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Abstract. Consecutive disasters, where two or more disasters occur in succession before recovery from the first event has been 

completed, can have non-linear impacts on societies that can surpass the effects isolated events. Drawing on empirical 

examples and insights from scientific literature, we explore how consecutive disasters affect societal recovery across four 

interconnected pillars of society: human settlements, human health, economic systems, and socio-political systems. We 

identify pathways through which repeated disasters can either erode a community’s ability to effectively respond to and recover 15 

from disasters or provide opportunities for social learning and positive change. By examining both immediate and long-term 

effects, we show how societies might be pushed towards critical tipping points, resulting in either a systemic breakdown of 

societal resilience, or transformative adaptation and improved capacity to manage future risks. Recognising these dynamics 

underscores the need for a long-term, multi-hazard approach to disaster risk reduction. Recovery planning must move beyond 

short-term, reactive measures toward integrated, forward-looking strategies, supported by reliable, proactive, and equitable 20 

financing mechanisms. Addressing the complexity of recovery under consecutive disasters is essential for both research and 

policy to enable adaptive, resilient societies in a future of increasingly frequent and intense hazards. 
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1 Introduction 

Recent events have demonstrated how societies face heightened recovery challenges when they are faced with multiple 25 

disasters within a short period of time. In 2017, the small island of Puerto Rico was struck by two consecutive hurricanes 

during an exceptionally active Atlantic hurricane season. Hurricanes Irma and Maria hit only two weeks apart, leaving the 

island with limited time to recover between events. Irma already caused significant damage and left nearly a million people 

without power, after which Maria exacerbated the damage, ultimately affecting nearly every municipality and leading to a 

death toll of over 4,600, worsened by indirect effects such as prolonged power outages and limited healthcare access (FEMA, 30 

2018; Kishore et al., 2018). 

 

Such events, where two or more disasters occur in close succession, while recovery of the first event has not yet been 

completed, are defined as consecutive disasters (de Ruiter et al., 2020). Recent studies have provided insights into the global 

frequency of events where multiple disasters occur simultaneously or consecutively (Claassen et al., 2023; Ridder et al., 2020). 35 

When recovery between disasters is incomplete, interaction between multiple disaster impacts can result in impacts that are 

greater than the sum of the individual disasters (Kappes et al., 2012; Marzocchi et al., 2012). As a result of climate change, the 

frequency and intensity of many climate-related hazards are projected to increase, subsequently altering the likelihood of 

experiencing successive disaster events with limited recovery time (IPCC, 2023). For example, hurricane seasons similar to 

the 2017 Atlantic season, which featured 17 named storms and 10 tropical cyclones, with six escalating to major status, are, 40 

for example, expected to become more frequent as a result of climate change (NOAA National Centers for Environmental 

Information, 2025). By the end of the century, rising sea temperatures and sea levels, alongside shifts in storm patterns, are 

projected to reduce their occurrence interval from once every 10–92 years to every 1–3 years (Xi et al., 2023). Additionally, 

population growth and economic expansion will increase exposure, placing more people and assets at risk (Tellman et al., 

2021). 45 

 

The UNDRR (2016) defines recovery as “The restoring or improving of livelihoods and health, as well as economic, physical, 

social, cultural, and environmental assets, systems and activities, of a disaster-affected community or society, aligning with 

the principles of sustainable development and “Building Back Better”, to avoid or reduce future disaster risk”. While in the 

disaster risk management (DRM) cycle recovery is a distinct phase that follows response and predates prevention, mitigation, 50 

and preparedness, in practice the phases of DRM are not as clearly separated. Recovery can, for instance, already commence 

alongside immediate response and relief activities and, in the case of consecutive disasters, recovery demands from a second 

event can add to those from an earlier disaster (de Ruiter et al., 2020; Mohammadi et al., 2023; Terzi et al., 2022). The “Build 

Back Better” principles emphasise that recovery is not solely about returning to pre-disaster conditions, but also about 

improving preparedness and resilience through the implementation of disaster risk reduction (DRR) measures (UNDRR, 2016).  55 
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While it is evident that recovery plays a role in shaping the impacts of consecutive disasters, recovery processes in the context 

of such events remain one of the least-explored areas in disaster science (Drakes & Tate, 2022). Recent studies have advanced 

our understanding of how multiple hazards interact when they coincide or occur in short succession (Gill & Malamud, 2016; 

Tilloy et al., 2019), but the socio-economic impacts of consecutive disasters remain understudied (Drakes & Tate, 2022; Jäger 60 

et al., 2024; Lee et al., 2024). Moreover, the standard risk framework, which conceptualises risk as the product of overlapping 

hazard, exposure, and vulnerability (UNDRR, 2016) is generally used in a static manner, rather than exploring changes over 

time. Recent studies have underscored that dynamic exposure and vulnerability conditions following a first disaster can 

significantly influence people’s ability to respond to and recover from subsequent events (de Ruiter et al., 2020; De Ruiter & 

van Loon, 2022). 65 
 

In addition to disaster risk, recovery is also connected to the concept of resilience, as resilient societies are characterised by 

their ability to recover quickly and adapt effectively to shocks, thereby reducing vulnerability over time (UNDRR, 2022; Zobel 

& Khansa, 2014). When a consecutive disaster disrupts recovery, this may affect a society’s resilience over time, slowly 

pushing it towards critical thresholds, known as tipping points, where a relatively small change to the system can trigger non-70 

linear and irreversible shifts in the system (Milkoreit et al., 2018). The new state can either be less favourable, marked by a 

long-term reduction in resilience, or more favourable, reflecting transformative adaptation and enhanced capacity to manage 

future disasters. Even when recovery is completed between events, decisions made during the recovery process, such as how 

and where to rebuild, can fundamentally shape a society’s resilience to subsequent events. Spaiser et al. (2024) identified four 

subsystems within a society (i.e., human settlements, the social-psychological system, financial markets, and the political 75 

system) as potential elements where non-linear transitions and ultimately social tipping can occur.  

 

Here, we explore societal recovery under consecutive disasters along an adapted version of the four subsystems identified by 

Spaiser et al. (2024), including human settlements, human health, the economic system, and the socio-political system (Fig. 

1). Rather than focusing solely on financial markets, we broaden this pillar to encompass the entire economic system, including 80 

disruptions in economic supply chains, allowing us to consider also impacts on the global food system. Additionally, we argue 

for the inclusion of human health as a distinct pillar, as health considerations are currently insufficiently integrated into DRM 

practices, while health crises and disasters resulting from natural hazards are known to be mutually reinforcing (UNDRR, 

2022; WHO, 2019).  
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Figure 1. Conceptual framework, illustrating the four interconnected societal sub-systems (human settlements, human 
health, economic system, and socio-political system) and a simplified representation of their recovery trajectory under 
consecutive disasters. We highlight the uncertainty in the recovery process after a consecutive event and how this 
affected by 1) the recovery outcome from a previous event and 2) the recovery trajectory of other parts of society. 

In this paper, we bring together empirical examples and insights from scientific literature to explore how consecutive disasters 90 

influence societal recovery and how recovery processes, in turn, can shape a society’s resilience to cope with future events. 

We highlight various pathways through which non-linear impact interactions can emerge across four interconnected societal 

domains: human settlements, human health, economic systems, and socio-political systems (Fig. 1). Each chapter focuses on 

one of the four pillars, showcasing processes through which recovery can be affected in the context of consecutive events, 

after which we discuss the potential long-term implications for societal resilience. By addressing both immediate effects and 95 

indirect, long-lasting effects that can potentially lead to irreversible social tipping, we offer a broad perspective on how 

consecutive disasters shape societal recovery. While the paper does not aim to provide an exhaustive review, the provided 

examples highlight the importance of accounting for the complex dynamics that are involved with disaster recovery. The paper 

concludes with practical recommendations for better integration of recovery dynamics into research and policymaking, to 

support societies with effective management of consecutive disasters in the face of increasingly frequent and intense hazards. 100 
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2 Impacts within human settlements  

Human settlements refer to the places where people live, and the critical systems they depend on, such as housing, education, 

public transport, and food(Newman et al., 1996). Disasters can repeatedly disrupt the structural functionality of human 

settlements, causing cumulative damage to buildings, infrastructure, and ecosystems, as well prolonged displacement and loss 

of life (IPCC, 2023). This section explores how recovery within these settlements can become a prolonged struggle rather than 105 

a linear process when efforts to rebuild homes, infrastructure, and livelihoods are repeatedly disrupted, and how inadequate 

recovery can increase vulnerability and exposure to future risks (Sargeant et al., 2020). A summary of the pathways discussed 

in this chapter can be found in Fig. 2.  

 

Figure 2. Summarizing figure showcasing main recovery pathways and examples discussed in chapter 2 (human 110 
settlements).  

2.1 Exposure and vulnerability increases through displacement and relocation  

Each year, over 20 million people are displaced by disasters, forcing them into temporary shelters or informal settlements 

(IDMC, 2021). Regaining stable housing is vital to restore individuals’ wellbeing, yet only about 30 percent of affected 
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individuals receive international aid within the first year, most of which is directed toward temporary shelters (Peacock et al., 115 

2017; Twigg et al., 2017). Long-term support for livelihood resilience remains mostly absent, leaving recovery efforts to 

individual households (Twigg et al., 2017). 

 

Displaced individuals are often more exposed to subsequent disasters, particularly in hazard-prone areas (IDMC, 2021). 

Following the 2010 earthquake (7.0 Mw) in Haiti, displaced residents migrated across the country, away from affected urban 120 

areas into flood- and landslide-prone areas with high seismic risk. Camps were established based on NGOs presence in the 

area, with minimal consideration of geographic appropriateness or disaster risk. Over a decade later, 33,000 victims of the 

2010 earthquake were still living in camps, making them vulnerable to the major 2021 Nippes earthquake (7.2 Mw), followed 

just days later by tropical cyclone Grace (Cabas et al., 2023). While displacement could theoretically also reduce exposure if 

communities relocate to safer areas, empirical evidence remains lacking (Stalhandske et al., 2024). Even planned relocations 125 

frequently overlook meteorological and agronomic conditions (de Waal, 1991; Ferris, 2011). Relocation sites are often chosen 

without considering current and future exposure to other hazards. In Mozambique, flood-safe resettlement centres were built 

after floods and tropical cyclones in 2007/2008. However, droughts were not considered, and water scarcity forced people to 

grow crops in flood-prone areas again (Ferris, 2011). Similarly, after the 2008 Wenchuan earthquake (7.9 Mw) in China and 

the 2011 Great East Japan earthquake and tsunami, resettlement in mountainous areas increased exposure to landslides and 130 

floods (Kondo & Lizarralde, 2021; Tang et al., 2020). Even when risks are explicitly considered in relocation strategies, finding 

suitable, safe land for rebuilding can be challenging, due to limited availability of low-risk land, especially in hazard-prone 

regions. This search for safe land to rebuild is further exacerbated by unclear property rights and land claims (Jahn et al., 2016). 

 

Displacement also heightens vulnerability. People staying in poorly constructed temporary shelters, or on the streets without 135 

any shelter at all, can become more susceptible to impacts from severe weather. After severe earthquakes (7.8/7.6 Mw) in 

Syria and Turkey (2023), displaced individuals were, for example, living in tents when they were confronted with harsh winter 

weather, making the earthquake victims vulnerable to medical issues such as hypothermia (Bayram et al., 2023; Orak, 2024). 

Moreover, people staying in displacement camps and temporary shelters often lack adequate access to critical services, such 

as WASH infrastructure, increasing their susceptibility to health-related impacts (further discussed in Sect. 3.1 on emerging 140 

and aggravated health risks in post-disaster contexts) (IDMC, 2021). Although intended as a short-term solution, shelters often 

unintendedly become permanent or semi-permanent over time, resulting in long-term vulnerabilities (Askar et al., 2019). 

Regaining stable housing can take years, or even decades, even in high income countries such as the U.S. and Japan (Action 

Aid, 2010; Merdjanoff et al., 2022). 

2.2 Structural weakening and compounding damages under consecutive events 145 

Even when disasters do not fully destroy houses and critical structures, it can leave these structures and the overall system 

significantly more vulnerable to subsequent disasters. Consecutive disasters compound earlier impacts, amplifying existing 
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damage and undermining reconstruction efforts (Kim & Choi, 2013; Puri et al., 2024). After the 2015 Gorkha earthquake (7.8 

Mw) in Nepal, monsoon rains further degraded the road network, slowing the delivery of materials and aid, and forcing 

communities to divert efforts from rebuilding homes to address the new infrastructure impacts (Twigg et al., 2017). 150 

 

When structures have not been able to fully recover from a preceding event, they can also become more vulnerable to later 

impacts, with increased risk of collapse or sustaining disproportionately large impacts from subsequent events (Gautam & 

Dong, 2018; Korswagen et al., 2019). Empirically estimated damage functions from the Gorkha earthquake illustrate this, 

showing that buildings affected by the earthquake in 2015 were significantly more vulnerable to subsequent flash flooding in 155 

2017. In some cases, damage was aggravated up to 300 percent when buildings had suffered earthquake damage prior to the 

flood (Gautam & Dong, 2018).  

2.3 Disruptions and redundancy loss in critical systems  

The essential systems that human settlements rely on, such as energy, water, healthcare, transport, and food, also become 

increasingly affected when impacts accumulate. Access to critical facilities, such as shelters and hospitals, after a disaster plays 160 

a key role in accelerating recovery (Alam et al., 2024). When access to such facilities is disrupted, or when key systems 

transport and communication systems are affected, this can significantly slow down the overall recovery process (Ade Bilau 

et al., 2018; Sospeter et al., 2020; Suppasri et al., 2024). For example, In Haiti (2021), storm-related flooding obstructed access 

to earthquake-affected communities, making it difficult for humanitarian workers to reach those in need of help (OCHA, 

2021b).  165 

 

To be able to maintain functionality under shocks, critical systems are typically designed with redundancy of critical 

components and functions (Nowell et al., 2017; Urlainis et al., 2022). However, when such systems, such as roads, hospitals, 

or the power grid remain unrepaired, the system’s vulnerability to subsequent events is increased through a redundancy 

reduction (Argyroudis et al., 2020; Fereshtehnejad & Shafieezadeh, 2018). Recovery time depends on initial damage, system 170 

interdependencies, and spatial distribution of critical components (Der Sarkissian et al., 2022; Jeddi et al., 2022). However, 

effective preparedness, recovery planning, and prioritization can help accelerate restoration (Koks et al., 2022; Urlainis et al., 

2022).  

 

Food system redundancy is also threatened under consecutive disasters. In the Philippines, drought-related crop failures caused 175 

by prolonged dry spells and reduced rainfall during the strong 2015-2016 El Niño event compounded earlier damage from 

typhoon Haiyan (2013) to coconut and banana trees (which take about 1-2 years to fully recover) (Sargeant et al., 2020). 

Similarly, Mozambique faced widespread food shortages after cyclones Idai and Kenneth (2019), worsened by prior droughts 

(IFRC, 2019; UNICEF, 2019). Crop diversification can improve resilience, but its effectiveness is limited when multiple 

hazards affect different food sources simultaneously (Bacon et al., 2017). 180 
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2.4 Hindered response and recovery due to ongoing or consecutive hazardous conditions 

Recovery can also be slowed due to physical hazard conditions that create unsafe, inaccessible, or unworkable environments 

for emergency responders, even when systems remain functional. After the 2021 Haiti earthquake, storm Grace halted efforts 

to search for survivors for several critical hours (Cavallo et al., 2021). Similarly, the harsh winter weather after the 2023 Syria 185 

and Turkey earthquakes, accompanied by ongoing aftershocks, not only worsened the suffering of displaced and injured 

individuals, but also created a difficult working environment for emergency personnel (Aljazeera, 2023; Mavrouli et al., 2023). 

In New Mexico (2024), wildfires were immediately followed by flash floods, forcing firefighting crews to temporarily evacuate 

(Anguiano, 2024).  

 190 

Hazard conditions can also decrease the availability of essential resources. The availability of labour for reconstruction can, 

for instance, be reduced significantly under certain hazard conditions such as extreme heat (Alshebani & Wedawatta, 2014). 

Similarly, droughts can restrict the availability of water, essential for firefighting (de Hoop et al., 2022). Resource depletion is 

further discussed in the context of the economic system in Sect. 4. 

2.5 Exposure and vulnerability increases through inadequate reconstruction   195 

For displaced populations, regaining stable housing and restoring critical systems is key. However, when reconstruction is 

rushed, and poorly planned or implemented, this can result in an increase in exposure or vulnerability to future hazards, even 

when recovery is completed between events. Non-engineered road reconstruction in Nepal after the 2015 Gorkha earthquake, 

for instance, caused a diversion of water flows, heightening flood risks and making areas more susceptible to succeeding 

landslides (McAdoo et al., 2018; Rieger, 2021). In addition to technical shortcomiyessngs or skill and resource constraints, 200 

inadequate reconstruction can also stem from political instability. Corruption, for example, may undermine the enforcement 

of building codes during the reconstruction period, resulting in sub-standard structures that are more vulnerable to damage in 

subsequent events (Cifuentes-Faura, 2024; Mannakkara & Wilkinson, 2013). The link between disaster recovery and political 

instability is further explored in Sect. 5.1. 

2.6 Unintended risk trade-offs when attempting to “Build Back Better” 205 

Unintended negative consequences can even occur when reconstruction is well-executed and attempting “Build Back Better”. 

Ideally, during reconstruction, the aim is not to rebuild everything back to pre-disaster conditions, but to incorporate long-term 

planning and comprehensive DRR strategies (UNDRR, 2016). When done properly, long-term planning and implementation 

of such strategies can help a society to, over time, reduce vulnerability to disasters, as is discussed in Sect. 5.3. However, when 

DRR efforts in the post-disaster phase are too focused on the most recently experienced event, without adequate integration of 210 

long-term and multi-hazard considerations, this can increase a society’s exposure and vulnerability to future disasters. A clear 
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example of this is again provided by Haiti, where prior to the 2010 earthquake the focus of DRR was on hurricane prevention 

and response, and to a lesser extent on floods and droughts, as the last major earthquake had been in 1962. While the seismic 

risks were known, concrete hurricane resistant houses were built, without using an earthquake resistance norm. During the 

2010 earthquake, these heavy buildings collapsed, significantly exacerbating the earthquakes’ impacts (Hou & Shi, 2011). 215 

Similarly, after typhoon Haiyan (2013) in the Philippines, some households build features to minimise flood impacts, such as 

raised flooring or an extra storey to their house, which inadvertently increased the structural vulnerability to subsequent wind-

driven events (Twigg et al., 2017). 

 

This type of unintended outcome is referred to as an asynergy, where a measure that is designed to reduce the risk of one 220 

hazard inadvertently increases vulnerability to another (Stolte et al., 2024). There are many more examples of such asynergies 

across a range of hazard-combinations and contexts, well documented for example for floods and earthquakes (de Ruiter et al., 

2021), and floods and droughts (Ward et al., 2020). In addition to adaptation asynergies, there is also the risk of maladaptation, 

where measures are implemented with the intention of reducing risk but ultimately increase vulnerability or transfer it 

elsewhere (Schipper, 2020; Stolte et al., 2024).  225 

3 Impacts within the human health system 

Recovery from disasters is often complicated by health-related crises that compound disaster impacts (WHO, 2019). The 

relationship between climatic disasters and health crises is mutually reinforcing: extreme weather exacerbates existing health 

burdens and can create new ones, while ongoing health crises can weaken the ability of a society to respond to and recover 

from disaster impacts (Hariri-Ardebili et al., 2022). In this section, we discuss the feedback that exist between health crises 230 

and disasters, and how they can prolong humanitarian crises, complicating disaster recovery. A summary of the pathways 

discussed in this chapter can be found in Fig. 3.  
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Figure 3. Summarizing figure showcasing main recovery pathways and examples discussed in chapter 3 (human 
health). 235 

3.1 Emerging and aggravated health risks in post-disaster contexts 

One of the most immediate ways in which disasters and health crises interact is through the emergence or intensification of 

health risks in the aftermath of hazard events. Post-disaster conditions can foster the spread of communicable diseases, for 

example due to overcrowding of displaced people in emergency shelters, or when mass evacuations are required (Hariri-

Ardebili, 2020). This was seen after typhoon Goni in the Philippines in 2022 with a surge in COVID-19 cases (Rocha et al., 240 

2022), Japan’s 2011 earthquake with a tuberculosis outbreak (Kanamori et al., 2013), and Sierra Leone’s 2015 floods, which 

worsened Ebola transmission due to strained resources in overcrowded shelters (Ratto et al., 2016). Natural hazards can also 

contribute to the spread of vector borne diseases such as dengue and malaria, for example when long standing water after a 

flood creates breeding grounds for mosquitoes (Coalson et al., 2021). 

 245 

In addition to fostering disease spread, natural hazards can place significant additional pressure on healthcare systems by 

increasing demand for medical services and occupying hospital capacities (Hariri-Ardebili, 2020). Moreover, disaster-related 

movement, such as evacuations and humanitarian deployments, can introduce new health risks. This was exemplified during 

the COVID-19 pandemic, for example after the 2022 Tonga volcanic eruption and tsunami, when emergency personnel 

entering the affected area inadvertently brought the virus to the island, resulting in a major outbreak (IFRC, 2022). 250 
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Related to the disruptions in critical systems (Sect. 2.3), damaged or disrupted critical infrastructure in a post-disaster context 

can contribute to increased health risks for affected populations. For example, through damaged hospitals or hospital access 

roads and disruption of vaccination programmes (Ali & Hamid, 2022; Hariri-Ardebili, 2020; Salam et al., 2023). In Pakistan, 

disruptions to vaccination programs initially caused by the COVID-19 pandemic and later compounded by the 2022 “super 255 

floods,” led to outbreaks of diseases such as polio and measles (Ali & Hamid, 2022). Hassan & Mahmoud (2021) evaluate 

different patient demand management strategies under a combined impact of a wildfire and pandemic and find that losing 

access to medical care is a direct function of the relative occurrence time between the two events. Specifically, the availability 

and accessibility of adequate water, sanitation, and hygiene (WASH) infrastructure can play a crucial role in post-disaster 

health outcomes. Following cyclone Kenneth in Mozambique early April 2019, less than six weeks after cyclone Idai, poor 260 

WASH conditions contributed to a cholera outbreak with over 6,700 deaths (Lequechane et al., 2020). 

 

There are also indirect health effects that can arise, for example when disasters affect food security by disrupting agriculture 

and supply chains. As discussed in Sect. 2.3, food system resilience is vulnerable under consecutive disasters. The repeated 

destruction of cropland, loss of livestock, and ongoing displacement leave communities with little time to recover, gradually 265 

exacerbating food insecurity, particularly among vulnerable populations, as food scarcity drives up prices and limits access to 

essential nutrition (FAO, 2023). Especially for children, this can have significant health implications. Hossain et al. (2020) 

found that children exposed to multi-hazard risks were significantly more likely to be stunted and underweight compared to 

those in low-risk districts.  

3.2 Existing health crises as barriers to effective disaster response and recovery 270 

While extreme climatic events may contribute to new health emergencies, ongoing health crises may, in turn, complicate 

response and recovery after natural hazard occurrences by introducing significant physical and organizational barriers. The 

COVID-19 pandemic underscored how health crises can complicate efficient disaster management. Various studies examined 

disaster events that occurred at the height of the pandemic, such as earthquakes in Greece (2021-2022), wildfires in the U.S. 

(2020), and cyclone Amphan in India (2020) (Izumi & Shaw, 2022; Mavrouli et al., 2023). They found that response and 275 

recovery actions were often incompatible with pandemic-related restrictions, such as quarantine and social-distancing 

measures, resulting in restricted humanitarian aid delivery, reduced capacity for safe evacuations and sheltering, and a decline 

in volunteer numbers  

3.3 Challenges in disaster-health crises coordination 

Governments and responding agencies face the difficult task of balancing multiple, often conflicting priorities, such as 280 

preventing disease transmission while coordinating disaster relief efforts (Quigley et al., 2020). The co-occurrence of disasters 

during a health crisis, or vice versa, can further strain already limited financial and humanitarian resources, particularly in 

vulnerable, low-income communities that are disproportionately affected by climate change (Hochrainer-Stigler, 2021). In 
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addition, authorities must safeguard emergency personnel and military workers from health risks during ongoing crises, while 

ensuring effective disaster response (Hadeed et al., 2023). That this can be challenging was demonstrated in Guinea, Libera, 285 

and Sierra Leone, where healthcare workers were found to be 21 to 32 times more likely to have been infected with Ebola than 

other adults during the ongoing epidemic in 2014-2015 (WHO, 2015). These challenges illustrate the broader issue of increased 

DRM complexity under consecutive disasters, which will be further explored in Sect. 5.2. 

3.4 Mental health implications of repeated disaster exposure 

Disasters are known to have adverse effects on mental health and wellbeing, with impacts such as post-traumatic stress disorder 290 

(PTSD), anxiety, depression, and increased health risk behaviours (Keya et al., 2023; Zenker et al., 2024). For example, 

adolescents affected by the 2008 Wenchuan earthquake experienced prolonged sleep disturbances and elevated risks of PTSD 

and depression (Fan et al., 2017). Mental health effects may also extend to those indirectly exposed to disasters, such as through 

close connections to affected individuals or via media coverage (Garfin et al., 2022). 

 295 

When people experience repeated exposure to disasters, mental health issues such as PTSD, acute stress disorder (ASD), and 

depression are exacerbated. This has been found for different hazard types and in a wide range of regions and socio-economic 

contexts, including exposure to multiple hurricanes in the US (Garfin et al., 2022), repeated earthquakes in China (Geng et al., 

2018), and multiple weather-related disasters in Australia (Mitchell et al., 2024). Similar findings emerge when examining the 

intersection of the COVID-19 pandemic with natural hazards. Callender et al. (2022) register that during the COVID-19 300 

pandemic, people who had been significantly impacted by hurricane Harvey (2017) had higher odds of experiencing severe 

anxiety. Children are particularly vulnerable to mental health impacts from disasters, as early disaster exposure increases the 

risk of mental health and substance use issues later in life (Maclean et al., 2016). Particularly when children are repeatedly 

exposed to disasters, their mental health impacts can be long-lasting, persisting for months or even years (Save the Children, 

2023). 305 

4 Impacts within the economic system  

Another important aspect of society is the economic system, which encompasses the structures, institutions, and decision-

making processes involved in the production, allocation, and distribution of goods, services, and capital within and across 

communities. Like human settlements and health systems, the economy is increasingly subject to multiple stressors, including 

extreme weather events, pandemics, and economic conflicts, which collectively create compounding challenges for recovery 310 

and growth (Middelanis et al., 2023; Townend et al., 2023). In this chapter we explore how the recovery and long-term 

resilience of the economic system are affected by consecutive events, as overlapping shocks gradually deplete financial 

resources, shift investment behaviours and risks, and trigger cascading effects within a highly interconnected global system. 

A summary of the pathways discussed in this chapter can be found in Fig. 4.  
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 315 

Figure 4. Summarizing figure showcasing main recovery pathways and examples discussed in chapter 4 (economic 
system). 

4.1 Gradual depletion of financial resources at different scales  

Financial resources are a core element of healthy economies that can become increasingly constrained because of consecutive 

events. This affects recovery, and eventually long-term financial resilience at different scales, from large-scale impacts at 320 

supra- and (inter)national levels down to individual households. 

 

At the national level, recurrent disasters create compounding costs that deplete government funds to financially support their 

economies and fund disaster recovery (Miao et al., 2019; Skertich et al., 2012). In Mozambique, for instance, a resettlement 

program to relocate 30,000 families to higher ground after the 2007 floods was disrupted by recurrent flooding in 2008. The 325 

additional costs of relocating 21,000 more displaced families further strained financial resources, delaying the project’s 

completion for several years (Ferris, 2011). Internationally, repeated disasters stretch donor resources, potentially leading to 

so-called donor fatigue (Maçon & Alexander, 2022; OCHA, 2021a). Signs of donor fatigue were observed after the 2021 

consecutive earthquake and hurricane event in Haiti, where the lack of DRR improvement and the additional social conflicts 

seen in Haiti discouraged donors to keep investing (Maçon & Alexander, 2022). Similar dynamics can take place on a 330 
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supranational scale. A counterfactual storyline study covering 2002–2018 demonstrated that the succession of tropical cyclones 

in the Caribbean territories of EU countries, combined with earthquakes in Italy, could deplete the European Union Solidarity 

Fund (EUSF), leaving insufficient funds for recovery from other extreme weather events (Ciullo et al., 2021). This illustrates 

how the recovery capacity of one country can also be shaped by disaster events that occur in other regions, effectively raising 

the likelihood that disaster impacts and recovery needs will overlap in time, thus increasing the chance of experiencing 335 

consecutive disaster impacts.  

 

At the household level, financial resilience similarly erodes under recurrent shocks. Those who take on debt to recover from 

an initial disaster, or who lose their income, face increased hardship under additional shocks, making it increasingly difficult 

to fund disaster recovery of subsequent events and to repay loans (Bacon et al., 2017; Sargeant et al., 2020). In the Philippines, 340 

the compounding agricultural losses from the consecutive typhoon Haiyan (2013) and El-Niño induced drought (2015-2016) 

events not only threatened food security (as discussed in Sect. 2.3) but also severely reduced agricultural income, forcing many 

households to take on loans (Sargeant et al., 2020; Twigg et al., 2017). These impacts were compounded by typhoons Koppu 

(2015) and Haima (2016), which forced households that were still struggling after the previous disasters to take on additional 

loans, deepening their pre-existing debts (Sargeant et al., 2020). Simulations of household recovery after recurrent shocks 345 

show that even middle-income households, which are likely to recover quickly from an individual shock, risk falling into 

poverty when exposed to successive disasters (Sauer et al., 2025). 

4.2 Shifting financial risks and market instability  

Repeated disasters can also place growing pressure on financial markets and risk-sharing mechanisms such as insurance and 

banking. Insurance is thought to improve disaster resilience by promoting and supporting fast recovery and by providing 350 

incentives for “Building Back Better” (Eriksen et al., 2020; Kousky, 2019). Especially under consecutive events, increases in 

economic growth-losses could be effectively mitigated by effective insurance coverage and recovery outcomes are 

significantly improved as insurance speeds up recovery (Cookson et al., 2025; Kousky, 2019; C. Otto et al., 2023). In contrast, 

positive effects of insurance on promoting precautionary measures to create long-term resilience are limited (Kousky, 2019).  

 355 

Insuring disaster damages with fat-tailed risks is challenging, as these involve a relatively high likelihood of rare but extremely 

large losses that often exceed annual revenues in disaster-prone years. Consequently, insurance companies need to have access 

to enough capital, which needs to be build-up as reserves during years with lower claims or by means of reinsurance solutions. 

Successive events can deplete available funds in the private insurance and reinsurance markets and drive the risk beyond what 

is commonly insurable, resulting in elevated premium prices or even the complete withdrawal of insurance providers from 360 

high-risk regions (Sastry et al., 2024). This has already been observed in the U.S., where after repeated extreme events like 

major wildfires in 2018 and 2020, insurance companies withdrew from California (Brenna, 2024; Clark et al., 2024). Higher 
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premiums may further marginalise vulnerable low-income groups. Cookson et al. (2025) found, for instance, that for the 2021 

Marshall fire in the U.S., lower-income households were less likely to be insured than higher-income households.  

 365 

Erosion of financial resources (Sect. 4.1) at the household level can also affect banking stability, through a deterioration of 

outstanding loans. A study of rural credit cooperatives in China showed that borrowers’ ability to repay declined after repeated 

disaster events, increasing credit risks for banks (Deng et al., 2025). Similar patterns have been observed across parts of Europe, 

where extreme weather has been found to contribute to higher insolvency rates in France, Italy, Portugal, and Spain (Pastor-

Sanz et al., 2025). As these financial pressures accumulate, they may surpass the shock-absorbing capacity of financial systems, 370 

contributing to broader market instability (Mahalingam et al., 2018). 

4.3 Exacerbated resource and labour constraints  

Beyond financial constraints, consecutive disasters can create bottlenecks in the availability of resources required for recovery. 

Scarcity of construction materials and skilled labour can delay reconstruction and escalate costs when demand accumulates, 

especially in regions already facing structural shortages (Acharya et al., 2022; Ade Bilau et al., 2018; Sospeter et al., 2020). 375 

Chang-Richards et al. (2017), for instance, found that the 2010/2011 earthquakes in Christchurch exacerbated the existing skill 

shortage in the construction sector, creating significant obstacles to resourcing disaster recovery projects. General resource 

constraints in materials, equipment, and labour are amongst the most reported challenges in post-disaster recovery (Puri et al., 

2024). These limitations become more pronounced when disasters occur consecutively, as resources are further strained, and 

recovery is prolonged due to competing demands for limited resources (Puri et al., 2024; Sargeant et al., 2020).  380 

4.4 Cascading disruptions and resource depletion in a globalised system  

The impacts of extreme events on recovery are not limited to the directly affected areas (Hallegatte, 2014; Mühlhofer et al., 

2023; I. M. Otto et al., 2017). In a globally interconnected economy, disruptions in one region can ripple through supply chains, 

affecting the availability and cost of critical resources, such as construction materials, fuel, and food, in other parts of the world 

(Middelanis et al., 2023). A modeling study for hurricane Sandy in the U.S. (2012) showed that longer recovery times in the 385 

directly affected area significantly increases economic losses across other economically interconnected countries. Countries 

already incurring losses under short recovery periods would have faced significantly greater losses with prolonged recovery 

(Middelanis et al., 2021). Modeling exercises show that socio-economic ripple effects from disasters in trade-connected regions 

can result in substantial consumption losses, even in countries where direct losses are minimal  (Kuhla et al., 2021; Middelanis 

et al., 2023). 390 

 

These global interconnections are also evident in the food system. As discussed in Sect. 2.3, consecutive disasters can erode 

the redundancy of local and regional food systems, which can temporarily make communities more reliant on international 

food trade while they are still recovering. However, the increasingly centralised nature of the global food market makes it 
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particularly vulnerable to systemic shocks (Clapp, 2023). In the same way that recurrent disasters can overwhelm local food 395 

production, consecutive events in geographically distant but interconnected regions can affect food system redundancy on a 

global scale, as their impacts propagate through interconnected systems. In 2020 in Vietnam, for instance, local rice production 

was affected by a severe drought, while rice prices globally sharply increased due to COVID-19 related food stockpiling (Fox 

et al., 2020). The risk for a simultaneous decrease of maize, wheat, and soybean yields in major food producing regions 

(breadbasket failures) has increased over the last decades due to the growing frequency of climate extremes in major crop 400 

producing areas (Gaupp et al., 2020) and is projected to increase further under future global warming, putting food security at 

risk (Hunt et al., 2021; Kornhuber et al., 2023). Countries highly dependent on imports are particularly vulnerable to supply 

shocks and price changes induced by crop failures in distant regions, with severe poverty implications (Bren D’Amour et al., 

2016).  

4.5 Positive economic feedback and business adaptation opportunities 405 

Disasters may also stimulate increased economic activity in specific sectors or regions, leading to “Build Back Better” or 

“positive destruction” (Hsiang et al., 2014). Economic ripple effects can benefit firms outside of the affected area through 

reconstruction demand or reallocation of production and trade during the recovery period, as unaffected businesses substitute 

for disrupted suppliers and producers (Fatica et al., 2024; Koks & Thissen, 2016). While disasters generally have a negative 

impact on medium- to long-term economic growth (Berlemann & Wenzel, 2018; Felbermayr & Gröschl, 2014; Hsiang et al., 410 

2014), potential for positive effects has been found in the case of moderate disasters, depending on disaster type and economic 

sector. For instance, moderate storms can have a beneficial effect for industrial growth during the recovery period due to 

increased reconstruction demand. In contrast, severe disasters are consistently associated with negative growth outcomes 

(Loayza et al., 2012). 

 415 

Businesses may also pivot their business models to adapt to disaster-induced shifts in supply and demand (Guckenbiehl & 

Corral de Zubielqui, 2022). The COVID-19 pandemic, for example, created resource voids that enabled disaster 

entrepreneurship (Doern et al., 2019). Certain sectors, such as the healthcare sector, benefitted from increased demand, 

although it is unclear whether this turned into long-term benefits (Bachmann et al., 2022). The pandemic also illustrated how 

adaptability can help firms navigate rapidly changing economic environments (Krammer, 2022). The ability to adapt and seize 420 

opportunities are key characteristics of business resilience. Scarinci et al. (2016) studied small business disaster preparedness 

after superstorm Sandy in 2012 and found that disasters can encourage business owners to develop better contingency and 

recovery plans, enhancing their subsequent disaster preparedness. Businesses adopting digitization early during the pandemic 

were similarly better equipped for subsequent disruptions (Seetharaman, 2020; Shaikh et al., 2022). 
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5 Impacts within the socio-political system  425 

The socio-political system, comprising the institutions, governance structures, and societal dynamics that influence decision 

making, plays a central role in how societies prepare for, respond to, and recover from disasters. Disaster impacts are shaped 

not only by physical hazard characteristics but also by underlying socio-political structures and pre-existing vulnerabilities 

(UNDRR, 2024). In this chapter we explore how socio-political systems both shape and are reshaped by repeated disaster 

impacts, and how underlying vulnerabilities and governance structures affect recovery trajectories and long-term resilience 430 

under consecutive events. A summary of the pathways discussed in this chapter can be found in Fig. 5.  

 

Figure 5. Summarizing figure showcasing main recovery pathways and examples discussed in chapter 5 (socio-political 
system). 

5.1 Mutually reinforcing dynamics between disaster recovery and political instability   435 

When political crises and natural hazards co-occur, they can be consecutive disasters due to the overlapping impacts and 

increased recovery complexity (Hariri-Ardebili et al., 2022). Reflecting this recognition, various societal hazards, such as civil 

unrest, armed conflict, and violence have been included in the UNDRR’s Hazard Information Profiles (HIPs), alongside 

environmental and technological threats (UNDRR, 2021). The simultaneous occurrence of conflicts and disasters can hinder 

both immediate response and long-term recovery, creating cycles of instability and heightened vulnerability. The relationship 440 

is mutually reinforcing; while disasters can contribute to political crises, political instability can also exacerbate disaster 

impacts (Rosvold, 2023). 
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Disasters can further destabilise already fragile socio-political systems, for instance, by overwhelming the capacity of state 

institutions. For example, after Idai and Kenneth hit Mozambique six weeks apart in 2019, the response capacities of social 445 

welfare and justice institutions were significantly weakened. This aggravated risks related to child safety, loss of personal 

documentation and property rights, and sexual and gender-based violence (UNICEF, 2019). Social disorder post-disaster is 

also linked to large-scale displacement, particularly in low-income countries lacking resources to manage sudden population 

shifts (Castells-Quintana et al., 2022). In Kenya and Ethiopia, for example, a drought in 2017 affected pastoralist migration, 

causing resource conflicts and ethnic tensions, worsened by election-related violence and unrest in Kenya (Matanó et al., 450 

2022). Moreover, recurrent disasters can contribute to existing inequalities, as the poorest and most vulnerable populations 

sustain disproportionate disaster impacts and have the most difficulty fully recovering between events (Sauer et al., 2025). 

Particularly for countries with weak institutions and high levels of inequalities, the risk of conflict increases in post-disaster 

settings (Ide et al., 2020). 

 455 

Political conflict before or during disasters also increases vulnerability and hinders effective disaster response and recovery 

(Matanó et al., 2022; Rosvold, 2023). Ethnic conflicts and violence after the drought-driven migration in Kenia and Ethiopia 

(2017), for instance, significantly hindered the access of humanitarian aid to drought-affected communities (Matanó et al., 

2022). Similar access limitations arose in Haiti (2021), where impacts of an earthquake and tropical storm were exacerbated 

by highly unstable political situation, which created additional challenges for disaster response and recovery. Accessibility to 460 

affected areas was already low due to road damage caused by landslides and rockfalls and was further restricted by escalating 

gang violence, which obstructed aid delivery and movement along key transport routes (Cabas et al., 2023). 

 

Volatile political circumstances can also drive displacement, which can, similarly to disaster-driven displacement (Sect. 2.1) 

force vulnerable people into high-risk environments. In Colombia, for instance, people displaced by conflict in Bayo Putumayo 465 

settled on landslide-prone hillsides in Mocoa, leaving them exposed to the deadly 2017 Mocoa landslide (Siddiqi et al., 2019). 

Similarly to repeated disasters, political crises can reinforce inequalities. Displaced populations, for example, often face 

marginalisation and are systematically excluded from formal disaster preparedness and recovery efforts (Few et al., 2021). In 

the case of the 2017 Mocoa landslide, it was shown that internally displaced people and indigenous groups living in Mocoa 

were largely left out of disaster preparation activities and rehabilitation planning (Siddiqi et al., 2019). Unsurprisingly, it was 470 

estimated that 80 percent of the landslide victims had also been victims of prior conflict. Social inequalities can also shape 

access to support provided by response and recovery programs (Emrich et al., 2022). Effective distribution of recovery support 

and aid in conflict scenarios can also be hindered by a loss of trust as a result of an unstable political situation. People fleeing 

conflict have been shown to show more resistance to accepting help from military personnel after a disaster when they provide 

recovery and relief assistance (Siddiqi et al., 2019).  475 
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5.2 Increased DRM complexity 

After a disaster, even without a political crisis, decision-makers must balance trade-offs between immediate response and 

recovery and long-term planning. While investing in DRR provides substantial benefits in terms of avoided losses 

(Hugenbusch & Neumann, 2019), consecutive disasters often divert resources to immediate response and relief efforts, limiting 

the capacity for long-term planning and preparedness (Finucane et al., 2020). Additionally, there is a tension between rapid 480 

recovery, focused on quickly replacing losses, and adopting a deliberate recovery approach that aligns with the “Build Back 

Better” principles (Olhansky, 2018). Haiti, hit by frequent disasters, has received billions in international aid, making up 20 

percent of its annual government budget. Most funds have been directed toward immediate humanitarian response, with 

minimal investment in reconstruction and long-term development (Cabas et al., 2023; Fischer & Levy, 2012). Prioritizing 

short-term needs over long-term preparedness can ultimately trap disaster-affected communities in cycles of loss and 485 

dependence on external aid (Norton et al., 2023). A long-term reliance on international aid discourages local governments 

from taking ownership of DRM and sidelines local initiatives (Hendriks & Boersma, 2019). Additionally, poorly planned 

recovery without adequate integrations of long-term and multi-hazard considerations can lead to maladaptation and risk trade-

offs, as discussed in Sect. 2.6.  

5.3 Vulnerability reduction through societal learning and adaptation action 490 

While the overlapping phases of DRM can intensify conflicting demands and trade-offs between immediate response and long-

term planning, repeated disaster exposure may also be a trigger for social learning and adaptation action, potentially leading 

to a reduction in vulnerability over time (Di Baldassarre et al., 2018; Kreibich et al., 2022). There are various historical cases 

that exemplify how repeated disaster exposure can serve as a catalyst for transformative adaptation. In Japan, for instance, the 

1896 Meiji Sanriku and 1933 Showa Sanriku earthquakes and tsunamis initiated early tsunami countermeasures, such as 495 

relocating residences to higher ground and constructing seawalls (Koshimura & Shuto, 2015). The 2011 Great East Japan 

earthquake and subsequent Fukushima nuclear disaster revealed remaining vulnerabilities, leading to improved evacuation 

plans, disaster education, and international policy shifts, including Germany’s decision to phase out nuclear power (Kim & 

Choi, 2013).  

 500 

As with positive economic feedback (Sect. 4.5), successful policy learning mainly occurs under moderate disaster conditions. 

Velev & Hochrainer-Stigler (2025) note that moderate manageable floods can encourage learning, while extreme or chronic 

exposure stalls progress. This is related to the availability of the human capital necessary to accelerate change, as big shocks 

can drain these financial funds, limiting abilities for forward looking DRM. Additionally, Kreibich et al. (2022) show that 

positive effects are most pronounced for recurrent hazards of the same type and similar or lower intensity than previously 505 

experienced events. This is consistent with patterns seen in floodplain settlements, where societies adapt to frequent, low-

intensity, or nuisance floods but remain vulnerable to rare, high-intensity events (Devitt et al., 2023; Moftakhari et al., 2018). 
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Adaptation success can also vary significantly per region. After the 2004 Indian Ocean tsunami, the Indian Ocean Tsunami 

Warning and Mitigation System (IOTWMS) was established. While the IOTWMS successfully reduced tsunami vulnerability 

in some regions, limited vulnerability reductions were achieved in areas where post-tsunami recovery was slow (Stephan et 510 

al., 2017). Sauer et al. (2024), who assessed vulnerability reduction after flood impacts on a global scale, concluded that lower-

developed regions often face significant challenges in reducing vulnerability.  

 

Lessons learned from major disasters are not restricted to directly affected regions, potentially influencing policies, risk 

management strategies, and resilience-building efforts on a global scale (Nohrstedt et al., 2022). In addition to policy learning, 515 

social learning and adaptation after experiencing disasters can also take place at the individual level, for example through 

increased education, and capacity and awareness building (see also Sect. 4.5 on positive economic feedback and business 

adaptation) (Cerulli et al., 2020; Ivčević et al., 2021). 

6. Long-term implications and tipping points 

While many of the examples provide insights into recovery dynamics at short- to medium-term timescales, several processes 520 

highlighted in this review also have the potential to induce long-term societal transitions (Fig. 6). When such shifts in a dynamic 

social system are abrupt, irreversible, and triggered by external pressures, they can be considered social tipping points (Spaiser 

et al., 2024; Winkelmann et al., 2022). Tipping points refer to critical thresholds, indicated with an asterisk in Fig. 6 (panel 

A), where small changes in system variables cause an abrupt qualitative change in the social system from one state to another. 

Tipping is generally driven by self-reinforcing feedback loops, where a small change in the system triggers further reinforcing 525 

changes. Once the tipping threshold is crossed, the shift in the system can be difficult to reverse, even if the original stressors 

are removed (Spaiser et al., 2024; Winkelmann et al., 2022).  
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Figure 6. Stylised example of how recovery dynamics under consecutive disasters can shape long-term societal 
resilience. A) Development towards a less resilient society, characterised by compounding negative impacts that erode 530 
a society’s capacity to respond to and recover from new disaster events, with negative tipping towards a less resilient 
society that might not be able to fully recover to pre-disaster conditions. B) Development towards a more resilient 
society, characterised by gradual “Building Back Better”. While immediate physical destruction still causes undesirable 
direct impacts, positive indirect impacts (e.g., improved adaptation and disaster response policies) support faster 
recovery and reduce future disaster impacts. 535 

Spaiser et al. (2024) identify several negative social tipping processes across four defined tipping elements, namely 

displacement (human settlements), financial crises (financial markets), conflicts (political system), and anomie, radicalization, 

and polarization (social psychological system). While their work focusses on mapping these tipping elements and their 

associated feedback under climate change, our analysis specifically highlights disaster recovery dynamics under consecutive 

events as a potential amplifier of these processes.  540 

 

Our findings show, for instance, that insufficient or incomplete recovery following consecutive disaster events can contribute 

to reinforcing negative feedback over time (as shown in panel A of Fig. 6). Displaced populations face increased vulnerability 

and exposure to future events, as each new disaster interrupts ongoing recovery efforts, prolonging the time needed to restore 

stable housing, critical infrastructure, and related public services, which are important determinants for the return of people to 545 

their disaster-affected origins after displacement (Ahsan & Özbek, 2022; Merdjanoff et al., 2022). Moreover, safe land 

becomes increasingly difficult to find as a result of increasing event frequencies and intensities. Over time, these compounding 

vulnerabilities, combined with decreasing options for safe resettlement, can result in communities no longer being able, or 

willing, to return to or rebuild in the same area.  

 550 
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These observed dynamics align with the negative social tipping processes identified by Spaiser et al. (2024), who describe 

how feedback mechanisms such as disrupted livelihoods, cultural heritage loss, and weakened social networks can trigger 

prolonged displacement and eventually outmigration after disasters. Similar reinforcing feedback mechanisms are present in 

the other societal systems, where we have shown how repeated disaster events can erode economic capital or institutional 

capacities over time, creating conditions where recovery is systematically slowed down or under-resourced. This erosion can 555 

initiate negative feedback loops, such as outmigration or exacerbated inequalities, that reinforce vulnerability and reduce 

adaptive capacity, ultimately resulting in a persistent reduction of societal resilience. 

 

Our examples also show that there are strong interdependencies between societal domains. For instance, the depletion of 

financial resources can restrict the reconstruction of housing and critical infrastructure, prolonging displacement and 560 

compounding vulnerability. In such cases, prolonged recovery in the economic domain directly undermines the progress in 

others, amplifying systemic risk. This can not only accelerate the movement of one of the societal domains towards a tipping 

point, but could also trigger so-called tipping cascades, where destabilization in one system cascades into others (Klose et al., 

2021; Liu et al., 2023). Another clear example of these interdependencies in the context of increasing disaster frequency and 

intensity is supply chain failure. Disruptions in the production or distribution of basic goods, such as food and essential 565 

reconstruction materials, can lead to acute shortages, especially when compounded by pre-existing system vulnerabilities. 

Breadbasket failures, in particular, pose a risk, as they may escalate into severe humanitarian crises such as famine, with ripple 

effects on social and political stability (Gaupp et al., 2020; Janetos et al., 2017). 

 

In addition to negative tipping, we also identify processes that may contribute to tipping or transforming a society positively, 570 

towards a more resilient state (as shown in panel B of Fig. 6): i) positive economic feedback and ii) vulnerability reduction 

through social learning and adaptive action. Especially under certain conditions, such as frequent but moderate events, positive 

feedback like business adaptation and the implementation of “Building Back Better” principles can emerge. While increasing 

disaster intensity and frequency poses challenges to adaptation, there remains potential for positive abrupt increases in societal 

resilience (e.g., the rapid development of new vaccines during health crises) (Garschagen & Solecki, 2017; Pandey et al., 575 

2022).  

7. Implications for science and policy making  

Our research has demonstrated that consecutive hazards can result in non-linear impacts and long-lasting implications for 

societal resilience. Yet, current scientific and policy frameworks often fail to adequately address the complexity of the recovery 

dynamics driving these impacts. To support forward-looking comprehensive policymaking, a better and more explicit 580 

consideration and implementation of recovery dynamics into disaster risk studies is required. 
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An essential first step toward a more nuanced and accurate representation of recovery dynamics in disaster risk analyses is to 

critically reflect on what constitutes the "recovered state", acknowledging that a societal system might not return to pre-disaster 

conditions. Instead, the recovery process might extend over a long period (i.e., several years or even decades) or involve tipping 585 

points where communities shift toward entirely new, stable system states that differ fundamentally from those before the 

disaster. A well-defined recovered state enables clearer measurement of recovery duration and can help disentangle recovery 

feedback and interactions across societal domains in the context of consecutive disasters.  

 

The effect of incomplete recovery between events is rarely considered in risk assessments, even when they explicitly address 590 

multiple events. For example, in infrastructure systems analysis, existing approaches to assessing life cycle consequences of 

multiple disasters often rely on overly simplistic binary assumptions, in which damages are either immediately repaired or 

permanently unresolved (Otárola et al., 2023). A critical shift is needed, from reliance on single, probabilistic, or average-

based impact estimates, to metrics that reflect evolving conditions, such as the quantity of damaged units at a given time or 

dynamic best- and worst-case values across storylines (Hariri-Ardebili et al., 2022; Stalhandske et al., 2024). This shift also 595 

requires a more dynamic approach towards the concepts of vulnerability and exposure, which are key risk-determinants that 

can change rapidly in a post-disaster context. Despite growing recognition of their dynamic nature (De Ruiter & van Loon, 

2022; Ward et al., 2022), most impact assessments still treat these risk determinants as static, overlooking how they can evolve 

during the recovery process and ignoring the residual impacts that can shape risk in subsequent events (De Angeli et al., 2022). 

Adopting a dynamic perspective highlights not only the acute impacts of single events but also allows for a focus on long-term 600 

regime changes. While this is well-studied in the context of disturbance regimes to ecosystems (Johnstone et al., 2016; Kropf 

et al., 2025; Turner & Seidl, 2025), this approach needs more attention in relation to human systems. 

  

Recovery assessments must also carefully consider which indicators are used and over what time horizon. The apparent speed 

or completeness of recovery can vary greatly depending on the chosen proxy. While indicators such as electricity outages, 605 

housing reconstruction, and business reopening rates can provide valuable insights, these indicators might fail to capture 

dimensions such as political stability, inequality, and psychological well-being. Hence, it is important to carefully select 

appropriate proxies or indicators and to acknowledge their limitations when drawing conclusions about the state of recovery, 

considering the potential implications of the dimensions left out of the analysis.  

 610 

Moving forward, disciplines that have traditionally lacked explicit representations of recovery could benefit from cross-

disciplinary learning by drawing on approaches developed in fields with more established recovery frameworks, such as 

disaster studies, infrastructure systems modeling, public health, or research related to socio-economic resilience studies. 

Assessment frameworks that analyse recovery in the context of consecutive events have, for example, been developed for 

household well-being (Sauer et al., 2025), critical infrastructure (Argyroudis et al., 2020; Jeddi et al., 2022; Otárola et al., 615 

2023), and supply chains (Juhel et al., 2024; Koks & Thissen, 2016). To capture the full range of interdependencies and 
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cascading effects over time and across societal domains research needs to go beyond sector-specific or single-domain analyses 

and develop shared conceptual or modeling frameworks that bridge disciplinary siloes (De Ruiter et al., 2021). Future studies 

could build on recent examples, such as the combining of pandemic and natural hazard scenarios using storyline-based 

assessments (Hariri-Ardebili et al., 2022) or the development of quantitative epidemiological models that incorporate disaster 620 

scenarios (Hadeed et al., 2023; Hassan & Mahmoud, 2021; Quigley et al., 2020). 

 

Improved scientific understanding alone, however, will not be sufficient to support more resilient recovery. Policy and 

financing mechanisms must also evolve to address the challenges of incomplete recovery between consecutive events. Current 

approaches to managing disaster impacts and recovery are not well adapted to a future characterised by increasingly frequent 625 

and intense natural hazards. As highlighted, long-term planning is often undermined by the need to repeatedly divert resources 

to immediate response and relief. To reduce the risk of negative societal transitions and to achieve long-term increases in 

societal resilience under consecutive disasters, a shift is needed, from reactive, short-term planning toward comprehensive, 

forward-looking DRM. This means also considering all relevant hazards and their potentially interconnected impacts, rather 

than focusing on only a specific subset of relevant hazard types, to minimise the risk of inadvertently implementing 630 

maladaptive practices or asynergies. 

 

A key step is rethinking how recovery is financed. Looking into climate and health, Borghi et al. (2024) find that disaster 

financing is often passive, with funding arriving only after an event has occurred. They note opportunities to expand more 

strategic funding strategies that include the implementation of pre-emptive measures to reduce risks and enhance resilience 635 

(Borghi et al., 2024). To support efficient and equitable recovery after disasters, countries need more reliable and proactive 

financing solutions. These may also include pre-arranged recovery financing mechanisms such as forecast-based financing, 

where funds are automatically released for humanitarian actions that are agreed upon in advance (IFRC & RCCC, 2020) or 

parametric insurance, which offers rapid, flexible payouts based on pre-defined parameters such as certain rainfall or wind 

speed, ensuring rapid payments in post-disaster settings (Ocampo & Moreira, 2024). Current financing structures that try to 640 

diffuse risk, such as sovereign risk pooling, are also valuable tools as they help to distribute the financial burden of disasters 

and reduce a country’s dependence on slow and uncertain foreign aid after a disaster (Ciullo et al., 2023). However, their 

effectiveness relies on the assumption that different regions or sectors will not be simultaneously affected by extreme events. 

As we have shown that disaster impacts often cascade through societal systems, these assumptions may not hold. Recognising 

and accounting for such interdependencies is critical to designing robust financing solutions. 645 

 

In addition to being proactive, disaster financing should also be integrative, moving beyond isolated, sector-specific financing 

approaches to achieve co-benefits across multiple sectors or societal domains (Borghi et al., 2024). Examples of integrative 

co-financing strategies in the health sector include adaptive social protection schemes and the European Solidarity Fund, which 
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was expanded in 2020 to cover losses from major public health emergencies, transforming it into a multi-hazard, multi-risk 650 

financing instrument (Borghi et al., 2024; Hochrainer-Stigler et al., 2023). 

 

The previously mentioned notion of “rethinking the recovered state” also extends to recovery funding mechanisms themselves, 

which should allow for transformative recovery, rather than simply restoring pre-disaster conditions. Yet in practice, 

reconstruction funding often does not sufficiently support building back better. Birkmann et al. (2023) report, for instance, 655 

after close monitoring of the reconstruction process in Germany after the 2021 floods, that reconstruction funding schemes are 

mainly focused on compensating losses and damages, not covering further improvements or resilient developments. They 

stress the need for the development of financing frameworks that allow for resilience gains in the medium- and long-run, 

moving beyond loss compensation to actively enable and incentivise building back better, supporting innovation and resilience 

gains in the long run. 660 

 

Lastly, equity should be a central consideration in the design of disaster recovery financing and adaptation strategies. We have 

illustrated that as repeated disasters erode financial reserves, marginalised or low-income groups are often least able to recover 

and most exposed to cycles of loss and vulnerability. Without targeted support, these communities are at risk of falling into 

cycles of loss and vulnerability. Recovery financing and DRM that specifically accounts for these inequities, addressing 665 

equitable adaptation of minorities, are key to breaking this cycle and building a more resilient and equitable society (Haer & 

De Ruiter, 2024). 

8. Conclusion 

This paper illustrated how recovery plays a pivotal role in shaping the cumulative impacts of consecutive disasters. We have 

highlighted how delayed or incomplete recovery can escalate vulnerabilities, trigger feedback loops, and in some cases even 670 

trigger negative tipping to a less resilient societal state. At the same time, we showed the potential for societal learning and 

adaptive action, potentially increasing societal resilience over time (Fig. 6).  

 

Recovery processes are highly interconnected across societal pillars such as housing, health, economy, and governance. 

Delayed or under-resourced recovery in one domain can cascade into others, amplifying systemic risk. Understanding these 675 

interactions demands that we move beyond static, single-event analyses toward integrated, interdisciplinary approaches that 

account for dynamic exposure, vulnerability, and recovery trajectories over time. To meaningfully incorporate recovery 

dynamics into disaster risk assessments, future research must develop and adopt suitable time-sensitive metrics and long-term 

data series that capture the evolving nature of vulnerability and resilience.  
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We call for a shift in both research and policy to recognise recovery as a central component of disaster risk management, and 680 

in the light of our findings, recommend several priorities to support positive societal transitions towards greater resilience 

under consecutive disasters, including:  

 

i) adopting a multi-hazard perspective to avoid maladaptation and negative synergies;  

ii) recognizing and addressing recovery dynamics and interactions between societal pillars, which are often studied 685 

in isolation;  

iii) shifting disaster risk reduction (DRR) efforts toward long-term planning rather than short-term responses; and 

iv) rethinking recovery funding by expanding pre-arranged financing mechanisms to enable rapid and equitable 

recovery.  
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