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Abstract. Seamless climate predictions integrate forecasts across various timescales to provide actionable information in
sectors such as agriculture, energy, and public health. While significant progress has been made, there is still a gap in the
continuous provision of operational forecasts, particularly from seasonal to multi-annual time scales. We demonstrate that
filling this gap is possible using an established climate model analog method to constrain variability in CMIP6 climate
simulations. The analog method yields predictive skill for surface air temperature forecasts across timescales, ranging from
seasons to several years. On average, the analog-based surface air temperature predictions provide added value over the
unconstrained CMIP6 ensemble, especially on seasonal to annual timescales. Similar to operational climate prediction
systems, standardized precipitation index forecasts are less skillful than surface air temperature forecasts, but still better than
the CMIP6 unconstrained simulations. The analog-based seamless prediction system shows very similar patterns of skill
compared to state-of-the art initialized climate prediction systems and has competitive skill on annual and biennial forecast
ranges. While the current prediction systems provide only 1-2 initializations per year, the analog-based system can easily
provide predictions with monthly initializations, delivering seamless climate information throughout the year currently not
available from traditional seasonal or decadal prediction systems. Furthermore, due to analog-based predictions being
computationally inexpensive, we argue that these methods are a valuable and viable complement to existing operational

prediction systems.
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1 Introduction

Seamless climate prediction aims at integrating and synthesizing climate forecasts over a range of forecast times, from sub-
seasonal to multi-decadal time scales (Kirtman et al., 2013; Merryfield et al., 2020; Meehl et al., 2021). It is rooted in the
concept that the internal climate variability is not confined to any specific time scale but instead spans from days to several
decades (Schindler et al., 2015 , Zhang et al., 2020). Seamless climate prediction can support various practical applications,
ranging from managing agriculture or water resources, to better preparing for climate-related disasters and in better meeting
energy demands (Buontempo et al., 2018, Bett et al., 2022, Sanchez-Garcia et al., 2022).

On subseasonal to seasonal timescales (i.e. from a few weeks to a few months), seamless climate prediction aims to inform
about variability associated with phenomena such as the Madden Julian Oscillation (Kim, et al., 2019a), or sudden
stratospheric warming events (Sigmond, et al., 2013). Climate and weather variability in these timescales can affect sectors
such as agriculture, energy production, and public health (Thomson et al., 2006; Klemm and McPherson, 2017; Kim et al.,
2019b; Lledo et al., 2019; Ceglar and Toreti, 2021). Seasonal to multi-annual climate predictions (i.e. from a season to a few
years) provide information to better anticipate climate variations that are externally forced or occur due to natural variability
within the climate system, and which include for example the El Nifio Southern Oscillation (ENSO, Lopez and Kirtman,
2014), the Indian Ocean Dipole (Shinoda and Han, 2005), or the Arctic (Riddle et al., 2013) and Antarctic Oscillations
(Seviour et al. 2014), being important in various sectors including agriculture, water resource management, energy, public
health, and disaster risk management (Caron et al., 2015; Solaraju-Murali, et al., 2021; Dunstone et al., 2022). Decadal and
multi-decadal predictions provide information on longer climate trends and variability like the Atlantic Multidecadal
Variability (Mann et al., 2014) or Pacific Decadal Oscillation (Liu and Di Lorenzo, 2018) which are essential for long-term
planning in infrastructure, resource management, and climate change adaptation (Solaraju-Murali, et al., 2022; Dunstone et
al., 2022).

Operational seasonal and decadal climate predictions are produced by integrating forward in time an ensemble of several
parallel climate model simulations forced by a likely external forcing scenario and initialized from a climate state that is
representative of the observed climate (Meehl et al., 2021). The ensemble of model simulations is meant to constitute a pool
of equally probable realizations of future climate. After initialization, the models are often subject to shocks followed by a
drift away from the observed climate typically towards its own attractor. This can result in a reduction of forecast skill
(Bilbao et al., 2021). Model simulations used to deliver climate predictions are computationally expensive, thus being
produced only by a limited number of institutions around the world. Analog-based approaches are alternatives that exploit
the freely available large ensembles of non-initialized climate model simulations such as the ones from the Coupled Model
Intercomparison Project Phase 6 (CMIP6; Eyring et al., 2016) to produce computationally cheaper climate predictions. These

approaches work by scanning for analogs of the observed climate in a large model catalog, typically selecting a subset of
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them in order to better constrain the variability of those simulations and provide predictability beyond the one determined by
the externally forced signal alone (see methods). An incomplete representation of the climate state at initialization is likely
the major disadvantage of the analog-based predictions because of the finite available states present in the multi-model
catalog. These states may be less representative or “further away” from the observed target state than the initial states in an
initialized climate prediction system. Despite these potential disadvantages from a lack of a more sophisticated initialization,
the simulations used in the analog-based predictions are not impacted by initialization shocks and its direct use is
computationally cheap. Analog-based prediction methods have been successfully applied on seasonal/annual scales by Ding
et al., (2018) and (2019) to predict climate in the tropics (e.g. multi-year ENSO forecasts), and by Mahmood et al., (2021)
and (2022), De Luca et al. (2023) and Donat et al. (2024) on decadal to multi-decadal timescales to give an outlook beyond

the available operational decadal predictions.

Despite recent progress in existing prediction systems (Kirtman et al., 2013; Kushnir et al., 2019: Merryfield et al., 2020;
Meehl et al., 2021), only operational decadal predictions provide information across these different time scales, yet this
information is only available typically at the beginning of each year. Operational seasonal forecasts do provide information
about once a month, but the forecast horizon is typically limited to 6 months. For example, a user interested in obtaining
climate information for different time scales (e.g. seasonal to multi-annual) would currently have to combine the information
from different prediction systems for the different time scales which are often inconsistent in their set-up, model used, and
predictions they provide. In this study we show that this key climate information gap on the seasonal to multi-annual

timescales can be filled by exploiting the model analog method to constrain existing non-initialized CMIP6 simulations.

2 Methods

We build from the hypothesis that finding the climatic states (analogs) in simulations from a large multi-model ensemble that
are closest to an observed target state can provide valable information on the future evolution of the climate system
(Mahmood et al. 2022). The CMIP6 ensemble is currently the largest available pool of simulations from multiple state-of-
the-art climate models. In this study we use data from 149 climate simulations from 19 climate models covering the period
1960-2030 forced by historical emissions before 2015 and the SSP2-4.5 scenario emissions afterwards (Table S1). The total
number of model simulation years is 10579. The period 1960-2030 was chosen to include both a climatically representative
period of the hindcast and an extension to the future to allow for the occurrence of unprecedented climatic states in a real-

time forecasting context.

More specifically, we scan across time and ensemble members for the conditions that better resemble the observed Sea
Surface Temperature (SST) anomaly pattern over oceans at a given time as a means to align the natural climate variability

around the climatological state of the model to the observed one, which conceptually corresponds to the initialization of
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climate predictions. To do this, we first estimate the area-averaged, area-weighted (w) mean absolute error (MAE) of
monthly SSTs for each member of each model (I in eg.1), and across years (k in eq.1) with respect to the observational
reference (O in eq.1) at the desired target month of “initialization” (m in eq.1). For example, to produce the Surface Air
temperature (TAS) or Standardized Precipitation Index (SPI) forecasts of June-August 2024 with one month lead time, the
observed SST anomalies of April 2024 (m) are compared with all the April SST anomalies between 1960 and 2030 (k) across
members in the multi-model ensemble and ranked according to their respective MAE, for each member separately. The
modeled SST from all months of April that have the greatest similarity with the target month of April 2024 (i.e. smallest
MAE) are then selected (analogs of April 2024), and the forecast is constructed by taking the average conditions of the June-
August following the selected April analogs. The selection is always done with one month lead time (unless otherwise noted)
to provide information well ahead of the targeted forecast period. We found that the analogs generated with an SST pattern
comparison for the whole planet is broadly superior to the one using a reduced Indo-Pacific region as in Ding et al. (2018)
(Tables S2-S3). Additional sensitivity tests also reveal that the optimal length (m and k) of SST pattern comparison is one
month, independent of the different forecast ranges considered, in particular for seasonal to inter-annual predictions (Tables
S2-S7). Please note that for longer (e.g. multi-annual to multi-decadal) forecast times analogs based on longer-term SST
averages were determined to give highest skill (e.g. Mahmood et al. 2022, Donat et al. 2024). The time scales of the analogs
represent processes relevant for the predictions. While for seasonal to inter-annual predictions SST variations at higher
frequency (e.g. ENSQO) are most relevant, for longer prediction horizons (also reaching beyond the ENSO predictability
barrier) other lower-frequency variations (e.g. Atlantic Multidecadal Variability) are more relevant. The number of analogs
for each TAS (SPI) prediction is defined by the top (top 5) analog(s) in each one of the model simulations which cover the
period 1960 - 2030. Note that for long predictions, the period of analog selection is slightly reduced at both extremes (e.g. 48
month predictions are based on analogs centered between 1963 and 2027). The number of selected analogs (i.e. 1 or 5 per
member), the number of models and members used, have been determined by performing sensitivity tests (Tables S8-S13).

More specifically, four methods were tested:

e Method 1. All available members from the six models that provide more than 10 members each (Table S1), 122
members in total.

e Method 2. Only 10 members from the same six models that provide more than 10 members each, 60 members in
total.

e Method 3: Ten members from each model. For models that provide less than 10 members, the members are used
more than once to complete a set of 10 for each model, 190 members in total. Essentially increasing the relative
weight of the analogs of models with fewer than 10 members.

e Method 4: All available members from the 19 models, 149 members in total.
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Using the best overall method from the sensitivity tests (method 4), the selected analogs then constitute the forecasts and can
be interpreted as ensemble members. Additionally, the trend of the ensemble-mean TAS analog-based predictions is adjusted
by first removing the signal explained by external forcing as in Smith et al., (2019) and then adding the externally forced
trend (i.e. the CMIP6 ensemble mean) to those residuals. This is necessary because the analogs can be selected from any
year in the period 1960-2030 and do not necessarily have the right forcing state. The trend adjustment ensures that potential
offsets related to selecting analogs from other forcing states are corrected to represent the forcing of the year(s) of the

predictions For the SPI predictions the trend-adjustment is not needed, as they are optimal without it (not shown).

Mathematically, the criterion to rank and determine the analogs is:

MAE,, = 2l Oum] (1)

N

where the indices i, j, k and | run across longitudes, latitudes, months, and models/members, respectively. T stands for the

model values and N stands for the total number of ocean grid-points.

We apply the methodology described above to generate retrospective predictions of SPI and TAS of 3 months, 1 year, 2
years and 4 years and evaluate their predictive skill in the period 1962-2018, except for the 3 month predictions which are
only evaluated during 1982-2018, defined by the availability of the benchmark SEAS51 predictions (see next paragraph).
We compute the SPI (McKee et al. 1993) for 3-, 12-, 24- and 48-month accumulations using the R package SPEI (Begueria
and Vicente-Serrano, 2023). Following Smith et al. (2019), the non-forced analog-based predictions and observations are by
definition the residuals that contain only the variability that is not explained by the CMIP6 ensemble mean. Hence, the non-
forced skill throughout the study can be interpreted as the residual skill explained after removing the externally forced signal.
The skill metrics used in this study are the anomaly correlation coefficient (ACC) and the mean absolute error skill score
(MAESS):

3 (Fi-F)(0;-0)

ACC =
5 7Y’ [5r(0i-0)"

@)

-1 _2lF=F-(0i-0)|
MAESS =1 >7|(Ri- R)=(0;-0) | !

In egs. 2 and 3 F stands for forecasted values, O stands for observed values and in eq. 3 the reference R is a trivial

climatological forecast based on observations, the multi-model uninitialized CMIP6 ensemble mean, or the ensemble mean
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forecast from an operational prediction system. The letters with the bars denote climatological values. The index i in egs. 2

and 3 runs across time.

The list of CMIP6 models used in this study is available in Table S1. All model and observational data have been bilinearly
interpolated to a common grid of 5° X 5° for TAS and about 2.8° X 2.8° for both SSTs (i.e. analog search) and SPI. The
observational reference datasets for SST analog search is ERSSTv5 (Huang et al., 2017), while the observational references
for prediction evaluation of TAS and SPI are based on the monthly averages of Berkeley Earth Surface Temperatures
(BEST, Cowtan, 2023) and the Global Precipitation Climatology Center (GPCC, Becker et al., 2013), respectively. In
addition to the CMIP6 simulations, we used data from two operational climate prediction systems as a benchmark for the
comparisons. For the 3-month predictions, we used the European Centre for Medium-Range Weather Forecasting SEAS51
(Johnson et al., 2019) and for the 12-, 24- and 48-month predictions, we used the initialized climate model EC-Earth3
(Bilbao et al., 2021). Note that both dynamical prediction systems are limited to 25 members, whereas the analog-based
predictions are based on the 149 members from the non-initialized CMIP6 ensemble. A key strength of the analog-based
method is its ability to leverage a large-sized ensemble at minimal computational cost as opposed to the significant cost it
requires to generate such large ensembles with initialized prediction systems. However, we acknowledge that a fraction of
the skill of the analog-based predictions stems from exploiting large ensembles, and reducing the ensemble size to match the
size of the dynamical prediction systems reduces the skill. This is demonstrated in Fig. S1 which shows that the skill of the

analog-based predictions clearly increases with ensemble size, regardless of variable or forecast range.

3 Results
3.1 Seasonal predictions (3 months)

Figures la-f illustrate the spatial distribution of skill for boreal winter (December-February) TAS predictions initialized the
1st of November, as assessed by the ACC and the MAESS. The analog method shows positive statistically significant
correlation in the tropics and subtropics, most of the Ocean, and the Arctic (Fig. 1a). A large fraction of skill in these areas
can be attributed to the alignment of internal variability in the predictions and observations as revealed by the residual
correlation after removing the externally forced signal from CMIP6 (Fig. 1b). In general, the analog-based predictions offer
added value over a trivial climatological forecast (Fig. 1d) and over the uninitialized CMIP6 ensemble (Fig. 1e), especially
over tropical regions. Figure 1c displays the correlation between the observations and SEAS51, an operational seasonal
forecasts system, while Figure 1f displays the added value of the analog-based predictions over the SEAS51 ones according
to the MAESS. Generally, SEAS51 has higher skill than the analog-based predictions, especially marked in ocean regions
like the North Atlantic. However, the overall spatial patterns are very similar between the analog-based and SEAS51

predictions, which gives some confidence that both exploit similar sources of predictability.
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Figure 1: a) ACC between December-February analog-based ensemble mean predictions and observations of TAS. b)
Residual ACC between December-February analog-based ensemble mean predictions and observations of TAS. c)
ACC between ECMWF-SEAS51 December-February ensemble mean predictions and observations of TAS. d)
MAESS of December-February analog-based ensemble mean predictions of TAS. The reference (R) is a
climatological forecast derived from observations. €) MAESS of December-February analog-based ensemble mean
predictions of TAS. The reference (R) is the ensemble mean of CMIP6 historical simulations. f) MAESS of December-
February analog-based ensemble mean predictions of TAS. The reference (R) are the ECMWF-SEAS51 December-
February ensemble mean predictions of TAS. The evaluation period is 1982-2018. The predictions are initialized each
November in both analog-based predictions and SEAS51. The hatched regions in all figures indicate statistically non-

significant values (p < 0.1) using a two-sided t-test.

Although not as widespread as December-February predictions, boreal summer (June-August) TAS predictions initialized
the 1st of May also display high skill in the tropics. Additionally, skill is also high in many subtropical and mid-latitude
regions (Fig. 2a,d). Generally, the skill in northern hemisphere land regions is higher in boreal summer than in winter.
Specifically, the Middle East, Europe and large parts of East Asia show high skill in terms of both ACC and MAESS,
although this skill stems primarily from the response to external forcing and not from the analog initialization. Hence, the
added value of analog-based predictions over the uninitialized CMIP6 ensemble is mostly limited to tropical and subtropical
regions according to the residual correlation (Fig. 2b), but limited to Central America, Southeast Asia and tropical Oceans

according to MAESS (Fig. 2e). There is again a very large similarity between the spatial patterns of skill in the analog and
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SEAS51 predictions (Fig. 2a,c, respectively). SEAS51 shows larger correlations with observations in general, but similar to
boreal winter, the disadvantage of the analog-based predictions over land areas seems limited and mostly not statistically
significant with respect to SEAS51 when evaluated with the MAESS (Fig. 2f)
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Figure 2: The same as Figure 1, but for June-August TAS predictions. The predictions are initialized each May.

Figure 3 shows the correlation coefficients of the SPI13 analog seasonal forecasts and observations during the boreal winter
(Fig. 3a-c) and summer (Fig. 3 d-f), respectively. The analog-based predictions exhibit skill in Australasia, southern Africa,
and the tropical Americas. In line with what is observed in forecasts from dynamical forecast systems, the analog technique
yields predictions for SPI3 that are notably less skillful than those for TAS. Nonetheless, the spatial patterns of regions with
skill in the analog and SEAS51 are very similar (Fig. 3a,c,d,f). The residual correlation of precipitation forecasts with the
analog method during the boreal winter and summer is shown in Figures 3b,e, respectively. The similarity of these maps to
the full skill maps (i.e. Fig. 3a,d), suggests that the analog-based predictions' accuracy is predominantly due to the alignment
of natural climate variability in both the models and observations, with one notable exception: the Sahel region in boreal
summer (Fig. 3d,e), in which the skill seems to result from the external forcing (Ndiaye et al., 2022). It is important to note
that the MAESS of both, boreal summer and winter analog-based predictions of SPI3 when using SEAS51 as a reference

shows generally non-statistically significant differences, similarly to land TAS (not shown).
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Figure 3: a) ACC between December-February analog-based ensemble mean predictions and observations of SP13 b)
Residual ACC between December-February analog-based ensemble mean predictions and observations of SPI3 c)
ACC between ECMWF-SEAS51 December-February ensemble mean predictions and observations of SPI13. d) ACC
between June-August analog-based ensemble mean predictions and observations of SPI3. ) Residual ACC between
June-August analog-based ensemble mean predictions and observations of SPI13. f) ACC between ECMWF-SEAS51
June-August ensemble mean predictions and observations of SPI3. The evaluation period is 1982-2018. The
predictions are initialized each November (a-c) and each May (d-f). The hatched regions in all figures indicate

statistically non-significant values (p < 0.1) using a two-sided t-test.

The SPI3 analog-based predictions show skill comparable to SEAS51 predictions between boreal fall and spring in terms of
land area with positive and statistically significant residual correlation, while the analog-based predictions of 3-month TAS
are generally less skillful than SEAS51 throughout the year (Fig. 4). Skill over land peaks around boreal summer/fall and
fall/winter for TAS and SPI3, respectively in both analog and SEAS51 predictions. This difference between the two
variables can most likely be attributed to a more dominant influence of external forcing on TAS predictability, while for

SPI13 the primary driver is natural variability.
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Figure 4: Fraction of land area with statistically significant positive correlation (p < 0.1) between the 3-month TAS
(solid lines) and SPI3 (dashed lines) from the analog, and SEAS51 predictions, and the respective observations.

Statistical significance is assessed using a two-tailed t-test. The evaluation period is 1982-2018.

Figure 5 shows the temporal evolution of four key seasonal climate indices of the tropical Oceans: The December-February
NINO34 (Fang and Xie, 2020) in the tropical Pacific, the June-August tropical Atlantic index (ATL3, Zebiak 1993), and the
March-May Western (WIO) and September-November Eastern (EIO, Saji et al., 1999) tropical Indian Ocean indices. All
forecasts are initialized one month before the target season. The indices in the respective seasons are important because they
measure oceanic variability that induces remote impacts on hydroclimatic conditions over land. They are a small selection to
highlight and confront the analog and the SEAS51 predictions in these particular areas. Although not as skillful as SEAS51,
the analog-based predictions of NINO34 and the WIO show high skill and closely follow the observed year-to-year
variability and trend. The ATL3 and EIO follow the observed trend but largely underestimate the magnitude of year-to-year
variability as opposed to SEAS51. This underestimation of the local variability may be a result of the sampling and
averaging of hundreds of analogs with some of them being less representative of the observed conditions in the particular
area. Despite this, at the global scale, the larger the ensemble of analogs the higher the skill (Fig. S1). As commonly done for

other types of climate predictions, recalibrating the ensemble could make the analog-based forecasts more valuable.
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Figure 5: Observed and predicted evolution of the indices estimated as the area-averaged TAS time series of the a)
December-February NINO34 (170W-120W, 5S-5N; Fang and Xie, 2020) in the tropical Pacific Ocean, b) the March-
May WIO (50E-70E, 10S-10N; Saji et al., 1999) in the tropical western Indian Ocean, c¢) the June-August ATL3
(20W-0E, 3S-3N; Zebiak 1993) in the tropical Atlantic Ocean, and the September-November EI1O (90E-110E, 10S-ON;

Saji et al., 1999) in the tropical eastern Indian Ocean.

3.2 Annual and multi-annual predictions (1-4 years)

The skill of annual TAS analog-based predictions is very high (ACC>0.8, MAESS>0.3) across most tropical areas and the
North Atlantic, as well as being high, positive and statistically significant over land regions outside of the tropics, as shown
in Figure 6a,d. However, skill in areas like central Asia, central North America, and southern South America exhibit mostly
low to moderate skill (ACC>0.2), but still surpasses that of a climatological forecast (MAESS>0). The results indicate a
distinct improvement of the annual analog forecasts when compared to the CMIP6 ensemble across the Pacific region, the

tropical Atlantic and Indian Oceans, Australasia and East Asia, and large parts of the Americas and Africa. However, based

11



280 on MAESS, these improvements are limited mostly to the Caribbean, southern Africa and the Maritime Continent (Fig. 6e).

This discrepancy between ACC and MAESS is likely the result of analog-based predictions being capable of estimating the
variability around the forced signal (positive ACC), but due to biases in the analog-based predictions, MAESS may be
affected to the point of making it zero or negative. There is also a broad similarity in the spatial distribution of skill

(correlation) of the analog-based and the operational decadal predictions from EC-Earth3 (Fig. 6a vs. 6¢). The analog-based

285 predictions slightly outperform EC-Earth3 over land according to MAESS, as seen in southern Africa or Australia (Fig. 6f)
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Figure 6: The same as Figure 1, but for annual TAS predictions (January - December). The evaluation period is 1962-
2018. The predictions are initialized each November in both analog-based predictions and EC-Earth3. The dynamic
forecasts system evaluated in c,f is EC-Earth3.

When extending the forecast to a two-year period, the analog-based predictions of TAS continue to show high skill across
most land areas. The skill in the extratropical regions such as the Mediterranean or East Asia is comparable with the skill in
the tropical zones, as shown by Figures 7a,d. The residual skill after removing the forced signal is slightly less pronounced
for forecasts spanning two years than for one year forecasts, as shown in Figures 7b and 6b, respectively. The benefit from
initialization (residual correlation) of the analog-based predictions can still be observed in several areas like tropical South
America, South Asia, Australia and Sub-saharan Africa. Most of the Pacific and the Indian Oceans also show benefits from

initialization in the analog-based predictions. Subtropical regions tend to show reduced skill in the TAS analog-based
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predictions according to the MAESS (Fig. 7e), with the Mediterranean region underperforming CMIP6, but still generally
overperforming EC-Earth3 predictions in northern South America, Sub-saharan Africa and Australia (Fig. 7f). As for annual
predictions, possible biases present in the analog-based biennial predictions are likely behind the little to no advantage of the
analog-based predictions over CMIP6 ensemble based on MAESS (Fig. 7e), despite some clear advantages measured by the

residual correlation (Fig. 7b), which only estimates the variability around the forced signal.
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Figure 7: The same as Figure 1, but for biennial TAS predictions (January - December+1year). The evaluation period
is 1962-2018. The predictions are initialized each November in both analog-based predictions and EC-Earth3. The

dynamic forecasts system evaluated in c,f is EC-Earth3.

The results for quadrennial predictions of TAS show higher overall ACC and MAESS than the biennial or annual predictions
(Fig. 8 a,c). However, residual correlation is generally smaller in the quadrennial predictions (e.g. the tropical Atlantic and
western Africa no longer show added skill). This implies that despite higher overall ACC, the benefit from initialization is
smaller for quadrennial predictions than for biennial and annual. Furthermore, the analog-predictions clearly underperform
CMIP6 when measured by MAESS (Fig. 8e) as opposed to the overall clear advantage measured by residual ACC (Fig. 8b).
This is especially clear in the northern hemisphere subtropics and again most likely the result of biases. The added value of
the analog prediction over EC-Earth3 is however still visible in many regions, with the analog-based predictions

underperforming EC-Earth3 predictions only in the North Atlantic, northern Africa and southwestern Asia, but
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320 overperforming it in northern South America, Sub-Saharan Africa, South and Southeast Asia, Australia and parts or Europe
(Fig. 8f).
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Figure 8: The same as Figure 1, but for quadrennial TAS predictions (January - December + 3 years). The evaluation
325 period is 1962-2018. The predictions are initialized each November in both analog-based predictions and EC-Earth3.
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The dynamic forecasts system evaluated in c,f is EC-Earth3.

14



b) Resid. 12
2217 ,.,,' 72 A g ek W Aot
S 2 % G Vil

- = %
i R ) /7%/// %
% YL % 7h
4 750 )
> Yk 0 ¥

> R

7, :
7 %‘)

d)Analog ACC - SP148
e s O i i
C 5 SN . 7L, 7 2

P s e

q

-0.60 -0.45 -0.30 -0.15 0.00 0.15 0.30 0.45 0.60 -0.60 -0.45 fU:BO -0.15 0.00 0.15 0.30 0.45 0.60 -0.60 -0.45 -0.30 -0.15 0.00 0.15 0.30 0.45 0.60

Figure 9: The same as Figure 3a-c, but for a-c) SPI112, d-f) SP124 and g-f) SP148 predictions initialized every
330 November. The reference period is 1962-2018. The dynamic forecast system evaluated in c,f,i is EC-Earth3.

The correlation maps of SP112 (Fig. 9a,c), SP124 (Fig. 9d,f) and SP148 (Fig. 9g,i) predictions using the analog method and
EC-Earth3 are again spatially similar. There is an increase of correlation in northern hemisphere high latitudes with longer
precipitation accumulations (SP148), but comparable skill elsewhere in SP112, 24 and 48, except for a few regions such as
335 southern Africa or western North America which exhibit lower skill at longer accumulations. An important fraction of the
skill for SPI124 and especially SPI12 predictions stems from the synchronization of unforced variability in the models and
observations, similar to the seasonal predictions. This can be implied by the broad similarities between Figures 9a,d and
9b,e. Contrastingly, for SP148 predictions, the forced signal largely dominates over the non-forced one. MAESS maps of
SP112, 24 and 48 reveal mostly non-significant values when comparing analog-based predictions with both CMIP6 and EC-
340 Earth3 (not shown).
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Figure 10: Observed and predicted evolution of the global area-averaged TAS time series of a) annual January-
December predictions initialized in November for both analog-based method and EC-Earth3 (2-month lead), b) the
annual July-June(+1 year) predictions initialized in November (8-month lead) for EC-Earth3 and in June (1-month
lead) for the analog-based method, c) the biannual January-December (+1 year) predictions initialized in November
for both analog-based method and EC-Earth3 (2-month lead), and d) the quadrennial January-December (+3 years)
predictions initialized in November for both analog-based and EC-Earth3 (2-month lead).

Figure 10 presents the time series for annual (a,b), biennial (c), and quadrennial (d) averages of global TAS in the analog-
based predictions, EC-Earth3 predictions and the observations. Annual predictions initialized each November for the
following January-December (Fig. 10a) show very similar results with comparable performance metrics for the analog and
EC-Earth3 predictions. When considering the 12-month period from July-June (Fig. 10b), the analog-based predictions
initialized in June (1-month lag) are superior to the EC-Earth initialized the previous November (8-month lag), showing
residual correlations of 0.74 and 0.26 for the analog-based and EC-Earth3 predictions, respectively. This example highlights
a key advantage of the analog-based predictions over the dynamical prediction systems, as the analog ones can be produced

every month throughout the year without large computational cost as opposed to the dynamical ones. Biennial and
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quadrennial predictions (Fig. 10c,d) initialized each November (one month lead), show very similar values of correlation for
both analog and EC-Earth3 predictions, with residual correlations higher in analog-based predictions and MAESS slightly
higher in EC-Earth3 predictions.

Figure 11 summarizes the results of the analog and EC-Earth3 predictions in terms of total land area fraction with significant
positive correlation for annual, biennial and quadrennial predictions of TAS and SPI. Due to a saturation of correlation with
observations, the residual correlation after removing CMIP6 signal is used for TAS, while the anomaly correlation of the
actual time series is used for SPIl. The analog-based and EC-Earth3 predictions initialized every November have a
comparable skill of predicting 12-month mean TAS and SPI (Fig. 11 a,d) that decreases with increasing lead time from 2
months up to 13 months (dark green and yellow lines). However, when using 12-month analog-based TAS and SPI
predictions initialized every month always with one month lead-time, the skill is broadly superior to the benchmark (light
green line vs. yellow lines) and the skill increases when the forecasts are initialized after the spring ENSO predictability
barrier. For 24-month forecasts, the November initialized analog-based predictions are also slightly superior to EC-Earth for
TAS (Fig. 11b,e) and the analog-based predictions initialized every month are consistently superior to the November
initialized ones, similar to the 12-month forecasts. Analog-based predictions of 48-month TAS and SPI initialized every
November are less skillful than the EC-Earth3 counterpart, while the analog-based predictions initialized every month have
on average a similar skill closer to EC-Earth3, but exhibit more variability throughout the year depending on the month of

initialization and variable predicted (Fig. 11 c,f).
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Figure 11: Fraction of global land area with statistically significant (p<0.1) positive residual correlation between TAS

predictions and observations for a) 12-month, b) 24-month and c) 48-month forecasts. Panels d), €) and f) are the
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same as a), b) and c), respectively, but for the statistically significant (p<0.1) positive correlation between SPI
predictions and observations using a two-sided t-test. The dark green and yellow lines in all panels show the skill of
the analog-based and EC-Earth3 predictions, respectively, initialized every November as the lead-time increases from
2 to 13 months. The light green line shows the skill of the analog-based predictions, initialized always with a one-
month lead-time. The x-axis always shows the first month of the forecasted period evaluated. For example, in panels
b,e the values of August indicate the skill for predictions between August in the first forecast year and July two years

later.

4. Summary and conclusions

The analog-based predictions provide skillful forecasts on seasonal to multi-annual time scales and show in general similar
spatial patterns of skill to initialized numerical predictions. Furthermore, the analog-based predictions are competitive with
existing annual and multi-annual predictions from initialized numerical predictions. On seasonal timescales the analog-based
predictions demonstrate high skill for boreal winter and summer TAS forecasts with one-month lead time, particularly in the
tropics, North Atlantic, and most of the Arctic, offering substantial added value over the CMIP6 ensemble (e.g. residual
skill). As for boreal summer, the skill extends into subtropical and mid-latitude regions, with the northern hemisphere land
showing greater skill in summer than winter. The improvement over the non-initialized CMIP6 ensemble is less pronounced
in the tropical Pacific during summer, likely due to the peak activity of the EI Nifio Southern Oscillation (ENSO) in winter.
Like climate predictions from dynamical forecasting systems, analog SPI3 forecasts are generally less skillful than 3-month
TAS predictions but still show higher skill than the non-initialized CMIP6 ensemble and skill peaks around boreal winter.
We show that skill in SPI3 predictions primarily stems from internal climate variability alignment, while for TAS
predictions, external forcing also plays an important role. Seasonal TAS and SPI3 predictions for all initializations
throughout the year display clear added value over the non-initialized CMIP6 ensemble but are generally less skillful than
operational predictions from SEAS51 (Johnson et al., 2019). Furthermore, the spatial patterns of skill are very similar
between the analog-based predictions and the state-of-the-art benchmark prediction system SEAS51, suggesting that both

predictions have skill due to similar physical processes.

On annual to multi-annual timescales, the annual TAS analog-based predictions are highly skillful across most tropical and
many extratropical land regions. Central Asia, central North America, and southern South America show lower skill, but still
better than climatological forecasts. The analog-based predictions generally outperform the CMIP6 ensemble, while the
added value over the CMIP6 ensemble decreases with increasing forecast range (i.e. biennial and quadrennial), indicating
that external forcing drives most of the skill particularly at quadrennial timescales. Spatially, the skill of annual and biennial
SPI forecasts is generally similar to that of seasonal ones, with positive statistically significant correlations in several tropical

regions being a common feature. High-latitude regions in Eurasia exhibit enhanced skill, particularly for quadrennial
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predictions, with external forcing contributing significantly to the skill in these areas. A comparison with the operational
decadal prediction system EC-Earth3 (Bilbao et al., 2021), reveals that the analog method can provide comparable annual
and biennial predictions of TAS and SPI when the predictions are initialized at the same month (i.e. every November) and
the lead-time increases. While decadal prediction systems are typically initialized only once per year, the analog-based
predictions can however be easily generated every month in an operational context and the skill of those predictions is
broadly superior to the skill of the EC-Earth3 decadal predictions initialized only once a year. The 48-month analog-based
predictions of TAS and SPI are less skillful than the EC-Earth3 counterpart when initialized in November but become
comparable if the analog-based predictions are produced every month. We have chosen EC-Earth3 as a representative model
of the typical decadal prediction system. It is possible that other decadal prediction systems perform better in particular
regions and timescales, but EC-Earth3 forecasts quality metrics reveal it to be a good representative of these systems. For a
thorough evaluation of several decadal prediction systems including EC-Earth3, the reader is referred to Figures S7-S11 in
Delgado-Torres et al., (2022).

Building on the established concept of climate analogs, our research demonstrates that by sampling through time and model
of a large CMIP6 multi-model ensemble based on their similarity with observed SST patterns, one can extract valuable
information on the future evolution of TAS and SPI, spanning a forecast range of seasons to multiple years. In other words,
the analog-based forecasts can provide seamless predictions for different forecast times, which have traditionally been
addressed with specific forecast systems (seasonal or decadal). Despite some potential limitations related to the lack of a
more sophisticated model initialization, these analog-based forecasts have no initialization shock nor drift and are
competitive with the existing prediction systems on annual to multi-annual forecast ranges. This methodology offers a
complementary source of climate information to existing seasonal and decadal climate predictions, filling an existing gap
across timescales and doing so in a seamless manner. Crucially, the method is computationally inexpensive and based on a
straightforward approach that facilitates the generation of seamless climate predictions reproducible at low computational

cost once the multi-model ensemble of transient simulations has been produced.
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