Cluster analysis on all measured data of the regular geometries resulted in 7 clusters considering the combined analysis of
the elbow plot and silhouette score (Fig. 85610b). With the first two principle components (PC’s) only explaining 40% of the
variance (see Fig. 8a10a), the number of PC’s necessary to cover more than 90% of the variance was determined to be 12. A
feature angle matrix (Fig. A2) was computed to check the dependencies between the percentiles of the PDF’s. As a strong

465 dependency was identified within several groups of features, the principal component matrix plot (Fig. 11) was limited to the
first six PC’s. The feature contribution matrix (Fig. 8¢10c) reveals the contribution (“loadings”) of the binned PDF’s to the

principal components, with bright yellowish colors indicating a strong positive contribution and dark blue colors a substan-
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tial negative contribution. In the contribution matrix, percentiles 0 to 19 represent the PDF of the combined horizontal data,
followed by the vertical data (20 to 39), gradients (40 to 59) and curvatures (60 to 79). Fhe-principal-component-matrixplot

is visible in Fig. 9.
The PC1 vs. PC2 cluster plot is visible in Fig. 11a. Positive contributions to PC1 (Fig—9a)-are dominated by the 50 to 55%

bins of the vertical data and gradient data, while there is no percentile with a strong negative contribution to PC1. This effec-
tively separates the bluish-green cluster at high positive PC1 scores from the rest of the data. All four models (“flat.layer”,
“sill”, “cube” and “prism”), share a distinct geometrical similarity: When segmenting them with our algorithm, cross sec-
tions are always flat at the top and of exactly the same vertical extent throughout the entire structure. This results in a step-
wise appearance of the respective PDF s, with the step being in the middle of the functions. For PC2, the 45 to 50% gradient
bin has the highest positive loading, while there are stronger negative loadings for the 0 to 5% as well as 95 to 100% gradient
bins. This separates the models of the black cluster at highest positive PC2 scores and mainly the blue cluster at high nega-
tive PC2 scores. Therefore, models of the black cluster (highest-pesitive PC2-seores)-are characterized by many-ecompara-
tively-small-gradient-measurements—Thisrefleets-the presence of many low to moderately inclined surfaces in a geometry

(depending on the variance in a data distribution) and an overall more rounded appearance (see e.g. the highlighted black

example model “pillow(rounded) batholithV4” in Fig. 9alla). Meanwhile, the blue models and other models at high nega-
tive PC2 scores;tike-the-blue-clustershow-many large-gradient data(pesitive-and negative)—Thisrepresents are character-
ized by the abundance of steep-dipping to vertical surfacesfor-a-dataset. Thus, PC2 is an indicator for the overall steepness
of the lateral parts of a structure or, on the other hand, its sphericity.

The PC3 vs. PC4 cluster plot is shown in Fig. 11b. For PC3+(Fig-—9b), large positive contributions are spread among the 0 to
5% and 95 to 100% horizontal bins as well as the 95 to 100% vertical bin and the 0 to 5% and 45 to 50% gradient bins, while

the only considerable negative loading is exhibited by the 10 to 15% gradient bin. Datasets at very positive PC3 scores be-

long to the vermilion and blue clusters. The largest negative PC3 scores are seen for the reddish-purple cluster. Very positive

PC3 scores indicate anisotropy, rather flat top surfaces and steep-dipping to vertical lateral walls (see e.g. the highlighted

vermilion “dyke”). In contrast, however, datasets efat largest negative PC3 scores-(ike-the-reddish-purple-eluster), cannot be

linked to very high data percentages in that 10 to 15% gradient bin; its loading (-0.27) not being the main cause of the ob-
served negative PC3 scores. PC4 shows considerable positive loadings for the 50 to 55% bin of the vertical data and the 0 to
5% and 95 to 100% gradient bins. Meanwhile, large negative loadings are seen for the 0 to 5% and 95 to 100% horizontal
bins, the 95 to 100% vertical bin and the 80 to 85% gradient bin. These contributions mainly drive the differentiation of the
reddish-purple and vermilion clusters (negative PC4 scores) from the other clusters apart from some sky-blue models. Since

the horizontal and vertical bins contributing very negatively are the same horizontal and vertical bins contributing particular-

ly positively to PC3, it can be deduced that the overall position of the vermilion models in the PC3 vs. PC4 diagram is more

driven by these horizontal and vertical bins. Meanwhile, the datasets from the reddish-purple and sky-blue models are com-
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vertical) lateral walls, while models at higher positive PC4 scores exhibit uniform vertical extents and steep-dipping to verti-

cal lateral walls. This explains the position of the isolated blue model at highest positive PC4 scores (“volcanic.pipe”; high-

lighted in Fig. 911b; see also Fig. +88h for the gradient distribution), completing the separation of the blue cluster from the

rest of the data.
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The cluster plot of PC5 vs. PC6 can be seen in Fig. 11c. PC5 (Fig—9e)}-shows strong positive contributions for the 0 to 5%

vertical bin and the 50 to 55% and 95 to 100% gradient bins, while stronger negative loadings are given by the 50 to 55%
vertical bin and the 0 to 5% gradient bin. This separates the majority of the sky-blue cluster (highest positive PC5 scores)
from the rest of the datasets. As this corresponds to the first appearance of the 0 to 5% vertical bin among considerable con-
tributing bins, most of the associated models are characterized by widespread low vertical extents and few much larger ones,
as seen in overhang configurations (for example, see the model “laccolith” in Fig. 2). PC6 is mainly influenced by the gradi-
ent data, where the 10 to 15% bin contributes the most negatively and the 80 to 85% bin contributes positively. Once again
(as for PC3), the 10 to 15% gradient bin, however, does not seem to be the main reason for the separation of the reddish-
purple cluster at very negative PC6 scores. Similarly, the sky-blue models at higher positive PC6 scores do not exhibit par-

ticularly large high percentages in the respective bin. In-the remainingvisualized PC-cluster plots; thevariance-explained by
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Fig. 810: Calculated supplementary information for the setup and interpretation of the cluster analysis after principal component
analysis. a) Cumulative scree plot, showing the explained variance with increasing number of principal components. b) Elbow plot
and silhouette score to determine number of clusters. ¢) Contribution matrix showing the contribution of the input data (percen-
tiles of the probability density functions of measured parameters) to the principal components
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The overall cluster results validate that the flat and/or cuboidal geometries (vertical extent < horizontal extent and/or exclu-
sively straight lateral surfaces) mostly differ considerably from the other structures designed to represent intrusive subsur-
face bodies: the flat/cuboidal geometries are mainly distributed among the bluish-green, blue and vermilion clusters (see Fig.

911). As recognized abovein-theresults, these three clusters can be differentiated from the other models within the first four
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PC’s. Only the “laterally.eroded.layer pinchouterededdayer(pineheut)” is located outside, in the sky-blue cluster, although

representing a flat geometry. The K-means cluster analysis furthermore indicates that some standard geometries are similar

across all parameters. Therefore, it was assessed whether certain standard geometries are redundant to simplify the bench-
mark selection process. The pairs of flattened and rounded versions show high similarities, leading to the exclusion of the
flattened models while retaining the "uneroded" structures. The models "batholithV3" and "pillow(rounded) batholithV4"
cluster closely, differing only in vertical elongation; thus, "batholithV3" is excluded. Although similarities exist between
models with varying lateral characteristics, both "cylindric" and "hourglass" shape variations are retained. This also applies
to various "sheets" and the "anticline wall(hourglass-shape rounded)”, which exhibit similar PC scores in some, but not all

cluster plots. Lastly, some of the flat and cuboidal bodies in the bluish-green cluster ("flat.layer", "sill" and "cube") are near-

ly identical in position. The "cube" is excluded from the benchmark collection, while the other two geometries are merged,
keeping the shape of the "sill”.

Given these exclusions based on structural similarity, the collection is condensed from 36 to 25 standard geometries (see Fig.

12). Decreasing the database by validating the bodies’ geometrical dissimilarity facilitates the decision making on the best

suitable benchmark for a case study. Despite our reduction efforts, this list is not expected to be exhaustive: we would like to

encourage users to suggest additional geometries based on their expertise and/or literature, to ensure that suitable benchmark

models are available for as many geomodeling applications as possible.

29



anticline_wall(hourglass- anticline_wall(rounded)
anticline_crest shape_rounde: _batholithv1l batholithvs

eroded.layer(channel) laterally.eroded.layer_pinchout

batholithVé

faulted.layer flat.layer_sill fold laccolith
lopolith phacolith pillow(rounded)_batholithV4 roller
T - @ (- @
sheet sheet(hourglass- stock(hourglass-
(cylindric_rounded) shape_rounded) stock(cylindric_rounded) shape_rounded)_batholithv2
wal\(high\y.anisotrodpig
syncline_basin tilted.layer volcanic.pipe cylindric_rounded)

wall(highly.anisotropic_
hourglass-shape_rounded)

565

Fig. 1112: Condensed collection of standard geometries after application of the quantification method.

4 Discussion

By applying a set of defined geometrical descriptors to systematically generated 3D benchmark models, this study establish-
es a framework for the quantitative comparison of shape properties. The analysis highlights how key attributes such as ani-
570  sotropy, surface morphology, and sphericity vary across models, offering a structured perspective on their geometric dis-
/similarities. These outcomes prompt a deeper discussion of how well the proposed descriptors capture meaningful shape

differences and how this quantitative framework advances the analysis of unmodeled data and 3D geological structures.
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4.1 Comparison of existing methods for 3D shape characterization with the proposed workflow 9 [ Formatted: Heading 2

The workflow of this study differs considerably - both in the scale of the test subjects as well as the purpose of the methods -

575 from the quantitative comparative approaches used in material sciences (Sect. 1.1). The material-scientific studies mainly

operate on millimeter- to centimeter-scales and have a higher emphasis on parameters exploring the sphericity/angularity (or

similar metrics) of objects, as these characteristics are fundamental in this field, where properties and applicability of com-

posite building materials heavily depend on mechanical interactions between individual particles (Kakani and Kakani, 2004).

580

proposed approach aims at characterizing 3D structures_and 2D sections at the meter- to kilometer-scale (although the ap-

585 plicability is scale-independent in theory), through preeise-direction-dependent measurements of geometrical parameters,

thereby providing datasets suited for quantitative comparison.

Studies presenting approaches that show similarities to ours are Celenk (1995), Schweizer et al. (2017) and Lindsay et al.
(2013). Celenk (1995) determines the horizontal main axes of equally-spaced cross sections as well, but does so to align
sections of two different objects. Comparison is then achieved by computing the averaged shape difference of sections be-
590 tween the objects in four directions along the main axes. Key differences of our approach therefore involve the segmented
assemblage of cross sections in the orthogonal direction (following the respective segmented horizontal main axis) and the
exact measurement of the dimensional extents on the sections. Hence, our method opts for the determination of larger da-
tasets of absolute measurements on a single object, that are compared to other bodies in subsequent steps. Meanwhile,
Celenk (1995) computes the relative measure that is the averaged shape difference, representing a faster, but more approxi-
595 mate approach of object comparison-between-two-ebjeets, as the author does not segment the horizontal main axis along the
larger extent. Schweizer et al. (2017) do not try to compare the dimensions of individual 3D structures, but use the Jaccard
distance and the normalized city-block distance as measures for model dissimilarity instead. The two parameters are being
applied as measures for the similarity in position of certain geological units between two model realizations of the same
study site. In a similar fashion, the Hausdorff distance has been used before (see e.g. Suzuki et al., 2008). These dissimilarity
600 distances were not applied in our study, as they could only act as size indicators rather than shape descriptors and would not
give any indication on where two structures differ spatially. Meanwhile, our approach provides insight into both shape and
size differences of objects, which is crucial for geological modeling. Lindsay et al. (2013) explore geometric uncertainty
across multiple realizations of a study site, evaluating parameters like depth, volume, and curvature, which parallel those in
our study. However, their parameters are often tied to stratigraphic units and may not apply directly to individual 3D struc-

605 tures. Both studies utilize PCA to analyze geometric variability and model differences, although executed differently.
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Despite these existing methodologies, we opted for a straightforward approach, allowing us to efficiently replicate the main
geometric characteristics of input datasets. Our algorithm is computationally efficient, easily interpretable with basic geolog-

ical knowledge, and accessible to a non-specialist audience.

4.2 Assumptions and compromises of the algorithm ensuring its universal applicability <

Despite the strengths of our methodology, certain limitations must be acknowledged. The reliance on discrete differential
geometries (Bobenko et al., 2008) means that the input dataset must represent a single, compact, and topologically connected
structure (Thiele et al., 2016a). For objects separating from one to the next cross section into multiple strands, split algo-
rithms are available. However, this comes at the cost of interpretability of the statistics of geometric properties. Moreover,

the method functions optimally for convex hulls (Rockafellar, 1970), although a follow-up study will show, that the full

geometric diversity of intrusive salt structures and crystalline bodies from the German subsurface can be quantitatively com-

pared without major limitations.

be considered when interpreting results in other domains.

The focus of this study was to establish a generalized algorithm to_quantitatively describe the shape of objects and to infer

dis-/similarity between geometries. Given the wide range of potential and available models, the algorithm requires some
trade-offs to be universally applicable. Discussion of the data distributions for the geometrical parameters (see Fig. 56) fo-
cuses on the results from measuring the sphere, representing a comprehensible case with distinct expected data distributions:
The nature of a sphere is a similar shape of any section through the center, eventually resulting in a normal distribution of the
levelled distance measurements in both horizontal and vertical directions. This expected distribution is not produced in our
case due to the generation approach of the orthogonal cross sections: The assembled sections follow the contour of the struc-
ture (see Fig. 4e-5g & h), which results in larger measurements for the orthogonal horizontal data and a slightly tailed distri-
bution of the combined horizontal data, similar to an ellipsoid with a low contrast in the main axes. As this situation is rarely
seen in geological modeling, the impact is small since anisotropic geometries are measured accurately with our segmentation
algorithm. The gradient and curvature data reflect the effects of our approach as well: While the gradient diagram of the
sphere shows a symmetric distribution as expected, the relative elongation of the orthogonal sections increases the frequency
of lower gradient measurements. Due to this accumulating effect, the presence of low-dipping surfaces of a structure is over-
estimated by the data. Furthermore, the exclusion of marginal cross sections leads to vertical clipping that introduces infinite
gradient measurements (representing two consecutive vertices being exactly vertical) that would not exist when measuring
the sections in a rounded, unclipped state. The curvature data is influenced by this clipping as well, that results in few large
values where the three consecutive vertices form a large angle. These measurements increase the variance of curvature data
considerably, with the majority of data for most datasets being located within the 0 to 5% and 5 to 10% bins.

However, the discriminability of the standard geometries and basic 3D objects in the cluster analysis is ensured despite these

compromises made in the methodology: structures of varying anisotropy plot in different parts of cluster diagrams showing
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contribution of the combined horizontal data, as the highest contribution of horizontal data comes from the first and last

distribution bins (see Fig. 10c). Similarly, as vertical and gradient data distributions of flattened geometries show the dis-

cussed characteristic properties, they differ in their PC scores from their rounded counterparts. Furthermore, the discussed

increased frequency of gradient measurements around 0 does not change cluster patterns as it applies to all datasets. The

same is true for the artifact-influenced curvature data and its impact on the general clustering of similar structures. Still, its

squeezed nature shows an effect on the overall clustering results, as the curvature data does not show any considerable con-

tribution in PC dimensions.
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4.5-3 Potential-Intended direct application and potential further usage of the quantification method and the standard+ { Formatted: Heading 2

geometries

The methodology will be a part of a larger framework to model and compare geological structures based on sparse data_in

the context of the German site selection. For most regions of interest for nuclear waste disposal, seismic 2D data are availa-

ble frequently with a few boreholes. This is similar to the cross sections established through the benchmark models here,

allowing for a fast model selection based on the geometrical properties and potentially further constraining hyper parameter

selection for interpolation. However, for the integration of unmodeled sparse input data in the initial conceptualization of

geological models, some adoptions of the workflow are needed. Obviously, the creation of segmented sections is omitted as

the starting point are cross sections, which can be analyzed as described. The number of geometrical data is restricted by the

number of available cross sections, thus a comparison will be conducted on a less complete statistical basis. Consequently, a

user likely has to solely rely on the Kullback-Leibler divergence and cluster analysis to assess the reasonableness of various

shapes. In case these analyses do not limit the range of standard geometries sufficiently, additional experience-based bench-

marks could be created and clustered among the available models to test whether a closer fit applies. Here, more complex

structural configurations could easily be approached by superposition of basic benchmarks. Thus, the choice of the concep-

tual model is based on the quantification and does not rely on the expert knowledge only. Sinee-theAfter interpolation wil
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resulted in a series of stochastic prior realizations, the method will be used for falsification by data (e.g. boreholes). Further-

more, the application of the framework to purely quantify the shape of a modeled 3D body can be very useful in the context

of the site selection. Here, the comparative parts of our proposed analysis (i.e. Kullback-Leibler divergence and cluster anal-

ysis) might be of little value and thus be omitted. FurthermereAdditionally, applying our methodology also supports testing

for the minimum amount of data necessary for geological modeling, as different data densities and configurations can be
inserted into the algorithm. The open-access collection of benchmarks for geomodeling is also a convenient tool to visualize
the range of three-dimensional geometries of the different rock types to a broader audience, which aids in the communication

of uncertainties and decisions for geoscientists and stakeholders in various settings (see Zehner, 2021).

S Conclusion

In our publication, we presented a methodology to quantitatively describe, compare and systematize 3D-geemetries2D and
3D datasets, and proposed a set of regular standard geometries as benchmark models in geomodeling approaches. Demon-
strating the quantification method on the 3D standard geometries, their geometrical dis-/similarity is assessed. The combined
evaluation of data distributions and a cluster analysis reproduces the main geometrical characteristics of input meshes and
visualizes differences between various datasets. While distributions of combined horizontal extensional measurements pro-
vide insight into the anisotropy of datasets and the potential existence of overhangs, distributions of the vertical extent indi-
cate the character of the top surface of structures and support or falsify the presence of overhangs. Distributions of gradient
and curvature data (1) indicate the prevailing character of the slope of the lateral surfaces of structures, (2) further emphasize
potentially present flat top surfaces and (3) give a general indicator on the sphericity of a structure. Cluster analysis of nor-
malized, dimensionally reduced data groups and systematizes input structures based on the combined measured statistical
parameters. In our application to synthetic datasets, clustering also serves to identify and exclude or merge benchmark mod-
els showing large geometrical similarity. Apart from cluster analysis and assessment of data distributions, comparison of

parameter distributions is furthermore achieved using the Kullback-Leibler divergence. The proposed method and standard

geometries are intended to be used at several stages within a workflow for structural geomodeling, both for initial conceptu-

alization, potential adjustment of the interpolation method and examination of structural reasonableness of resulting models.
Furthermore, general shape quantification for exploration/storage estimates can be realized.

As-already indicated earlier, the first follow-up study aims at applying the method to a large database of structural geological

models. Afterwards, the method will be applied to datasets of sparse, unmodeled input data and coupled with a spatial inter-

polation algorithm in a study focusing on geomodeling based on progressively reduced datasets.
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Code and data availability

Method development was carried out in Python. The method mostly relies on the capabilities of the libraries Shapely
(https://shapely.readthedocs.io/en/stable/), PyVista (https:/pyvista.org/) and Plotly (https://plotly.com/). The python code,
the condensed database of standard geometries (as .vtk-files) and the datasets of raw extensional, gradient and curvature data

are stored at https://doi.org/10.5281/zenodo.15795851, (Carl, 2025).
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Fig Al: Visualization of the advantages of measuring the extents of input meshes on sections normal to their horizontal main axes.«—— {Formatted: Caption

Lower row: model “Seefeld” from BGR et al. (2022) for comparative purposes. a): Sections using the proposed method on “Al-
tenbruch-Beverstedt” (top view). b) & e): hypothetical measurement of the horizontal extent along a regular grid (grey lines) of
constant size for all datasets (example: 5000 m grid size for both). ¢) & f): measurement along a mesh-specific regular grid based

on the extent of the longer axis of the mesh’s bounding box. d) & g): Measurement along an anisotropic grid to have an equal
amount of sections per direction. Multiple cuts along a horizontal measuring line for an irregular structure are visualized in a
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Fig A2: Matrix plot for the angles between feature axes in PC space. The plot is used to assess the dependencies among the features
ercentiles of the parameter PDE’s) in the cluster analysis. Small angles (dark blue) and large angles (bright yellowish) indicate

strong dependency between individual features. This can be seen for instance between F3-F6; F32-F39 and F61-F69, with the ex-

ception of F67 (F61 is inversely dependant from F62-F64). The strong inter-feature dependencies result in a weak cluster separa-
880 tion bevond PC6. Thus, PC7 to 12 are not shown in Fig. 11
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