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Abstract. The quantification of 3D structural shapes is a central goal across multiple scientific disciplines, serving purposes 

such as image analysis and the precise geometric characterization of objects. This study proposes a methodology for the 

shape quantification based on a set of geometrical parameters in 2D sections of 3D geological shapes and establishes a set of 

synthetic regular geometries as benchmark models in 3D geomodeling approaches. The proposed methodology is demon-20 

strated on a number of simple geometric bodies and the benchmark models to assess their geometrical dis-/similarity. The 

dimensions of the structures are measured perpendicular and vertically to their horizontal main axes on a fixed amount of 

cross sections. Furthermore, gradient and curvature measurements on these cross sections are conducted. A subsequent mul-

ti-step data analysis provides insight into the main geometrical characteristics of the structures and visualizes differences 

between various datasets: Analysis of extension measurements reveals the anisotropy of structures, the existence of over-25 

hangs and the character of the top surface of an investigated structure. Analyzing the gradients and curvatures offers infor-

mation on the slopes of the lateral walls of the structure and its sphericity as well as top surface. Kullback-Leibler divergence 

is utilized to quantitatively compare individual parameter distributions. Dimensionally reduced cluster analysis groups and 

systematizes input structures based on the combined statistical parameters and serves for the identification of benchmark 

models showing large geometrical similarity. It is expected that the methodology and set of benchmark models will aid in 30 

advances to model, analyse and compare subsurface structures based on sparse data, as our framework can be used for an 

initial structural approximation prior to modeling, for the setup of the interpolation method and for the falsification of proba-

bilistic model realizations after interpolation. 
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1 Introduction 

1.1 Shape quantification and comparison – previous studies and gaps in current researchPrevious studies 35 

The quantitative comparison of three-dimensional (3D) objects plays a crucial role in various scientific fields, including 

geology, computer science and engineering (see e.g. Cardone et al., 2003; Celenk, 1995; Wellmann and Caumon, 2018). 

Shape quantification aims at the numerical characterization of the geometry of objects, with their dis-/similarity not solely 

being a mathematical metric but also being dependent on the specific context (Laga et al., 2019). Accurate shape quantifica-

tion independent of the objects’ orientation is essential for applications such as geological modeling, resource management 40 

and structural analysis, where understanding the geometric properties of objects can inform decision making and enhance 

predictive capabilities. In computer science, numerous methodologies using 2D cross sections have emerged. For instance, 

Celenk (1995) describes a method involving the alignment of equally-spaced cross sections in two objects via the computa-

tion of their respective horizontal main axes. Subsequently, sections are compared through the computation of an averaged 

shape difference in four directions along the main axes. Recent studies on 3D object recognition using 2D sections apply 45 

neural networks: Dumitru et al. (2022) feed 2D input into Convolutional Neural Networks, while Dumitru & Gorgan (2023) 

enhance this concept by relying on Vision Transformer-based Neural Networks.  

The geometrical parameters determined in our study have been applied in variable extent before to describe the shape of 

objects. Gradient data has been utilized various times: Goh & Chan (2003), for example, propose a shape descriptor derived 

from the gradient vector field of shapes in binary images. Meanwhile, Ettl et al. (2007) present a method to reconstruct ob-50 

ject shape by spatial integration of gradient data, and Çapar et al. (2009) define two gradient-based shape descriptors being 

applicable to binary and grayscale images. Curvature data have been employed for example by Canul-Ku et al. (2019), pro-

posing two 3D shape descriptors based on a Multi-View approach of curvature features to classify archaeological artifacts. 

Meanwhile, Mousa (2011) defines a geometric descriptor based on the principle curvature distribution around the surface of 

objects and Muzahid et al. (2021) approach 3D object recognition by using the principal curvature directions of 3D objects 55 

as geometric inputs for a 3D Convolutional Neural Network. In contrast to gradients and curvatures, the direct use of meas-

urements of extent/distance has been less common (e.g. Novotni & Klein, 2001). 

In general, many comparative approaches for 3D bodies are predominantly used in medical fields, where (automatic) poly-

gon comparison and pattern recognition play crucial roles in diagnostics: Meyer-Baese & Schmid (2014) provide an exten-

sive overview on methodologies used, for example specialized neural networks or fuzzy clustering algorithms. These meth-60 

ods are also being applied in various ways within geological and geophysical studies (e.g. Demicco & Klir, 2003; Hillier et 

al., 2021; Liu et al., 2023; Sun & Li, 2015). An alternative way to describe and compare 3D bodies is to use 3D Fourier 

analysis, as shown by many studies from various scientific fields: Kindratenko et al. (1996) apply it to describe the shape of 

particles from microscope images. Meanwhile, Li et al. (2000) have studied the irregularity of graphite nodules in cast iron 

and Drevin (2006) has used Fourier transform results to determine the sphericity of particles. Another approach to the prob-65 
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lem of shape comparison is the 3D shape based object class recognition directly from point cloud data, as applied for exam-

ple by Wohlkinger & Vincze (2011).  

Aside from the approaches mentioned above, advances for the comparison of geological models are mainly related to uncer-

tainty assessment and quantification within geological models. Schweizer et al. (2017) apply the Jaccard distance and the 

normalized city-block distance as measures for model dissimilarity, while Suzuki et al. (2008) propose the usage of the 70 

Hausdorff distance for the same purpose. Lindsay et al. (2013) developed an approach for model comparison having some 

similarities to our contribution: To determine the similarities between 101 realizations of a 3D composite geomodel based on 

the same (perturbed) input dataset, a set of geometrical “geodiversity” parameters (e.g. formation depth, volume, contact 

surface curvature) was calculated on all stratigraphic units of the case study. The resulting datasets were then analyzed in 

their ranges to determine endmember model realizations. Furthermore, principal component analysis was employed to de-75 

termine which geometrical characteristics contribute most to spatial uncertainty and to detect realization outliers for the 

combined geodiversity metrics. 

Shape quantification can be complex when dealing with static 2D images of 3D bodies (see Laga et al., 2019), but when 

rotatable objects in 2D or 3D are available, basic geometrical parameters can be applied. This is commonly proposed in 

material science, where studies focus on sand grain analysis. In these studies, the range of shape parameters in 2D and 3D 80 

include (but are not restricted to) principal dimensions, volumes, aspect ratios, radii, sphericities, convexity, circularity, 

roundness and compactness (Altuhafi et al., 2013; Cox and Budhu, 2008; Zhao and Wang, 2016), that partially describe 

similar structural characteristics. Furthermore, the shapes of aggregate particles in building materials have been analyzed 

using parameters like sphericity, angularity, aspect ratios, gradients and radius indices (Al-Rousan et al., 2007), and volcanic 

cinders have been assessed looking at elongation, roundness, and roughness (Nie et al., 2023). Similar analytical approaches 85 

can be valuable to study the geometry of subsurface structures, although at much larger scales and a higher structural com-

plexity: The shape of individual geo-bodies can be of interest for resource exploration and storage of materials like for in-

stance nuclear waste. However, geoscientific studies applying similar parameters as used in the mentioned material-scientific 

studies are rare: Gardoll et al. (2000), for instance, determine the aspect ratio, blockiness, elongation, compactness, complex-

ity, roundness, spreadness and squareness of geological bodies from map data to assess the exploration potential for orogenic 90 

ore deposits. This is a highly specialized application though, usable for shallow horizontal data, but being inapplicable to 

(sub-)vertical input data. Instead of relying on geometrical parameters for the shape quantification of a single geo-object, in 

geosciences advances for the shape comparison of structural models are more common. These are mainly related to uncer-

tainty assessment and quantification within geological models and often approached with distance metrics. For instance, 

Schweizer et al. (2017) apply the Jaccard distance and the normalized city-block distance as measures for model dissimilari-95 

ty, while Suzuki et al. (2008) propose the usage of the Hausdorff distance for the same purpose. In contrast, Lindsay et al. 

(2013) developed an approach for model comparison not relying on such distance metrics: To determine the similarities 

between 101 realizations of a 3D composite geomodel based on the same perturbed input dataset, a set of geometrical “geo-

diversity” parameters (e.g. formation depth, volume, contact surface curvature) are calculated on all stratigraphic units. The 
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resulting datasets are analyzed in their ranges to determine endmember model realizations. Furthermore, principal compo-100 

nent analysis is employed to determine which geometrical characteristics contribute most to spatial uncertainty and to detect 

realization outliers for the combined geodiversity metrics. Despite the lack of geoscientific studies approaching shape quanti-

fication with simple geometrical parameters, the necessity of basic shape assessment in geomodeling is recognized as most 

commonly used geomodeling software are capable of obtaining simple geometrical properties like surface areas, aspect rati-

os and volumes from modeled 3D elements. However, these functionalities are error-prone determining basic geometrical 105 

properties in varying directions, like the extent along the horizontal main axes of a given irregular structure – a property of 

interest for the exploration of geo-bodies for storage purposes. An example of such an application can be found in the stor-

age of high-level nuclear waste: In Germany, currently, intrusive salt bodies with varying internal structures as well as crys-

talline intrusives potentially exhibiting lateral zonation are considered as potential storage sites (BGE, 2020). 

In addition to these limitations in the analysis of 3D geo-bodies, geometrical characteristics of structures are hard to quantify 110 

prior to geomodelling as well, when input data is most commonly available in 1D (i.e. boreholes) and/or 2D (e.g. seismic 

sections). At this early stage within a modeling workflow, conceptual models are established based on sparse data, local 

geological knowledge like the regional geological history and universal geological knowledge such as common laws and 

principles (Parquer et al., 2025) but also defined spatial factors known to be related to certain variables of interest like re-

sources (Gardoll et al., 2000). The identification of important geometrical features and the establishment or selection of an 115 

appropriate conceptual model can have a considerable impact on how realistic/reasonable model realizations are, thus influ-

encing decision-making and the accuracy of predictions (Bond et al., 2007). Therefore, approaches to geometrically quantify 

available input data and to compare datasets to established conceptual models are valuable.  

Despite these advancements in various directions, distinct gaps remain in current research. Many existing methodologies 

focus on shape characterization for image recognition, while few concentrate on the exact geometrical characterization for 120 

robust comparison of 3D structures. This study aims to address this challenge by proposing a novel methodology for the 

quantitative description, comparison and systematization of explicitly modelled 3D geometries using a set of geometrical 

parameters. The algorithm is Given this identified current lack of analytical capabilities for the geometrical assessment of 

both unmodelled input data as well as modeled structures whose evaluation shall be direction-dependent, this study proposes 

a novel methodology for the quantitative description, comparison and systematization of datasets using a set of geometrical 125 

parameters. While the method development will be visualized based on explicitly modelled 3D geometries, it can be applied 

to lower dimensional data as well. In the present study, the algorithm is applied to a set of 36 3D geometries approximating 

subsurface structures of varying rock types, intended to act as benchmark models in geomodeling approaches. By demon-

strating the quantification algorithm on these 3D bodies called “standard geometries”, their geometrical dis-/similarity is 

analyzed. Furthermore, the methodology has been applied to a small set of basic 3D geometries (a cube, an ellipsoid, a 130 

prism, a pyramid and a sphere) with distinctive and expected divergence of geometrical properties. In what follows, an ex-

tension of the concept of “standard geometries” initially described by Carl et al. (2023) is developed as a geometrical sys-

tematization to collect and catalogue subsurface geometries of the potential host rocks in the German site selection for a 
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nuclear waste repository (halite rock, claystone and crystalline rocks) is reviewed, adapted and extended. Please note that the 

classification is purely geometric, even though the terminology of subdividing categories can also be found in topological 135 

considerations (see for instance Thiele et al., 2016a, b). For more details on the classification, please refer to Carl et al. 

(2023). For real word examples of the standardized geometries, we refer to the publications mentioned in the respective parts 

of the following paragraph.  

Claystones and shales are clastic sedimentary rocks composed of at least 50 % particles smaller than 4 µm (e.g. Picard, 

1971). Since all clastic sediments Claystones and shales are clastic sedimentary rocks which are commonly initially deposit-140 

ed conformably onto the underlying strata (Selley, 2000), the most typical geometry of claystone/shale sediments is con-

formable layering (; see also Fig. 1, upper section). Nonetheless, tThe appearance of these conformable layers can vary con-

siderably: tilting and folding of a flat-lying structure can result in a range of geometries varying from a flat layered appear-

ance that remain generally conformable (see Fig. 2, 4th and 9th row for potential visual representation). By contrast, faulting, 

erosion and folding can produce unconformable geometries (see Fig. 2, 3rd and 4th row). Lateral stratigraphic pinchout is 145 

conformable proximally but results in an unconformity at its tip (see Fig. 2, 4th row). Salt rock (i.e., halite) is initially depos-

ited conformably as an evaporitic sediment. Beyond the undeformed, concordant, flat-layer geometry, halite structures are 

mainly categorized according to two principles: The most common classification is based on the question whether a structure 

remained concordant in respect to its overlying rocks or intruded into its overburden (Hudec & Jackson, 2007; see Fig. 1, 

middle section). Following this systematization, salt anticlines, pillows and rollers are categorized as concordant (see Fig. 2, 150 

1st, 5th and 6th row), while salt stocks, sheets and walls are intrusive bodies (see Fig. 2, 7th to 11th row). In addition, a supple-

mentary subdivision based on the length-to-width ratio of salt bodies is discussed by some authors (e.g., Hudec et al., 2011): 

Structures showing a length-to-width ratio higher than 2 in map view (thus being considerably anisotropic) are being defined 

as anticlines or walls, respectively. In contrast, rather isotropic geometries with a length-to-width ratio smaller than 2 are the 

pillows, stocks and, at least in their early evolutionary stages, sheets. An additional aspect to consider when classifying salt 155 

structures is whether the halite is allochthonous or autochthonous. Sheets are the only structural type categorizable as the 

former: If the bulb of a stock or wall is subhorizontally oriented or moderately dipping above the autochthonous salt source 

layer, this rock body can be defined as a salt sheet (Hudec and Jackson, 2006). Crystalline rocks considered in the context of 

the German site selection are both plutonic rocks and as well as high‑grade metamorphic rocks (migmatites and gneisses). 

As the high‑grade metamorphic rocks originate from a wide array of protoliths, resulting in diverse geometries, the estab-160 

lishment of a single, coherent classification for both groups is difficult. For instance, orthogneisses and some migmatites 

originate from plutonic protoliths such as granitoids and exhibit structural characteristics similar to their igneous predeces-

sors. By contrast, paragneisses and the remaining migmatites derive from various sedimentary sources. Their current shape 

depends not only on the geometry of the original rock body but also on the specific mineral assemblage of the protolith and 

the pressure‑temperature conditions deformation history experienced during metamorphism. Overall, most high‑grade met-165 

amorphic rock bodies in the German subsurface are laterally bounded by either plutonic intrusions or fault zones and their 

top is either bound by unconformities or represents the present-day topography in most cases. Consequently, for the purposes 
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of our geometric approximation, we treat them as discordant rock volumes of varying shape and size (see Fig. 1, lower sec-

tion and Fig. 2, 2nd, 6th and 8th to 9th row). For plutonic rocks, our classification combines the shape of the bodies with their 

relationship to the overlying strata (concordance or discordance) (Philpotts & Ague, 2009; see Fig. 1, lower section). Among 170 

discordant bodies with varying shape, two size‑based categories are distinguished (Fig. 2, 2nd, 6th and 8th to 9th row): batho-

liths (exceeding 100 km² in areal extent) and stocks (smaller than 100 km²). Additionally, cylindrical discordant bodies, 

mainly representing feeder pipes for ascending magma, are recognized (Fig 2, 10th row). Moreover, two kinds of tabular 

geometries can be distinguished: discordant dikes and predominantly concordant sills (Fig. 2, 3rd and 8th row). Beyond these, 

three concordant geometries are noted: laccoliths (characterized by a roughly flat base and a convex roof), lopoliths (defined 175 

by a roughly flat top and a shallow convex base), and phacoliths (lens‑shaped bodies lacking any flat boundaries; Fig. 2, 5th 

row). 

Building on these classifications, a collection of geometrical end members (standard geometries) that approximate the shape 

variations of the rock types was set up by Carl et al. (2023). The geometries are intended to act as open source benchmark 

models for structural geomodeling, as realistic geological models depend on a clear definition of the rock type and the 3D 180 

geometries of evaluated rocks. In its initial form, each of the geometrical end members per potential host rock type was rep-

resented by a single version of a 3D body. However, as a large share of these initial end members can be represented by a 

multitude of possible regular geometrical representations, we designed alternative realizations after reviewing literature: 

Subsurface salt structures have been created after Hudec & Jackson (2007), Hudec et al. (2011) and Jackson & Talbot 

(1991), claystone geometries have been inspired by Selley (2000) and Nichols (2009), and crystalline rock geometries are 185 

based on Markl (2015) and Winter (2013). Additional inspiration was drawn from studying open source 3D models of real 

subsurface structures (Dutch subsurface models from TNO, available at https://www.dinoloket.nl/en/subsurface-

models/map, and Australian subsurface models from Geoscience Australia, available at https://portal.ga.gov.au/3d). The 

standard geometries were created in blender (https://www.blender.org/) and are visible in Fig. 2. Some standard geometries 

are non-unique for rock types but can be used in different environments, e.g. stocks/batholiths for salt and crystalline intru-190 

sions. This is indicated in the model titles, as in these cases, the names of different structures are separated by an underscore. 

Blanks in model names are replaced with a period, and in brackets, additional geometrical information are given in some 

cases, such as the lateral character of the top of a structure (e.g. hourglass-shape) or the roundness of the top surface (round-

ed or flattened). 

 195 

Formatted: Superscript

Formatted: Superscript

Formatted: Superscript

Formatted: Superscript

Formatted: Superscript

Formatted: Superscript



7 

 

 

Fig. 1: Geometrical systematization of the rock types considered for the establishment of the catalogue of benchmark models 

("standard geometries"). Adapted after Carl et al. (2023) 
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Fig. 2: Overview of regular synthetic models used in this study. The structures 

(apart from the cube, ellipsoid, prism, pyramid and sphere) are meant to repre-

sent geometrical end members of different rock types (“standard geometries”). 

For information on the naming convention, please refer to the end of the chapter 

“Previous studies”Sect. 1.1. The size of the models was chosen arbitrarily 
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1.2 Geological description of the example model “Altenbruch-Beverstedt” 200 

The methodology presented herein is illustrated exemplarily on the mesh of the intrusive salt structure Altenbruch-

Beverstedt (Lower Saxony, Germany; see Fig. 3). Tectonically, it is located within the roughly N-S striking Glückstadt Gra-

ben, developing since the Triassic (Scheck-Wenderoth et al., 2008). The considerably anisotropic salt wall is the result of a 

complex evolutionary history especially throughout the Mesozoic, as variations in the tectonic regime repeatedly led to shifts 

from subsidence to uplift in the sub-basins and grabens of the North German Basin (Maystrenko et al., 2008; Scheck-205 

Wenderoth et al., 2008; Stollhofen et al., 2008). Within the Glückstadt Graben, the largest salt walls of the German subsur-

face can be found (Scheck-Wenderoth et al., 2008). The structure Altenbruch-Beverstedt represents a fitting example model 

for the methodology presented herein, due to its anisotropic, yet complex shape. The anisotropy visualizes well the cross 

sections created in the first part of the segmentation approach, while the sinusoidal shape illustrates well the segmented na-

ture of the second set of sections (see Sect. 2.1). 210 

 

Fig. 3: 3D model of Altenbruch-Beverstedt, taken from BGR et al. (2022). Coordinate system: EPSG:4647  
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1.2.3 Content, and  motivation and distinction of this study 215 

Our The proposed methodology allows for the quantitative description, comparison and systematization of explicitly mod-

elled structures and lower dimensional input data using a set of geometrical parameters. The horizontal and vertical dimen-

sions as well as gradients and curvatures of 3D geometries are measured on vertical cross sections oriented perpendicular to 

the two horizontal main axes of the structures. For 2D inputs (such as 2D geophysical cross sections), alignment of sections 

is omitted. The resulting datasets of these parameters are analyzed statistically, providing insight into the main geometrical 220 

characteristics of the input structures: the data analysis yields information about the anisotropy of structures, the potential 

existence of overhangs, the sphericity and the character of the lateral walls as well as top surface of evaluated structures. 

Furthermore, K-means clustering is used to systematize the datasets based on the measured parameters. The Given 3D input, 

the setup of cross sections perpendicular to the main axes ensures, that the input structures are covered thoroughly with regu-

lar-spaced measurements that follow the 3D contours of the respective geometry. Our method cannot be used to quantitative-225 

ly compare implicit representations of structures. The method is applied to the standard geometries established as well in this 

study, that will be publicly availableserving as benchmark geometriess for structural geomodeling of geo-bodies. Applying 

the method to these models serves two purposes: While the functionality of the approach is validated, we also assess quanti-

tatively, whether the developed benchmark models are geometrically dissimilar or whether some of them can be consolidat-

ed for their purpose. Our quantification method represents a rather simplistic approximation approach for the quantitative 230 

comparison of 3D structures and lower dimensional datasets that can reproduce the main geometrical characteristics of input 

datasets fast but also enhances the interpretability of results, making them accessible to a broader audience. Our method 

cannot be used to quantitatively compare implicit representations of structures directly from a scalar field, though.We creat-

ed our quantification method in its simplistic, approximating form in spite of the availability of numerous other methodolog-

ical approaches for the quantified comparison of 3D structures. The algorithm can reproduce the main geometrical character-235 

istics of input datasets fast but also enhances the interpretability of results, making them accessible to a broader audience. 

The significance of the benchmark models lies in their ability to facilitate the validation and comparison of different meth-

odologies within geomodeling approaches. 

As recognized in Sect. 1.1, similar approaches are rare in general and particularly in geosciences as quantitative approaches 

commonly aim at uncertainty assessment. In computer sciences, however, Celenk (1995) describes a method involving the 240 

alignment of equally-spaced cross sections in two objects via the computation of their respective horizontal main axes and 

subsequent section comparison. However, this method is more approximating compared to the proposed approach, as sec-

tions are not segmented to align with the contours of the structures.  

The proposed method is intended to be utilized in a geomodeling workflow at different stages. 1) Given a sparse dataset 

including for instance borehole data and 2D seismics of limited quantity, the method can be initially used for a first structural 245 

approximation of a targeted geo-body. In the specific example of the German site selection, where most structurally complex 

bodies have already been excluded from the considerations (BGE, 2020), this approximation can be achieved using the set of 
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standard geometries that is established in this study. 2) Structural conceptualization and model approximation can also facili-

tate hyper parameter selection for subsequent interpolation (Wellmann and Caumon, 2018). 3) After the creation of a set of 

stochastic model realizations, our quantification method and the benchmark models can be applied again in combination 250 

with the input data to limit the realizations to the geometrically reasonable ones. However, it has to be noted that this step 

would be rather time-consuming for large amounts of realizations. Here, the framework for automatic consistency checking 

of 3D geological models recently introduced by Parquer et al. (2025) represents a more sophisticated approach. Still, the 

proposed framework could reveal model realizations not respecting the conceptual model, which could prompt questions 

about the assumed geological situation and/or subjective bias, as studied for instance by Bond et al. (2007, 2015). 4) Lastly, 255 

the proposed framework can be used for the direction-dependent quantification of modeled structures to assess their potential 

capacity for material storage (BGE, 2023).  

The paper is structured as follows: Sect. 2 outlines the methodology employed in this study, detailing the developed segmen-

tation and measurement algorithm. Sect. 3 presents the results of applying the methodology to the benchmark models and a 

single subsurface dataset, while Sect. 4 discusses the implications of these findings in the context of existing research. Final-260 

ly, Sect. 5 concludes with future research directions. 

The paper is structured as follows: Sect. 2 outlines the methodology employed in this study, detailing the developed segmen-

tation and measurement algorithm. Sect. 3 presents the results of applying the methodology to the benchmark models and a 

single subsurface dataset, while Sect. 4 discusses the implications of these findings in the context of existing research. Final-

ly, Sect. 5 concludes with future research directions.In computer science, numerous methodologies using 2D cross sections 265 

have emerged.For instance, Celenk (1995) describes a method involving the alignment of equally-spaced cross sections in 

two objects via the computation of their respective horizontal main axes. Subsequently, sections are compared through the 

computation of an averaged shape difference in four directions along the main axes.Aside from the approaches mentioned 

above, advances for the comparison of geological models are mainly related to uncertainty assessment and quantification 

within geological models. Schweizer et al. (2017) apply the Jaccard distance and the normalized city-block distance as 270 

measures for model dissimilarity, while Suzuki et al. (2008) propose the usage of the Hausdorff distance for the same pur-

pose. Lindsay et al. (2013) developed an approach for model comparison having some similarities to our contribution: To 

determine the similarities between 101 realizations of a 3D composite geomodel based on the same (perturbed) input dataset, 

a set of geometrical “geodiversity” parameters (e.g. formation depth, volume, contact surface curvature) was calculated on 

all stratigraphic units of the case study. The resulting datasets were then analyzed in their ranges to determine endmember 275 

model realizations. Furthermore, principal component analysis was employed to determine which geometrical characteristics 

contribute most to spatial uncertainty and to detect realization outliers for the combined geodiversity metrics. 
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2 Methods 

2.1 Segmentation and measurement algorithm 

For our approach, we aimed at a high grade of automation and easy integration in a model analysis process. The method 280 

requires the dataset to either be a mesh with extractable vertices or a data frame of vertex coordinates themselves (the system 

currently only supports .vtk file formatsthe input file format has to be changed if it is not .vtk). In what follows, the function-

ality of the method is explained given a 3D input mesh, but skipping the cross-section generation, the algorithm is also usa-

ble for existing cross-sectional data (e.g. geophysical data). 

To retrieve characteristic statistics, a geometrical segmentation algorithm (see e.g. Shamir, 2008) has been established, 285 

which first rasters discretizes the 3D model into 22 equidistant cross sections with the normal direction parallel to the longer 

horizontal axis of the mesh´s bounding box. As measurements are conducted perpendicular to the two horizontal main axes 

of the structures, two sets of cross sections need to be determined separately. Orientation of sections normal to the longitudi-

nal axis of the structure (first direction) have been determined by a minimization of the cross-sectional area, as sections are 

sequentially rotated (Stephenson, 2018; Fig. 4, Part 1). The cross sections normal to the first set are set up by rastering dis-290 

cretizing the established sections vertically, then first connecting raster lines of consecutive sections and lastly the resulting 

segments (Fig. 34, Part 3). After their respective setup, the cross sections of both directions are corrected automatically 

and/or manually for artifacts (Fig. 34, Part 2). Extensional measurements are conducted on each cross section at 5 equidistant 

transects (Fig. 34, Part 4). Since the very first and last cross section of both directions are excluded from the measurements 

as they would (undesirably) slice irregular polygons several times, 20 intervals are considered for every input structure. This 295 

results in 100 measurements being conducted respectively for each of the two horizontal parameters as well as 200 values for 

the vertical extent. Please note, that the assumption that a cross section of the first set is perpendicular to the longitudinal 

horizontal main axis only applies to the center point of the given section. The same limitation applies to a given cross sec-

tional segment (trapezoidal segment) of an orthogonal section and the secondary horizontal main axis. 

In addition to the extensional measurements, gradient and curvature calculations are carried out (see Fig. 34, Part 4). Both 300 

parameters are determined on all cross sections between consecutive vertices of a cross section. The curvature in 2D is de-

fined as the reciprocal of the circumradius of a triangle. Therefore, it is calculated between three consecutive vertices in 

either the xz- or yz-plane, by first determining the side lengths (a, b and c) of the triangle between the points, then the semi-

perimeter of the triangle and the area through Heron´s formula, before calculating the curvature as the reciprocal of the cir-

cumradius of the triangle through: 305 

𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =
4 ×area

a ×b ×c
           (1) 

The selected method measuring the lateral extents of input meshes normal to their horizontal main axes (see Fig. A1a in 

appendix) is advantageous over approaches analyzing an input body using parallel sections as applied in various medical 

imaging techniques like e.g.for instance MRI (see e.g. Meyer-Baese & Schmid, 2014). Such an approach would have result-
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ed in a dissimilar amount of output measurements for the two horizontal extents for many input structures as well as for 310 

different structures overall, both in case of a uniform regular grid for all datasets (Fig. A1b&e) as well as an individual regu-

lar grid per dataset (Fig. A1c&f). Only the usage of an anisotropic grid, depending on the bounds of the input mesh, would 

have resulted in an equal amount of measurements per horizontal direction (Fig. A1d&g). However, using a supplementary 

grid would have generally resulted in the problem, that irregular structures would have often been cut several times along a 

horizontal measuring line. This would have created subordinate polygons that are completely disconnected from each other 315 

(see red lines in Fig A1b).  

In contrast, covering every input structure with a constant number of measurements as also applied similarly by Celenk 

(1995) comes with an advantage and a disadvantage: while it ensures that the quantification of input datasets with our meth-

od is scale-independent as datasets of different structures have the same amount of data, the geometrical spatial variability of 

larger bodies might not be captured equally well as the shape of smaller ones. The potential impact of this matter is currently 320 

being analyzed in a follow-up study that applies the methodology to a database of over 300 structural models of subsurface 

structures from various geological settings. The question whether structures shall be represented by equal or dissimilar data 

quantities also concerns the gradient and curvature data: Orthogonal sections are created from a set of 19 trapezoidal seg-

ments (i.e. 40 vertices), while cross sections in the first direction are based on a varying, most often higher number of verti-

ces. As gradients and curvatures are being calculated between neighboring vertices, the potentially larger edges between 325 

vertices in the orthogonal sections lead to a less-rounded appearance of the cross sections, directly affecting the values of 

both parameters. 
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Fig. 34: Pseudocode of the algorithm that creates the cross sections of both directions and measures the dimensional extents, gradi-

ents and curvatures on these sections. For further information, see chapter 2 330 



15 

 

2.2 Data analysis 

The individual geometrical measurements were combined into a database and, analyzed by the first five three statistical mo-

ments, standard deviation and median and visualized as histograms and cumulative distribution functions (CDF´s). Compara-

tive analyses of data distributions and a cluster analysis were carried out on the measured data, to demonstrate that the tested 

3D bodies can be quantitatively compared based on the statistical distributions of geometrical properties and to assess their 335 

dis-/similarity.  

Semi-quantitative comparison of histograms was done for the statistical data, analyzing the vertical extension measures, 

combined horizontal extension measurements, the gradients and curvatures. For gradient data, the frequency of infinite val-

ues was counted separately, since they represent vertical segments between two consecutive vertices. As those values cannot 

be plotted together with the remaining data as a separate bin, their frequency was visualized as a horizontal line. For gradi-340 

ents and curvatures, overflow bins were established: for the gradient data at the 5th and 95th percentile and for the curvatures 

only at the 95th percentile. This aimed at facilitating the interpretability of the histograms, since for most datasets, a small 

percentage of values (<5%) was considerably larger than the rest, thereby spreading the measurements to a large number of 

additional histogram bins. The Kullback–Leibler divergence (Kullback and Leibler, 1951) was calculated on normalized data 

between the individual distributions of the geometrical parameters of the input models, for quantification of the similarity 345 

between the structures. Cluster analysis followed data normalization to a range of -1 to 1 and principal component analysis 

(PCA; see Jolliffe, 2002). As variables (“features”) for PCA, 20 percentiles of the probability density functions (PDF´s) of 

the combined horizontal data, vertical data, gradients and curvatures were chosen. As the first two principle components only 

explained 40% of the variance, a matrix plot for the principal components 1 to 12 was createdassessed initially, to cover 90% 

of the variance. A feature angle matrix was then used to reduce the number of principal components in the cluster matrix 350 

plot. The number of clusters used in the K-means clustering algorithm was determined using an elbow plot and the silhouette 

score.  

3 Results 

Results of the segmentation and measurement algorithm as well as the data analysis are demonstrated using a sphere and a 

real, explicitly modeled subsurface salt body: the intrusive structure “Altenbruch-Beverstedt” from Lower Saxony, Germany,  355 

(model taken from BGR et al., (2022). Subsequently, the results of the cluster analysis are presented. 

3.1 Segmentation and measurement algorithm  

The initial subdivision of the input mesh (Fig. 4a 5a & b) is followed by the stepwise rotation of the initial cross sections. 

The respective rotation step showing the minimal cross-sectional area is optimally oriented normal to the longitudinal main 

axis of the structure (first direction). Optimal orientation of all sections of the first direction of the sphere corresponds to 0° 360 

rotation, unlike when running the algorithm on an irregular mesh like Altenbruch-Beverstedt. This is the case due to the 
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regularity and symmetry of all test models of this study. After subsequent artifact correction (Fig. 4c 5c & d), the second set 

of cross sections is assembled from trapezoidal segments (for illustration, a subset of sections is shown in Fig. 4e 5e & f).  
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Fig. 45: Visual representation of the segmen-

tation and measurement algorithm for a 

sphere model (left column) and the German 

intrusive salt structure “Altenbruch -

Beverstedt” (right).  

a & b) initial segmentation of the input 

meshes.  

c & d) Plotly.dash app for vertex-order 

correction.  

e & f) Subset of oOrthogonal cross sections.  

g & h) Coverage of input structure with 

cross sections (top view) 

i & j) Example of extensional measurement 

results  
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Following potential artifact corrections of the orthogonal sections, both sets of cross sections are finalized (Fig. 4g 5g & h) 365 

and extensional measurements as well as gradient and curvature calculations are carried out (Fig. 4i 5i & j). The computa-

tional power required by the algorithm is low (runtime without varying artifact corrections: ca 60 s, using as the CPU an 

AMD Ryzen 7 PRO 5850U at max. 50% capacity at 3.5 GHz speed and the integrated GPU at 0.6 GB usage).  

3.2 Data analysis 

The results of the first analysis step, the first five three statistical moments, standard deviation and median per parameter and 370 

the data visualized as histograms and CDF´s, are seen in Table 1 and Fig. 56, respectively. The size of the sphere was chosen 

arbitrarily, as the subsequent Kullback-Leibler divergence and cluster analysis are based on normalized data. Both the statis-

tical moments for the sphere and the distributions in Fig. 5 6 (left column) reveal differences for the three parameters, alt-

hough individual extents should be the same in all three dimensions, if a sphere would be measured equally in all directions. 

This is due to compromises of the algorithm ensuring its universal applicability. For Altenbruch-Beverstedt, the large vari-375 

ance and standard deviation of the combined horizontal data and the difference between the mean values of both individual 

horizontal parameters reflect the strong anisotropy of the structure, while the statistics for the vertical data indicate a moder-

ate variation in vertical measurements.  

Table 1: a) First fivethree statistical moments, standard deviation and median per parameter for the sphere model (note: the di-

mensions of the sphere are chosen arbitrarily). b) First fivethree statistical moments, standard deviation and median per parame-380 
ter for the model of the real subsurface structure (Altenbruch-Beverstedt). Statistics for Altenbruch-Beverstedt reflect the strong 

anisotropy of the structure 

(a) sphere mean [m] variance [m] std_dev [m] skew median [m] 

Horizontal length 14 13 4 -0.4 14 

Horizontal length  

orthogonal 

18 4 2 0 18 

Vertical length 14 13 4 -0.5 15 

Horizontal data combined 16 13 4 -0.8 17 

 

(b) Altenbruch-Beverstedt mean [m] variance [m] std_dev [m] skew median [m] 

Horizontal length 3825 635352 797 -0.2 3795 

Horizontal length  

orthogonal 

48644 8956682 2993 -2.2 49845 

Vertical length 4766 486158 697 -2.9 4856 

Horizontal data combined 26235 5.07E+08 22516 0.02 21696 

 

Gradient and curvature histograms of the example cases are visible in Fig. 67. For the sphere, the distribution of the gradient 385 

histogram is symmetric (Fig. 6a7a). The curvature histogram (Fig. 6c7c) shows a prevalence of very small values and subor-

dinate maxima around 0.1, 0.2 and in the overflow bin that contains 394 values (5% of all data) above 0.37. For Altenbruch-
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Beverstedt, the gradient distribution is asymmetric and the number of infinite gradients is higher (Fig. 6b7b). In comparison 

to the curvature distribution of the sphere, the curvature data (Fig. 6d7d) is monomodal apart from the overflow bin.  

In general, aAnalyzing the data distributions of a structure visually already reproduces distinct geometrical characteristics of 390 

an input dataset. The distribution of the combined horizontal data indicates whether a pronounced anisotropy is present for 

an analyzed structure: if the data is separated into two clearly distinguishable subordinate distributions (see Fig. 108a), the 

geometry is considerably anisotropic (the farther apart the two maxima, the more anisotropic a body is). Caution is advised 

for a distribution with two close maxima (Fig. 108b): this could be the consequence of the inflated extent in the orthogonal 

direction (see aboveSect. 4.2). Analyzing the combined horizontal data and the vertical data together reveals whether a struc-395 

ture shows substantial variations in its horizontal extent over its vertical range. Such a shape, in the subsurface more often 

present as overhangs rather than as upward tapering, is indicated by the simultaneous presence of multimodal distributions 

for both parameters (Fig. 108c & d). The vertical data distribution also characterizes the top surface of a geometry: if the 

distribution is monomodal, with a) the maximum being the bin representing the highest measurements, and b) the frequency 

in lower bins being substantially smaller, then the presence of a flat top surface is indicated. The existence of a flat top sur-400 

face can be verified by analyzing the gradient and curvature data: a high frequency of very small measurements for both 

parameters supports such an analysis (Fig. 108e-g). Gradient data also indicates the steepness of lateral surfaces of a body: as 

high and infinite gradient data stem from steep to vertical faces of a structure, the presence of steep-dipping lateral surfaces 

can be recognized (Fig. 108h). Combining the inferences from analyzing top and lateral surfaces therefore provides insight 

into the overall sphericity of an input dataset: a more spherical structure is represented by larger quantities of intermediate 405 

gradient measurements and of moderate to high curvature data (Fig. 108i & j).  
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Fig. 56: Data distribu-

tions and cumulative 

distribution functions 

(CDF´s) for the exten-

sional parameters. Left 

column: sphere, right 

column: Altenbruch-

Beverstedt.  

a & b) Horizontal data 

from the first direction.  

c & d) Horizontal data 

from the orthogonal 

direction.  

e & f) Combined horizon-

tal data.  

g & h) Vertical data  
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Fig. 67: Gradient and curvature data for the sphere (a & c) and Altenbruch-Beverstedt (b & d). Amount of data in overflow bins: 

Gradient diagram (sphere) 384 values (4.8% of all data), Curvature diagram (sphere) 394 values (5%); Gradient diagram (Al-410 
tenbruch-Beverstedt) 112 values (4.6%); Curvature diagram 101 values (4.1%) 
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Fig. 108: Analysis of data distributions to 

reproduce geometric characteristics of input 

models. Please compare with model appear-

ances in Fig. 2. 

a) Combined horizontal data of 

“wall(highly.anisotropic_hourglass-

shape_rounded)”, reflecting strong anisotro-

py. 

b) Combined horizontal data of “batho-

lithV3” incorrectly indicating slight anisot-

ropy. 

c) & d) Combined horizontal data and verti-

cal data of “sheet(hourglass-

shape_rounded)” indicating presence of 

overhangs.  

e)-g) Vertical data, gradients and curvatures 

of “batholithV5”, revealing the presence of a 

flat top surface 

h) Gradient data of “volcanic.pipe”, reflect-

ing the prominence of vertical lateral walls)  

i) & j) Gradient and curvature data of “pil-

low(rounded)_batholithV4” showing the 

spherical character of the input model 
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The Kullback-Leibler (KL-)divergence (Kullback and Leibler, 1951) was calculated to quantitatively determine the similari-

ty between the tested geometries. The distributions of the six parameters (the individual horizontal extents along both hori-

zontal main axes, the combined horizontal data, the vertical data, gradients and curvatures) were compared between the 415 

models. The similarity of two distributions is larger, the smaller the KL divergence is, with a value of 0 indicating equality of 

the distributions (obtained for instance when comparing a structure with itself). The result of the calculation of the individual 

KL divergences for the example cases is visualized in Fig. 79. For the sphere, the most similar models regarding the respec-

tive distributions of the six parameters are the “sheet(cylindric_rounded)” for the horizontal data of the first direction, the 

“prism” for the orthogonal horizontal data, the “batholithV3” for the combined horizontal data, the “anti-420 

cline_wall(rounded)_batholithV1” for the vertical data, the “phacolith” model for the gradients and the “ellipsoid” for the 

curvatures (compare Fig. 2 for the model appearances). For Altenbruch-Beverstedt, “batholithV6” is most similar regarding 

the horizontal data of the first direction, “roller” for the orthogonal horizontal data, “wall(highly.anisotropic_hourglass-

shape_flattened)” for the combined horizontal data, “wall(highly.anisotropic_hourglass-shape_rounded)” for the vertical 

data, “pillow_flattened” for the gradients and “roller” for the curvatures. In addition to KL divergences of individual parame-425 

ters, an averaged KL divergence was calculated: by taking the mean of the values between two models, the overall dis-

/similarity between models was assessed. According to the averaged KL divergence, the sphere is closest to the standard 

geometry “pillow(rounded)_batholithV4”, while Altenbruch-Beverstedt is best approximated by the 

“wall(highly.anisotropic_hourglass-shape_rounded)”. However, informational content of this parameter is limited, as there is 

no indication regarding which parameters two compared structures are most similar or differ more. Therefore, principal 430 

component analysis and K-means clustering have been employed as well, providing this information based on all combined 

parameters. 

In general, values of KL divergence show an error for the gradient distributions: infinite values had to be converted to the 

highest finite gradient value of a given dataset to enable the computation, inflating the highest bin. Furthermore, the large 

variance of curvature data for most input models (see for example Fig. 79f &l and Sect. 4.2) decreases the applicability of 435 

the KL divergence for that parameter, as most models show very similar normalized distributions. To assess the impact of 

the large variance on individual KL divergences of curvature data and smallest averaged KL divergences, they were also 

calculated using a 95th percentile overflow bin (see Table 2). Smallest KL divergences for the curvatures of the two example 

models are notably higher, especially for the sphere, reflecting the dissimilarity of data distributions when applying the filter 

(column 1 & 2). The impact on the smallest averaged KL divergence (column 3 & 4) is smaller, yet still considerable.  440 

 

 

 

 

 445 
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Table 2: Comparison of KL divergences with and without the usage of a 95th percentile overflow bin for the curvature distribu-

tions. 

structure smallest KL 

divergence 

for curva-

ture without 

overflow bin 

smallest KL divergence 

for curvature with over-

flow bin 

 

smallest averaged KL 

divergence for all 

properties without 

overflow in curvature 

smallest averaged 

KL divergence for 

all properties with 

overflow in curva-

ture 

 

sphere 0.0054  

(“ellipsoid”) 

0.16  

(“wall(highly.anisotropic

_cylindric_rounded)”) 

0.45 (“pil-

low(rounded)_batholith

V4”) 

0.56 (“batho-

lithV3”) 

Altenbruch-

Beverstedt 

0.036 (”roll-

er”) 

0.05 (“batholithV5”) 1.2 

(“wall(highly.anisotrop

ic_hourglass-

shape_rounded)”) 

1.3 

(“wall(highly.anisot

ropic_hourglass-

shape_rounded)”) 

 

Table 1: a) First five statistical moments per parameter for the sphere model (note: the dimensions of the sphere are chosen arbi-

trarily). b) First five statistical moments per parameter for the model of the real subsurface structure (Altenbruch-Beverstedt). 450 
Statistics for Altenbruch-Beverstedt reflect the strong anisotropy of the structure 

(a) sphere mean [m] variance [m] std_dev [m] skew median [m] 

Horizontal length 14 13 4 -0.4 14 

Horizontal length  

orthogonal 

18 4 2 0 18 

Vertical length 14 13 4 -0.5 15 

Horizontal data combined 16 13 4 -0.8 17 

 

(b) Altenbruch-Beverstedt mean [m] variance [m] std_dev [m] skew median [m] 

Horizontal length 3825 635352 797 -0.2 3795 

Horizontal length  

orthogonal 

48644 8956682 2993 -2.2 49845 

Vertical length 4766 486158 697 -2.9 4856 

Horizontal data combined 26235 5.07E+08 22516 0.02 21696 
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 455 

Fig. 79: Visualized Kullback-Leibler divergences. a)-f): sphere, g)-l): Altenbruch-Beverstedt. Visualized is the most similar data 

distribution (orange) compared to the respective distribution of the two example models (blue). The calculated Kullback-Leibler 

divergences are noted in the headlines of individual figures 

 

3.3 Cluster analysis 460 

Cluster analysis on all measured data of the regular geometries resulted in 7 clusters considering the combined analysis of 

the elbow plot and silhouette score (Fig. 8b10b). With the first two principle components (PC´s) only explaining 40% of the 

variance (see Fig. 8a10a), the number of PC´s necessary to cover more than 90% of the variance was determined to be 12. A 

feature angle matrix (Fig. A2) was computed to check the dependencies between the percentiles of the PDF´s. As a strong 

dependency was identified within several groups of features, the principal component matrix plot (Fig. 11) was limited to the 465 

first six PC´s. The feature contribution matrix (Fig. 8c10c) reveals the contribution (“loadings”) of the binned PDF´s to the 

principal components, with bright yellowish colors indicating a strong positive contribution and dark blue colors a substan-
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tial negative contribution. In the contribution matrix, percentiles 0 to 19 represent the PDF of the combined horizontal data, 

followed by the vertical data (20 to 39), gradients (40 to 59) and curvatures (60 to 79). The principal component matrix plot 

is visible in Fig. 9.  470 

The PC1 vs. PC2 cluster plot is visible in Fig. 11a. Positive contributions to PC1 (Fig. 9a) are dominated by the 50 to 55% 

bins of the vertical data and gradient data, while there is no percentile with a strong negative contribution to PC1. This effec-

tively separates the bluish-green cluster at high positive PC1 scores from the rest of the data. All four models (“flat.layer”, 

“sill”, “cube” and “prism”), share a distinct geometrical similarity: When segmenting them with our algorithm, cross sec-

tions are always flat at the top and of exactly the same vertical extent throughout the entire structure. This results in a step-475 

wise appearance of the respective PDF´s, with the step being in the middle of the functions. For PC2, the 45 to 50% gradient 

bin has the highest positive loading, while there are stronger negative loadings for the 0 to 5% as well as 95 to 100% gradient 

bins. This separates the models of the black cluster at highest positive PC2 scores and mainly the blue cluster at high nega-

tive PC2 scores. Therefore, models of the black cluster (highest positive PC2 scores) are characterized by many compara-

tively small gradient measurements. This reflects the presence of many low to moderately inclined surfaces in a geometry 480 

(depending on the variance in a data distribution) and an overall more rounded appearance (see e.g. the highlighted black 

example model “pillow(rounded)_batholithV4” in Fig. 9a11a). Meanwhile, the blue models and other models at high nega-

tive PC2 scores, like the blue cluster, show many large gradient data (positive and negative). This represents are character-

ized by the abundance of steep-dipping to vertical surfaces for a dataset. Thus, PC2 is an indicator for the overall steepness 

of the lateral parts of a structure or, on the other hand, its sphericity.  485 

The PC3 vs. PC4 cluster plot is shown in Fig. 11b. For PC3 (Fig. 9b), large positive contributions are spread among the 0 to 

5% and 95 to 100% horizontal bins as well as the 95 to 100% vertical bin and the 0 to 5% and 45 to 50% gradient bins, while 

the only considerable negative loading is exhibited by the 10 to 15% gradient bin. Datasets at very positive PC3 scores be-

long to the vermilion and blue clusters. The largest negative PC3 scores are seen for the reddish-purple cluster. Very positive 

PC3 scores indicate anisotropy, rather flat top surfaces and steep-dipping to vertical lateral walls (see e.g. the highlighted 490 

vermilion “dyke”). In contrast, however, datasets ofat largest negative PC3 scores (like the reddish-purple cluster), cannot be 

linked to very high data percentages in that 10 to 15% gradient bin; its loading (-0.27) not being the main cause of the ob-

served negative PC3 scores. PC4 shows considerable positive loadings for the 50 to 55% bin of the vertical data and the 0 to 

5% and 95 to 100% gradient bins. Meanwhile, large negative loadings are seen for the 0 to 5% and 95 to 100% horizontal 

bins, the 95 to 100% vertical bin and the 80 to 85% gradient bin. These contributions mainly drive the differentiation of the 495 

reddish-purple and vermilion clusters (negative PC4 scores) from the other clusters apart from some sky-blue models. Since 

the horizontal and vertical bins contributing very negatively are the same horizontal and vertical bins contributing particular-

ly positively to PC3, it can be deduced that the overall position of the vermilion models in the PC3 vs. PC4 diagram is more 

driven by these horizontal and vertical bins. Meanwhile, the datasets from the reddish-purple and sky-blue models are com-

paratively influenced more by the 80 to 85% gradient bin also showing a considerable negative loading. Still, most datasets 500 

from these clusters at negative PC4 scores can be considered as rather anisotropic geometries with mainly steeper (but not 
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vertical) lateral walls, while models at higher positive PC4 scores exhibit uniform vertical extents and steep-dipping to verti-

cal lateral walls. This explains the position of the isolated blue model at highest positive PC4 scores (“volcanic.pipe”; high-

lighted in Fig. 911b; see also Fig. 108h for the gradient distribution), completing the separation of the blue cluster from the 

rest of the data.  505 

Therefore, datasets with very positive PC3 scores (vermilion cluster and all but one blue model) represent anisotropic bodies 

with rather flat top surfaces and steep-dipping to vertical lateral walls (see e.g. the highlighted vermilion “dyke”). In contrast, 

however, datasets of largest negative PC3 scores (like the reddish-purple cluster), cannot be linked to very high data percent-

ages in that 10 to 15% gradient bin; its loading (-0.27) not being the main cause of the observed negative PC3 scores. PC4 

shows considerable positive loadings for the 50 to 55% bin of the vertical data and the 0 to 5% and 95 to 100% gradient bins. 510 

Meanwhile, large negative loadings are seen for the 0 to 5% and 95 to 100% horizontal bins, the 95 to 100% vertical bin and 

the 80 to 85% gradient bin. These contributions mainly drive the differentiation of the reddish-purple and vermilion clusters 

(negative PC4 scores) from the other clusters apart from some sky-blue models. Since the horizontal and vertical bins con-

tributing very negatively are the same horizontal and vertical bins contributing particularly positively to PC3, it can be de-

duced that the overall position of the vermilion models in the PC3 vs. PC4 diagram is more driven by these horizontal and 515 

vertical bins. Meanwhile, the datasets from the reddish-purple and sky-blue models are comparatively influenced more by 

the 80 to 85% gradient bin also showing a considerable negative loading. Still, most datasets from these clusters at negative 

PC4 scores can be considered as rather anisotropic geometries with mainly steeper (but not vertical) lateral walls, while 

models at higher positive PC4 scores exhibit uniform vertical extents and steep-dipping to vertical lateral walls. This ex-

plains the position of the isolated blue model at highest positive PC4 scores (“volcanic.pipe”; highlighted in Fig. 9b; see also 520 

Fig. 10h for the gradient distribution), completing the separation of the blue cluster from the rest of the data.  

The cluster plot of PC5 vs. PC6 can be seen in Fig. 11c. PC5 (Fig. 9c) shows strong positive contributions for the 0 to 5% 

vertical bin and the 50 to 55% and 95 to 100% gradient bins, while stronger negative loadings are given by the 50 to 55% 

vertical bin and the 0 to 5% gradient bin. This separates the majority of the sky-blue cluster (highest positive PC5 scores) 

from the rest of the datasets. As this corresponds to the first appearance of the 0 to 5% vertical bin among considerable con-525 

tributing bins, most of the associated models are characterized by widespread low vertical extents and few much larger ones, 

as seen in overhang configurations (for example, see the model “laccolith” in Fig. 2). PC6 is mainly influenced by the gradi-

ent data, where the 10 to 15% bin contributes the most negatively and the 80 to 85% bin contributes positively. Once again 

(as for PC3), the 10 to 15% gradient bin, however, does not seem to be the main reason for the separation of the reddish-

purple cluster at very negative PC6 scores. Similarly, the sky-blue models at higher positive PC6 scores do not exhibit par-530 

ticularly large high percentages in the respective bin. In the remaining visualized PC-cluster plots, the variance explained by 

the PC´s does not allow any major discrimination anymore and partially repeats patterns seen in the more informative plots.  
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Fig. 810: Calculated supplementary information for the setup and interpretation of the cluster analysis after principal component 535 
analysis. a) Cumulative scree plot, showing the explained variance with increasing number of principal components. b) Elbow plot 

and silhouette score to determine number of clusters. c) Contribution matrix showing the contribution of the input data (percen-

tiles of the probability density functions of measured parameters) to the principal components 

 

Fig. 911: Matrix plot of principal components (PC´s) explaining 9070% of the variance in the data (see also Fig. 8a10a). As the first 540 
PC´s explain the most amount of variance (decrease of explained variance with increasing number of PC´s), most information can 

be gained from the first 3 cluster plots (see text). Larger stars mark example models for clusters (see legend)  

 

The overall cluster results validate that the flat and/or cuboidal geometries (vertical extent ≤ horizontal extent and/or exclu-

sively straight lateral surfaces) mostly differ considerably from the other structures designed to represent intrusive subsur-545 

face bodies: the flat/cuboidal geometries are mainly distributed among the bluish-green, blue and vermilion clusters (see Fig. 

911). As recognized abovein the results, these three clusters can be differentiated from the other models within the first four 



29 

 

PC´s. Only the “laterally.eroded.layer_pinchouteroded.layer(pinchout)” is located outside, in the sky-blue cluster, although 

representing a flat geometry. The K-means cluster analysis furthermore indicates that some standard geometries are similar 

across all parameters. Therefore, it was assessed whether certain standard geometries are redundant to simplify the bench-550 

mark selection process. The pairs of flattened and rounded versions show high similarities, leading to the exclusion of the 

flattened models while retaining the "uneroded" structures. The models "batholithV3" and "pillow(rounded)_batholithV4" 

cluster closely, differing only in vertical elongation; thus, "batholithV3" is excluded. Although similarities exist between 

models with varying lateral characteristics, both "cylindric" and "hourglass" shape variations are retained. This also applies 

to various "sheets" and the "anticline_wall(hourglass-shape_rounded)”, which exhibit similar PC scores in some, but not all 555 

cluster plots. Lastly, some of the flat and cuboidal bodies in the bluish-green cluster ("flat.layer", "sill" and "cube") are near-

ly identical in position. The "cube" is excluded from the benchmark collection, while the other two geometries are merged, 

keeping the shape of the "sill”. 

Given these exclusions based on structural similarity, the collection is condensed from 36 to 25 standard geometries (see Fig. 

12). Decreasing the database by validating the bodies’ geometrical dissimilarity facilitates the decision making on the best 560 

suitable benchmark for a case study. Despite our reduction efforts, this list is not expected to be exhaustive: we would like to 

encourage users to suggest additional geometries based on their expertise and/or literature, to ensure that suitable benchmark 

models are available for as many geomodeling applications as possible. 
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 565 

Fig. 1112: Condensed collection of standard geometries after application of the quantification method. 

4 Discussion 

By applying a set of defined geometrical descriptors to systematically generated 3D benchmark models, this study establish-

es a framework for the quantitative comparison of shape properties. The analysis highlights how key attributes such as ani-

sotropy, surface morphology, and sphericity vary across models, offering a structured perspective on their geometric dis-570 

/similarities. These outcomes prompt a deeper discussion of how well the proposed descriptors capture meaningful shape 

differences and how this quantitative framework advances the analysis of unmodeled data and 3D geological structures. 
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4.1 Comparison of existing methods for 3D shape characterization with the proposed workflow 

The workflow of this study differs considerably - both in the scale of the test subjects as well as the purpose of the methods -

from the quantitative comparative approaches used in material sciences (Sect. 1.1). The material-scientific studies mainly 575 

operate on millimeter- to centimeter-scales and have a higher emphasis on parameters exploring the sphericity/angularity (or 

similar metrics) of objects, as these characteristics are fundamental in this field, where properties and applicability of com-

posite building materials heavily depend on mechanical interactions between individual particles (Kakani and Kakani, 2004).  

 many approaches developed for the description of 3D objects, as the application for most of these methods lies in the shape 

characterization for image recognition rather than for exact geometrical characterization of a body. Therefore, the majority of 580 

studies (e.g. Canul-Ku et al., 2019; Çapar et al., 2009; Dumitru et al., 2022; Ettl et al., 2007; Goh & Chan, 2003; Mousa, 

2011; Muzahid et al., 2021; Wohlkinger & Vincze, 2011) define shape descriptors based on varied input data to automatical-

ly detect specific shapes in binary, grayscale and/or colored images or point cloud data from large databases. Meanwhile, the 

proposed approach aims at characterizing 3D structures and 2D sections at the meter- to kilometer-scale (although the ap-

plicability is scale-independent in theory), through precise direction-dependent measurements of geometrical parameters, 585 

thereby providing datasets suited for quantitative comparison.  

Studies presenting approaches that show similarities to ours are Celenk (1995), Schweizer et al. (2017) and Lindsay et al. 

(2013). Celenk (1995) determines the horizontal main axes of equally-spaced cross sections as well, but does so to align 

sections of two different objects. Comparison is then achieved by computing the averaged shape difference of sections be-

tween the objects in four directions along the main axes. Key differences of our approach therefore involve the segmented 590 

assemblage of cross sections in the orthogonal direction (following the respective segmented horizontal main axis) and the 

exact measurement of the dimensional extents on the sections. Hence, our method opts for the determination of larger da-

tasets of absolute measurements on a single object, that are compared to other bodies in subsequent steps. Meanwhile, 

Celenk (1995) computes the relative measure that is the averaged shape difference, representing a faster, but more approxi-

mate approach of object comparison between two objects, as the author does not segment the horizontal main axis along the 595 

larger extent. Schweizer et al. (2017) do not try to compare the dimensions of individual 3D structures, but use the Jaccard 

distance and the normalized city-block distance as measures for model dissimilarity instead. The two parameters are being 

applied as measures for the similarity in position of certain geological units between two model realizations of the same 

study site. In a similar fashion, the Hausdorff distance has been used before (see e.g. Suzuki et al., 2008). These dissimilarity 

distances were not applied in our study, as they could only act as size indicators rather than shape descriptors and would not 600 

give any indication on where two structures differ spatially. Meanwhile, our approach provides insight into both shape and 

size differences of objects, which is crucial for geological modeling. Lindsay et al. (2013) explore geometric uncertainty 

across multiple realizations of a study site, evaluating parameters like depth, volume, and curvature, which parallel those in 

our study. However, their parameters are often tied to stratigraphic units and may not apply directly to individual 3D struc-

tures. Both studies utilize PCA to analyze geometric variability and model differences, although executed differently.  605 
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Despite these existing methodologies, we opted for a straightforward approach, allowing us to efficiently replicate the main 

geometric characteristics of input datasets. Our algorithm is computationally efficient, easily interpretable with basic geolog-

ical knowledge, and accessible to a non-specialist audience. 

4.2 Assumptions and compromises of the algorithm ensuring its universal applicability 

Despite the strengths of our methodology, certain limitations must be acknowledged. The reliance on discrete differential 610 

geometries (Bobenko et al., 2008) means that the input dataset must represent a single, compact, and topologically connected 

structure (Thiele et al., 2016a). For objects separating from one to the next cross section into multiple strands, split algo-

rithms are available. However, this comes at the cost of interpretability of the statistics of geometric properties. Moreover, 

the method functions optimally for convex hulls (Rockafellar, 1970), although a follow-up study will show, that the full 

geometric diversity of intrusive salt structures and crystalline bodies from the German subsurface can be quantitatively com-615 

pared without major limitations.focusing on the restricted set of geometries which are relevant for the site selection of nucle-

ar waste deposits. Still, this may restrict its applicability to more complex geological formations. These assumptions should 

be considered when interpreting results in other domains. 

The focus of this study was to establish a generalized algorithm to quantitatively describe the shape of objects and to infer 

dis-/similarity between geometries. Given the wide range of potential and available models, the algorithm requires some 620 

trade-offs to be universally applicable. Discussion of the data distributions for the geometrical parameters (see Fig. 56) fo-

cuses on the results from measuring the sphere, representing a comprehensible case with distinct expected data distributions: 

The nature of a sphere is a similar shape of any section through the center, eventually resulting in a normal distribution of the 

levelled distance measurements in both horizontal and vertical directions. This expected distribution is not produced in our 

case due to the generation approach of the orthogonal cross sections: The assembled sections follow the contour of the struc-625 

ture (see Fig. 4g 5g & h), which results in larger measurements for the orthogonal horizontal data and a slightly tailed distri-

bution of the combined horizontal data, similar to an ellipsoid with a low contrast in the main axes. As this situation is rarely 

seen in geological modeling, the impact is small since anisotropic geometries are measured accurately with our segmentation 

algorithm. The gradient and curvature data reflect the effects of our approach as well: While the gradient diagram of the 

sphere shows a symmetric distribution as expected, the relative elongation of the orthogonal sections increases the frequency 630 

of lower gradient measurements. Due to this accumulating effect, the presence of low-dipping surfaces of a structure is over-

estimated by the data. Furthermore, the exclusion of marginal cross sections leads to vertical clipping that introduces infinite 

gradient measurements (representing two consecutive vertices being exactly vertical) that would not exist when measuring 

the sections in a rounded, unclipped state. The curvature data is influenced by this clipping as well, that results in few large 

values where the three consecutive vertices form a large angle. These measurements increase the variance of curvature data 635 

considerably, with the majority of data for most datasets being located within the 0 to 5% and 5 to 10% bins. 

However, the discriminability of the standard geometries and basic 3D objects in the cluster analysis is ensured despite these 

compromises made in the methodology: structures of varying anisotropy plot in different parts of cluster diagrams showing 
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contribution of the combined horizontal data, as the highest contribution of horizontal data comes from the first and last 

distribution bins (see Fig. 10c). Similarly, as vertical and gradient data distributions of flattened geometries show the dis-640 

cussed characteristic properties, they differ in their PC scores from their rounded counterparts. Furthermore, the discussed 

increased frequency of gradient measurements around 0 does not change cluster patterns as it applies to all datasets. The 

same is true for the artifact-influenced curvature data and its impact on the general clustering of similar structures. Still, its 

squeezed nature shows an effect on the overall clustering results, as the curvature data does not show any considerable con-

tribution in PC dimensions.  645 

 

4.3 Analysis of parameter distributions and model dis-/similarity 

Analyzing the data distributions of a structure visually already reproduces distinct geometrical characteristics of an input 

dataset. The distribution of the combined horizontal data indicates whether a pronounced anisotropy is present for an ana-

lyzed structure: if the data is separated into two clearly distinguishable subordinate distributions (see Fig. 10a), the geometry 650 

is considerably anisotropic (the farther apart the two maxima, the more anisotropic a body is). Caution is advised for a distri-

bution with two close maxima (Fig. 10b): this could be the consequence of the inflated extent in the orthogonal direction (see 

above). Analyzing the combined horizontal data and the vertical data together reveals whether a structure shows substantial 

variations in its horizontal extent over its vertical range. Such a shape, in the subsurface more often present as overhangs 

rather than as upward tapering, is indicated by the simultaneous presence of multimodal distributions for both parameters 655 

(Fig. 10c & d). The vertical data distribution also characterizes the top surface of a geometry: if the distribution is mono-

modal, with a) the maximum being the bin representing the highest measurements, and b) the frequency in lower bins being 

substantially smaller, then the presence of a flat top surface is indicated. The existence of a flat top surface can be verified by 

analyzing the gradient and curvature data: a high frequency of very small measurements for both parameters supports such 

an analysis (Fig. 10e-g). Gradient data also indicates the steepness of lateral surfaces of a body: as high and infinite gradient 660 

data stem from steep to vertical faces of a structure, the presence of steep-dipping lateral surfaces can be recognized (Fig. 

10h). Combining the inferences from analyzing top and lateral surfaces therefore provides insight into the overall sphericity 

of an input dataset: a more spherical structure is represented by larger quantities of intermediate gradient measurements and 

of moderate to high curvature data (Fig. 10i & j).  

The Kullback-Leibler (KL-)divergence is used to quantitatively compare the individual parameter distributions of two struc-665 

tures: by providing a single value for a given statistical parameter and pair of input models, an intuitive and quick way for 

assessing the similarity of two distributions is given, as the similarity is higher, the smaller the KL divergence. The average 

of the respective values of KL divergence was employed as a measure for the dis-/similarity of full models as well. However, 

informational content of this parameter is limited, as there is no indication regarding which parameters two compared struc-

tures are most similar or differ more. Therefore, principal component analysis and K-means clustering have been employed 670 

as well, providing this information based on all combined parameters. In general, values of KL divergence show an error for 
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the gradient distributions: infinite values had to be converted to the highest finite gradient value of a given dataset to enable 

the computation, inflating the highest bin. Furthermore, the large variance of curvature data for most input models (see for 

example Fig. 7f &l) decreases the applicability of the KL divergence for that parameter, as most models show very similar 

normalized distributions. To assess the impact of the large variance on individual KL divergences of curvature data and 675 

smallest averaged KL divergences, they were also calculated using a 95th percentile overflow bin (see Table 2). Smallest KL 

divergences for the curvatures of the two example models are notably higher, especially for the sphere, reflecting the dis-

similarity of data distributions when applying the filter (column 1 & 2). The impact on the smallest averaged KL divergence 

(column 3 & 4) is smaller, yet still considerable.  

 680 

Table 2: Comparison of KL divergences with and without the usage of a 95th percentile overflow bin for the curvature distribu-

tions. 

structure smallest KL 

divergence 

for curva-

ture without 

overflow bin 

smallest KL divergence 

for curvature with over-

flow bin 

 

smallest averaged KL 

divergence for all 

properties without 

overflow in curvature 

smallest averaged 

KL divergence for 

all properties with 

overflow in curva-

ture 

 

sphere 0.0054  

(“ellipsoid”) 

0.16  

(“wall(highly.anisotropic

_cylindric_rounded)”) 

0.45 (“pil-

low(rounded)_batholith

V4”) 

0.56 (“batho-

lithV3”) 

Altenbruch-

Beverstedt 

0.036 (”roll-

er”) 

0.05 (“batholithV5”) 1.2 

(“wall(highly.anisotrop

ic_hourglass-

shape_rounded)”) 

1.3 

(“wall(highly.anisot

ropic_hourglass-

shape_rounded)”) 

 

The discriminability of standard geometries in the cluster analysis is ensured despite the compromises made in the method-

ology: structures of varying anisotropy plot in different parts of cluster diagrams showing contribution of the combined hori-685 

zontal data, as the highest contribution of horizontal data comes from the first and last distribution bins (see Fig. 8c). Simi-

larly, as horizontal and vertical data distributions of flattened geometries show the discussed characteristic properties, they 

differ in their PC scores from their rounded counterparts. Furthermore, the discussed increased frequency of gradient meas-

urements around 0 does not change cluster patterns as it applies to all datasets. The same is true for the artifact-influenced 

curvature data and its impact on the general clustering of similar structures. Still, its squeezed nature shows an effect on the 690 

overall clustering results, as the curvature data does not show any considerable contribution in the PCA.  

The overall cluster results validate that the flat and/or cuboidal geometries (vertical extent ≤ horizontal extent and/or exclu-

sively straight lateral surfaces) mostly differ considerably from the other structures designed to represent intrusive subsur-

face bodies: the flat/cuboidal geometries are mainly distributed among the bluish-green, blue and vermilion clusters (see Fig. 
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9). As recognized in the results, these three clusters can be differentiated from the other models within the first four PC´s. 695 

Only the “eroded.layer(pinchout)” is located outside, in the sky-blue cluster, although representing a flat geometry. The K-

means cluster analysis furthermore indicates that some standard geometries are similar across all parameters. Therefore, it 

was assessed whether certain standard geometries are redundant to simplify the benchmark selection process. The pairs of 

flattened and rounded versions show high similarities, leading to the exclusion of the flattened models while retaining the 

"uneroded" structures. The models "batholithV3" and "pillow(rounded)_batholithV4" cluster closely, differing only in verti-700 

cal elongation; thus, "batholithV3" is excluded. Although similarities exist between models with varying lateral characteris-

tics, both "cylindric" and "hourglass" shape variations are retained. This also applies to various "sheets" and the "anti-

cline_wall(hourglass-shape_rounded)”, which exhibit similar PC scores in some, but not all cluster plots. Lastly, some of the 

flat and cuboidal bodies in the bluish-green cluster ("flat.layer", "sill" and "cube") are nearly identical in position. The "cube" 

is excluded from the benchmark collection, while the other two geometries are merged, keeping the shape of the "sill”. 705 

4.4 Online collection of benchmark geometries 

Following the application of the established methodology to the standard geometries, the collection can be effectively con-

densed from 36 to 25 benchmark models (see Fig. 11). Decreasing the database by validating the bodies’ geometrical dissim-

ilarity facilitates the decision making on the best suitable benchmark for a case study. Despite our reduction efforts, this list 

is not expected to be exhaustive: we would like to encourage users to suggest additional geometries based on their expertise 710 

and/or literature, to ensure that suitable benchmark models are available for as many geomodeling applications as possible. 

4.5 3 Potential Intended direct application and potential further usage of the quantification method and the standard 

geometries 

The methodology will be a part of a larger framework to model and compare geological structures based on sparse data in 

the context of the German site selection. For most regions of interest for nuclear waste disposal, seismic 2D data are availa-715 

ble frequently with a few boreholes. This is similar to the cross sections established through the benchmark models here, 

allowing for a fast model selection based on the geometrical properties and potentially further constraining hyper parameter 

selection for interpolation. However, for the integration of unmodeled sparse input data in the initial conceptualization of 

geological models, some adoptions of the workflow are needed. Obviously, the creation of segmented sections is omitted as 

the starting point are cross sections, which can be analyzed as described. The number of geometrical data is restricted by the 720 

number of available cross sections, thus a comparison will be conducted on a less complete statistical basis. Consequently, a 

user likely has to solely rely on the Kullback-Leibler divergence and cluster analysis to assess the reasonableness of various 

shapes. In case these analyses do not limit the range of standard geometries sufficiently, additional experience-based bench-

marks could be created and clustered among the available models to test whether a closer fit applies. Here, more complex 

structural configurations could easily be approached by superposition of basic benchmarks. Thus, the choice of the concep-725 

tual model is based on the quantification and does not rely on the expert knowledge only. Since theAfter interpolation will 
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resulted in a series of stochastic prior realizations, the method will be used for falsification by data (e.g. boreholes). Further-

more, the application of the framework to purely quantify the shape of a modeled 3D body can be very useful in the context 

of the site selection. Here, the comparative parts of our proposed analysis (i.e. Kullback-Leibler divergence and cluster anal-

ysis) might be of little value and thus be omitted. FurthermoreAdditionally, applying our methodology also supports testing 730 

for the minimum amount of data necessary for geological modeling, as different data densities and configurations can be 

inserted into the algorithm. The open-access collection of benchmarks for geomodeling is also a convenient tool to visualize 

the range of three-dimensional geometries of the different rock types to a broader audience, which aids in the communication 

of uncertainties and decisions for geoscientists and stakeholders in various settings (see Zehner, 2021). 

5 Conclusion 735 

In our publication, we presented a methodology to quantitatively describe, compare and systematize 3D geometries2D and 

3D datasets, and proposed a set of regular standard geometries as benchmark models in geomodeling approaches. Demon-

strating the quantification method on the 3D standard geometries, their geometrical dis-/similarity is assessed. The combined 

evaluation of data distributions and a cluster analysis reproduces the main geometrical characteristics of input meshes and 

visualizes differences between various datasets. While distributions of combined horizontal extensional measurements pro-740 

vide insight into the anisotropy of datasets and the potential existence of overhangs, distributions of the vertical extent indi-

cate the character of the top surface of structures and support or falsify the presence of overhangs. Distributions of gradient 

and curvature data (1) indicate the prevailing character of the slope of the lateral surfaces of structures, (2) further emphasize 

potentially present flat top surfaces and (3) give a general indicator on the sphericity of a structure. Cluster analysis of nor-

malized, dimensionally reduced data groups and systematizes input structures based on the combined measured statistical 745 

parameters. In our application to synthetic datasets, clustering also serves to identify and exclude or merge benchmark mod-

els showing large geometrical similarity. Apart from cluster analysis and assessment of data distributions, comparison of 

parameter distributions is furthermore achieved using the Kullback-Leibler divergence. The proposed method and standard 

geometries are intended to be used at several stages within a workflow for structural geomodeling, both for initial conceptu-

alization, potential adjustment of the interpolation method and examination of structural reasonableness of resulting models. 750 

Furthermore, general shape quantification for exploration/storage estimates can be realized. 

As already indicated earlier, the first follow-up study aims at applying the method to a large database of structural geological 

models. Afterwards, the method will be applied to datasets of sparse, unmodeled input data and coupled with a spatial inter-

polation algorithm in a study focusing on geomodeling based on progressively reduced datasets. 

instead of already precomputed meshes of structural models. At this point, the method might be coupled with spatial interpo-755 

lation algorithms. Thereby, it would fit well into a study focusing on geomodeling based on progressively reduced datasets 

that is planned to be conducted later. 
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Code and data availability 

Method development was carried out in Python. The method mostly relies on the capabilities of the libraries Shapely 

(https://shapely.readthedocs.io/en/stable/), PyVista (https://pyvista.org/) and Plotly (https://plotly.com/). The python code, 760 

the condensed database of standard geometries (as .vtk-files) and the datasets of raw extensional, gradient and curvature data 

are stored at https://doi.org/10.5281/zenodo.15795851, (Carl, 2025).  
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Appendix 

 

Fig A1: Visualization of the advantages of measuring the extents of input meshes on sections normal to their horizontal main axes. 

Lower row: model “Seefeld” from BGR et al. (2022) for comparative purposes. a): Sections using the proposed method on “Al-870 
tenbruch-Beverstedt” (top view). b) & e): hypothetical measurement of the horizontal extent along a regular grid (grey lines) of 

constant size for all datasets (example: 5000 m grid size for both). c) & f): measurement along a mesh-specific regular grid based 

on the extent of the longer axis of the mesh´s bounding box. d) & g): Measurement along an anisotropic grid to have an equal 

amount of sections per direction. Multiple cuts along a horizontal measuring line for an irregular structure are visualized in a) 
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Fig A2: Matrix plot for the angles between feature axes in PC space. The plot is used to assess the dependencies among the features 

(percentiles of the parameter PDF´s) in the cluster analysis. Small angles (dark blue) and large angles (bright yellowish) indicate 

strong dependency between individual features. This can be seen for instance between F3-F6; F32-F39 and F61-F69, with the ex-

ception of F67 (F61 is inversely dependant from F62-F64). The strong inter-feature dependencies result in a weak cluster separa-

tion beyond PC6. Thus, PC7 to 12 are not shown in Fig. 11 880 
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