
Dear Editor and Reviewer, 

Thank you for the constructive feedback regarding our submission. We have revised the manuscript 
based on the suggestions. Detailed point-by-point response to the reviewer's comments follows 
below. 

 

COMMENT 1: 
Review of “HIDRA-D: deep-learning model for dense sea level forecasting using sparse 
altimetry and tide gauge data” 

OVERVIEW 

This paper presents an improvement to the existing HIDRA sea level forecasting model. The 
paper is interesting and rigorous, and the writing is clear. Aside from a few points and 
methodological steps that require further elaboration, the manuscript is well suited for 
publication. I suggest a minor revision. 

RESPONSE 1: 
We sincerely thank the reviewer for the positive assessment of our work and the encouraging 
feedback. We have addressed the specific methodological questions and the suggestions regarding 
the discussion of high sea level performance. 

 

COMMENT 2: 
HIGH SSH PERFORMANCE 

From Table 3, it is apparent that HIDRA-DN performs markedly worse than NEMO for high SSH 
levels, which are usually the ones we care about most from an impact perspective. More 
discussion of this point is warranted than the existing note on line 354. This suggests that 
HIDRA-D is not “better” than NEMO at least for some applications, particularly coastal flood 
warning, a point which should be highlighted in the conclusions. Do you have an 
understanding or theory as to why the model performs worse on high SSH? Might there be a 
way to correct it that would not harm the model’s overall skill? 

RESPONSE 2: 
We agree that distinguishing between overall basin performance and the specific capability to 
predict coastal extremes is important, particularly for applications like flood warning. We have 
revised the manuscript to explicitly address this limitation in both the Discussion and Conclusions 
sections. Specifically, we expanded the discussion to detail why HIDRA-DN underperforms in these 
scenarios, listing three factors: the spatiotemporal sparsity of satellite ADT data which rarely 
captures transient storm surges; the regression-to-the-mean tendency of MSE-based training in 
data-sparse regimes; and the lack of explicit in-situ undisturbed water depths to resolve local 
topographic effects on sea level at untrained locations.  



Regarding the possibility of correcting this behavior, we found that standard approaches like 
weighted loss functions (prioritizing extreme values) did not yield improvements in our experiments. 
We suspect this limitation is inherent to the current approach, specifically the reliance on sparse 
satellite altimetry which lacks sufficient dense ground truth for coastal extremes. We updated the 
conclusions to clarify that while HIDRA-D excels at basin-scale dynamics, traditional numerical 
models remain superior for coastal flood warnings at locations where no prior training tide-gauge 
data exists.  

Changes in Performance along the coastal region: 

 

Changes in Conclusions: 

 

 

 



COMMENT 3: 
MINOR POINTS 

Line 218: “The resulting field is then adjusted using the land-sea mask for the Adriatic Sea”. 
Can you be more specific what this adjustment is? 

RESPONSE 3: 
The adjustment is element-wise multiplication of the predicted 2D field with a static binary mask. 
Since the IDFT generates values for the entire rectangular grid, this masking step is necessary to set 
all values corresponding to land points to zero. Our specific mask is included in the published 
dataset. 

The text now reads “The resulting field is then multiplied by a binary land-sea mask of the Adriatic.” 

 

COMMENT 4: 
Line 275: Describe in more detail how you arrived at these weights. Was there an objective 
hyperparameter tuning? Or hand-tuned? If so, what metric(s) were you trying to maximize 
during this tuning? 

RESPONSE 4: 
Note that the weights were not determined through a numerical hyperparameter optimization 
process. Instead, they were chosen based on a specific architectural design choice to enforce a 
hierarchical prioritization of tasks. Our primary objective was to ensure that the HIDRA3 backbone, 
which generates the latent representations, retains its high accuracy for point-wise tide gauge 
predictions (supervised by L1). If the weights were of similar magnitude, there would be a risk that 
the optimization process might degrade the accuracy of the HIDRA3 backbone (point predictions) in 
an attempt to minimize the dense reconstruction error (L2 and L3). By setting α = 100, we impose a 
soft constraint that forces the backbone to prioritize the point-prediction task. This ensures that the 
dense predictions are constructed on top of a valid underlying state representation, rather than 
compromising that state to fit the sparse satellite data. 

Regarding β = 1 and γ = 1: L2 and L3 generally operate on spatially distinct domains. L3 provides 
supervision at fixed coastal points where satellite data is rarely available, while L2 provides 
supervision in open water. Since they do not compete for the same spatial grid points in most 
iterations, equal weighting was sufficient. 

We have revised the section in the manuscript to explain this design logic: 



 

 

 

COMMENT 5: 
Line 281: “To progressively decrease the learning rate by a factor of 100, we utilize a cosine 
annealing schedule”. Unclear. Does this mean that the starting and ending LR during training 
differ by a factor of 100? Or something else? 

RESPONSE 5: 
As suggested, we clarified the statement in the revised paper. As the reviewer correctly inferred, the 
final learning rate is 1/100 of the initial learning rate. This decay factor applies proportionally to both 
parameter groups (the main model parameters starting at 10-5 and the bias parameters bi starting at 
10-3), following standard annealing schedules (Loshchilov and Hutter, 2017). We have revised the 
text: 

 

 

COMMENT 6: 
Sec 2.5: More details required. Was a validation set used? Any early stopping conditions? How 
did you ensure overfitting did not occur? 

RESPONSE 6: 
While a separate validation set was used during the development phase to tune hyperparameters, 
the final models presented in the paper were trained on the full training dataset to maximize the 
historical data availability. We did not employ dynamic early stopping for the final training, we relied 
on a fixed schedule of 50 epochs with a learning rate scheduler. To prevent overfitting, the model 
architecture and training process incorporate weight decay, dropout layers within the Dense 



decoder, and a stochastic data augmentation strategy that randomly deactivates tide gauges, forcing 
the model to learn robust representations rather than memorizing specific sensor combinations. 

We have expanded Section Training details to clarify our training protocol: 

 

 

COMMENT 7: 
Sec 3.1: This model description subsection seems better suited for the methods than the 
results. 

RESPONSE 7: 
As suggested, we have reorganized the manuscript structure. The NEMO model description is now 
located in Section 2.4, within the Data and experimental setup section, separate from the section 
describing the model architecture. 
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