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Abstract

10  In this study, the pre-seismic strain of an earthquake is considered as a fundamental
11  and important precursor. Based on the Voight’s equation for material failure, we

12 theoretically investigate the physical basis on predicting the failure time, magnitude,

The abstract must stand
alone. ltis

14 or near the related fault where the event will happen. The log(T)-M relationship is incomprehensible unless

. - . . . variables T and M are
15  built up. Results exhibit that the failure time depends on the strain rate and two yefined.

13  and location of a forthcoming earthquake in terms of pre-seismic strains generated on

16  parameters of the Voight’s equation; while the magnitude is associated with the
17  precursor time, two parameters of the Voight’s equation, and the exponent of the
18  scaling law between the strain and the fault length. The location of the forthcoming Precursory strain?
19  earthquake may be qualitatively estimated from the localities of observation sites
20  where the pre-seismic strains are observed. In addition, the anomalous geoelectric and
21  geochemical signals prior to earthquakes are also taken into account as precursors.
22 Their log(T)-M relationships are derived. The precursor times of geoelectric signals
23  and those of the geochemical signals are, respectively, the same and shorter than that

24 of the pre-seismic strains.

25

26 Keywords: Earthquake prediction, strain, failure time, magnitude, location,
27  Voight’s equation, fault length
28
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1 Introduction

The ruptures of earthquakes, especially for large ones, are usually preceded by
complex physical and chemical processes which may produce the so-called precursors
(e.g., Atkinson, 1984; Main and Meredith, 1989; Main, 1999; Zaccagnino and
Doglioni, 2022), Hence, a significant way to reduce seismic hazards is the prediction
of forthcoming earthquakes based on observations of reliable precursors. Since Milne
(1880) first addressed this viewpoint in the nineteenth century, earthquake prediction
has been a challenging problem for earthquake scientists (e.g., Knopoff, 1996). Aki
(1989, 2009) assumed that earthquakes are predictable and earthquake scientists
should inform the probability of the occurrence of an earthquake with a specified
magnitude, place, and time window to the government and the public for mitigating
hazards. Although the earthquake prediction seems successful for few large events,
including the 1975 Haicheng, China, earthquake (cf. Wang et al., 2006), it has been
long a debatable problem of earthquake science, Numerous earthquake scientists
address that earthquakes can be predicted, but some others stand for the opposite
viewpoint (e.g. Geller, 1997; Geller et al., 1997). The latters were mainly based on the
reasons that the brittle crust is quite disordered and complicated (cf. Savage et al.,
2010) and it sometimes exists in the critical state (cf. Bak, 1996). The two conditions
will reduce the predictability of forthcoming earthquakes. However, disorder and
complexity within a single fault could be much lower than those in the brittle crust or
a fault system. A fault could be at the subcritical state (cf. Atkinson, 1984; Main and
Meredith, 1989) before its failure occurs. Hence, it is still significant to explore an
acceptable, workable model for predicting the failure time, tr, the magnitude, M, and
the source area of a forthcoming earthquake from observed precursors, especially for
a single fault.

Although reliable precursors may provide us a clue to judge whether or not an
earthquake will happen in an area, the observations of precursors that are merely on
the reduction side of science (see Kuhn, 1962) thus cannot be directly applied to
predict anything. Hence, earthquake scientists need workable theories or models,
which are on the deduction side, for prediction. Up to date, the reduction side is much
stronger than the deduction one on the earthquake prediction research. This cannot
make earthquake prediction be successful. A major effort is still needed in the
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scientific community in order to advance physical theories and models towards the
great goal of earthquake prediction. One of the most important matters is
the construction of physico-chemical models for respective precursors or even a
unified model for all precursors. Through the comparison between the observations
and the models, earthquake scientists could obtain the optimum ones for respective
precursors or the optimum unified one. Based on the optimum models or the optimum
unified one, earthquake scientists may be capable of predicting an earthquake,
including its location, time window, and magnitude as mentioned above. Of course,
such a model could be region-dependent, because different tectonic and geological
conditions will influence the parameters of the model.

Reid’s elastic rebound theory (Reid, 1910) assumes that the loading stress and slip
on a fault are the major factors in causing an earthquake rupture. Numerous authors
(e.g., Dieterich, 1978; Lomnitz and Lomnitz-Adler 1981; Kostrov and Das, 1982;
Main, 1988, 1999; Scholz, 1990) assumed that the (fEESeISHIICISIEsSNENancISpRuIo
SHEEI®). on a fault are two important factors in influencing the generation of
precursors. Anomalous pre-seismic displacements or strains near the faults have been
observed before numerous earthquakes: Tsubokawa et al. (1964) first measured
pre-seismic displacements at several inland sites before the June 16 1964 M7.5
Niigata, Japan, earthquake. Kanamori (1973, 1996) reported pre-seismic release
associated with forthcoming major earthquakes, especially in Japan. Yu et al. (2001)
reported the pre-seismic displacements on the near-fault stations before the September
20 1999 M7.6 Chi-Chi, Taiwan, earthquake. Papazachos et al. (2002) found
accelerating pre-seismic crustal deformation before large earthquakes in the Southern
Aegean area. Sarkar (2011) observed possible accelerated Benioff strains prior to
large earthquakes in the Sistan Suture Zone of Eastern Iran. These studies confirm the
significance and importance of pre-seismic slip or strain on either earthquake
prediction or assessment for forthcoming earthquakes. These studies confirm the
significance and importance of pre-seismic slip or strain on earthquake prediction or
assessment of forthcoming earthquakes.

Laboratory experiments reveal that o and u are time-varying (Atkinson, 1984;
Rudnicki, 1988; Main and Meredith, 1989). While, the slip as well as the strain
increased very slowly with time from the initial time to to a particular time tc and then

increased rapidly from tc up to the failure time tr when an earthquake happens This is
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the so-called quasi-static subcritical crack growth (SCG) model (Atkinson, 1984,
1987; Atkinson and Meredith, 1987) which is usually represented by théICHaTICSHaW
(e.g., Das and Scholtz, 1981; Main, 1988, 1999). Das and Scholz (1981) used this
model with Charles law to describe the acceleration of a crack tip from an initially
slow (sub-critical) rate due to stress corrosion to rapid remarkable rupture under
increasing stresses. They predicted the failure time which depends on initial
conditions on a fault, such as crack length, crack-tip velocity, residual frictional stress
following a previous earthquake, stress-corrosion index, and the rate of stress input.
Main (1988) applied a similar theory to predict the occurrence time of an event. His
model may quantitatively explain the decrease of failure time in the crust in terms of
decreases in the residual stress due to increasing heat flow, coupled with increases in
both stress-input rates and density of nucleation points for rupture initiation. The
model also predicts progressively increasing failure times for normal, strike-slip, and
thrust faults under similar conditions. Wang (2021a,b; 2023) and Wang et al. (2016)
classified the long-term, intermediate-term, short-term, and immediate-term
precursors based on the SCG (subcritical crack growth) model as mentioned above.
From rock mechanic experiments, Voight (1988, 1989) proposed a nonlinear

rate-dependent law for material failure:

Xe-aXe?=0 1)

where X is an observable quantity, X« and Xt denote d2X/dt? and dX/dt, respectively, @
SIEICONSER, and GlSHAESCalNGIEXponentomheanone). Based on rock mechanics, X
may be interpreted in terms of conventional geodetic observations (e.g., length change,
fault slip, strain or angular change), seismic quantities (e.g., the square root of
cumulative energy release or Benioff strain) or geochemical observations (such as gas
emission rates or chemical ratios). The parameter « varies with rock materials and
also depends on the temperature. EOINSICAllCCRhERVoIohtSIequation hereafter.
Some authors (e.g., Varnes, 189; Kilburn and Voight, 1998) compared Eq. (1) with
the Charles law for the SCG model. Essentially, the VVoight’s equation is similar to the
Charles law. The Voight’s equation has been applied to predict the failure time of an
earthquake based on the accelerated Benioff strain (e.g., Bufe and Vanus, 1993;

Bowman et al., 1996) and the accelerating strain (e.g., Main, 1999). In addition, Main
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(1999) also studied the failure times of earthquakes by considering constitutive rules
of a simple percolation model (e.g., Stauffer and Aharony, 1994). However, they did
not predict the magnitude of a forthcoming earthquake.

The pre-seismic strains observed on or near a fault are directly related to the stress
and slip on the fault zone. SIS IEIOMNNCICHONSINEANItIANOCCUTTenCaItmeIotithe
eGSO NEENREIPIECUISOEM® (sce \Wang et al., 2016; Wang, 2021a,b). In this study,

we will propose a theory to predict the failure time, tr, magnitude, M, and location of a
forthcoming earthquake and to investigate the relationship between the precursor time
and earthquake magnitude from the pre-seismic and co-seismic strains based on the
Voight’s equation. In addition, the theory can be also applied to other kinds of

precursors.

2 Voight’s Equation

From the results obtained from the rock mechanics experiments, Voight (1988)
proposed the empirical equation, i.e., the so-called Voight’s equation, to describe rate-
dependent material failure. The Voight’s equation has been considered as a
fundamental physical law governing diverse forms of material failures (e.g. Voight,
1988, 1989). It is a more general form of Charles’ law (Main, 1999). Like several
authors (e.g., Das and Scholtz, 1981; Main, 1988, 1999), | assume that this empirical
equation can be applied to real earthquakes. In addition, this empirical equation has
been applied to volcanic eruptions (Voight, 1988b; Cornelius and Voight, 1995;
Kilburn and Voight, 1998).

If X in Eqg. (1) is taken to be the strain, ¢, on a fault, the final stages of failure under
steady conditions of a rock in compression would show a proportionality between the
logarithm of creep acceleration and the logarithm of creep velocity. Integrating Eq. (1)
gives the expression for the strain rate, &, and strain acceleration, &, on a fault zone.
In the followings, the strain and strain rate at the initial time, to, are denoted by & and
&, respectively; while those at the failure time, tr, are shown by & and e,
respectively. The solution is dependent on the scaling exponent «. For =1, the strain

rate is

£1= 61062110, 2
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161

162  For a<l1, the strain rate is

163

164 a=[a(1-a)(t-to)+ e, (3)

165

166  For a>1, the strain rate is

167

168 a=[a(o-1)](te-t)+ L V-a), 4)

169

170  These equations remarkably reveal that &t increases with time and thus there is not an
171  upper bound of &. The value of & can be evaluated from the first two equations for
172 o<l and cannot be resolved from the third equation for >1. It seems that there is a
173  singular point at tr for a>1. At the singular point, a rock fracture or an earthquake
174 would happen. An example of numerical results can be seen in Voight’s (1989) Figure
175 2. Since gis integrated from &t, there is not an upper bound value for ¢ when a<l1.

176 We may further solve the time-dependent strain &(t) through double integration of
177  Eq. (1). For e>1 and a+#2, the result is

178

179 &(t)-co={[a(a-1)(t-to)+er T 7-[a( o) (te-t)+ e 9]} a(a-2) (5)

180

181  where (CPICSERNEZERI®E). For «>1 and a+2, the values of 7 are: (1) #<0 as
182 1<a<2; and (2) >0 as o>2. (iGHMNCHNEOEHCANSCIESIMATEIOyIVIaNIOoS) TR
183 can see that the condition of the existence of accelerating strain for generating an
184 earthquake is 1<a<2, thus leading to 7<0. This condition will be used hereafter.

185

186 3. Theory of earthquake prediction

187

188  According to the Voight’s equation, (IESSUMEINAMIMISIPOSSIDICHOIpIcaiCHthertailue
189 time of a forthcoming earthquake from the observed pre-seismic strains measured on
190  GFfearthefaultalong whichtheeVent Will'6eetr) The prediction of the failure time is

191  based on Eqg. (4) and the prediction of the magnitude is based on Eq. (5). The location
192  of the event should be near the sites of observing the pre-seismic strains. The theory
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of earthquake prediction proposed in this study is described below.

3.1 Predicting the Failure Time of a Forthcoming Earthquake

Since the condition 1<a<2 is considered here, we will only take Eq. (4) in the
followings. Due to 1-a<0, the strain rate, &, at the failure time should be much larger
than 1 strain/sec and thus & is much smaller than 1 strain/sec. This makes Eq. (4)

become

a=[a(a-1)(ts-1)]V-), (6)

The time variations in & from Eq. (6) for o=1.5, 1.6, and 1.7 when a=0.5 are
displayed'in @@ in which & is normalized by the maximum value of & for the three
cases. In the figure, the three curves intersect to one another at a point with t=tc.
When t<t, & increases slowly with time and increases with «; while when t>t, &
increases rapidly with time and decreases with increasing c.

From Eqg. (6), we propose a method to explore the possibility of predicting the
failure time, tr of a forthcoming earthquake. Since the values of three model
parameters tt, a, and «, must be solved, those of & at three time instants should be
given. Considering the pre-seismic strain rates, i.e., &u, &2, and &3, at three time
instants, i.e., t1, tz, and ts, respectively. An example for ¢=1.6 with a=0.5 is shown in
@8R in which & is normalized by the maximum value of . Inserting & and tj (j=1,
2, and 3) into Eq. (6) yields

gi=[a(a-1)(t-t)]¥E2 (=1, 2, 3). Y]
This leads to
t=ti+eiCVa(a-1) (=1, 2, 3). (8)

From Eq. (8) for u at t1 and & at t2, we have
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to-t1=[e9-gu9]/a(a-1) (9a)

or

a(a-1)=[et-gu®2)/(t2-t1). (9b)

Similarly, from Eq. (8) for ¢u at t1 and & at ts we have

ta-t1=[eatD-gn VD) /a(a-1) (10a)

or

a(a-1)=[en®-gu®2)/(ts-t1). (10b)

Define two functions in term of a, i.e., Fa(@)=[ee®?-sut9]/(t2-t1) and Fai(a)=
[e®D-gatD/(ts-t1). From Egs. (9b) and (10b), Fa1(a) and Fai(c) are the same
because they are both equal to a(1-c). (NEITEYICValUAERNCNAINCIOICACITCCATom
(EIEOIRIEZNEEES®) Ve first plot the difference of the two functions for

1<a<2. An example of Fa1(a)-F21(e) in terms of a=1.6 is shown in @igl® in which
the normalized values of Fai(a)-Fai(c), i.e., (Fa(a)-Fa(a))/(Fai(a)-Fai(a))max, is
given. The condition for the existence of the value of « to make Fa1(a)=F21(e) is that
the curve of Fa1(a)-Fs1(e) must intersect the horizontal line with F21()-F31(a)=0 at
a point with a certain value of « as displayed in Fig. 3. After the value of « has been
evaluated, we may calculate the value of a from either a=F21(a)/(1-) or a=Fs1(a)/
(1-@). Then, we may evaluate the failure time of the forthcoming earthquake from Eq.

(7) by using the following expression:

t=ti+eg Y 9a(a-1)  (j=1, 2, 3). (11)

The difference between the occurrence time of a precursor and the failure time of the

forthcoming earthquake is called the precursor time (e.g., Wang et al., 2016; Wang,

2021a,b) and is denoted by T hereafter. EOHCIDICSENCASCINCIOCOUNTCHOSRIMIGION
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3.2 Prediction of the Magnitude of a Forthcoming Earthquake

Based on the evaluated precursor time, T, it is possible to predict the magnitude of an
earthquake by using Eq. (5). It first needs to discuss the value of initial strain so. After
the ruptures of last earthquake on a fault, the fault usually continues to slide with the
relative movement speed of regional plates until the occurrence of the next event. If
the moving speed is vp, the strain rate, &, is vp/L where L is the fault length on a fault.
Here the value of &t with the time unit &t of 1 second is taken to be . The value of
& is commonly 107 strain/year around the world (e.g., Scholz et al., 1973; Turcotte
and Schubert, 1982; Yu et al., 2001). For an example, the value of & is
0.25x10°%/yr=1.90x10"%/sec for the San Andres fault (cf. Turcotte and Schubert,
1982), thus leading to £=1.90x10"2 which is much smaller than 1. GHiSHTNAKESIS
ORI =0l RiSISEy ~igures 1 and 2 reveal &r>>1. According to the two

conditions, Eq. (5) becomes

g={[a(a-NT]™[a(a-)(t-] Ha(a-2). (12)

parameter’a should be'small for natural €arthiguakesi Nevertheless, the value of a is

still taken to be 0.5 in Fig. 4 which illustrates the time variations in ¢ from Eq. (12)
for e=1.5, 1.6, and 1.7. In the figure, ¢ is normalized by the maximum value of the
three cases. Like Fig. 1, Fig. 4 shows that the three curves intersect to one another at a
point with t=tc. When t<t, & increases slowly with time and increases with «; while

when t>t, & increases rapidly with time and decreases with increasing .

The earthquake ruptures at t=tr when the strain is &1, which is
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Re-organizing Eq. (13) and taking the logarithm on the two sides of the re-organized

equation yield

log(T)=log{[a(e-2) ] "/[a(e-)]7}. (14)

Eqg. (14) gives

log(T)=log{[a(a-2)]""Ia(a-1)}+log(er)/ n. (15)

This represents the power-law scaling relationship between T and &, i.e., T~&/".

Since the rupture duration of an earthquake is short, we may consider & as the
average strain over the ruptured area after failure. Shaw (2023) inferred the scaling
law for & versus the fault length of an earthquake, L, in the following form: &r=AL12.

This leads to

log(er)=log(4)-log(L)/2, (16)

where 2 is a region-dependent constant; Several authors (e.g., Kanamori and
Anderson, 1976; Wells and Coppersmith, 1994; Leonard, 2010; Thingbaijam et al.,
2017; Wang, 2018; Shaw, 2023) inferred the scaling law for L versus M, which is the
earthquake magnitude (usually the seismic-wave magnitude, Ms, or the moment

magnitude, Mw), in the following form:

log(L)=x+M/2 17)

where (is'a constant depending on tectonic and geological conditions: Combination

of Egs. (15), (16), and (17) leads to the log(T)-M relationship:

log(T)=C+AM (18)
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Tell us the expected range of values for this constant. Then calculate some examples for the expected values of e-sub-f, given this range of the contant and the length L of large-M earthquake ruptures (e.g., hundreds of meters to tens of kilometers).
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Again, tell us the expected range of this constant.
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From Wells and Coppersmith (1994), the value of this constant is 2.94 for three types of faults as considering L as the surface ruptured length.
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where two new parameters are C=log{[a(a-2)]""/a(a-)}+[log(A)-x/2)/n and A=-1/41.
Obviously, A is positive due to 7<0 because of 1<a<2 as mentioned above. This
results in a positive correlation between T and M. When T is known, the value of M
for the forthcoming earthquake may be evaluated from Eq. (18), i.e., M=[log(T)-CJ/A.
From past studies (cf. Wang, 2021b, 2023; and cited references therein),(the values of
A from observations are all smaller than 1. This leads to @<1.8 and thus the values of

o for natural earthquakes could be in the range 1.0 to 1.8.

3.3 Predicting the Location of a Forthcoming Earthquake

As mentioned by Aki (1989), the earthquake scientists should provide the location of
the forthcoming earthquake to the public. Hence, predicting the potential location of
the forthcoming earthquake is also important for seismic hazard mitigation. When the
stations on which the pre-seismic strains are observed are close to a known active
fault, it is very possible to assess the occurrence of the forthcoming earthquake along
the fault! On the other hand, when the station site is not close to a known active fault
or within a complicated active fault system, it needs other precursors, for example,
b-value anomalies (e.g., Wang et al., 2016), foreshock activities (e.g., Chen and Wang,
1984; Chen et al., 1990; Gulia and Wiemer 2019; Zaccagnino et al., 2024),
geochemical anomalies (e.g., Walia et al., 2009; Fu and Lee, 2018) electromagnetic
anomalies (e.g., Ohta et al., 2005, Hayakawa et al., 2006; Hayakawa and Hobara,
2010; De Santis et al., 2019) etc., for helping earthquake scientists to make correct
assessment. Hence, researchers have also suggested other methods to judge the
possible location of the forthcoming earthquake. Seismologists (e.g., Rundle et al.,
2000; Wu et al., 2012) suggested a method to assess the location from seismicity
pattern. For some strike-slip and normal earthquakes, seismologists can assess the
possible location of the mainshock from its foreshocks (e.g., Chen et al., 1990).
Geochemists (e.g., Walia et al., 2009; Fu and Lee, 2018) suggest a method just like
that used by seismologists to locate an earthquake from the differences between travel
times of P- and those of S-waves recorded at three stations. They took the occurrence
times of geochemical precursors, recorded at three different stations to evaluate the
optimal location of a forthcoming earthquake. Geophysicists (e.g., Ohta et al., 2005,
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If precursory strain is related to the future earthquake M, stations must be located near that future fault rupture. However, if precursory strain is related to a localized process located near the future hypocenter, stations must be located close to that location. This was the entire observational strategy of the Parkfield earthquake prediction experiment. 
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This is one of the few places where the author mentions that a complex fault system may provide greater challenges to prediction. 

Mike MacBook Air
The following statements: ''A' is the scaling exponent of the scaling law between T and M, while 'C' is a constant of the scaling law. The two parameters should be of regional-dependence.', have added into the revised manuscript.
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Hayakawa et al., 2006; Hayakawa and Hobara, 2010) suggest the goniometric method
to assess the location of the forthcoming event by detecting the directions of ULF
emissions from the observational stations to the earthquake epicenter. These methods

seem acceptable.

4 Discussion

4.1 On the Theory for the Pre-seismic Strains

Fig. 1 shows that the strain rate, &, monotonically increases with time. From Fig. 1,
Eqg. (1) will lead to an increase in the strain acceleration, &, with time. For the time
variation as displayed in Fig. 1, SillCertaiMtmennsantmaroeeayiclosigherzD
Meanwhile, there are two steps more or less separated at a particular time instant, tc,
which is shorter than tr and not displayed in the figure. The two steps are: &t first
slowly with time when t<tc and then rapidly with time when t>t.. SUCHIalparticular
(e e AT lie o TGNt orSmallied The second step is the existence of
accelerating strain before a forthcoming earthquake from the theoretical studies by
Main (1998). From observations of foreshocks, some authors (e.g., De Santis et al.,
2015; and Cianchini et al., 2020) applied the revised accelerated moment release
model to foreshocks revealing an acceleration pointing to the mainshock. Their model
is similar to the present one. Since there is background noise in practical observations,
the anomalous strain rate can be measured only in the second step. Like Fig. 1, Fig. 4
also illustrates the similar time variation in the strain, & For all cases in Fig. 4, there
are also two steps separated at a particular time instant, tc: ¢ first slowly with time
when t<tc and then rapidly with time when t>tc. Unlike Fig. 1, such a particular time
is almost the same for all ‘s in use. Meanwhile, in Fig. 4 ¢increases with « when t is
smaller than such a particular time; while ¢ decreases with increasing «, when t is

larger than such a particular time. This is the main difference between Fig. 1 and Fig.

4. In addition. larger a produces lower & as t is approaching tr in Fig. 4. This means
that the strain during a forthcoming earthquake increases with decreasing .

The theory of predicting the failure time of a forthcoming earthquake proposed by

this study is basically similar to that used by Das and Scholz (1981) based the Charles
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law and that suggested by Main (1988) based on the Voight equation. One difference
between this method and theirs is that the values of strain rate at three time instants
are taken in this study, while only those of pre-slip at two time instants were
considered in theirs. This is due to a reason that they assumed that the model
parameters of either Charles law or Voight’s equation have been already known,
while those in this study are originally unknown and must be estimated from the
observations.

Equation (18) exhibits the log(T)-M relationship based on pre-seismic strains.
Tsubokawa (1969, 1973) first obtained a linear relation between the precursor time of
crustal movement and mainshock magnitude for Japanese earthquakes in the form:
log(T)=-1.88+0.79M, with C=-1.88 and A=0.79, His observations somewhat confirm
the existence of the log(T)-M relationship. This makes us capable of predicting the
magnitude of a forthcoming earthquake when the precursor time has been evaluated
from observations. Although the earthquakes used by Tsubokawa (1969, 1973)
occurred on different fault zones, his log(T)-M relationship with the values of C and
A represents the average characteristics of crustal deformations in Japan. In general,
the parameters a and « of VVoight’s equation and 4 and y of the scaling laws of faults
vary from area to area. Hence, the log(T)-M relationships might be distinct in
different fault systems.

Wang (2023) correlated the precursor time to the earthquake energy. The
Gutenberg-Richter’s energy-magnitude law of earthquakes (Gutenberg and Richter,
1942, 1956) is: log(Es)=11.8+1.5M in which Es is the seismic-wave energy (in ergs)
and M is commonly the surface-wave magnitude, Ms. From the law, he obtained the
correlation: M ~(2/3)log(Es). In addition, from log(T)=C+AM he got log(T) ~AM ~
(2A/3)log(Es). Since Es=&AE where AE is the strain energy of an earthquake and &
(<1) is the seismic efficiency,Wang (2004) obtained T ~AEA¥3( This indicates that the
precursor time is dependent on the strain energy of the forthcoming earthquake. The
seismic efficiency that depends on the physical and chemical properties of the
fault-zone rocks (Knopoff, 1958; Kanamori and Heaton, 2000; Wang, 2009) may also
influence T. A high seismic efficient will yield a long precursor time.
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Mike MacBook Air
Again, provide some example calculations:  for reasonable estimates of seismic efficiency, what values of T are expected for various large M’s?

Mike MacBook Air
The value of seismic efficiency has been estimated in many papers. Provide a reasonable range.

Mike MacBook Air
The units of C and A are time, i.e., seconds, days, or years depending on the precursor type as shown in Table 2. The units of C and A have been explained in Section 3.2.
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Several examples for reasonable estimates of seismic efficiency have added in the revised manuscript, i.e., Table 3.
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4.2.1 The log(T)—M relationships for other Precursors

In order to measure the pre-seismic strains, the strain-meters should be installed on or
much near the fault. When a strain-meter has not installed on or near the fault on
which a forthcoming earthquake will happen, it is hence necessary to use other kinds
of precursors which are directly or indirectly caused by the pre-seismic fault slip or
strains for predicting the earthquake. In other word, it is much significant to explore
the application of the present theory on the prediction of tr and M of a forthcoming
earthquake based on other kinds of precursors in practice. The present theory can be
applied to other kinds of precursors, and thus the log(T)—M relationships exist for
these precursors. It is significant to apply the above-mentioned theory to predict the
failure time and magnitude of a forthcoming earthquake based on other kinds of
precursors.

The log(T)-M relationships have been recognized from the observations of
different kinds of precursors for a long time (Rikitake 1975a; Wang, 2021a,b, 2023;
and cited references therein). Erom the plot of T (in days) versus M for five precursors,
i.e., crustal movements, electric resistivity, radon (denoted as Rn hereafter) emission,
VplVs law
(Gutenberg and Richter, 1944). From 30 world-wide earthquakes, SSQQIZ etal. (1973)
inferred a relationship: Ms=-5.81+1.55log(T) (T in days) or
the precursors of crustal deformations and seismic-wave velocities, Whitcomb et al.
(1973) obtained (GHENERNOZROBON; (T in days). Rikitake (1975b) obtained (GFRNE
@IBSEONBIVR (T in days). He also stressed that the log(T)-Ms relationships are
different for different groups of precursors. Rikitake (1979, 1984) divided a Iagge data

anomaly, and b-value of Gutenberg-Richter frequency-magnitude

. For

set of 391 cases of precursors into three classes. He obtained for
. . . No d nM? .

the first class including 192 cases and err the second class. He did not

report any relationship for the third class for foreshocks, tilt and strain, and earth’s

Smith (1981, 1986) obtained the

relationship: (GFEIEMEZEOBONR (T in years) from the data of abnormal b-values for

earthquakes in New Zealand. Ding et al. (1985) obtained (GE(E=0ISAR0RBENE (T in
years) for various precursors proceeding large Chinese earthquakes. From the b-value

currents. following

anomalies for 45 world-wide earthquakes with 3<Ms<9, Wang et al. (2016) obtained

(GHN=EI02E0MO)FOMSE0I0MIE (T in years).

From the previous description, it is clear that the log(T)-M relationships are
14
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different for distinct kinds of precursors and also region-dependent. These results
strongly suggest regional-dependence of C and A of Eq. (18). Clearly, C is influenced
by several parameters, while A is controlled only by the scaling exponent, «, of the
fault-zone materials. Hence, A is an important indicator of the relationship. The
previous studies lead to two interesting points. First, for the same forthcoming
earthquake, different kinds of precursors may have different precursor times due to
distinct values of C, but the same value of A. Secondly, for the forthcoming
earthquakes that have the same magnitude and occur at different fault zones, different
kinds of precursors may have different precursor times due to distinct values of both
Cand A.

We will explore the theoretical basis for two kinds of precursors in the followings.
The first kind of precursors is the geoelectric signals which are yielded almost within
the fault zone where the forthcoming earthquake will happen, and the other is the
geochemical signals which might occur on the sites that are somewhat far away from
the fault zone. The mechanisms to generate the two kinds of signals will be described

below.

4.2.2 For the Geoelectric Precursors

Changes or anomalies of geoelectric signals have been observed prior to earthquakes
for a long time (cf. Hayakawa and Hobara, 2010; and cited references therein).
Geoelectric signals are associated with pre-seismic slip on a fault where a
forthcoming earthquake will happen. It is necessary to build up a comprehensive
model that presents the lithosphere-ocean-atmosphere-ionosphere—magnetosphere
coupling to interpret the generation of geoelectric precursors (Potirakis et al., 2017;
Ouzounov et al., 2018; and cited references therein). Several proposed models are: (1)
a model to present Rn ionization and charged aerosol and change of load resistance in
the global electric circuit (Ouzounov et al., 2018; Pulinets and Ouzounov, 2018; and
cited references therein); (2) a model to show coupling between stressed rocks and the
atmosphere—ionosphere system (e.g., Kuo et al., 2011, 2014) based on experimental
results of stress-induced charges made by Freund (2002); (3) a model to display
ionosphere dynamics with imposed zonal (west-east) electric field (Zolotov et al.,

2011, 2012; Namgaladze et al., 2012); and (4) a model of leakage of electric currents
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487  from ocean into the crust having low electric resistivity (Madden and Mackie, 1996).
488  The existence of electric charges/currents on the Earth’s ground or in the uppermost
489  crust is a necessary condition for these models. Several mechanisms, including
490  microfracturing (e.g., Ogawa et al., 1985; Molchanov and Hayakawa, 1995),
491  electrokinetic effect (e.g., Mizutani et al., 1976), streaming potentials (e.g., Bernard,
492  1992), piezoelectricity (e.g., Bishop, 1981; Sornette, 2001; Wang, 2021c),
493  triboelectricity/triboluminescence (e.g., Yoshida et al., 1998), confined pressure
494  changes (e.g., Fujinawa et al., 2002), the peroxy defect theory (Freund, 2002),
495  piezomagnetism (e.g., Sasai, 1979, 1980; Martin, 1980), etc. have been proposed to
496  explain electric charge generation within the fault zones.

497 Here, we show three examples to show the geoelectric and geomagnetic precursors
498  caused by pre- seismic ground electric currents. First, Whitworth (1975) proposed a
499  model of the motion of charged edge location (MCD). According to the MCD model,
500 numerous authors (e.g., Tzanis and Vallianatos, 2002; Venegas-Aravena et al., 2019)
501 assumed that an EIECHICHNCUIICHUMOCHSIYM®, oenerated within rocks under
502  compressional stress changes with time, i.e., ow=dofdt, can be represented by
503  J=2(q/yBv)(ar/Y) where q is the linear charge density of edge dislocation, By is the
504  Burgers vector module, w (=1-3), which represents the dislocation number created by
505 compression and uniaxial tension within a rock (Whitworth, 1975; Vaillianatos and
506  Tzanis, 1998), and Y is the Young’s effective module (Turcotte et al., 2003). Since the
507  quantity oi/Y may be replaced by the ifGINMEAIGM®, the electric current density
508  becomes J=2Y2(q/yBv)&. The geoelectric field is E=J/6, where & is the electric
509 conductivity, from the Maxwell equation. Meanwhile, the geomagnetic filed at a
510 distance, r, from the electric current density is |B|=us|J|/2rr, where ws is the
511  permeability of free space, from the Biot-Savart law (cf. Corson and Lorrain, 1962).
512  ClEyENERINENaENECIRNEIEdGIED Sccondly, Enomoto (2012) obtained
513  log(J)=0.5M+log(5.1x10%knh?Dc/v) (e=the electronic charge; k=a constant of
514  proportionality; n=the density of negatively charged gas molecules; h=the crack gap;
515  Dc=critical depth; and v=the gas viscosity). This shows the correlation between J and
516 & Thirdly, some authors (e.g., Sornette, 2001; Wang, 2021c) studied the dependence
517  of ground electric field, E, on pre-seismic slip, u, in a fault zone in a one-dimensional
518 model with the spatial coordinate x based on the piezoelectricity and the Maxwell’s

519  equations. The result is: E=-i(c/v)’(x/O)u where i=(-1)? is the imaginary number,
16
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v=(u/p)?is the elastic wave velocity, p is the density (kg/m®) of fault-zone rocks, and
¢ is the light speed (=2.999x108 m/sec in free space), £ is the piezoelectric coupling
coefficient between elastic field and electric field (¢=~2x10"? coulomb/ newton for
quartz), and « is the wavenumber. Let Lo be the original length of a fault, thus leading
to E=-i(c/V)?(xd Q) (u/Lo)Lo=-i(c/V)?(xLo/{)e. The three examples of geoelectric and
geomagn anomalies, thus leading to precursors of earthquakes. The precursor times of
GEM precursors should be the same as that of the pre-seismic strains. (ElEINEVED
Wang (2021a,b) reported different precursor times of electric field and magnetic field
el ey P peareaNbeiorENtEISAMEICarthGUaKkS |1 is necessary to explore the

reasons to cause such a difference in future.

The WIGBIRIBEE is put into the present theory to predict the failure time and
magnitude of a forthcoming earthquake. Inserting Ey and tj (j=1, 2, and 3) into Eq. (6)
yields

Eg=F[a(a-1)](tr-t;)]* )

(i=1, 2, 3). (19)

This leads to

ti=tj+(Eg/F) Y a(a-1)  (j=1, 2, 3). (20)
From Eg. (20), we may predict the failure time, tr, of the forthcoming earthquake.
Since E increases with &, their precursor times are the same and thus the precursor

time, T, is ti-to. Theoretically, the precursor time of the pre-seismic geoelectric

precursor is the same as that of the pre-seismic fault strains. EORBNMVCINAYIPICHIc!

In principle, the theory works well to predict the failure time of a forthcoming
earthquake by using the pre-seismic geoelectric signals. But, in practice there might
be a problem that the values of Ei cannot be observed accurately because of the
presence of unexpected noise due to thunderstorm, atmospheric abnormal phenomena,
and artificial effects. This problem should be very serious when t<tc because their
values are very small and cannot be observed. Hence, the observed data of geoelectric
signals must be carefully selected and corrected to remove noise. The visible
geoelectric signals should appear when t>tc because the signals are strong enough. In
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addition, in principle Ei must be measured near the fault. But, the monitoring station
of geoelectric signals is usually not located near a fault where a forthcoming
earthquake will happen. The value of Ei measured at a station not close to the
epicenter should be slightly different from and weaker than near-fault one due to
attenuation. Nevertheless, the attenuation of geoelectric signals measured at several
time instants should be the same on the same station unless there are thunderstorm

and abnormal atmospheric phenomena between two time instants of different stations.

4.2.3 For the Geochemical Precursors

Numerous geochemical precursors are not observed at the localities near the
earthquake epicenters (Wang 2021a,b; and cited references therein) because the
observation stations are not installed at the sites near the epicenters. For example, Rn
concentration anomalies prior to an earthquake are often observed somewhat far away
from the epicenters because the measurement instruments are installed at hot-water
springs or water-wells which may be far away from the epicenters. Nevertheless, their
appearances are still related to the pre-seismic slip in the fault zones of forthcoming
events. We assume that the presence of Rn concentration anomalies in the
underground water might be associated with the spatial distribution of focal
mechanism of an earthquake. The spatial pattern of the fault mechanism of an
earthquake has four quarters: two for tension or dilatation and others for compression.

Kuo et al. (2010, 2019) reported a positive correlation between the temporal
variation in Rn concentrations and that of dilatational strains measured at the Antong
station for three events in southeastern Taiwan. The dilatational strains were related to
tensional quarters of focal mechanisms of the events as mentioned above. They
considered a model to explain Rn volatilization in an undrained fractured aquifer. This
model is simply described below. A small fractured aquifer situated in a brittle rock,
which is surrounded by a ductile formation in undrained conditions. When aquifer
recharge is weak and negligible, undrained conditions are valid. There is only a single
water phase in the aquifer before any precursory geochemical phenomenon appears.
When the regional stress increases, dilation of brittle rock could occur at a faster rate
than the rate of groundwater recharging into the newly created micro-cracks. As a
result, gas saturation and two phases (gas and water) develop in the aquifer. The radon

in groundwater volatilizes into the gas phase and the Rn concentration in groundwater
18
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587  decreases. The model is mathematically represented by the following equation:

588

589 Cw/Co=(HSg+1)? (21)

590

591  where Co is the initial Rn concentration (in pCi/L) in formation brine (salt water); @
592 is the equilibrium Rn concentration (in pCi/L) remaining in ground-water; Sy is the
593 gas saturation (in %); H is Henry’s coefficient (dimensionless) for Rn. From the
594  rock-dilatancy model (Brace et al., 1966): &=Sg/(1/¢) or Sg=&v/¢ where & and ¢
595  denote, respectively, the (dimensionless) volumetric strain of the rocks beneath the
596  observation site and the initial fracture porosity before rock dilatancy. The volumetric
597  strain may be represented as e1+&2+&3 where gj is the strain along the j-th axis (j=1, 2,
598 and 3) (Turcotte and Schubert, 1982). This yields Sq=(s1+&2+3)/¢. Equation (19)
599  shows that Cw increases with decreasing Sg. Inside the brittle rocks underneath the
600 observation site, Sq increases with &y, thus leading to a decrease in Cw. The value of
601 & inside the brittle rocks underneath the observation site will be induced by the strain
602 in the fault zone where the forthcoming earthquake will occur. Hence, the Rn
603  concentration changes are controlled by pre-seismic strains that occur in the related
604  fault zone.

605 Note that although we have considered a model to describe the production of
606  preseismic geochemical signals, the production processes could be more complicated
607 than the present model. Schirripa Spagnolo et al. (2024) addressed that preseismic
608  geochemical signal are produced by the transport of chemical markers throughout the
609 aquifers producing complex spatial circulations and alterations which can be
610 extremely difficult to grasp using just one single model. They also claimed that such
611 complex interactions among fault zones, host rocks upper and lower crustal volumes
612  produce a wide range feedback mechanisms. These problems are beyond the scope of
613  this study and need further investigations.

614 Of course, the time-dependent pre-seismic slip or strain on a fault along which a
615  forthcoming earthquake will happen can produce stress changes surrounding the fault
616 (AKINEHOIRICHAFESISE0) This might induce some geochemical precursors which

617 occur on some places somewhat far away from the fault. Hence, such kinds of
618  precursors will appear more or less later than the pre-seismic slip or strain that

619 happened on the fault. This results in a shorter precursor time than that for the

19
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pre-seismic slip or strain. Here, we consider a mechanical model to explain the
problem. Dobrovolsky et al. (1979) used a half space, during the preparation
processes of an earthquake, a zone of cracked rocks is formed in the focal area under
the tectonic loading, z. The media inside the zone may be considered as a solid
inclusion with different moduli that are lower than that of the half space. The solid
inclusion re-distributes the stresses accompanied by deformations, including those on
the Earth's ground surface. Let V be the solid soft inclusion volume that is an ellipse
with a long-axis length of I1 and a short-axis length of Is: Ii>l for M>5 and li=Is for
M<5, thus leading to V=rlils%6 for M>5 and V=nls*/6 for M<5. The shear modulus of
the half space and that of the inclusion are g and - Sy, respectively. The ratio &udu is
denoted by ¢. Assuming that the zone of effective manifestation of the precursory
deformations is a sphere with the center at the epicenter of the forthcoming
earthquake under the shear stresses loaded at infinity, In the spherical zone with a
radius of r,, the deformation has a strain being equal to or exceeding a certain &s
which is smaller than the strain on the related fault. The ris called the 'strain radius.’

They obtained r,=0.85(¢V o uss)*. This leads to

£=(0.85)3V dur 2. (22)

This reveals that the strain decreases when the radius or the distance from the
earthquake hypocenter increases. Based on Eq. (22), Rn concentration anomaly could
occur at a distance r, from the hypocenter when the strain at the observation site is
larger than &. Hence, the pre-seismic strain in the related fault zone must be larger
than a particular value, & (>&0), at time t=tp. This makes the occurrence time of Rn
concentration anomaly be later than that of the pre-seismic strain because of tp>to.
Thus, the precursor time of the former is shorter than that of the latter. Equation (5)

becomes

a(t)-ep={[a(a-1)(t+-tp)+er 19 7-[a( o) (te-t)+ e 2] THa(-2). (23)

Define T=ti-tp to be the precursor time of this precursor. Considering g=yer and

& >>1, Eq. (23) hence becomes
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(1-pe={[a(a-)T]"a(a-2). (24)
This yields
T=[a(a-2)(1-yen)]Ya(a-l). (25)

Taking the logarithm or the two sides of Eq. (25) leads to

log(T)=[a(a-2)(1-p) &]¥ "a(a-l). (26)
This gives
log(T)=C+AMw (27)

where C'=(1-)C<C. This indicates that when the Rn concentration anomaly is taken
as a precursor, only the value of the constant is reduced from C to C’, while the
scaling exponent A does not change because of the same fault zone. This again to
confirm the importance of the log(T)-M relationship on the assessment of a
forthcoming earthquake. When two groups of earthquakes occur in two fault systems
whose rock materials have different values of a and «, their values of C and A could
be different, thus resulting in different log(T)—M relationships.

For Rn concentration anomalies before six earthquakes with M=5.0-6.8 and
d=7.0-35.6 km (M=the local magnitude; d=the focal depth, in km) in southeastern
Taiwan, KHGICHAINZ020)IChEREaNoEN=IE56S0058W or the Rn concentration
anomalies before 9 events in northern Taiwan, (HERGEZ023)NObIINCOMIODS
EOZIE0B0(OZSE0 For the Rn concentration anomalies before 111
earthquakes in Taiwan, (ETGIZ02I5IGEEREANCON 20500 O SEE00D
for the events with d<40 km and A<40 km (A=the focal depth, in km); and (DB
(EOMOE02(OZEEOIM for those with d>40 km or A>40 km. The log(T)-M
relationship for northern Taiwan is different from that for southeastern Taiwan. This
indicates the difference on a of the fault-zone rocks between the two areas. The
log(T)—M relationship for northern Taiwan is different from those for Taiwan in two
different focal-depth ranges. This suggests that there is a difference on « of the
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fault-zone rocks between northern Taiwan and the whole Taiwan region. That the
log(T)—M relationships for Taiwan in two different focal-depth ranges suggests that
the fault-zone rocks in the two different focal-depth ranges are different from each
other.

We assume that the theory proposed in this study can be applied to other kinds of
precursors, and thus the log(T)-M relationships exist for these precursors as
mentioned above. Based on the difference of the log(T)—M relationships between two
kinds of precursors, Wang (2023) suggested a method to predict the failure time and
magnitude of a forthcoming earthquake directly from observations. He explored in
details the conditions of the values of C’ and A of Eq. (25) for two different
precursors that can be used for earthquake prediction. He also gave examples for
geochemical precursors to show how to predict the failure time and magnitude of a

forthcoming mainshock. The present theory provides the physical basis of his study.

5. Conclusions

From the subcritical crack growth model, we propose a theory of predicting a
forthcoming earthquake from pre-seismic strain signals. We consider three aspects:
prediction of failure time, prediction of earthquake magnitude, and prediction of
location. The pre-seismic strain is here considered as a fundamental and important
earthquake precursor. Based on the Voight’s equation for failure of materials under
stresses, we theoretically investigate the physical basis on predicting the failure time
and magnitude of a forthcoming earthquake in terms of pre-seismic anomalous strain

signals which are generated on or near the fault where the event will happen.

Meanwhile,

IBHBRSHIPY A 1though the location of a forthcoming earthquake cannot be determined
from the present theory, it may still be qualitatively assessed from the observations.
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Based on the theoretical results made by Main (1998) and the observed values of A of
the relationships, the value of & must be in the range 1.0 to 1.8 for the generation of
earthquakes. 'The log(T)—M relationships of pre-seismic geoelectromagnetic and
geochemical signals are taken into account. Theoretical results reveal that the
precursor times of the pre-seismic geoelectromagnetic precursors and those of
geochemical precursors are, respectively, the same and shorter than that of the

pre-seismic strains.
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Figure 1. The plot shows the time variations in strain rate, &(t), for =1.5, 1.6, and

1.7 when a=0.5. The three curves intersect one another at the point with t=tc.

33



https://doi.org/10.5194/egusphere-2025-3192
Preprint. Discussion started: 28 July 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

1058
1059
1060

1061
1062

-
-
-

-

| s
e €
| | | | | | | | g

0 t t
1063 Time ' 7

1064  Figure 2. The plot shows the time variation in strain rate, &(t), and three values of
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1065 &(t), i.e., &, er, and &, at three time instants, ti, t3, and t3 for ¢=1.6 when
1066 a=0.5.
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Figure 3. The plot displays the curve for Fa1(e)-Fs1(e). The intersection point of the

curve and the line with F21(@)-F31(2)=0 is at o=1.6.
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1087  Figure 4. The plot shows the time variations in strain, &(t), for a=1.5, 1.6,
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and 1.7

1088 when a=0.5. The three curves intersect one another at the point with t=tc.
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