

1 **The Biogeophysical Effects of Carbon Fertilization of the Terrestrial Biosphere**

2

3 Robert J. Allen^{1*}

4

5 ¹Department of Earth and Planetary Sciences, University of California, Riverside USA

6

7 *Correspondence to: R. J. Allen (rjallen@ucr.edu)

8

9 **Abstract**

10 The response of the terrestrial biosphere to increasing atmospheric carbon dioxide (CO₂), i.e., the
11 carbon fertilization effect represents a significant source of uncertainty in future climate
12 projections. The climate impacts of carbon fertilization include cooling associated with the
13 biogeochemical effects of enhanced land carbon storage, whereas the non-carbon cycle
14 biogeophysical effects associated with changes in surface energy and turbulent heat fluxes may
15 warm or cool the climate system. Here, I analyze 15 state-of-the-art Earth system models that
16 conducted simulations driven by 1% per year increases in atmospheric CO₂ concentration that
17 isolate the CO₂ fertilization effect (i.e., CO₂ radiative effects are not active). At the time of CO₂
18 quadrupling, the biogeophysical effects yield multimodel global mean near-surface warming of
19 0.16 ± 0.09 K with 13 of the 15 models yielding warming. Most of this warming is associated
20 with decreases in surface latent heat flux associated with reduced canopy transpiration.
21 Decreases in surface albedo and increases in downwelling shortwave and longwave radiation—
22 both of which are modulated by cloud reductions—are also associated with the warming.
23 Overall, however, the biogeophysical warming is about an order of magnitude smaller than the
24 corresponding cooling associated with enhanced land carbon storage at -1.38 K (-1.92 to
25 -0.84 K).

26

27

28 **Short Summary**

29 CMIP6 models are analyzed to quantify the biogeophysical (non-carbon cycle) and
30 biogeochemical (enhanced carbon storage) effects of carbon fertilization at the time of CO₂
31 quadrupling. The biogeophysical effects lead to relatively weak warming (0.16 ± 0.09 K)
32 largely due to decreases in surface latent heat flux associated with reduced canopy transpiration.
33 Biogeochemical cooling associated with enhanced land carbon storage dominates at -1.38 K
34 (-1.92 to -0.84 K).

35

36

37

38

39

40

41

42

43

44

45

46

47 **1. Introduction**

48

49 Over land, increasing atmospheric CO₂ concentrations are associated the carbon fertilization
50 effect (e.g., Ainsworth and Long, 2005; Ainsworth and Rogers, 2007; Leakey et al. 2009; Norby
51 and Zak, 2011). This effect involves physiological and structural vegetation changes including
52 reduced stomatal conductance and increased photosynthesis rates which are expected to increase
53 net primary productivity (NPP) and carbon storage. However, the carbon fertilization effect
54 depends on many factors, including plant species, temperature, and availability of water and
55 nutrients. The availability of soil inorganic nitrogen (N), for example, exerts a strong control on
56 plant productivity and carbon storage in many temperate and boreal ecosystems (Vitousek and
57 Howarth, 1991; Oren et al., 2001; Fernández-Martínez et al., 2014; Kicklighter et al., 2019).
58 Nonetheless, intensification of terrestrial biospheric activity, including increased global
59 photosynthesis and “greening” of the planet, has been found in several recent studies (Forkel et
60 al., 2016; Thomas et al., 2016; Zhu et al., 2016, Campbell et al., 2017; Keeling et al., 2017;
61 Haverd et al., 2020; Walker et al., 2021; Chen et al., 2022; Keenan et al., 2023).

62

63 Enhanced land carbon storage and greening of the terrestrial biosphere under elevated
64 atmospheric CO₂ concentrations will promote a biogeochemical cooling effect. In other words,
65 the carbon-concentration feedback, which quantifies the carbon cycle’s response to changes in
66 atmospheric CO₂ concentration (expressed in units of carbon uptake/release per unit change in
67 atmospheric CO₂ concentration) is negative from the atmosphere’s perspective (Arora et al.,
68 2020). Such changes in the terrestrial biosphere will also drive biogeophysical effects associated
69 with surface energy and turbulent heat fluxes. For example, structural vegetation changes (e.g.,
70 enhanced leaf area index, LAI) associated with carbon fertilization will impact surface physical
71 properties. This includes altered surface albedo, e.g., plants are darker than bare soil (Betts et al.,
72 2000, Bala et al., 2006; Li et al., 2015), which promotes enhanced surface absorption of solar
73 radiation and hence warming. Furthermore, the physiological changes of carbon fertilization
74 (i.e., reduced stomatal conductance and enhanced water use efficiency) are associated which
75 reduced plant transpiration and latent heat flux, which directly impact surface temperature (i.e.,
76 less evapotranspiration implies surface warming) as well as atmospheric water vapor and clouds
77 (Field et al., 1995; Bounoua et al., 1999; Cao et al., 2010; Doutriaux-Boucher et al., 2009).
78 Thus, the overall impact of carbon fertilization on surface temperature is determined by a
79 combination of biogeochemical (carbon cycle) effects and biogeophysical (non-carbon cycle)
80 effects.

81

82 In this paper, I use 15 Coupled Model Intercomparison Project phase 6 (CMIP6; Eyring et al.,
83 2016) models to quantify the climate effects of carbon fertilization, i.e., in the absence of the
84 direct radiative effects of CO₂. Climate effects include the directly simulated biogeophysical
85 (non-carbon cycle) temperature response as well as the drivers, while I infer the biogeochemical
86 temperature response. I find significant global mean biogeophysical warming, largely driven by
87 reductions in latent heat flux associated with decreases in canopy transpiration. Decreases in
88 surface albedo and increases in downwelling shortwave and longwave radiation (which are
89 modulated by cloud reductions) are also associated with the warming. The magnitude of this
90 biogeophysical warming, however, is about an order of magnitude smaller than the inferred
91 biogeochemical cooling associated with enhanced land carbon storage.

92

93 **2. Methods**

94

95 **2.1 CMIP6 Models and 1% per Year Simulations**

96 CMIP6 (Eyring et al., 2016) performed three sets of 1% per year increasing atmospheric CO₂
97 concentration simulations (1PCTCO₂), which are initialized from the preindustrial CO₂
98 concentration of ~284 ppm and integrated for 150 years. The default 1PCTCO₂ simulations are
99 fully coupled as the radiation and carbon cycle components see the increasing CO₂
100 concentration. Two variants of the 1PCTCO₂ simulation were performed as part of the Coupled
101 Climate-Carbon Cycle Model Intercomparison Project (C4MIP; Jones et al., 2016), including a
102 biogeochemically coupled version (1PCTCO₂-bgc) and a radiatively coupled version (1PCTCO₂-
103 rad). Under 1PCTCO₂-bgc, only the carbon cycle components (both land and ocean) respond to
104 the increase in CO₂, while the atmospheric radiative transfer calculations use a CO₂
105 concentration that remains at the preindustrial concentration. Under 1PCTCO₂-rad, only the
106 atmospheric radiation code sees the increase in CO₂ and the carbon cycle components see the
107 fixed, pre-industrial CO₂ concentration.

108

109 The focus of this analysis is on the 1PCTCO₂-bgc runs, which allows assessment of the climate
110 responses associated with the carbon cycle under elevated CO₂ (without the influence of CO₂
111 radiative effects). Over land, this effect is traditionally referred to as carbon fertilization of the
112 terrestrial biosphere (e.g., Ainsworth and Long, 2005; Ainsworth and Rogers, 2007; Forkel et al.,
113 2016; Thomas et al., 2016; Zhu et al., 2016, Campbell et al., 2017; Chen et al., 2022). In
114 particular, this includes changes in vegetation physiology including photosynthesis, transpiration
115 and stomatal conductance, and changes in vegetation state (e.g., leaf area index, canopy height).
116 In models with dynamic vegetation, this also includes changes in vegetation type and coverage.
117 These changes in turn affect surface radiative and turbulent heat fluxes which impact surface
118 temperature and other aspects of climate. As the three sets of 1PCTCO₂ simulations are CO₂
119 concentration driven (as opposed to emissions driven), the simulated climate responses include
120 only the biogeophysical effects (e.g., changes in surface fluxes and more generally all non-
121 carbon cycle effects). The climate impacts associated with changes in terrestrial carbon pools
122 (biogeochemical effects) are not allowed to feedback onto the climate system (i.e., enhanced land
123 carbon storage under elevated CO₂ does not impact the atmospheric CO₂ concentration and thus
124 does not impact climate). However, as discussed below, the surface temperature responses to
125 changes in terrestrial carbon pools can be inferred from the transient climate response to
126 cumulative CO₂ emissions (TCRE; Gillett et al., 2013; Arora et al., 2020; Boysen et al. 2020).
127

128

129 This analysis uses 15 CMIP6 models (Supplementary Table 1). Responses are estimated from
130 years 101-140 (CO₂ quadruples in year 140) in the 1PCTCO₂-bgc runs relative to the
131 corresponding 40 years in the preindustrial control simulation. I refer to this 40-year time period
132 as the time of CO₂ quadrupling. Preindustrial control simulations feature fixed (to the
133 preindustrial value) atmospheric CO₂ concentration and other climate drivers (e.g., other
134 greenhouse gases, solar irradiance, aerosols). Monthly mean data is used and all data is
135 interpolated to a 2.5°x2.5° grid and aggregated to annual means. Only two models, GFDL-
136 ESM4 and MPI-ESM1-2-LR, include dynamic vegetation (i.e., vegetation type and coverage can
137 respond to the elevated CO₂). Three models, GFDL-ESM4, UKESM1-0-LL and NorESM2-LM,
138 include atmospheric chemistry with an interactive representation vegetation biogenic volatile
organic compound (BVOC) feedbacks (e.g., Gomez et al., 2023). Eight models, including

139 ACCESS-ESM1-5, CESM2, CMCC-ESM2, EC-Earth3-CC, MIROC-ES2L, MPI-ESM1-2-LR,
140 NorESM2-LM and UKESM1-0-LL, feature a terrestrial nitrogen cycle (Supplementary Table 1).
141 Additional model information can be found in Arora et al. (2020); Gomez et al. (2023); Allen et
142 al. (2024) and Gier et al. (2024).
143

144 **2.2 Surface Energy Balance Decomposition**

145 The Surface Energy Balance (SEB) decomposition (Luyssaert et al., 2014; Hirsch et al., 2018;
146 Boysen et al., 2020) is used to infer the contribution of changes in energy fluxes to changes in
147 surface temperature (ΔTS):
148

$$149 \Delta TS = \frac{1}{4\epsilon\sigma TS_{control}^3} [\Delta SWD(1 - \alpha) - \Delta\alpha(SWD) + \Delta LWD - \Delta LH - \Delta SH],$$

150

151 where ϵ is the surface emissivity assumed to be 0.97 (Boysen et al., 2020), σ is the Stefan-
152 Boltzmann constant with a value of $5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$, and $TS_{control}$ is the surface
153 temperature from the preindustrial control experiment. The first term in square brackets
154 represents the contribution from changes in downwelling surface shortwave radiation (ΔSWD)
155 which is multiplied by the monthly mean climatology of $(1 - \alpha)$; the second term represents the
156 contribution from changes in surface albedo (α) which is multiplied by the monthly mean SWD
157 climatology (changes in albedo impact upwelling surface shortwave radiation); the third term
158 represent the contribution from changes in downwelling surface longwave radiation (ΔLWD);
159 the fourth term represents the contribution from changes in surface latent heat flux (ΔLH); and
160 the final term represents the contribution from changes in surface sensible heat flux (ΔSH). I
161 also decompose the first term on the right (i.e., the surface downwelling SW radiation term) into
162 the contribution from changes in surface downwelling shortwave radiation under clear-sky and
163 cloudy-sky conditions. The clear-sky contribution is estimated as $\Delta SWD_{clear}(1 - \alpha)$, where
164 ΔSWD_{clear} is the change in clear-sky downwelling surface solar radiation. The cloudy-sky
165 contribution is estimated as the residual between the all-sky and clear-sky SWD radiation SEB
166 components. A similar decomposition is performed for downwelling surface longwave radiation
167 to isolate its clear-sky and cloudy-sky contributions. The SEB decomposition is performed over
168 all land areas. I note that the SEB decomposition does not account for all factors, including for
169 example the ground heat flux and changes in subsurface heat storage (both of which are assumed
170 to be zero here), or changes in surface emissivity.
171

172 **2.3 Statistical Significance**

173 Statistical significance of a response is estimated using two approaches. In the first approach
174 (e.g., Fig. 1), the multimodel mean time series for the experiment and the control is calculated
175 and their difference is computed. A 2-tailed pooled t-test is used to assess significance of this
176 difference at the 90% confidence level with $n_1 + n_2 - 2$ degrees of freedom (n_1 is the number of
177 years in the experiment and n_2 is the number of years in the control, i.e., 40 years each) using the
178 pooled variance $\frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$, where S_1 and S_2 are the sample variances. Significance of the
179 multimodel mean response relative to each individual model response (e.g., Supplementary
180 Table 2) is estimated by comparing the average of the individual model responses relative to its
181 uncertainty, estimated as $\pm 1.65 \times SE$ (i.e., the 90% confidence interval). SE is the standard

182 error estimated as $\frac{1.65 \times \sigma}{\sqrt{m}}$, where σ is the standard deviation across models and m is the number of
183 models. Model agreement on the sign of the multimodel mean response is spatially and globally
184 estimated as the percentage of models that yield a positive or negative response. A 2-tailed
185 binomial test yields model agreement at the 90% confidence level when at least 11 of the 15
186 (73%) models agree on the sign of the response. Significance of correlations (r) is estimated
187 from a two-tailed t-test as: $t = \frac{r}{\sqrt{\frac{1-r^2}{N-2}}}$, with $N-2$ degrees of freedom. N is either the number of
188 grid boxes (for a spatial correlation) or the number of models (for correlations across models).
189

190 **3. Results**

191 **3.1 Vegetation, Land Carbon and Inferred Biogeochemical Temperature Responses**
192 Figure 1 shows multimodel mean annual mean responses of vegetation including NPP and LAI.
193 The global mean increase in NPP is $679.4 \pm 140.6 \text{ kg km}^{-2} \text{ day}^{-1}$ (77.4% increase relative to the
194 control) with larger increases in the tropics (30S-30N) at $1049.7 \pm 248.2 \text{ kg km}^{-2} \text{ day}^{-1}$ as
195 compared to the extratropics (30S-60S and 30N-60N) at $516.7 \pm 109.4 \text{ kg km}^{-2} \text{ day}^{-1}$
196 (Supplementary Table 2). In each of these regions, all 15 models agree on a positive NPP
197 response (Supplementary Figure 1 shows the spatial model agreement on the sign of the
198 response). Similar results exist for LAI with a multimodel mean global mean increase of $0.71 \pm$
199 0.25 (Fig. 1b; 48.9% increase relative to the control), which increases to 1.12 ± 0.41 in the
200 tropics. Here, however, one model features a decrease in LAI (GISS-E2-1-G). One of the two
201 models with interactive vegetation, GFDL-ESM4, yields relatively large global mean NPP
202 increases (2nd largest) at $1207.3 \pm 30.9 \text{ kg km}^{-2} \text{ day}^{-1}$ (global mean) whereas MPI-ESM1-2-LR
203 yields $673.2 \pm 13.9 \text{ kg km}^{-2} \text{ day}^{-1}$, a value close to the multimodel global mean increase. In
204 terms of LAI, GFDL-ESM4 yields a value close to the multimodel global mean at 0.84 ± 0.02
205 while MPI-ESM1-2-LR yields the weakest global mean increase at 0.17 ± 0.01 . Thus, there are
206 not clear model differences in these vegetation responses between those models with interactive
207 vegetation versus those models that lack interactive vegetation.
208

209 In terms of land carbon (cLand), the multimodel annual mean global mean increase is $4.52 \pm$
210 0.68 kgC km^{-2} and all 14 models (GISS-E2-1-G is missing) agree on enhanced land carbon
211 sequestration. Decomposing land carbon into vegetation, soil organic matter and litter carbon
212 shows that the bulk of this increase is due to an increase in vegetation carbon (Fig. 1e) at $2.48 \pm$
213 0.42 kgC km^{-2} (75.1% increase relative to the control). This is followed by an increase in soil
214 organic matter carbon (Fig. 1d) at $1.38 \pm 0.49 \text{ kgC km}^{-2}$ (15.0% increase relative to the control)
215 and litter carbon (Fig. 1c) at $0.66 \pm 0.22 \text{ kgC km}^{-2}$ (64.4% increase relative to the control).
216 Converting the above land carbon responses into multimodel mean global totals yields $468.1 \pm$
217 89.4 PgC ; $248.0 \pm 89.5 \text{ PgC}$; and $119.1 \pm 45.2 \text{ PgC}$ for vegetation carbon, soil carbon and
218 litter carbon, respectively. Thus, the total land carbon increase is $835.3 \pm 134.3 \text{ PgC}$. Increases
219 in vegetation carbon contribute 56% to this value, followed by soil carbon at 30% and litter
220 carbon at 14%. Once again, models with interactive vegetation do not stand out, as GFDL-
221 ESM4 yields a total land carbon increase of $958.6 \pm 32.6 \text{ PgC}$ and MPI-ESM1-2-LR yields
222 $530.7 \pm 12.0 \text{ PgC}$ (4th smallest increase).
223

224

225 I separate the models into the eight (N models) that have a representation of the terrestrial
226 nitrogen cycle versus the six models (noN models) that do not (GISS-E2-1-G is missing so there
227 are only 14 models). As noted in Gier et al. (2024), the inclusion of nitrogen limitation led to a
228 large improvement in photosynthesis compared to models not including this process.
229 I find significantly larger increases in land carbon storage in noN models at 1153.4 ± 213.6 PgC
230 versus 581.6 ± 157.5 PgC in N models (consistent with Arora et al., 2020). Similar but less
231 significant statements apply for NPP (923.4 ± 202.2 kg km $^{-2}$ day $^{-1}$ in noN models versus
232 679.4 ± 140.6 kg km $^{-2}$ day $^{-1}$ in N models) and LAI (0.94 ± 0.48 in noN models versus $0.62 \pm$
233 0.24 in N models). The weaker increase in land carbon storage in models with a terrestrial
234 nitrogen cycle is consistent with terrestrial nitrogen generally reducing the response of NPP and
235 carbon storage to elevated levels of atmospheric CO₂ because of an increasing limit of nitrogen
236 availability for carboxylation enzymes and new tissue construction (e.g., Jones et al., 2016).
237
238 I use the TCRE (Gillett et al., 2013; Arora et al., 2020; Boysen et al. 2020) to estimate the near-
239 surface air temperature (TAS) response to the aforementioned changes in land carbon
240 (biogeochemical effects). The TCRE quantifies the amount of warming relative to the
241 preindustrial state per unit cumulative emissions at the time when atmospheric CO₂
242 concentration doubles in the 1PCTCO₂ simulation. The best estimate of the TCRE at 1.65 K per
243 1000 PgC, with a likely range from 1.0 to 2.3 K per 1000 PgC (Canadell et al., 2021) yields a
244 biogeochemical cooling effect of -1.38 (-1.92 to -0.84) K. Models without a terrestrial
245 nitrogen cycle (consistent with their enhanced land carbon storage) yield larger cooling (but not
246 significantly so) at -1.90 (-2.65 to -1.15) K relative to the models with a terrestrial nitrogen
247 cycle at -0.96 (-1.34 to -0.58) K. Similar biogeochemical cooling is obtained if I use an
248 estimate of each model's TCRE (as opposed to the best estimate) at -1.22 K for all models;
249 -1.70 K for noN models; and -0.86 K for N models. Thus, the cooling difference between
250 models with and without a terrestrial nitrogen cycle is largely due to differences in the land
251 carbon response.
252
253 Thus, carbon fertilization at the time of CO₂ quadrupling yields large increases in land carbon
254 storage and corresponding global mean biogeochemical cooling as inferred from the TCRE.
255 Models that lack a terrestrial nitrogen cycle tend to yield larger increases in land carbon storage
256 and in turn, larger inferred cooling, implying they may overestimate the magnitude of this
257 cooling effect. I note that the magnitude of this multimodel biogeochemical mean cooling is
258 relatively large, e.g., it is about 35% of the global mean warming under 1PCTCO₂ and
259 1PCTCO₂-rad (which only accounts for the radiative effect of CO₂) of 3.94 ± 0.37 K and
260 3.78 ± 0.35 K, respectively.
261

262 **3.2 Biogeophysical Temperature Responses**

263 Figure 2a shows the multimodel annual mean near-surface air temperature response. As noted
264 above, the simulated temperature responses in these simulations includes only the biogeophysical
265 (non-carbon cycle) effects. The multimodel annual mean global mean TAS response is $0.16 \pm$
266 0.09 K with 13 of the 15 models yielding warming (Fig. 2b shows the spatial model agreement
267 on the sign of the response). The largest warming occurs in EC-Earth3-CC at 0.51 ± 0.05 K,
268 followed by CESM2 at 0.44 ± 0.04 K and UKESM1-0-LL at 0.40 ± 0.04 K (Supplementary
269 Figure 2). The two models that yield cooling are CMCC-ESM2 and CNRM-ESM2-1 at
270 -0.01 ± 0.07 (not significant at the 90% confidence level) and -0.31 ± 0.04 K, respectively

271 (Supplementary Figure 2e,f). Over land, the multimodel mean warming increases to 0.28 ± 0.13
272 K (14 of the 15 models yield warming). In both cases, warming is larger in the extratropics as
273 compared to the tropics (Supplementary Table 3). Thus, biogeophysical effects of carbon
274 fertilization yield warming, but much less as compared to the corresponding biogeochemical
275 effects noted above at -1.38 (-1.92 to -0.84) K. I also note that the biogeophysical warming
276 of carbon fertilization is much smaller as compared to the biogeophysical warming associated
277 with the radiative effects (from 1PCTCO₂-rad simulations) of CO₂ at 3.78 ± 0.35 K.
278

279 **3.3 Drivers of the Biogeophysical Temperature Response**

280 I use the surface energy balance (SEB; Section 2.2) decomposition (Luyssaert et al., 2014;
281 Hirsch et al., 2018; Boysen et al., 2020) to understand the drivers of the biogeophysical
282 temperature changes. I first note that the SEB decomposition reasonably reproduces the change
283 in surface temperature (TS) and TAS. For example, the SEB reconstructed multimodel annual
284 mean global land mean TS response is 0.33 ± 0.13 K relative to the actual TS and TAS
285 responses of 0.26 ± 0.12 K and 0.28 ± 0.13 K, respectively (Supplementary Table 4).
286

287 Figure 3 shows multimodel annual mean spatial responses for the main terms of the SEB
288 decomposition (Supplementary Figure 3 shows the corresponding model agreement on the sign
289 of the responses). The surface latent heat flux (LH) term (Fig. 3d) at 0.27 ± 0.11 K
290 (Supplementary Table 4) contributes the most to the global land warming, followed by the
291 downwelling surface longwave radiation (LW) term (Fig. 3c) at 0.20 ± 0.13 K. The surface
292 albedo (α) term (Fig. 3a) contributes 0.11 ± 0.06 K and the downwelling surface shortwave
293 radiation (SW) term (Fig. 3b) contributes 0.09 ± 0.06 K. In contrast, the surface sensible heat
294 flux (SH) term (Fig. 3e) leads to cooling at -0.34 ± 0.08 K. Model agreement on the sign of the
295 multimodel mean response occurs in 12 to 13 of the 15 models (depending on the SEB term;
296 Supplementary Table 4). As with the global land mean, the LH SEB term at 0.45 ± 0.15 K
297 contributes the most to the tropical land mean warming (14/15 models agree on warming). Over
298 extratropical land, the dominant SEB terms are the LW term (0.20 ± 0.16 K), as well as the
299 surface albedo (0.16 ± 0.09 K) and SW terms (0.16 ± 0.10 K).
300

301 The large warming due to the LH SEB term, which can be decomposed into canopy transpiration
302 and evaporation (which includes sublimation) SEB terms, is consistent with decreased canopy
303 transpiration due to decreased stomatal conductance under the higher atmospheric CO₂
304 concentration, i.e., more efficient stomata that lose less water to the atmosphere (e.g., Wong et
305 al., 1979; Keenan et al., 2013). Figure 4 shows additional terms from the SEB decomposition,
306 including relatively large values for the transpiration SEB term (Fig. 4e; corresponding model
307 agreement spatial maps are included in Supplementary Figure 4). The multimodel global land
308 mean increase in the canopy transpiration SEB term is 0.45 ± 0.15 K (13 of the 13 models agree
309 on the increase; Supplementary Table 4), which increases to 0.70 ± 0.26 K in the tropics.
310 Warming associated with decreased canopy transpiration is muted to some extent through
311 increases in evaporation (which cools). The corresponding evaporation SEB term over global
312 land yields cooling of -0.19 ± 0.16 K, but with reduced model agreement on the cooling (9 of
313 13 models). This again increases in magnitude over tropical land to -0.26 ± 0.25 K but with
314 only 7 of 13 models agreeing on the cooling. The enhanced evaporation appears to be directly
315 related to the decrease in transpiration. Spatially correlating the multimodel mean change in the
316 transpiration and evaporation SEB terms yields a very strong global land correlation of -0.83 ,

317 which increases to -0.86 over tropical land. Similar results exist across models, i.e., the
318 correlation between each model's transpiration and evaporation SEB terms is -0.69 over global
319 land, which increases to -0.78 over tropical land (correlations are significant at the 99%
320 confidence level). This suggests that for conditions of reduced transpiration, evaporation
321 increases to try to satisfy the evaporative demand of the atmosphere.

322
323 Although all of the SEB terms may contain temperature induced feedbacks to some extent (since
324 these are coupled ocean-atmosphere simulations), warming associated with the LW SEB term
325 (particularly its clear-sky component) is likely a response to the surface warming as opposed to a
326 driver of the warming. Surface warming will lead to an increase in upwelling LW radiation
327 consistent with the Stefan-Boltzmann law whereby a blackbody radiates energy proportional to
328 TS^4 . Some of this enhanced upwards longwave radiation (via the atmospheric greenhouse effect)
329 will be reradiated back down to the surface, i.e., enhanced downwelling LW radiation at the
330 surface. This argument is consistent with Vargas Zeppetello et al. (2019), who found surface
331 downwelling LW radiation is tightly coupled to surface temperature. Changes in the LW SEB
332 term are also likely augmented by increases in atmospheric water vapor via the water vapor
333 feedback (i.e., a stronger greenhouse effect). For example, the multimodel global mean
334 tropospheric specific humidity significantly increases by $0.017 \pm 0.014 \text{ g kg}^{-1}$ (increases also
335 occur over land but these are not significant; Supplementary Table 3; Supplementary Figure 5f).

336
337 I also note that the cooling under the SH SEB term is likely in part a feedback to the surface
338 warming as well as a response to the warming under the LH SEB term. In the former case,
339 surface warming (largely induced by decreases in surface latent heat flux, decreases in surface
340 albedo and increases in solar radiation) will lead to an increase in sensible heat flux, which will
341 act to cool the surface. In the latter case, a reduction in latent heat flux will be compensated by
342 an increase in sensible heat flux. Spatially correlating the multimodel mean change in the SH
343 and LH SEB terms yields a very strong global land correlation of -0.90 , which increases to
344 -0.92 over tropical land. Similar results exist across models, i.e., the correlation between each
345 model's SH and LH SEB terms is -0.84 over global land, which increases to -0.86 over
346 tropical land (correlations are significant at the 99% confidence level). Thus, these correlations
347 support an inverse relationship between the SH and LH SEB responses. As the LH SEB term
348 leads to warming consistent with reduced stomatal conductance under elevated CO₂, this is in
349 part compensated for by SH SEB cooling.

350
351 The LW SEB term can be decomposed into clear-sky (LW_{clear}; Fig. 4c) and cloudy-sky (LW_{cloud};
352 Fig. 4d) contributions. All of the multimodel mean global land warming associated with the LW
353 SEB term is due to the LW_{clear} SEB component at $0.27 \pm 0.13 \text{ K}$ (12 of 14 models agree on the
354 warming). The dominance of the LW_{clear} SEB term warming is consistent with the
355 aforementioned greenhouse effect, combined with increased atmospheric water vapor. In
356 contrast, the LW_{cloud} SEB term contributes to multimodel mean global land cooling of $-0.07 \pm$
357 0.03 K (12 of 14 models agree on the cooling). This cooling is consistent with a multimodel
358 mean global land decrease in total cloud cover at $-0.52 \pm 0.23 \%$ (12 of 15 models agree on the
359 decrease; Supplementary Figure 5a and 6a). A decrease in cloud cover will act similarly to the
360 greenhouse effect (i.e., here a weaker greenhouse effect) and this will promote a decrease in
361 surface downwelling LW radiation. Consistently, larger multimodel mean LW_{cloud} SEB cooling

362 occurs in the extratropics at -0.11 ± 0.05 K, consist with the larger decrease in extratropical
363 total cloud cover at -0.64 ± 0.29 %.

364

365 I note that the multimodel mean decrease in global land cloud cover is consistent with the
366 previously discussed decrease in latent heat flux (largely due to decreases in canopy
367 transpiration) and with decreases in near-surface and tropospheric relative humidity over land
368 (Supplementary Figure 5c,d and 6c,d). For example, the multimodel mean global land decrease
369 in near-surface relative humidity is -0.87 ± 0.48 %, which increases in magnitude (as does
370 canopy transpiration) to -1.09 ± 0.59 % over tropical land (11 of 14 models agree on both
371 decreases). The corresponding decrease in multimodel mean global land tropospheric relative
372 humidity is weaker but still significant at -0.21 ± 0.12 % (12 of 14 models agree on the
373 decrease). The near-surface relative humidity decrease over land is consistent with near-surface
374 land warming (which increases the water vapor carrying capacity of the air) and with a (non-
375 significant) decrease in near-surface specific humidity (-0.010 ± 0.052 g kg $^{-1}$; Supplementary
376 Figure 5e and 6e). The tropospheric relative humidity decrease over land is consistent with
377 tropospheric warming (0.18 ± 0.09 K) dominating over non-significant increases in tropospheric
378 specific humidity (0.011 ± 0.015 g kg $^{-1}$; Supplementary Figure 5f and 6f). In other words, the
379 thermodynamic increase in water vapor over land as dictated by the Clausius Clapeyron equation
380 (e.g., water vapor increases by 7% per K of warming) is muted by the decrease in latent heat
381 flux, and in particular canopy transpiration. I also note a multimodel mean decrease in global
382 land precipitation (Supplementary Figure 5b and 6b) at -0.028 ± 0.017 mm day $^{-1}$ (-1.2 %
383 change relative to the control) with 12 of 15 models agreeing on the decrease.

384

385 Warming associated with the surface albedo SEB term is consistent with surface darkening (e.g.,
386 Betts et al., 2000, Bala et al., 2006; Li et al., 2015) under enhanced vegetation (e.g., LAI
387 increases; Fig. 1b). In contrast to maximum tropical warming due to the LH SEB term, warming
388 associated with the surface albedo SEB term is largest in the extratropics. The corresponding
389 multimodel mean extratropical land warming is 0.16 ± 0.09 K relative to the tropical warming
390 of 0.06 ± 0.04 K. Larger extratropical as opposed to tropical warming under the surface albedo
391 SEB term is consistent with larger vegetation-induced darkening over higher latitudes, where
392 snow and ice (bright surfaces with high surface albedo) are more prevalent.

393

394 The SW SEB term, which yields multimodel mean global land warming of 0.09 ± 0.06 K (12 of
395 15 models agree on the warming), can be decomposed into clear-sky (SW $_{\text{clear}}$; Fig. 4a) and
396 cloudy-sky (SW $_{\text{cloud}}$; Fig. 4b) contributions. In contrast to the total SW SEB term, the SW $_{\text{clear}}$
397 SEB term yields multimodel mean global land cooling at -0.05 ± 0.02 K. Such cooling is
398 consistent with the aforementioned increase in tropospheric specific humidity, which increases
399 the atmospheric absorption of shortwave radiation by water vapor. Changes in atmospheric
400 aerosols may also contribute though direct scattering/absorption of solar radiation. Few models,
401 however, archived the relevant aerosol diagnostics and changes in the multimodel mean aerosol
402 optical depth (AOD; Supplementary Figure 7) lack significance except for tropical land
403 (Supplementary Table 3). For example, a nonsignificant multimodel global land AOD increase
404 of $1.88 \pm 2.50 \cdot 10^{-3}$ occurs, with 5 of the 8 models agreeing on the increase. This increases and
405 becomes significant over tropical land at $3.07 \pm 3.00 \cdot 10^{-3}$ (5 of 8 models agree on the increase).
406 Part of these AOD increases are due to (nonsignificant) increases in dust AOD (DAOD;
407 Supplementary Table 3). If I remove DAOD from (total) AOD (i.e., $AOD_{NOD} = AOD -$

408 *DAOD*), I find nonsignificant AODNOD increases for global and extratropical land, but
409 significant increases over tropical land at $2.35 \pm 2.33 \cdot 10^{-3}$ (5 of 8 models agree on this increase).
410
411 Of the three models with an interactive representation of BVOCs, only two archived AOD
412 (GFDL-ESM4 and UKESM1-0-LL), and both models yield much larger AOD increases than the
413 other models. Such AOD increases are consistent with enhanced BVOC emissions due to the
414 increased vegetation (e.g., LAI; Fig. 1b), leading to more secondary organic aerosol (e.g., Scott
415 et al., 2018; Weber et al., 2024). For example, AOD increases over global land by 7.78 ± 1.00
416 10^{-3} and $7.87 \pm 0.78 \cdot 10^{-3}$ for GFDL-ESM4 and UKESM1-0-LL, respectively (compared to the
417 multimodel mean increase of $1.88 \pm 2.50 \cdot 10^{-3}$). For GFDL-ESM4, a large fraction of this AOD
418 increase is due to an increase in DAOD at $4.82 \pm 0.91 \cdot 10^{-3}$ (UKESM1-0-LL yields a
419 nonsignificant DAOD decrease of $-0.38 \pm 0.78 \cdot 10^{-3}$). Nonetheless, AODNOD (which includes
420 SOA) yields relatively large and significant global land increases for both models at 2.97 ± 0.41
421 10^{-3} for GFDL-ESM4 and $8.26 \pm 0.38 \cdot 10^{-3}$ for UKESM1-0-LL (Supplementary Figure 7g-h).
422 These values increase over tropical land (where vegetation indices also increase the most) at
423 $6.16 \pm 0.85 \cdot 10^{-3}$ and $10.68 \pm 0.63 \cdot 10^{-3}$ for GFDL-ESM4 and UKESM1-0-LL, respectively. In
424 turn, both models feature SW_{clear} SEB cooling (consistent with enhanced aerosol scattering) over
425 global land (and over tropical and extratropical land) of -0.13 ± 0.02 for GFDL-ESM4 and
426 -0.07 ± 0.02 K for UKESM1-0-LL (compared to the multimodel mean of -0.05 ± 0.02 K).
427 NorESM2-LM, the other model with an interactive representation of BVOCs (but no AOD data),
428 also yields relatively large SW_{clear} SEB cooling at -0.08 ± 0.03 K. The GFDL-ESM4 SW_{clear}
429 cooling is the second largest of the 15 models; the NorESM2-LM and UKESM1-0-LL SW_{clear}
430 cooling are third and fourth largest, respectively. Similar statements also generally apply for
431 tropical land, e.g., the NorESM2-LM SW_{clear} cooling of -0.16 ± 0.05 K is the largest and the
432 GFDL-ESM4 SW_{clear} cooling of -0.11 ± 0.03 K is the third largest; however, UKESM1-0-LL
433 SW_{clear} cooling is not exceptional at -0.04 ± 0.04 K (compared to the multimodel mean of
434 -0.05 ± 0.02 K). Thus, consistent with Gomez et al. (2023), there is evidence that models with
435 interactive chemistry yield AOD increases under carbon fertilization, consistent with enhanced
436 vegetation leading to more BVOC emissions and SOA. In turn, this appears to strengthen the
437 cooling associated with the SW_{clear} SEB term (with enhanced water vapor and reduced surface
438 solar radiation also contributing). I also note that the AOD increase here is also consistent with
439 the land-sea warming contrast (e.g., Fig. 2a) and reduced precipitation over land (Supplementary
440 Figure 5b), which leads to less aerosol wet removal (Allen et al., 2019).
441
442 As the SW_{clear} SEB term leads to multimodel mean cooling, the warming under the (total) SW
443 SEB term is therefore associated with clouds. SW_{cloud} yields multimodel mean global land
444 warming of 0.14 ± 0.05 K (12 of 15 models agree on the increase), which increases to $0.21 \pm$
445 0.08 K over extratropical land. As with the LW_{cloud} SEB cooling, this SW_{cloud} SEB warming is
446 consistent with decreases in cloud cover (e.g., here, less cloud cover will lead to enhanced
447 surface solar radiation and warming). Moreover, both the LW_{cloud} and SW_{cloud} SEB terms are
448 largest in magnitude in the extratropics, consistent with larger extratropical cloud cover decrease.
449 I note that the net effect of clouds is controlled by their impact on shortwave as opposed to
450 longwave radiation. The SW_{cloud} SEB term yields multimodel global land mean warming of
451 0.14 ± 0.05 K, while the LW_{cloud} SEB term yields corresponding cooling of -0.07 ± 0.03 K.
452 This implies the net effect of clouds is associated with warming of 0.07 ± 0.06 K. The net
453 warming effect from clouds increases over extratropical land at 0.10 ± 0.09 K.

454

I also note that I do not find evidence for an aerosol indirect effect on clouds and in turn the SW_{cloud} SEB term. As discussed above, the two models with interactive chemistry simulate relatively large and significant increases in AODNOD, particularly over tropical land (which potentially leads to SW_{cloud} cooling related to cloud brightening and enhanced cloud lifetime). However, as with the multimodel mean, SW_{cloud} leads to warming over global land, tropical land and extratropical land for both models (as well as NorESM2-LM). UKESM1-0-LL actually yields the largest SW_{cloud} warming of the 15 models over both global land and tropical land at 0.32 ± 0.02 K and 0.28 ± 0.05 K, respectively. In contrast to an aerosol indirect effect, this SW_{cloud} warming in UKESM1-0-LL is consistent with a decrease in cloud cover, as UKESM1-0-LL yields the second largest cloud cover decrease over global land at $-1.35 \pm 0.14\%$ and the third largest decrease over tropical land at $-1.20 \pm 0.29\%$. Overall, the (total) SW SEB term warms global land in UKESM1-0-LL and NorESM2-LM by 0.25 ± 0.03 K and 0.10 ± 0.05 K, respectively, with nonsignificant cooling of -0.02 ± 0.02 K for GFDL-ESM4. Thus, as with the multimodel mean results, SW_{cloud} SEB warming dominates over SW_{clear} SEB cooling in these three models. Any impacts of interactive chemistry and enhanced BVOC emissions/SOA on clouds appear to be minor in these simulations and do not lead to an appreciable increase in cooling.

472

Spatially correlating the multimodel mean SEB responses with the corresponding total SEB response yields significant global (land only) correlations for all individual SEB terms (Supplementary Table 5). Consistent with the sign of the multimodel mean SEB responses, the total SEB term is positively correlated with the surface albedo, SW, SW_{cloud}, LW, LW_{clear}, LH and canopy transpiration SEB terms. Similarly, the total SEB term is negatively correlated with the SW_{clear}, LW_{cloud}, SH and evaporation SEB terms. The LW_{clear} SEB term yields the largest global correlation with the total SEB term at 0.91. This very high correlation adds additional evidence that the LW_{clear} SEB term is largely a feedback to the surface warming. Restricting this analysis to the tropics yields maximum correlations between the total SEB term and the LH SEB term at 0.77, followed closely by the LW_{clear} SEB term at 0.76. This provides additional support for the importance of the multimodel mean LH SEB response to the total SEB response in the tropics. In the extratropics, maximum correlations occur for LW_{clear} at 0.90, followed by LW at 0.58 and SW_{cloud} at 0.57.

486

I conduct additional analyses to better understand causes of inter-model spread in the SEB responses. Supplementary Figures 8 and 9 shows spatial correlations (across models) between the total SEB term and each of the SEB components. The LW SEB term show very large and significant correlations ($r > 0.80$) throughout most of the Northern Hemisphere (with nearly all land areas exhibiting similarly large and significant correlations under LW_{clear}). The LH SEB term shows relatively large and significant positive correlations ($r > 0.70$) throughout the tropics (minus the Sahara Desert). The surface albedo SEB term shows relatively large and significant positive correlations ($r > 0.70$) in the NH extratropics. This suggests much of the intermodel variation in the total SEB extratropical surface temperature response is related to intermodel differences in the SEB surface albedo term response; in the tropics, intermodel variation in the total SEB tropical surface temperature response is related to intermodel differences in the SEB surface LH term response.

499

500 These broad conclusions are consistent with Supplementary Figures 10-15, which show
501 corresponding model scatterplots between the total SEB term and its components for the global
502 land mean (Supplementary Figures 10-11), tropical land mean (Supplementary Figures 12-13)
503 and extratropical land mean (Supplementary Figures 14-15). The sign of all of the intermodel
504 correlations is consistent with the multimodel mean responses, i.e., positive intermodel
505 correlations (although many are not significant) between the total SEB response and the SEB
506 albedo, SW, LW, and LH responses occur. Similarly, a negative correlation between the total
507 SEB response and the SEB SH response occurs. A similar statement can be made for the
508 additional SEB terms where positive correlations exist between the total SEB term and the
509 SW_{cloud}, LW_{clear}, and canopy transpiration SEB terms, with negative correlations for the SW_{clear}
510 (except for the tropics), LW_{cloud} and evaporation SEB terms. Globally (Supplementary Figures
511 10-11), the intermodel variation in the total SEB response is largely related to the intermodel
512 variation in the SEB albedo response, with a correlation of 0.73 (significant at the 99%
513 confidence level). As noted above, CNRM-ESM2-1 is the lone model that yields significant
514 surface cooling (e.g., Supp. Fig. 2f) and this is the lone model that yields cooling for the SEB
515 albedo term. Furthermore, as noted above UKESM1-0-LL and EC-Earth3-CC yield relative
516 large total SEB warming, and they both possess relatively large SEB surface albedo warming.
517 The LW SEB term also yields a similar correlation at 0.73, which improves to 0.86 for LW_{clear}.
518 As noted above, however, I suggest this is largely a response to the warming and not a primary
519 driver. Interestingly, the correlation between the LH SEB term and the total SEB term is not
520 significant at 0.13. The lone model that yields cooling for the LH SEB term is EC-Earth3-CC,
521 and this is a model with relatively large total SEB warming. This implies intermodel variation in
522 the relative importance of the individual SEB responses their total SEB response.
523

524 In the tropics, the intermodel variation in the total SEB term is largely related to the SW SEB
525 term with a correlation of 0.70 (99%), which is largely due to SW_{cloud} ($r=0.74$). The LH SEB
526 term is also important with a correlation at 0.54 (95%). In the extratropics, the intermodel
527 variation in the total SEB term is largely related to the SEB albedo term with a correlation of
528 0.81 (99%). The LW SEB term also yields a similar correlation at 0.79, which improves to 0.91
529 for LW_{clear}.
530

531 Finally, I note a significant correlation of 0.55 (significant at the 95% confidence level; Figure 5)
532 between the transient climate response (TCR; warming centered on the time of CO₂ doubling)
533 and the global mean biogeophysical temperature response associated with carbon fertilization
534 across models. The correlation improves to 0.68 (significant at the 99% confidence level) over
535 global land only (Fig. 5b). In other words, models with a larger (smaller) TCR tend to have
536 larger (smaller) biogeophysical warming under carbon fertilization. This is not necessarily
537 unexpected, since the TCR is based on the 1PCTCO₂ experiments, which include the 1PCTCO₂-
538 bgc responses. Moreover, the causes of larger TCR (e.g., climate feedbacks including water
539 vapor, tropospheric lapse rate, surface albedo and clouds) also operate in the 1PCTCO₂-bgc runs.
540 In particular, the three models (EC-Earth3-CC, UKESM1-0-LL and CESM2) mentioned above
541 that yield the largest biogeophysical warming associated with carbon fertilization are among the
542 models with the largest TCR (CanESM5 is an exception at it has a large TCR but relatively small
543 biogeophysical warming). On one hand, this implies the intermodel spread in the biogeophysical
544 warming associated with carbon fertilization is related to the TCR; on the other hand, it also
545 implies the importance of the biogeophysical warming associated with the carbon fertilization

546 effect to intermodel variation in the TCR. I reiterate, however, that the magnitude of
547 biogeophysical warming associated with carbon fertilization is relatively small. If I re-estimate
548 the global mean near surface air temperature response over the time of CO₂ doubling (years 60-
549 79, as with TCR), I find biogeophysical warming of 0.12 ± 0.08 K, i.e., about 6% as large as the
550 multimodel mean TCR of 1.97 ± 0.20 K. However, some models yield much larger
551 biogeophysical warming at the time of CO₂ doubling, including many of the same models
552 previously discussed. EC-Earth3-CC yields warming of 0.26 ± 0.05 K, which is 10% of its
553 TCR of 2.7 ± 0.10 K. CESM2 yields warming of 0.49 ± 0.07 K, which is 20% of its TCR of
554 2.4 ± 0.07 K. UKESM1-0-LL yields a percentage closer to the multimodel mean, with warming
555 of 0.19 ± 0.07 K, which is 7% of its TCR of 2.7 ± 0.14 K. Additional discussion on potential
556 causes of intermodel differences is included in the Supplement (Supplementary Note 1).
557

558 **4. Conclusions**

559

560 Using 15 CMIP6 models, I show that carbon fertilization at the time of CO₂ quadrupling (and in
561 the absence of radiative warming from CO₂) yields biogeophysical global mean warming of
562 0.16 ± 0.09 K with 13 of the 15 models yielding warming. This warming increases over global
563 land to 0.28 ± 0.13 K with 14 of the 15 models yielding warming (Supplementary Table 4).
564 Using the surface energy balance decomposition to understand the drivers of this warming shows
565 that it is largely related to decreased latent heat flux, which leads to global land warming of
566 0.27 ± 0.11 K (13 of 15 models agree on the warming). This in turn is largely associated with
567 reduced canopy transpiration which leads to global land warming of 0.45 ± 0.15 (13 of 13
568 models agree on the warming). Such a response is consistent with reduced stomatal conductance
569 under elevated CO₂ (e.g., Wong et al., 1979; Keenan et al., 2013). To some extent, this warming
570 if offset by increases in evaporation, which leads to global land cooling of -0.19 ± 0.16 K. This
571 cooling, however, is less robustly simulated with only 9 of the 13 models agreeing on the
572 cooling. In the tropics, the importance of transpiration induced warming increases to $0.70 \pm$
573 0.26 K (13/13 models agree). Tropical land evaporation increases only marginally to $-0.26 \pm$
574 0.25 K but with limited model agreement (7/13 models agree on the cooling). Of the various
575 SEB terms, the evaporation term is the most uncertain across the models (particularly in the
576 tropics) with limited model agreement on the sign of the response. Given the importance of LH
577 to the biogeophysical warming response (both its direct impact as well as its indirect impact on
578 clouds and subsequently LW_{cloud} and SW_{cloud}) and the competing effects of transpiration versus
579 evaporation, the low model agreement on the sign of the evaporation response highlights an
580 important source of model uncertainty.
581

582

583 Other important drivers of biogeophysical warming under carbon fertilization, particularly in the
584 extratropics, include reduced albedo and enhanced SW radiation due to a decrease in cloud
585 cover. Warming due to reduced albedo is consistent with the surface darkening effect of
586 vegetation (e.g., Betts et al., 2000, Bala et al., 2006; Li et al., 2015), particularly at higher
587 latitudes where snow/ice is more prevalent. Warming due to enhanced shortwave radiation due
588 to clouds is consistent with decreases in total cloud cover. Similar to the decrease in latent heat
589 flux, the decrease in cloud cover is related to the reduced stomatal conductance, which is
590 associated with reduced relative humidity over land which promotes a decrease in cloud cover.
591 Models with interactive BVOCs yield a larger increase in AOD, which strengthens the cooling
592 associated with the SW_{clear}; however, as with the multimodel mean, SW_{cloud} warming dominates

592 over SW_{clear} cooling in these models, implying any aerosol effect is minor in these simulations
593 (i.e., the dominant SW effect is warming due to cloud cover reductions associated with decreases
594 in transpiration).

595
596 Intermodel variation in the vegetation and biogeophysical temperature responses was also
597 evaluated. Although there are significant differences between models with and without a
598 terrestrial nitrogen cycle (e.g., N models yields significantly less carbon storage), most of these
599 differences (e.g., N models tend to yield less biogeochemical cooling) are not significant.
600 However, intermodel biogeophysical warming significantly correlates with each model's TCR.
601 This implies the causes of intermodel TCR variation (i.e., climate feedbacks) are also responsible
602 for some of the intermodel spread in the biogeophysical temperature response under carbon
603 fertilization. Finally, the increase in land carbon storage under carbon fertilization was used to
604 estimate the biogeochemical cooling effect using the transient climate response to cumulative
605 emissions. I find that biogeochemical cooling of -1.38 K (-1.92 to -0.84 K) dominates over
606 biogeophysical warming, by about an order of magnitude.
607
608

609 **Code Availability**

610 Standard code (e.g., NCL) was used to analyze the model simulations.
611

612 **Data Availability**

613 CMIP6 data can be downloaded from the Earth System Grid Federation at
614 <https://aims2.llnl.gov/search>.
615

616 **Author Contributions**

617 RJA conceived the project, analyzed model simulations and wrote the manuscript.
618

619 **Competing Interests**

620 The author declares no competing interests.
621

622 **Acknowledgements**

623 R. J. Allen is supported by NSF grant AGS-2153486.
624

625 **Financial Support**

626 This research has been supported by the National Science Foundation (grant no. AGS-2153486).
627
628
629
630
631
632
633
634
635
636
637

638 **References**

639

640 Ainsworth, E. A. and Rogers, A. The response of photosynthesis and stomatal conductance to
641 rising [CO₂]: mechanisms and environmental interactions. *Plant Cell Environ.* **30** (3), 258-270
642 (2007). doi: 10.1111/j.1365-3040.2007.01641.x.

643

644 Ainsworth, E. A. and Long, S. P. What have we learned from 15 years of free-air CO₂
645 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy
646 properties and plant production to rising CO₂. *New Phytologist*, **165**, 351-372, (2005). doi:
647 10.1111/j.1469-8137.2004.01224.x.

648

649 Allen, R. J., Gomez, J., Horowitz, L. W. and Shevliakova E. Enhanced future vegetation growth
650 with elevated carbon dioxide concentrations could increase fire activity. *Commun Earth
651 Environ* **5**, 54 (2024). doi: 10.1038/s43247-024-01228-7.

652

653 Allen, R. J., Hassan, T. Randles, C. A. and Su, H. Enhanced land-sea warming contrast elevates
654 aerosol pollution in a warmer world. *Nat. Clim. Chang.* **9**, 300–305 (2019). doi: 10.1038/s41558-
655 019-0401-4.

656

657 Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P.,
658 Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire,
659 C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J.
660 P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian,
661 R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T. Carbon-concentration and
662 carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models,
663 *Biogeosciences*, **17**, 4173–4222, (2020). doi: 10.5194/bg-17-4173-2020.

664

665 Bala, G., Caldeira, K., Mirin, A., Wickett, M., Delire, C. and Phillips, T. J. Biogeophysical
666 effects of CO₂ fertilization on global climate. *Tellus B*, **58**, 620-627, (2006). doi:
667 10.1111/j.1600-0889.2006.00210.x.

668

669 Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface
670 albedo. *Nature*, **408**, 187-190, (2000). doi: 10.1038/35041545.

671

672 Bounoua, L., Collatz, G. J., Sellers, P. J., Randall, D. A., Dazlich, D. A., Los, S. O., Berry, J. A.,
673 Fung, I., Tucker, C. J., Field, C. B. and Jensen, T. G. Interactions between Vegetation and
674 Climate: Radiative and Physiological Effects of Doubled Atmospheric CO₂. *J. Climate*, **12**, 309–
675 324, (1999). doi: 10.1175/1520-0442(1999)012<0309:IBVACR>2.0.CO;2.

676

677 Boysen, L. R., Brovkin, V., Pongratz, J., Lawrence, D. M., Lawrence, P., Vuichard, N., Peylin,
678 P., Liddicoat, S., Hajima, T., Zhang, Y., Rocher, M., Delire, C., Séférian, R., Arora, V. K.,
679 Nieradzik, L., Anthoni, P., Thiery, W., Laguë, M. M., Lawrence, D., and Lo, M.-H. Global
680 climate response to idealized deforestation in CMIP6 models. *Biogeosciences*, **17**, 5615-5638
681 (2020). doi: 10.5194/bg-17-5615-2020.

682

683 Campbell, J., Berry, J., Seibt, U., Smith, S. J., Montzka, S. A., Launois, T., Belviso, S., Bopp, L.
684 and Laine, M. Large historical growth in global terrestrial gross primary production. *Nature* **544**,
685 84–87 (2017). doi: 10.1038/nature22030.

686

687 Canadell, J.G., P.M.S. Monteiro, M.H. Costa, L. Cotrim da Cunha, P.M. Cox, A.V. Eliseev, S.
688 Henson, M. Ishii, S. Jaccard, C. Koven, A. Lohila, P.K. Patra, S. Piao, J. Rogelj, S.
689 Syampungani, S. Zaehle, and K. Zickfeld, 2021: Global Carbon and other Biogeochemical
690 Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of
691 Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate
692 Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y.
693 Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K.
694 Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press,
695 Cambridge, United Kingdom and New York, NY, USA, pp. 673–816,
696 doi:10.1017/9781009157896.007.

697

698 Cao, L., Bala, G., Caldeira, K., Nemani, R. and Ban-Weiss, G. Importance of carbon dioxide
699 physiological forcing to future climate change. *Proc. Natl. Acad. Sci. U.S.A.*, **107** (21), 9513–
700 9518, (2010). doi: 10.1073/pnas.0913000107.

701

702 Chen, C., Riley, W. J., Prentice, I. C. and Keenan, T. F. CO₂ fertilization of terrestrial
703 photosynthesis inferred from site to global scales. *Proc. Natl. Acad. Sci. USA* **119** (10),
704 e2115627119, (2022). doi: 10.1073/pnas.2115627119.

705

706 Doughty, M., Webb, M. J., Gregory, J. M. and Boucher, O. Carbon dioxide induced
707 stomatal closure increases radiative forcing via a rapid reduction in low cloud, *Geophys. Res.*
708 *Lett.*, **36**, L02703, (2009). doi:10.1029/2008GL036273.

709

710 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.
711 Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design
712 and organization. *Geosci. Model Dev.*, **9**, 1937–1958, (2016). doi: 10.5194/gmd-9-1937-2016.

713

714 Fernández-Martínez, M., Vicca, S., Janssens, I. A., Sardans, J., Luyssaert, S., Campioli, M.,
715 Chapin, F. S. III, Ciais, P., Malhi, Y., Obersteiner, M., Dapale, D., Piao, S. L., Reichstein, M.,
716 Roda, F. and Penuelas, J. Nutrient availability as the key regulator of global forest carbon
717 balance. *Nature Clim Change* **4**, 471–476 (2014). doi: 10.1038/nclimate2177.

718

719 Field, C. B., Jackson, R. B. and Mooney H. A. Stomatal responses to increased CO₂:
720 implications from the plant to the global scale. *Plant, Cell & Environment*, **18**, 1214–1225
721 (1995). doi: 10.1111/j.1365-3040.1995.tb00630.x.

722

723 Forkel, M., Carvalhais, N., Rodenbeck, C., Keeling, R., Heimann, M., Thonicke, K., Zaehle, S.
724 and Reichstein, M. Enhanced seasonal CO₂ exchange caused by amplified plant productivity in
725 northern ecosystems. *Science*, **351**, 696–699 (2016). doi:10.1126/science.aac4971.

726

727 Gier, B. K., Schlund, M., Friedlingstein, P., Jones, C. D., Jones, C., Zaehle, S., and Eyring, V.

728 Representation of the terrestrial carbon cycle in CMIP6, *Biogeosciences*, **21**, 5321–5360, (2024).
729 doi: 10.5194/bg-21-5321-2024.

730

731 Gillett, N. P., Arora, V. K., Matthews, D. and Allen, M. R. Constraining the Ratio of Global
732 Warming to Cumulative CO₂ Emissions Using CMIP5 Simulations, *J. Climate*, **26**, 6844–6858,
733 (2013). doi: 10.1175/JCLI-D-12-00476.1.

734

735 Gomez, J., Allen, R. J., Turnock, S. T., Horowitz, L. W., Tsigaridis, K., Bauer, S. E., Olivie, D.,
736 Thomson, E. S. and Ginoux, P. The projected future degradation in air quality is caused by more
737 abundant natural aerosols in a warmer world. *Commun Earth Environ* **4**, 22 (2023). doi:
738 10.1038/s43247-023-00688-7.

739

740 Haverd, V., Smith, B., Canadell, J. G., Cuntz, M., Mikaloff-Fletcher, S., Garquhar, G.,
741 Woodgate, W., Briggs, P. R., and Trudinger, C. M. Higher than expected CO₂ fertilization
742 inferred from leaf to global observations. *Glob Chang Biol.* **26** (4), 2390–2402, (2020). doi:
743 10.1111/gcb.14950.

744

745 Hirsch, A. L., Guillod, B. P., Seneviratne, S. I., Beyerle, U., Boysen, L. R., Brovkin, V., Davin,
746 E. L., Doelman, J. C., Kim, H., Mitchell, D. M., Nitta, T., Shiogama, H., Sparrow, S., Stehfest,
747 E., van Vuuren, D. P., and Wilson, S. Biogeophysical Impacts of Land-Use Change on Climate
748 Extremes in Low-Emission Scenarios: Results From HAPPI-Land, *Earth's Future*, **6**, 396–409
749 (2018). doi: 10.1002/2017EF000744.

750

751 Jones, C. D., Arora, V., Friedlingstein, P., Bopp, L., Brovkin, V., Dunne, J., Graven, H.,
752 Hoffman, F., Ilyina, T., John, J. G., Jung, M., Kawamiya, M., Koven, C., Pongratz, J., Raddatz,
753 T., Randerson, J. T., and Zaehle, S. C4MIP – The Coupled Climate–Carbon Cycle Model
754 Intercomparison Project: experimental protocol for CMIP6, *Geosci. Model Dev.*, **9**, 2853–2880,
755 (2016). doi: 10.5194/gmd-9-2853-2016,

756

757 Keeling, R. F., Graven, H. D., Welp, L. R., Resplandy, L., Bi, J., Piper, S. C., Sun, Y.,
758 Bollenbacher, A. and Meijer, H. A. J. Atmospheric evidence for a global secular increase in
759 carbon isotopic discrimination of land photosynthesis, *Proc. Natl. Acad. Sci. U.S.A.* **114**, (39),
760 10361–10366, (2017). doi: 10.1073/pnas.1619240114.

761

762 Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., William Munger, J., Schmid, H. P. and
763 Richardson, A. D. Increase in forest water-use efficiency as atmospheric carbon dioxide
764 concentrations rise. *Nature*, **499**, 324–327, (2013).

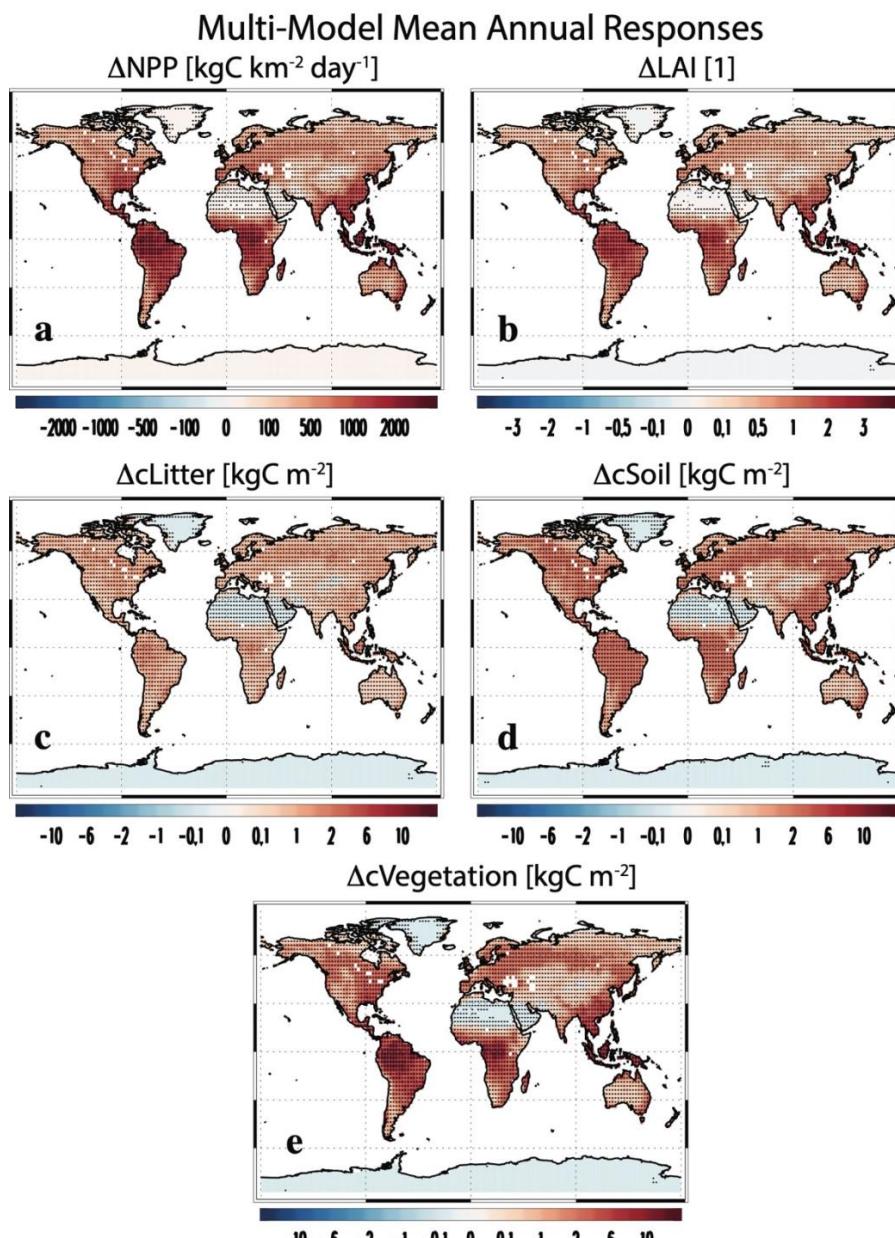
765

766 Keenan, T. F., Luo, X., Stocker, B. D., De Kauwe, M. G., Medlyn, B. E., Prentice, I. C., Smith,
767 N. G., Terrer, C., Wang, H., Zhang, Y. and Zhou, S. A constraint on historic growth in global
768 photosynthesis due to rising CO₂. *Nat. Clim. Chang.* **13**, 1376–1381 (2023). doi:
769 10.1038/s41558-023-01867-2.

770

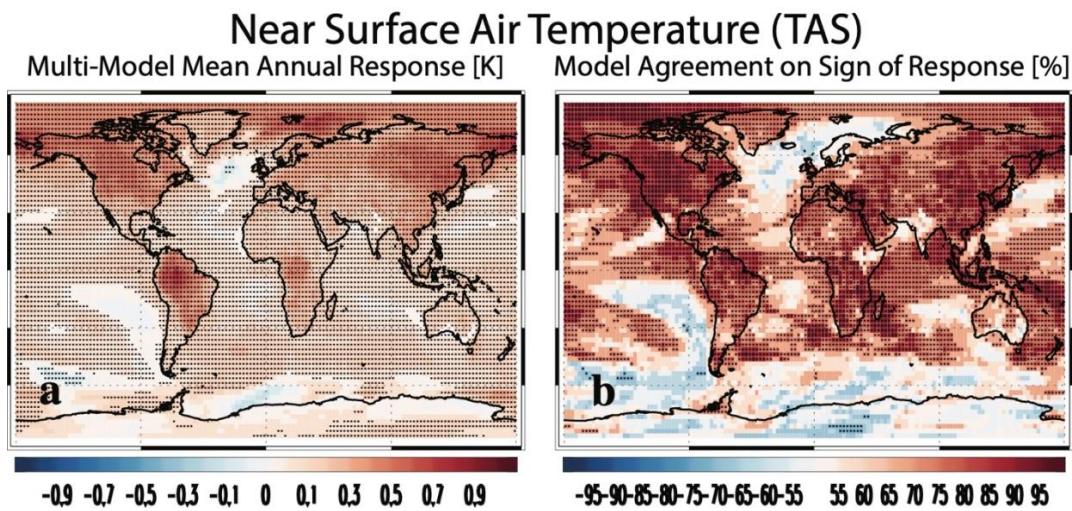
771 Kicklighter, D. W., Melillo, J. M., Monier, E., Sokolov, A. P. and Zhuang, Q. Future nitrogen
772 availability and its effect on carbon sequestration in Northern Eurasia. *Nat. Commun.* **10**, 3024
773 (2019). doi: 10.1038/s41467-019-10944-0.

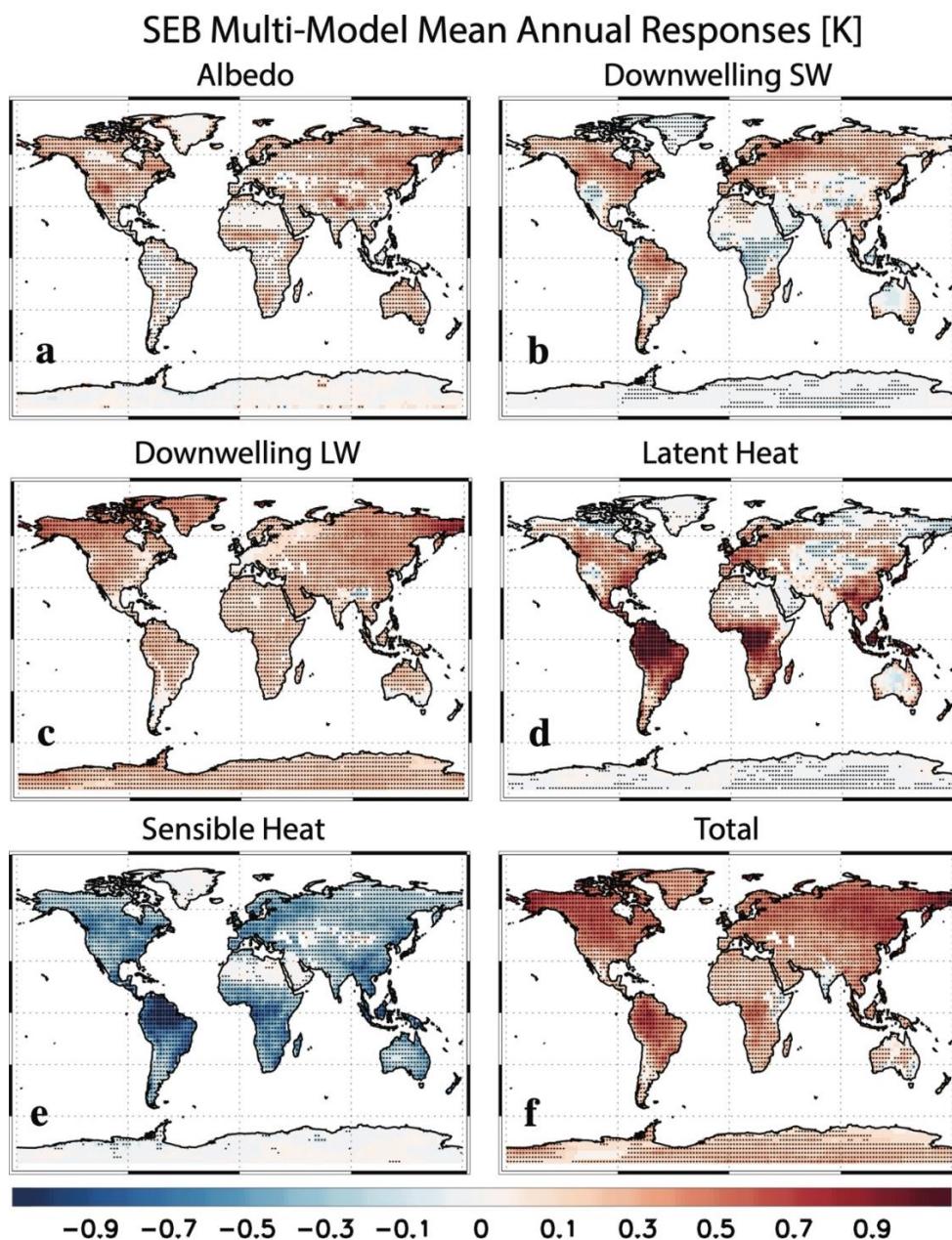
774
775 Leakey, A. D., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P. and Ort, D. R.
776 Elevated CO₂ effects on plant carbon, nitrogen, and water relations: Six important lessons from
777 FACE. *Journal of Experimental Botany*, **60**(10), 2859–2876, (2009). doi: 10.1093/jxb/erp096.
778
779 Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E. and Li, S. Local cooling and warming
780 effects of forests based on satellite observations. *Nat Commun.* **6**, 6603, (2015). doi:
781 10.1038/ncomms7603.
782
783 Luyssaert, S., Jammet, M., Stoy, P. C., Estel, S., Pongratz, J., Ceschia, E., Churkina, G., Don, A.,
784 Erb, K., Ferlicoq, M., Gielen, B., Grünwald, T., Houghton, R. A., Klumpp, K., Knohl, A., Kolb,
785 T., Kuemmerle, T., Laurila, T., Lohila, A., Loustau, D., McGrath, M. J., Meyfroidt, P., Moors, E.,
786 J., Naudts, K., Novick, K., Otto, J., Pilegaard, K., Pio, C. A., Rambal, S., Rebmann, C., Ryder, J.,
787 Suyker, A. E., Varlagin, A., Wattenbach, M., and Dolman, A. J. Land management and land-
788 cover change have impacts of similar magnitude on surface temperature. *Nat. Clim. Change*, **4**,
789 389–393, (2014). doi: 10.1038/nclimate2196.
790
791 Norby, R. J., and Zak, D. R. Ecological lessons from Free-Air CO₂ Enrichment (FACE)
792 experiments. *Annual Review of Ecology, Evolution, and Systematics*, **42**(1), 181–203, (2011).
793 doi: 10.1146/annurev-ecolsys-102209-144647.
794
795 Oren, R., Ellsworth, D. S., Johnsen, K. H., Phillips, N., Ewers, B. E., Maier, C., Schafer, K.,
796 McCarthy, H., Hendrey, G., McNulty, S. G., and Katul, G. G. Soil fertility limits carbon
797 sequestration by forest ecosystems in a CO₂-enriched atmosphere. *Nature* **411**, 469–472 (2001).
798 doi: 10.1038/35078064.
799
800 Scott, C. E., Monks, S. A., Spracklen, D. V., Arnold, S. R., Forster, P. M., Rap, A., Aijala, M.,
801 Artaxo, P., Carslaw, K. S., Chipperfield, M. P., Ehn, M., Gilardoni, S., Heikkinen, L., Kulmala,
802 M., Peraja, T., Reddington, C. L. S., Rizzo, L. V., Swietlicki, E., Vignati, E. and Wilson, C.
803 Impact on short-lived climate forcers increases projected warming due to deforestation. *Nat
804 Commun* **9**, 157 (2018). doi: 10.1038/s41467-017-02412-4.
805
806 Thomas, R. T., Prentice, I. C., Graven, H., Ciais, P., Fisher, J. B., Hayes, D. J., Huang, M.,
807 Huntzinger, D. N., Ito, A., Jain, A., Mao, J., Michalak, A. M., Peng, S., Poulter, B., Ricciuto, D.,
808 M., Shi, X., Schwalm, C., Tian, H. and Zeng, N. Increased light-use efficiency in northern
809 terrestrial ecosystems indicated by CO₂ and greening observations. *Geophys. Res.
810 Lett.*, **43**, 11,339–11,349, (2016). doi:10.1002/2016GL070710.
811
812 Vargas Zeppetello, L. R., Donohoe, A. and Battisti, D. S. Does surface temperature respond to
813 or determine downwelling longwave radiation? *Geophysical Research Letters*, **46**, 2781–2789
814 (2019). doi: 10.1029/2019GL082220.
815
816 Vitousek, P. M. and Howarth, R. W.. Nitrogen limitation on land and in the sea: How can it
817 occur?. *Biogeochemistry* **13**, 87–115 (1991). doi: 10.1007/BF00002772.
818


819 Walker, A.P., De Kauwe, M.G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R.F.,
820 McMahon, S.M., Medlyn, B.E., Moore, D.J.P., Norby, R.J., Zaehle, S., Anderson-Teixeira, K.J.,
821 Battipaglia, G., Brien, R.J.W., Cabugao, K.G., Cailleret, M., Campbell, E., Canadell, J.G.,
822 Ciais, P., Craig, M.E., Ellsworth, D.S., Farquhar, G.D., Fatichi, S., Fisher, J.B., Frank, D.C.,
823 Graven, H., Gu, L., Haverd, V., Heilmann, K., Heimann, M., Hungate, B.A., Iversen, C.M., Joos,
824 F., Jiang, M., Keenan, T.F., Knauer, J., Körner, C., Leshyk, V.O., Leuzinger, S., Liu, Y.,
825 MacBean, N., Malhi, Y., McVicar, T.R., Penuelas, J., Pongratz, J., Powell, A.S., Riutta, T.,
826 Sabot, M.E.B., Schleucher, J., Sitch, S., Smith, W.K., Sulman, B., Taylor, B., Terrer, C., Torn,
827 M.S., Treseder, K.K., Trugman, A.T., Trumbore, S.E., van Mantgem, P.J., Voelker, S.L.,
828 Whelan, M.E. and Zuidema, P.A. Integrating the evidence for a terrestrial carbon sink caused
829 by increasing atmospheric CO₂. *New Phytol.*, **229**, 2413–2445, (2021). doi: 10.1111/nph.16866.
830

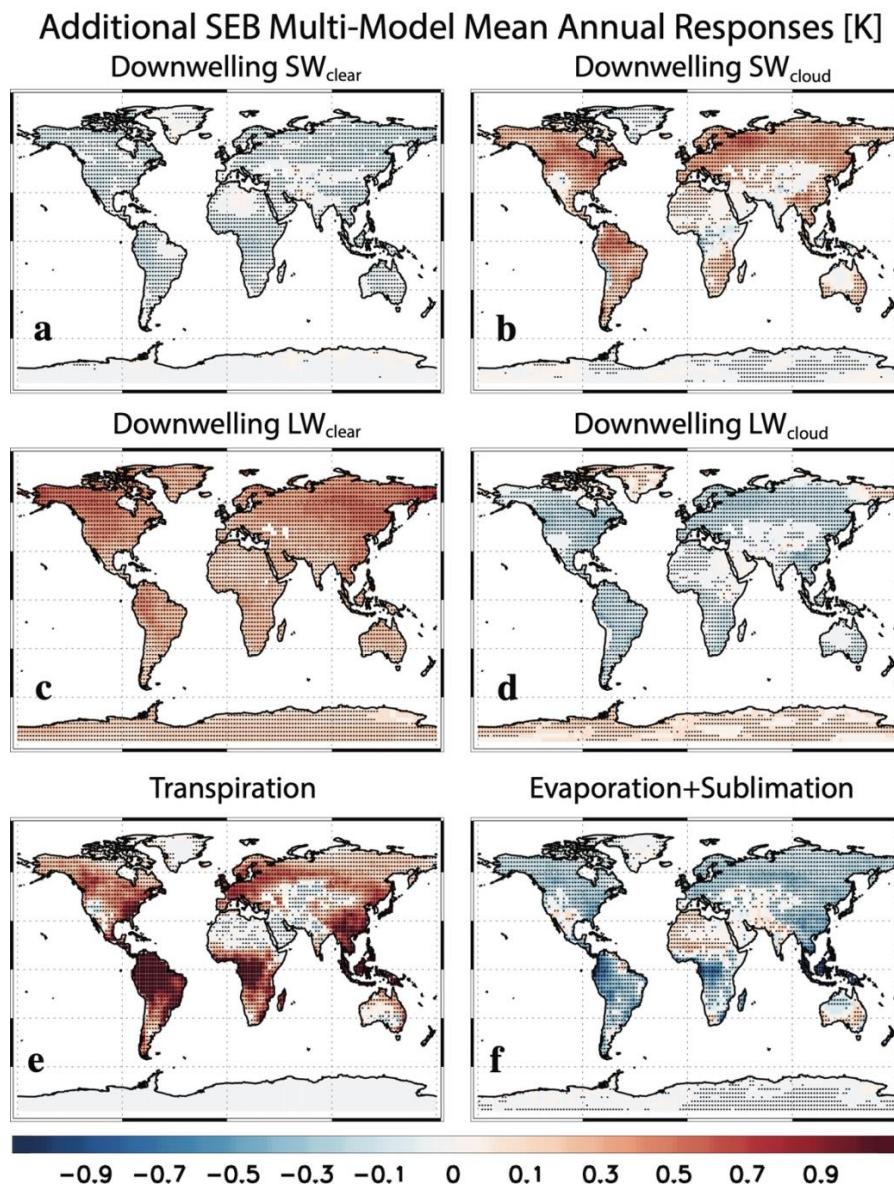
831 Weber, J., King, J. A., Abraham, N. L., Grosvenor, J. P., Smith, C. J., Shin, Y. M., Lawrence, P.,
832 Roe, S., Beerling, D. J. and Val Martin, V. Chemistry-albedo feedbacks offset up to a third of
833 forestation's CO₂ removal benefits. *Science* **303** (6685), 860–864 (2024). doi:
834 10.1126/science.adg6196.
835

836 Wong, S. C., Cowan, I. R. and Farquhar, G. D. Stomatal conductance correlates with
837 photosynthetic capacity. *Nature*, **282**, 424–426, (1979).
838

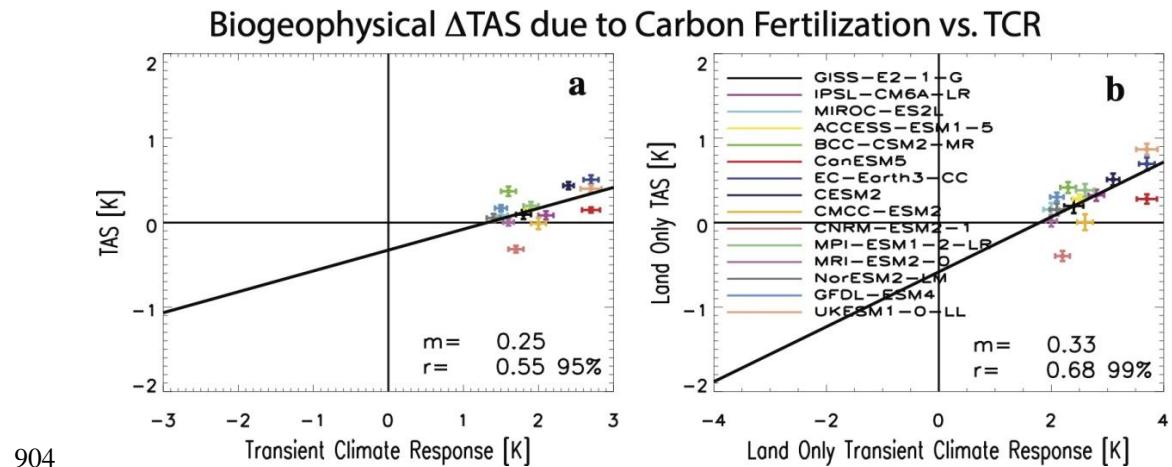

839 Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S.,
840 Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y.,
841 Liu, R., Mao, J., Pan, Y., Peng, S., Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D.,
842 Viovy, N., Wang, X., Wang, Y., and Xiao, Z., Yang, H., Zaehle, S. and Zeng, N. Greening of
843 the Earth and its drivers. *Nat. Clim. Change* **6**, 791–795 (2016). doi: 10.1038/nclimate3004.
844


845

846
847


848 **Figure 1. Vegetation and land carbon responses.** Multimodel mean annual mean responses
849 for (a) net primary productivity (NPP; $\text{kgC km}^{-2} \text{ day}^{-1}$); (b) leaf area index (LAI; dimensionless);
850 (c) litter pool carbon (cLitter; kgC m^{-2}); (d) soil pool carbon (cSoil; kgC m^{-2}); and (e) vegetation
851 carbon (cVegetation; kgC m^{-2}). Symbols denote a response significant at the 90% confidence
852 level based on a two-tailed pooled t-test.
853

886
887


888 **Figure 3. Surface energy balance (SEB) decomposition of the surface temperature**
889 **response.** Multimodel mean annual mean SEB responses for (a) surface albedo; (b) downwelling
890 surface shortwave radiation; (c) downwelling surface longwave radiation; (d) surface latent heat
891 flux; (e) surface sensible heat flux; and (f) the total (i.e., sum of the prior five terms). Units are
892 K. Symbols denote a response significant at the 90% confidence level based on a two-tailed
893 pooled t-test.

894

895

Figure 4. Additional surface energy balance (SEB) decomposition of the surface temperature response. Multimodel mean annual mean SEB responses for downwelling surface shortwave radiation decomposed into (a) clear-sky (SW_{clear}) and (b) cloudy-sky (SW_{cloud}) contributions; downwelling surface longwave radiation decomposed into (c) clear-sky (LW_{clear}) and (d) cloudy-sky (LW_{cloud}) contributions; and surface latent heat flux decomposed into (e) canopy transpiration and (f) evaporation (which includes sublimation) contributions. Units are K. Symbols denote a response significant at the 90% confidence level based on a two-tailed pooled t-test.

904
905 **Figure 5. Scatterplots of the global mean near-surface temperature response versus the**
906 **transient climate response across models.** Scatterplots between the (a) global mean near-
907 surface air temperature response (TAS, Y-axis) and the transient climate response (TCR). Panel
908 b is analogous but for land only. Each symbol represents an individual model (see legend).
909 Error bars for each symbol represent the 90% confidence intervals based on a two-tailed pooled
910 t-test. Black line represents the least squares linear regression line. The corresponding slope (m)
911 of the regression and the correlation coefficient (r) are included. Significant correlations based
912 on a two-tailed test at the 95% and 99% confidence level are indicated. Units are K.
913